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Abstract—Magnetic resonance imaging serves as an 

essential tool for clinical diagnosis. However, it suffers 

from a long acquisition time. The utilization of deep 

learning, especially the deep generative models, offers 

aggressive acceleration and better reconstruction in 

magnetic resonance imaging. Nevertheless, learning the 

data distribution as prior knowledge and reconstructing 

the image from limited data remains challenging. In this 

work, we propose a novel Hankel-k-space generative 

model (HKGM), which can generate samples from a 

training set of as little as one k-space data. At the prior 

learning stage, we first construct a large Hankel matrix 

from k-space data, then extract multiple structured k-

space patches from the Hankel matrix to capture the 

internal distribution among different patches. Extracting 

patches from a Hankel matrix enables the generative 

model to be learned from the redundant and low-rank 

data space. At the iterative reconstruction stage, the de-

sired solution obeys the learned prior knowledge. The 

intermediate reconstruction solution is updated by tak-

ing it as the input of the generative model. The updated 

result is then alternatively operated by imposing low-

rank penalty on its Hankel matrix and data consistency 

constraint on the measurement data. Experimental re-

sults confirmed that the internal statistics of patches 

within a single k-space data carry enough information 

for learning a powerful generative model and provide 

state-of-the-art reconstruction. 

Index Terms—Parallel magnetic resonance imaging, 

low-rank Hankel matrix, score-based generative modeling, 

prior learning. 

I. INTRODUCTION 

agnetic resonance imaging (MRI) is a widely used 

non-invasive imaging technique for clinical diagnosis 

and research because of the excellent spatial resolution and 

soft-tissue contrast illustration. However, the acquisition 

speed is fundamentally limited due to hardware and physio-

logical constraints and the requirement to satisfy Nyquist 

sampling rate. Long acquisition time is a burden for patients 

and makes MRI susceptible to motion artifacts. 1  In this 

study, we focus on image reconstruction for accelerating 

parallel MRI (pMRI) [1].  
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In parallel imaging, multiple receive coils provide addi-

tional sensitivity information for successful reconstruction 

from incomplete sampling. The commonly used pMRI 

methods include generalized autocalibrating partial parallel 

acquisition (GRAPPA) [2] and sensitivity encoding (SENSE) 

[3]. GRAPPA works in k-space as an interpolation proce-

dure, and SENSE works in image space using explicitly 

calculated coil sensitivity maps. The other successful ap-

proach for accelerating MRI is compressed sensing (CS) [4], 

which uses the sparsity prior and incoherent sampling. Later, 

the concept of low-rank modeling has shown increased pop-

ularity, such as the eigenvector-based iterative self-

consistent parallel imaging reconstruction (ESPIRiT) [5], 

simultaneous autocalibrating and k-space estimation (SAKE) 

[6] (see Fig. 1(a)), low-rank matrix modeling of local k-

space neighborhoods (LORAKS) [7] and annihilating filter-

based low-rank Hankel matrix (ALOHA) [8]. Admittedly, 

the reconstruction accuracy of above-mentioned methods 

has large room to improve. 

 
 

Fig. 1. Different prior knowledge methods for pMRI. (a) Conventional k-

space iterative methods (e.g., SAKE) adopt low-rank penalty on Hankel 
matrix. (b) Existing generative modeling (e.g., HGGDP) on fully-sampled 

data. (c) The proposed generative modeling is conducted on a dataset of 

low-rank patches extracted from a single k-space measurement. 

 

In comparison, deep learning (DL) methods are gaining 

popularity for their accuracy and efficiency. DL methods 

can be roughly categorized into the supervised manner and 

unsupervised manner. Supervised learning approaches [9]-

[15] usually require thousands of fully-sampled data to train 

the network, which is difficult in some special circumstanc-

es. Unsupervised DL methodologies [16-21], such as deep 

generative models shown in Fig. 1(b), learn the distribution 

of objects and show great promise in accelerating MRI. For 

instance, Liu et al. [17] leveraged denoising autoencoder 

(DAE) as an explicit prior to address the highly under-
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sampled MRI reconstruction problem. Tezcan et al. [18] 

proposed an approach that learned the distribution of fully 

sampled magnetic resonance (MR) images and used it as an 

explicit prior term in reconstruction. A similar approach, 

PixelCNN [19], exploited a generative network as the image 

prior for MRI reconstruction. The generative flow (Glow) 

[20] that formulated in the latent space of invertible neural 

network-based generative models was proposed for recon-

structing images from under-sampled MR data. Quan et al. 

[21] presented HGGDP for MRI reconstruction by utilizing 

the denoising score matching. They all used a certain 

amount of training data to learn the prior information for 

under-sampled MRI reconstruction. 

Despite the promising progress of these deep generative 

models in MRI reconstruction, challenges remain. For ex-

ample, training HGGDP for MRI reconstruction relies on 

500 pieces of training data. Nevertheless, dataset collection 

is difficult and expensive, and training on large datasets 

often takes a long time. To alleviate the issues, we present a 

Hankel-k-space generative model (HKGM) that can learn to 

generate samples from a training set of as little as only one 

case of k-space data. Since directly training with one single 

sample is intractable, we conduct the generative model on a 

dataset of low-rank patches (see Fig. 1(c)). Specifically, we 

first construct a huge Hankel matrix from a k-space data, 

then extract multiple and low-rank Hankel structured k-

space patches as the training dataset. Our proposal is moti-

vated from the success of modelling the internal distribution 

of patches within a single natural image [22]-[30]. Classical 

examples include denoising [22]-[24], deblurring [25], su-

per-resolution [26], outlier detection [27], and image editing 

[28].  

The main contributions of this work are summarized as 

follows: 

⚫ To alleviate the issue of insufficient data samples in 

prior learning, we first construct a Hankel matrix from 

the sampled data in k-space, then extract multiple k-

space patches from the matrix. Therefore, a large num-

ber of training data can be obtained within one case of 

k-space data. 

⚫ After the prior knowledge is learned, it is incorporated 

into the conditional generation for high-quality recon-

struction. In addition to sample generation, we impose 

low-rank penalty on the Hankel matrix and data con-

sistency constraint on the measurement data alterna-

tively at each iteration. Since the learned prior has no 

restriction on the channel number, it can be adopted to 

pMRI reconstructions on different coils. 

The rest of this paper is presented as follows. Section II 

briefly describes some reconstruction works using low-rank 

methodology and the research of score-based generative 

models. In Section III, we elaborate the theory of HKGM, 

including training and iteration processes. Section IV 

demonstrates experimental results and the comparison with 

state-of-the-arts. Section V concludes the present method. 

II. RELATED WORK 

A. Background on PMRI 

The forward model for the multi-coil pMRI observation 

acquisition in k-space domain can be described as follows: 
,  1, 2, ,

c c c
y Mk n c C= + =  (1) 

where M  is a diagonal matrix whose diagonal elements are 

either 1  or 0  depending on the sampling pattern. c
n  is the 

noise. 
c

k  represents the c-th coil k-space data and 
c

y  de-

notes the corresponding acquired k-space measurement data. 

C  denotes the number of coils. The pMRI recovery can be 

formulated as an optimization problem: 
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Mk y Mk y  is the data fidelity 

term, which enforces data consistency with acquired k-space 

measurement y . ( )R k  is the regularization term of k , 2

2
|| ||  

represents the 
2

l -norm and   is the factor that balances the 

data-fidelity term and the regularization term. 

B. Reconstruction using Low-rank Methodology 

The structured low-rank matrix prior has shown promis-

ing results. For instance, a calibrationless parallel imaging 

reconstruction method named SAKE was presented by Peter 

et al. [6], which formulated the MRI reconstruction as a 

structured low-rank matrix completion problem. Empow-

ered by recent k-space interpolation methods, Jin et al. [8] 

presented an annihilating filter-based low-rank Hankel ma-

trix approach (ALOHA) as a general framework for sparsi-

ty-driven k-space interpolation, which combined pMRI with 

CS-MRI. Inspired by the recent mathematical discovery of a 

data-driven framelet that linked convolutional neural net-

works to Hankel matrix decomposition, Han et al. [31] 

demonstrated a fully data-driven DL algorithm for k-space 

interpolation. Subsequently, Zhang et al. [32] devised an 

approach named STDLR-SPIRiT, which combined the sim-

ultaneous two-directional low-rankness (STDLR) with the 

iterative self-consistent parallel imaging reconstruction 

(SPIRiT) to mine the data correlation from multiple receiver 

coils. Meanwhile, Haldar et al. [7] developed a flexible 

framework for constrained image reconstruction that used 

low-rank matrix modeling of local k-space neighborhoods 

(LORAKS). Soon later, the author introduced P-LORAKS 

[33], which extended LORAKS to the context of parallel 

imaging. Besides, Chen et al. [34] presented a locally struc-

tured low-rank image reconstruction method by imposing 

low-rank constraints on submatrices of the Hankel struc-

tured k-space data matrix. 

C. Score-based Generative Model with SDE 

Many deep generative models [35]-[37] have emerged for 

accelerating MRI reconstruction. Among them, score-based 

generative models [21], [39]-[41] have gained a lot of suc-

cess in generating realistic and diverse data. Later, the ad-

vanced scored-based generative model with stochastic diffu-

sion equations (SDE) [42] defines a forward diffusion pro-

cess transforming data into noise and generates data from 

noise by reversing the forward process. 

More specifically, one can consider a diffusion process 

0
{ ( )}

T

t
x t

=
 with ( )

n
x t  , where [0, ]t T  is a continuous 

time variable and n  denotes the image dimension. By 

choosing 0
(0)x p  and ( )

T
x T p , 0

p  is the data distribu-

tion and T
p  is the prior distribution, the diffusion process 

can be modeled as the solution of the following SDE: 

( , ) ( )dx f x t dt g t dw= +                          (3) 

where n
f   is the drift coefficient, and g   is the dif-

fusion coefficient of ( )x t . 
n

w  induces Brownian mo-

tion. 



According to the reversibility of SDE, the reverse process 

of Eq. (3) can be expressed as another stochastic process: 
2

[ ( , ) ( ) log ( )] ( )
x t

dx f x t g t p x dt g t dw= −  +         (4) 

where dt  is the infinitesimal negative time step, and w  is a 

standard Wiener process for time flowing in reverse. The 

score term log ( )
x t

p x  can be approximated by a learned 

time-dependent score model ( ( ), )s x t t . The SDE is then 

solved by some solver procedures, providing the basis for 

score-based generative modeling with SDE. 

III. METHOD 

A. Characteristics in Hankel Matrix 

The cornerstone of the proposed HKGM method is the 

Hankel matrix, which exploits and displays correlations in 

multi-coil MRI k-space data. The Hankel matrix constructs 

multi-coil data into a single data matrix. As shown in Fig. 2, 

a single data block in the k-space is vectorized into a col-

umn in the data matrix [6]. When reversely forming a k-

space dataset from a data matrix, multiple anti-diagonal en-

tries are averaged and stored at appropriate k-space loca-

tions. 

 

 
Fig. 2. Schematic diagram of the construction of the Hankel matrix. 

 

We define a linear operator h  that generates a data ma-

trix k
H  from multi-coil k-space data. 

2
( 1)( 1)

: x y c c x yN N N w N N w N w
h

   − + − +
→              (5) 

Then, the reverse operator 
†

h  generates the correspond-

ing k-space dataset from the data matrix k
H . 

2
( 1)( 1)†

: c x y x y cw N N w N w N N N
h

 − + − +  
→            (6) 

where †  denotes a pseudo-inverse operator. The formulation 

of Hankel matrix involves two key characteristics: 

1) Redundancy property. As seen in Fig. 2, any elements 

in the original matrix can be repeatedly observed in 

multiple regions of the Hankel matrix. From 
x y

N N  

sized data with c
N  number of coils, we can generate a 

data matrix having the size of 
2

( 1)( 1)
c x y

w N N w N w − + − +  by sliding a c
w w N   

window across the entire k-space, so the capacity of 

Hankel matrix is approximately 
2

( 1)( 1)
c x y x y

w N N w N w N N − + − +   times than 

that of the original matrix. Therefore, the Hankel matrix 

is a redundant representation of the original matrix. 

2) Structural property. Fig. 2 shows a pictorial description 

of constructing a Hankel matrix with an exemplary 

3 3  window. It should be noted that the data matrix 

has a stacked, block-wise Hankel structure because of 

the nature of the sliding-window operation. Due to the 

linear dependency residing in multi-coil data, this ma-

trix is also low-rank [43]-[45].  

In this study, we explore the redundancy and structural 

properties of the Hankel matrix, similarly as exploring the 

characteristics of image patches in the past decades [28]. On 

the one hand, the redundancy property provides the feasibil-

ity to extract multiple data patches for prior learning, which 

can generate relatively sufficient data samples. On the other 

hand, the structural property guarantees the low-rank feature. 

It is desirable to utilize the generative model to learn prior 

information on the patches extracted from the Hankel matrix. 

Therefore, the internal distribution underlying the single k-

space data can be captured for reconstruction. 

B. Prior Learning in Hankel Structured k-Space 

Generally speaking, supervised learning approaches re-

quire thousands of data samples to train a network. Although 

generative models aim to learn the probability distribution 

of the images to be reconstructed by network training, they 

also require hundreds of data samples. It would be better to 

get high-quality reconstruction results with only one data 

sample used for training. 

Since direct training with one data sample is intractable, 

we utilize the Hankel matrix to generate sufficient data 

samples in this study. Hankel matrix has the feature that can 

be generated algebraically. A single data block in the k-

space is vectorized into a column in the data matrix. There-

fore, it can construct a data matrix whose size is much larger 

than the original matrix. As shown in Fig. 3, we take the 

fully-sampled k-space data with the size of 256 256 8   as 

the input of HKGM to learn prior information. The training 

process consists of three steps: 

Step 1: Constructing a large Hankel matrix. By sliding 

a 8 8 8   window across the entire k-space, we can 

construct a large block Hankel matrix with the size 

of 62001 512 , which is much larger than the origi-

nal matrix. This process can be formulated as: 

                                     ( )
k

H h k=                                  (7) 

Step 2: Extracting k-space patches from Hankel matrix. 

Inspired by the success of exploiting the internal sta-

tistics of image patches [22]-[30], we randomly extract 

multiple Hankel structured k-space patches 
1

{ }
i N

k i
R

=
 

with the size of 256 256  from the Hankel matrix to 

generate a moderate amount of data samples (e.g., 484 

patches). The main purpose of this step is to generate 

sufficient data samples with similar rank values as the 

Hankel matrix. As observed from one representative 

patch in Fig. 4, most singular value coefficients of the 

patch are near to 0 , which indicates that the patches 

from the Hankel matrix are indeed low rank. More de-

scriptions regard to the rank between the Hankel ma-

trix and the extracted k-space patches are included in 

Supplementary Materials. 

Step 3: Capturing the internal distribution of Hankel 

structured k-space patches. After Step 2, we obtain a 

lot of Hankel structured k-space patches with the same 

number of elements for training. By constructing the 

Hankel matrix and extracting patches from it, the same 

pixel of k-space data exists in different patches. We 



can fully use the redundancy of the same pixel among 

different patches to capture the internal statistics under-

lying the single training k-space data. The internal dis-

tribution of each patch is learned through a score-based 

network. As shown in Eq. (3), the diffusion process in 

this work can be reformulated as: 

( , ) ( )
k k k

dR f R t dt g R dw= +                  (8) 

According to the work of Song et al. [42], we use 

the Variance Exploding (VE) SDE by choosing 
2

0,  [ ( )]f g d t dt= =  to form the following Markov 

chain: 

       1 2 2

1 1
,  1, ,

i i

k k i i i
R R z i N −

− −
= + − = L           (9) 

where ( )t  is Gaussian noise function with a variable 

in continuous time [0,1]t  , which can be redescribed 

as a positive noise scale 
1

{ }
N

i i


=
. Then, we use de-

noising score matching to minimize Eq. (10): 
*

(0) ( )| (0)

2

( ) 0

arg min { ( ) [

      || ( ( ), ) log ( ( ) | (0)) || ]}

k k k

k

t R R t R

k R t t k k

t

s R t t p R t R





 =

−

(10) 

Here 
0

: [0, ]T


→  is a positive weighting func-

tion, t  is uniformly sampled over [0, ]T . 

 

 
 

Fig. 3. The training flow chart of HKGM. The training process mainly consists of three steps. Firstly, we construct a large Hankel matrix from k-space data. 

After that, we extract a lot of redundancy and low-rank patches to generate sufficient data samples. Finally, we feed these training patches to the network to 
capture the internal distribution at different patches. 

 

        
Fig. 4. Numerically verification of the low rank property in Hankel 

structured k-space patches. (a) An example of the Hankel structured 

k-space patch. (b) Singular value coefficients of the Hankel struc-
tured k-space patch. 

C. PMRI Reconstruction of HKGM 

By reversing SDE, we can convert random noise into 

data for sampling and generating high-resolution data. 

The predictor-corrector (PC) sampling is used for the 

samples update step. The predictor is a reverse diffusion 

SDE solver [42], which discretizes the reverse-time SDE 

in the same way as the forward one. Specifically, the 

samples from the prior distribution can be obtained from 

the reverse SDE, which can be discretized as follows: 
1 2 2 1 2 2

1 1

1 2 2 1 2 2

1 1 1

( ) log ( )+

   ( ) ( , )

i i i

i i k t i i

i i

i i i i i

k k p k z

k s k z

   

    

+ +

+ +

+ +

+ + +

= + −  −

 + − + −

    (11) 



where i  is the total number of iterations, (0,1)z N  is a 

zero-mean Gaussian white noise with variance, 
0

(0)k p , 

and we set 0
0 =  to simplify the notation.  

In pMRI reconstruction for under-sampling measure-

ment y , Eq. (11) comes to be conditional generation. 

More precisely, the iterative formulation is as follows: 
1 2 2 1 2 2

1 1 1

1 1 2 2

1

 = ( ) ( , ) ( )

      [ log ( ) log ( | )]

i i i

i i i i i

i i

k t LR k t i i

k k s k

p k p y k z

    

 

+ +

+ + +

+ +

+

+ − + −

 +  + −
 (12) 

where log( ( ))
t

p k  is given by the prior model that repre-

sents information known beforehand about the true mod-

el parameter. log( ( ))
t LR

p k  is derived from low-rank data 

knowledge. log ( | )
t

p y k  is derived from data knowledge. 

The detailed derivation of Eq. (12) is provided in Sup-

plementary Materials. 

The pursuit of Eq. (12) is divided into three subprob-

lems that can be conducted alternatively, i.e., predictor-

corrector (PC) operation on the intermediate solution, low-

rank penalty on Hankel matrix (i.e., 1
log ( )

i

k t LR
p k

+
 ) and 

data consistency (DC) constraint on the measurement (i.e., 
1

log ( | )
i

k t
p y k

+
 ). The whole scheme is shown in Fig. 5. 

In the following parts, we mainly introduce the solution 

process of these three subproblems in sequential order. 

 

 
Fig. 5. The pipeline of the MRI reconstruction procedure in HKGM. The iterative reconstruction process mainly consists of three steps. Firstly, we itera-

tively reconstruct objects from the trained network using a PC sampler on the input k-space data. After that, we construct Hankel matrix from the output of 

the network and apply low-rank penalty on it. Finally, we perform data consistency on the k-space data formed reversely from the matrix. 

 

Step 1: PC. In the training stage, we extract a lot of Hankel 

structured k-space patches from the large Hankel ma-

trix and then feed these training patches into the net-

work. During the reconstruction phase, the iterative 

step would be computationally expensive and time-

consuming if we implement it in this manner. To over-

come the dilemma, we tend to find another way to 

make the iterative process more efficient and conven-

ient. It can be observed that k-space data matrix k  

needs to be interpolated and follows into the prior dis-

tribution of Hankel structured k-space patches. As 

shown in the following formula: 

         ( )
k

k P R                             (13) 

where ( )
k

P R  is the prior distribution of Hankel struc-

tured k-space patches. This feature could be utilized to 

speed up iterations during the reconstruction phase. At 

each iteration step, we directly use the result of the 

previous step as the input to the generative model. 

From Eq (12), we can obtain the generation process: 

1 2 2 1 2 2

1 1 1
( ) ( , )

i i i

Gen Gen i i Gen i i i
k k S k z    + +

+ + +
= + − + −  (14) 

According to Song et al. [42], Eq. (14) can be 

viewed as the predictor. Corrector is used after the pre-

dictor to obtain a more efficient and robust iterative 

formulation, thus forming PC sampling. The corrector 

can be viewed as: 
, , 1 , 1

( , ) 2
i j i j i j

Gen Gen i Gen i i
k k s k z  − −

= + +         (15) 

where the initial solution 0

Gen
k  can be a total uniform 

noise or other predefined value. 0   is a step size. 

After PC operation, we obtain the k-space data Gen
k  

generated by the network, and then we construct a data 

matrix from it. This process can be formalized as: 

             ( )
Gen Gen

H h k=                           (16) 

Step 2: Low-rank constraint on Hankel matrix. Supposing 

the data matrix 
Gen

H  to be low-rank, we can apply sin-

gular value decomposition (SVD) to it to break the in-

formation into signal and noise subspaces. An arbitrary 

m n  matrix of rank l  can be decomposed as: 
†

Gen

m l l l l n

H U V
  

=                            (17) 

To enforce the low-rankness, we make use of the 

hard thresholding operator ( )
r

Th g , a nonlinear op-

erator that sets the entries smaller than r  to zero  

[47]: 



                     
    | |

( )
0    

r

f if f r
Th f

otherwize


= 


                    (18) 

We perform the threshold operation on the diagonal el-

ements of  , and the hard threshold singular value of 

the data matrix constructed is obtained by using low-

rankness projection, i.e., 
†

( ) ( ( ( )))
r Gen r

Th H U Th diag V=               (19) 

where †
U V  represents the SVD of Gen

H . Finally, we 

project the data matrix onto the k-space data. This op-

eration is done implicitly by applying †
h  to the data 

matrix. The process can be formulated as a constraint 

optimization, that is: 
†

 ( ( ))
LR r Gen

k h Th H=                     (20) 

Step 3: DC. From Eq. (12), we can obtain the subproblem 

regarding to data consistency: 

           
2 2

2
{|| || || || }

LR
k

Min Mk y k k− + −             (21) 

Data consistency is repeatedly enforced in each iter-

ative reconstruction step to ensure that the output is 

consistent with the original k-space information. The 

data consistency problem is solved via: 

( )
( )

( ) ( )

,                                   

[ ] / (1 ),     

LR

LR

k j if j
k j

k j y j if j 


= 

+ + 

       (22) 

where   denotes an index set of the acquired k-space 

samples. ( )
LR

k j  represents an entry at index j  in k-

space. In the noiseless setting (i.e.,  → ), we re-

place the j-th predicted coefficient with the original co-

efficient if it has been sampled. Then ( )k j  go back to 

Step 1 for iterative reconstruction.  

The image is reconstructed by applying the inverse Fouri-

er Transform 1
( )I F k j

−
= . The final reconstruction is ob-

tained by combining the channels through the sum of 

squares (SOS). At the conditional generation for iterative 

reconstruction, both the intermediate steps of data con-

sistency and low-rank penalty are non-expansive, thus the 

whole iterative procedure guarantees convergence. In sum-

mary, Step 1-3 in Section III. B and Section III. C constitute 

the whole process of HKGM. It compactly represents the 

training and sampling process of HKGM by Algorithm 1.  

 

Algorithm 1: HKGM 

Training stage 
1: Dataset: a single k-space data  

2: Construct Hankel matrix = ( )
k

H h k  

3: Extract patches 1
{ }

i N

k i
R

=  from the matrix 

4: Training: Eq. (10) 

5: Output: Trained ( , )
k

S R   

Reconstruction stage 
Setting: ,N M  

1: 
2

(0, )
N

T
H N    

2: For 1i N= −  to 0  do (Outer loop) 

3:     
1

1
Predictor ( , , )

i i

i i
k k  +

+
  

4:     ( )
i i

Gen
H h k  (Hankel matrix) 

5:     [ , , ] ( )
i

Gen
U V SVD H =  (Perform SVD) 

6:     
†
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IV. EXPERIMENTS 

A. Experiment Setup 

1) Datasets. First, we used brain images from SIAT da-

taset, which was provided by Shenzhen Institutes of Ad-

vanced Technology, the Chinese Academy of Sciences. In-

formed consents are obtained from the imaging subjects in 

compliance with the institutional review board policy. The 

raw data are acquired from 3D turbo spin-echo (TSE) se-

quence with T2 weighting by a 3.0T whole-body MR sys-

tem (SIEMENS MAGNETOM Trio Tim), which has 192 

slices per slab, and the thickness of each slice is 0.86 mm . 

Typically, the field of view and voxel size are 
2

220 220 mm  and 
3

0.9 0.9 0.9 mm  , respectively. The 

relevant imaging parameters encompass the size of image 

acquisition matrix is 256 256 , echo time (TE) is 149 ms , 

repetition time (TR) is 2500 ms . Moreover, the number of 

coils is 12 and the collected dataset includes 500 2D com-

plex-valued MR images. At the training stage, we select one 

of these images for prior learning, as shown in Fig. 6(a). In 

addition, we selected 20 of these 500 images as experi-

mental test datasets and named them Brain1, Brain2, , 

Brain20, respectively (excluding the images used for train-

ing). We selected five data shown in Fig. 6(d) for recon-

struction quality comparison. 
 

   
                  (a)                                 (b)                               (c) 

 
                                                         (d) 
Fig. 6. Visualization of some experimental data. (a) iFFT of the training 

data, (b) 12-channel T2 transversal Brain and 8-channel T1 GE Brain from 

[46], (c) 8-channel T1 Ori Brain from [6], (d) Five data from SIAT dataset. 
 

Aside from the SIAT dataset, we conducted experiments 

on two in-vivo datasets to verify the reconstruction perfor-

mance. On one hand, two data depicted in Fig. 6(b) are col-

lected from ref. [46]. One is the 12-channel T2 transversal 

Brain MR images with the size of 256 256  that acquired 

with 3.0T Siemens, whose FOV is 
2

200 200 mm  and 

TR/TE is 5000/91 ms [46]. Another is the 8-channel T1 GE 

Brain with the size of 220 256 [46]. The MR images are 

acquired by 3.0T GE. The FOV is 2
220 220 mm , and 



TR/TE is 700 /11 ms . On the other hand, T1 Ori Brain in 

Fig. 6(c) is acquired with a T1-weighted 3D spoiled gradient 

echo sequence. A single axial slice is used in the experi-

ments [6]. The scan is performed on a 1.5T MRI scanner 

(GE, Waukesha, Wisconsin, USA) using an 8-channel re-

ceive-only head coil. Scan parameters are as: TE = 8 ms , 

TR = 17.6 ms , flip angle = 20
 , FOV = 20 20 20cm cm cm  , 

and matrix size is 200 200 200   for an isotropic 3
1 mm  

resolution.  

2) Evaluation Metrics. The commonly used indexes peak 

signal to noise ratio (PSNR) and structural similarity (SSIM) 

are included in the reconstruction experiments to evaluate 

reconstruction quality. For the convenience of reproducibil-

ity, the source code and some representative results are 

available at: https://github.com/yqx7150/HKGM. 
3) Model Training and Setting. The batch size in HKGM 

is set to be 2 and Adam optimizer with 1
=0.9  and 

2
=0.999  is utilized to optimize the network. For noise 

variance schedule, we fix max min
1,  0.01 = =  and 

0.075r = . We set 1000, 1N M= =  in all experiments. For 

the other parameters, we follow the settings in the work of 

Song et al [42]. The training and testing experiments are 

performed with 2 NVIDIA TITAN GPUs, 12 GB. 

B. Reconstruction Comparisons 

We conduct the experiments under various sampling pat-

terns (e.g., Poisson, 2D Partial Fourier and 2D Random 

sampling) and acceleration factors (i.e., 3×, 4×, 6×, 8× and 

10× factors of acceleration). Meanwhile, several state-of-

the-arts including ESPIRiT [5], LINDBERG [46], P-

LORAKS [35] and SAKE [6] are compared with HKGM. 

1) Test on 12-coil T2 SIAT Data. All methods are evalu-

ated on five data in Fig. 6(d) under different sampling pat-

terns with varying accelerating factors. Fig. 7 presents the 

reconstructed results at R=4 using Poisson sampling with 12 

coils. For a closer comparison, we zoom in the image (en-

closed with the green box), which implies that the proposed 

method preserves more details and produces an image closer 

to the ground truth. The visual quality of reconstructions for 

different methods varies. ESPIRiT and LINDBERG suffer 

from artifact, while P-LORAKS, SAKE and the proposed 

method produce better reconstruction results. There still 

exist noisy artifacts in P-LORAKS. As for SAKE, the resid-

ual map implies that the reconstructed image is deficient in 

preserving the structure and texture. It can be seen that the 

proposed HKGM produces the least error. 

In addition to the visual comparison, we further provide 

the average quantitative measurement comparisons for these 

methods in Table I. The proposed HKGM has the highest 

PSNR values under both sampling patterns. PSNR of 

HKGM gains over SAKE from 32.87 dB to 34.76 dB under 

Poisson sampling pattern with the acceleration factor R=4. 

Similar to the phenomenon in visual comparison, it con-

cludes that HKGM has obtained superior performances 

quantitatively. 

 

TABLE I 
PSNR AND SSIM COMPARISON WITH STATE-OF-THE-ART METHODS UNDER DIFFERENT SAMPLING PATTERNS WITH VARYING ACCELERATE FACTORS. 

Data in Fig. 6(d) ESPIRiT LINDBERG P-LORAKS SAKE HKGM 

Poisson R=4 31.12/0.833 32.20/0.902 31.66/0.841 32.87/0.866 34.76/0.910 

Poisson R=10 26.68/0.777 26.79/0.807 28.69/0.738 30.13/0.803 30.54/0.818 

2D Random R=4 30.36/0.775 31.18/0.890 31.25/0.823 32.99/0.829 33.87/0.893 

2D Random R=6 29.47/0.741 28.83/0.850 27.95/0.729 31.13/0.828 31.76/0.858 

 

 
 

Fig. 7. Complex-valued pMRI reconstruction results at R=4 using Poisson sampling with 12 coils. From left to right: Fully-sampled, Under-sampled, 
ESPIRiT, LINDBERG, P-LORAKS, SAKE, and HKGM. The intensity of residual maps is five times magnified. 

 

2) Test on 12-coil T2 Data [46]. Regarding the T2 Trans-

versal Brain data, a Poisson sampling pattern with accelera-

tion factors of 4 and 10 is employed for testing. Fig. 8 visu-

alizes the representative reconstruction results and error 

maps of HKGM and competing methods. HKGM can pro-

duce a realistic reconstruction similar to the ground truth 

and maintain good characteristics in terms of edge details. 

The absolute difference maps further illustrate that the com-

peting methods produce more artifacts on the edge or back-

ground. ESPIRiT and SAKE exhibit significant noise-like 

residuals associated with noise vulnerability at high acceler-

ations. LINDBERG exists spatial blurring, which is effec-

tively mitigated by HKGM reconstruction. It can be con-

cluded that HKGM yields superior performance even at an 

extremely high acceleration factor.  

Correspondingly, quantitative evaluations of PSNR and 

SSIM metrics are listed in Table II. HKGM outperforms 

ESPIRiT, LINDBERG, P-LORAKS and SAKE in terms of 

PSNR and SSIM metrics. It is worth noting that the perfor-

mance of HKGM is optimum under various sampling strate-

gies. HKGM reduces the sampling-specific effects, i.e., the 

differences between reconstructions with different sampling 



schemes are less severe. In short, the proposed HKGM ef-

fectively improves iteration reconstruction quality and can 

be generalized to various sampling patterns with different 

acceleration factors. 
 

TABLE II 
PSNR AND SSIM WITH STATE-OF-THE-ART PMRI METHODS UNDER POISSON WITH VARYING ACCELERATE FACTORS. 

T2 Transversal Brain ESPIRIT LINDBERG P-LORAKS SAKE HKGM 

Poisson R=4 31.74/0.819 32.87/0.901 31.44/0.844 33.91/0.896 35.21/0.921 

Poisson R=10 28.95/0.798 26.17/0.822 28.96/0.761 29.75/0.823 31.69/0.850 

 

 
 

Fig. 8. Complex-valued pMRI reconstruction results at R=10 using Poisson sampling with 12 coils. From left to right: Fully-sampled, Under-sampled, 

ESPIRiT, LINDBERG, P-LORAKS, SAKE, and HKGM. The intensity of residual maps is five times magnified. 

 

3) Test on 8-coil T1 Data [6]. As the prior knowledge of 

HKGM is learned from extracted k-space patches, the 

learned model from 12-coil object can be applied to recon-

struction task with any coils. Table III summarizes the quan-

titative results of T1-weighted 8-coil data under Poisson 

sampling pattern with acceleration factors R=4, 8 and 2D 

Partial Fourier sampling pattern with acceleration factors 

R=3, 6, respectively. Bold numbers in Table III indicate the 

better performance of the proposed method than the compet-

ing ones. It can be observed that the average PSNR and 

SSIM values of the reconstructed each image by using 

HKGM are higher than those of the other models. Particu-

larly, the performance of HKGM is more striking with the 

increase in acceleration factor. Even in the case of accelera-

tion factor R=8 under Poisson sampling pattern, HKGM still 

produces reasonable results. Additionally, the SSIM value of 

HKGM is closer to 1 with Poisson sampling of R=4, which 

indicates that HKGM has good performance in the metric of 

SSIM between the estimated reconstruction result and 

ground truth. 

Besides the quantitative comparison, the visual quality is 

also highlighted. Fig. 9 depicts the qualitative reconstruction 

results of ESPIRiT, LINDBERG, P-LORAKS, SAKE and 

HKGM, along with their corresponding 5× magnified resid-

ual images. From Fig. 9, we can observe that significant 

residual artifacts and amplified noise exist in the results ob-

tained by ESPIRIT, LINDBERG, and P-LORAKS. SAKE 

produces an estimation superior to them but still suffers 

from some visible blurring artifacts. The reconstructed im-

age of HKGM retains more textural details and has the least 

noise relative to the reference image. To sum up, the pro-

posed HKGM provides realistic reconstruction quality and 

preserves detailed structures and textures. 

 
TABLE III 

PSNR AND SSIM COMPARISON WITH STATE-OF-THE-ART METHODS UNDER DIFFERENT SAMPLING PATTERNS WITH VARYING ACCELERATE FACTORS. 

T1 Ori Brain ESPIRiT LINDBERG P-LORAKS SAKE HKGM 

Poisson R=4 36.82/0.886 36.97/0.925 36.38/0.915 38.22/0.933 38.92/0.948 

Poisson R=8 34.99/0.837 32.13/0.876 33.46/0.824 35.84/0.881 36.46/0.889 

2D Partial R=3 30.12/0.838 30.66/0.919 28.97/0.888 30.87/0.904 31.64/0.927 

2D Partial R=6 29.68/0.810 27.39/0.856 28.37/0.826 30.18/0.862 31.32/0.866 

 

 
 

Fig. 9. Reconstruction comparison on 2D Poisson sampling at acceleration factor R=8. From left to right: Fully-sampled, Under-sampled, ESPIRiT, LIND-

BERG, P-LORAKS, SAKE, HKGM. The intensity of residual maps is five times magnified. 



C. Convergence Analysis and Computational Costs 

In this section, we experimentally investigate the conver-

gence of HKGM and SAKE with the number of iterations. 

We randomly select an example of reconstructing the T1 GE 

Brain image in Fig. 6(b) using 2D Random sampling pattern 

with acceleration factor R=6. In Fig. 10, the SSIM curve of 

HKGM reaches convergence at a fast pace. Simultaneously, 

the SSIM value of HKGM is always higher than SAKE. In 

addition, the PSNR curves of both HKGM and SAKE rise 

rapidly with the increase of iteration. The PSNR curve of 

SAKE rises more rapidly in the early iterations. However, as 

the number of iterations increases, the PSNR of HKGM 

gradually outperforms that of SAKE. After 100 iterations, 

PSNR value of SAKE starts to decrease, so in the compara-

tive experiments, we set the iteration index of SAKE to 100. 

More rigorous discussion of the algorithm analysis can be 

found in Supplementary Materials. 
 

 
 

Fig. 10. Convergence curves of SAKE and HKGM in terms of PSNR and 

SSIM versus iterations when reconstructing the brain image from 1/6 2D 
random sampled data. 

D. Ablation Study 

We selected different number of training data samples as 

the network input to verify the generation capability of 

HKGM, where two quantitative metrics are listed in Table 

IV. PSNR and SSIM values attained at R=4 Poisson sam-

pling pattern reach the maximum value with 10 images and 

100 images as input, respectively. Nevertheless, the differ-

ence is very subtle compared to training with only one im-

age. Although the best value for the two quantitative metrics 

is 100 images as input under the sampling pattern Poisson 

R=6, a reasonable result can be achieved by using only one 

data for training. In some practical settings, it is difficult to 

obtain a large number of training data. Therefore, using only 

one piece of data for training is satisfactory under a compre-

hensive consideration. 

We verify the performance of HKGM by varying the slid-

ing window size at the prior learning stage. In the experi-

ment, the sliding window size varies from 6 6 , 8 8  to 

10 10 . The quantitative results are presented in Table V. As 

can be seen, both PSNR and SSIM values under the Poisson 

sampling pattern at R=4 and R=6 are best at the sliding win-

dow size of 8 8 . In general, the larger the sliding window, 

the larger the corresponding Hankel matrix. Subsequently, 

more data patches can be extracted from it. While the slid-

ing window size also affects the rank value of the extracted 

k-space patches. A larger sliding window results in a higher 

rank. Therefore, the reconstruction result is best when the 

sliding window size is 8 8 . 
 

TABLE IV 
PSNR AND SSIM COMPARISON WITH DIFFERENT NUMBER OF INPUT IMAG-

ES UNDER POISSON WITH VARYING ACCELERATE FACTORS. 
Brain1 1 10 100 

Poisson R=4 36.04/0.920 36.09/0.921 36.08/0.921 

Poisson R=6 33.58/0.889 33.69/0.891 33.97/0.893 

 

TABLE V 
COMPARISON OF POISSON SAMPLING PATTERNS FOR PSNR AND SSIM 

UNDER DIFFERENT SLIDING WINDOW SIZES AT THE PRIOR LEARNING 

STAGE. 

Brain2 6 6 8 8 10 10 

Poisson R=4 34.67/0.897 35.17/0.917 35.10/0.915 

Poisson R=6 32.67/0.853 32.84/0.879 32.79/0.877 

 

Table VI quantitatively records the influence of different 

singular value thresholding on our reconstruction results 

when the sliding window size is 8×8. It can be found that 

the PSNR value reaches the maximum value when the sin-

gular value thresholding is 0.8 under the Poisson sampling 

pattern. Additionally, both PSNR and SSIM values get the 

maximum when the singular value thresholding is 0.8 at the 

Random sampling pattern with acceleration factor R=4. The 

visual quality is included in Supplementary Materials. 

We fix the singular value thresholding to be 0.8 and veri-

fy the performance of the proposed method by varying the 

sliding window size and sampling patterns at the iterative 

reconstruction stage. As can be seen from Table VII, as the 

sliding window size increases, the PSNR becomes higher 

while the SSIM becomes lower. Under the sampling pattern 

of Poisson R=4, when the sliding window size is 2 2 , 

SSIM reaches the maximum value of 0.927. Under the Ran-

dom R=4 sampling pattern, SSIM reaches the maximum 

value of 0.916 for the window size of 4 4 . Besides, PSNR 

reaches the highest value for the window size of 10 10  

under both Poisson and 2D Random sampling patterns. This 

phenomenon illustrates that the appropriate window size 

plays a significant role in the performance of the proposed 

HKGM. 
 

TABLE VI 
PSNR AND SSIM COMPARISON WITH DIFFERENT SAMPLING UNDER VARYING THRESHOLD VALUES. 

Brain3 Th0.4 Th0.8 Th1.2 Th1.6 Th2.0 

Poisson R=4 33.84/0.927 34.61/0.917 33.71/0.902 34.22/0.907 34.20/0.913 

2D Random R=4 31.20/0.913 33.28/0.914 32.73/0.892 32.80/0.894 33.12/0.890 

 

TABLE VII 
PSNR AND SSIM COMPARISON WITH DIFFERENT SAMPLING PATTERNS UNDER VARYING SLIDING WINDOW SIZES AT THE ITERATIVE RECONSTRUCTION 

STAGE. 

Brain3 2 2 4 4 6 6 8 8 10 10 

Poisson R=4 32.66/0.927 33.93/0.925 34.11/0.920 34.61/0.917 34.93/0.913 

2D Random R=4 30.49/0.897 32.56/0.916 32.40/0.915 33.28/0.914 33.83/0.909 

 

V. CONCLUSION 

This work introduced a Hankel-k-space generative model 

that captured the internal statistics of a single training k-

space data. At the prior learning stage, we constructed a 

large Hankel matrix and extracted multiple k-space patches 



from it to capture the internal distribution underlying the 

single k-space data. At the iterative reconstruction stage, in 

addition to iterative generation, we impose the low-rank 

penalty on the Hankel matrix and data consistency on the 

measurement data. Experimental results verified that 

HKGM could produce better performance under different 

sampling patterns with large acceleration factors, and re-

tained higher PSNR and SSIM values compared to state-of-

the-arts. 
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