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Abstract: Four-dimensional magnetic resonance imaging (4D-MRI) is an emerging technique for tumor motion 
management in image-guided radiation therapy (IGRT). However, current 4D-MRI suffers from low spatial 
resolution and strong motion artifacts owing to the long acquisition time and patients’ respiratory variations; 
these limitations, if not managed properly, can adversely affect treatment planning and delivery in IGRT. Herein, 
we developed a novel deep learning framework called the coarse–super-resolution–fine network (CoSF-Net) to 
achieve simultaneous motion estimation and super-resolution in a unified model. We designed CoSF-Net by 
fully excavating the inherent properties of 4D-MRI, with consideration of limited and imperfectly matched training 
datasets. We conducted extensive experiments on multiple real patient datasets to verify the feasibility and 
robustness of the developed network. Compared with existing networks and three state-of-the-art conventional 
algorithms, CoSF-Net not only accurately estimated the deformable vector fields between the respiratory 
phases of 4D-MRI but also simultaneously improved the spatial resolution of 4D-MRI with enhanced anatomic 
features, yielding 4D-MR images with high spatiotemporal resolution. 

Additional Keywords and Phrases: Coarse-to-fine registration, Deep learning, Four-dimensional magnetic 
resonance imaging, Super-resolution.   

1 INTRODUCTION 

Image-guided radiation therapy (IGRT) has been widely adopted in clinic for precision radiotherapy in 
patients with cancer [1]. In the past decade, magnetic resonance imaging (MRI) has gained much attention in 
IGRT because of its superior soft-tissue contrast and zero radiation hazard as compared to X-ray imaging 
techniques, such as computed tomography (CT) and cone-beam CT [2], [3]. In particular, MRI plays an 
important role in IGRT for abdominal cancers as it provides images with excellent anatomical details for accurate 
tumor volume delineation and possesses dynamic imaging capacity for tumor motion management [4], [5].  
Respiratory motion can cause significant treatment errors if not managed properly. Thus, it is critical to manage 
respiratory motion when performing radiotherapy for abdominal cancers [6], [7]; this becomes particularly crucial 
when using stereotactic body radiation therapy (SBRT) [8], a modern radiotherapy technology that precisely 
delivers radiation treatment using a much higher radiation dose (10× higher) than conventional radiotherapy. 
Improper management of tumor motion when using SBRT can adversely affect patient treatment to a much 
greater degree than when it occurs in conventional radiotherapy.  
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Four-dimensional MRI (4D-MRI) is an emerging technique for motion management in the radiotherapy of 
mobile abdominal tumors. To date, various 4D-MRI techniques have been developed, and their promises have 
been well demonstrated [9]–[13]. One important imaging approach of 4D-MRI is fast volumetric MRI, in which 
the volume of interest is imaged at a sub-second speed, yielding real-time 4D-magnetic resonance (MR) images 
[14]. Furthermore, deformable image registration (DIR) can be performed on 4D-MR images to generate patient-
specific motion models that depict voxel-wise motion patterns at different respiratory phases. 4D-MR images 
combined with the derived motion model are of great value in aiding precise radiotherapy, including 4D 
treatment planning, internal target volume determination, tumor tracking, 4D dose calculation, and organs at 
risk (OAR) sparing [15]. 

Currently, 4D-MRI is currently under investigation and development. There are a number of challenges to 
overcome before 4D-MRI can be fully adapted to the clinical setting. First, 4D-MR images suffer from limited 
spatial resolution; i.e., the temporal resolution of real-time 4D-MRI is approximately 1 s, whereas its voxel size 
is isotropically approximately 3 mm [9]. Owing to its insufficient image quality, as evidenced by a relatively low 
signal-to-noise ratio (SNR) and image artifacts caused by breathing variations, 4D-MRI may fail to display 
detailed anatomical structures. Second, it is challenging to calculate and model deformable vector fields (DVFs) 
from 4D-MR images for tumor tracking, primarily due to the extensive respiratory-related deformations and 
complicated soft anatomy variations in the abdominal region. These deficiencies of 4D-MRI can adversely affect 
its applications and diminish its values in IGRT.  

Two potential solutions have been suggested to may help overcome the deficiencies of the current 4D-MRI 
techniques. First, super-resolution (SR) methods may help directly improve the MR image quality. Among the 
various SR methods, deep learning (DL)-based models are preferred for learning the mapping from low-
resolution (LR) images to high-resolution (HR) images, thus restoring high-frequency structures as much as 
possible [16]–[19]. However, most MRI-related SR studies so far have focused on three-dimensional (3D)-MR 
images, while 4D-MR images remain under-explored. Second, the development of novel DIR methods is a more 
widely adopted strategy [20]–[22]. DL-based DIR models have been recently explored for 4D imaging [23]–[25]. 
The coarse-to-fine registration mechanism [26], [27] is particularly popular for DVF estimation; this mechanism 
predicts a rough DVF at a low image resolution and regards it as an initial guess for refinement in one or several 
steps at higher resolution levels.  

Although DL-based models have resulted in breakthroughs, there is still much room for the improvement of 
4D-MRI. For example, it is known that the accuracy of DVF estimation is highly sensitive to the quality of the 
images in DIR algorithms. For 4D-MRI, its voxel values at different respiratory phases may vary due to imaging 
factors and image artifacts. As a result, the compromised and inconsistent quality of 4D-MRI can lead to errors 
in DVF estimation. However, the relationship between motion modeling and image quality of 4D-MRI has not 
been thoroughly investigated. Although coarse-to-fine registration was proven successful for many medical 
imaging applications, it has limitations when applied to 4D-MRI, such as the loss of subtle structures and 
misalignments. Thus, in this study, we were motivated to develop an upgraded registration architecture to 
improve the performance of coarse-to-fine registration with respect to 4D-MR images. 

The data preparation and preprocessing for 4D-MRI training also require careful consideration. First, 
obtaining the reference DVFs (training labels) for 4D-MRI registration is difficult, and the labeling process is 
time-consuming and laborious. Second, 4D-MRI is still under the investigational stage and is not being routinely 
used in clinical practice yet. 4D-MRI studies generally involve a small patient sample size (≤20 patients) [18], 
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[28], [29], posing a great challenge for DL-based analysis because a small sample size can cause over-fitting 
during DL network training and subsequently affect model robustness. Second, it is common in radiotherapy 
that 3D T1-/T2-weighted MR images of the same patient are always available together with their 4D-MR images, 
which can be regarded as prior knowledge to promote image quality. It is clear that we need to develop DL 
networks tailored for 4D-MR images to overcome the mentioned limitations. 

In this study, we aimed to achieve two goals by developing an end-to-end network capable of simultaneous 
accurate DVF estimation and image resolution enhancement. To this end, we developed a novel DL-based 
framework for 4D-MRI, also called the coarse–SR–fine network (CoSF-Net), by deeply excavating the inherent 
prior information on 4D-MRI. The main contributions of CoSF-Net are summarized as follows:  
1) CoSF-Net encompasses three sub-models in an end-to-end fashion. To the best of our knowledge, it is the 

first DL framework capable of simultaneously enhancing the DIR and image quality for 4D-MRI. 
2) An SR model was developed and embedded between the two registration submodels to construct a 

coarse–SR–fine architecture, which can boost the registration performance, especially when the input 4D-
MRI pairs suffer from low spatial resolution [30]. In particular, a 2.5-dimensional conditional generative 
adversarial network (2.5D-cGAN) was designed to alleviate the issues of the limited number and imperfect 
matching of training pairs in 4D-MRI. 

3) In both the coarse and fine DIR modules, the networks were trained in an unsupervised manner based on 
the VoxelMorph (VM) [24] model. Moreover, in the fine DIR model, we supplemented a feature extraction 
pathway for the prior MR image to strengthen detailed DVF estimation. Moreover, a residual DVF 
estimation mechanism was used for updating the refined DVF. 

4) Extensive real-patient experiments were conducted with both visual comparison and quantitative evaluation 
to validate the effectiveness of CoSF-Net. 

The rest of this article is organized as follows. In Section II, we describe the framework and implementation 
of the proposed network. Section III presents the experimental setup, data arrangement, evaluation metrics, 
and competitive algorithms adopted in this study. In Section IV, we report and analyze the results of our 
experiments conducted using real-patient data. In Section V, we discuss the relevant problems and conclude 
the study. 
 

 
Fig. 1 A schematic illustration depicting the process of training CoSF-Net. The network involves the three 
cascaded submodels (S1, S2, and S3) in different colors: the coarse registration model (𝑪𝑪𝜽𝜽𝟏𝟏, blue), the SR 
model (𝑺𝑺𝜽𝜽𝟐𝟐, green), and the fine registration model (𝑭𝑭𝜽𝜽𝟑𝟑, pink). 
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2  METHODS AND MATERIALS 

2.1 Problem definition and notations 

Figure 1 presents a schematic illustration of the problem definition and notations of 4D-MRI. We denote 
𝑸𝑸 ⊃ {𝐼𝐼1, 𝐼𝐼2 … 𝐼𝐼𝐾𝐾} , the original 4D-MRI sequence comprising 𝐊𝐊  respiratory-correlated phases/frames. For 
simplicity, a pair of arbitrary phases �𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑗𝑗� (𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑗𝑗 ∈ 𝑸𝑸, 𝑖𝑖 ≠ 𝑗𝑗) in 4D-MRI is denoted as the moving image 𝒎𝒎 and 
fixed image 𝒇𝒇, respectively. The purpose of our method is to develop a unified model 𝑼𝑼𝜣𝜣 parameterized by 𝜣𝜣 
for enhancing the image quality of 4D-MRI while simultaneously estimating the DVF between the enhanced 
frames. The objective function can be described as follows:  

𝜣𝜣� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚
𝜣𝜣

𝑼𝑼𝜣𝜣(𝒇𝒇,𝒎𝒎,𝒑𝒑),                                                               (1) 

where 𝒑𝒑 denotes a clinical T1-weighted MRI scan from the same patient, designated as a prior MR image. As 
shown in Fig. 1, the unified model is split into three cascaded submodels, including the coarse registration 
model (𝑪𝑪𝜽𝜽𝟏𝟏, blue), the SR model (𝑺𝑺𝜽𝜽𝟐𝟐, green), and the refined registration model (𝑭𝑭𝜽𝜽𝟑𝟑, pink). The coarse DIR 
model 𝑪𝑪𝜽𝜽𝟏𝟏  is used to calculate the coarse DVF 𝝓𝝓�  using a DL-based model  𝝓𝝓 =𝑪𝑪𝜽𝜽𝟏𝟏(𝒇𝒇,𝒎𝒎), considering the 
registration pair {𝒇𝒇,𝒎𝒎} as the input. The optimization problem can be modeled as follows: 

𝜽𝜽𝟏𝟏� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚
𝜽𝜽𝟏𝟏

ℒ1 �𝒎𝒎,𝒇𝒇,𝑪𝑪𝜽𝜽𝟏𝟏(𝒇𝒇,𝒎𝒎)�,                                                        (2) 

where 𝜽𝜽𝟏𝟏 denotes the learnable parameters of 𝑪𝑪 and ℒ1 denotes the loss function. 
We also denote the SR model 𝑺𝑺𝜽𝜽𝟐𝟐 parameterized by 𝜽𝜽𝟐𝟐 as a HR image (𝑰𝑰𝐻𝐻𝐻𝐻) generation procedure based on 
the observed LR counterpart (𝑰𝑰𝐿𝐿𝐻𝐻), the solution for which can be expressed by: 

𝜽𝜽𝟐𝟐� = arg min
𝜽𝜽𝟐𝟐

ℒ2�𝑺𝑺𝜽𝜽𝟐𝟐(𝑰𝑰𝐿𝐿𝐻𝐻), 𝑰𝑰𝐻𝐻𝐻𝐻�,                                                            (3)  

where 𝑺𝑺𝜽𝜽𝟐𝟐: 𝑰𝑰𝐿𝐿𝐻𝐻 → 𝑰𝑰𝐻𝐻𝐻𝐻 can be replaced by the cGAN structure with a generator 𝑮𝑮 and discriminator 𝑫𝑫. Both 𝑮𝑮 
and 𝑫𝑫 can be optimized in an alternative manner to solve the adversarial min-max problem as follows [1]: 

𝑺𝑺𝜽𝜽𝟐𝟐 = {𝑮𝑮,𝑫𝑫} 
𝑮𝑮∗ = arg min

𝑮𝑮
max
𝑫𝑫

ℒ2(𝑮𝑮,𝑫𝑫).                                                             (4) 

Finally, the fine DIR model 𝑭𝑭𝜽𝜽𝟑𝟑 parameterized by 𝜽𝜽𝟑𝟑, feeds the enhanced HR image pair {𝒇𝒇� ,𝒎𝒎� } through 𝑺𝑺𝜽𝜽𝟐𝟐, 
the up-sampled DVF 𝝓𝝓� = 𝑹𝑹(𝝓𝝓�), together with the prior MR image 𝒑𝒑 to estimate a finer DVF 𝝓𝝓∗. The optimization 
function can be written as: 

𝜽𝜽𝟑𝟑� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚
𝜽𝜽𝟑𝟑

ℒ3 �𝒇𝒇� ,𝒎𝒎� ,𝑭𝑭𝜽𝜽𝟑𝟑�𝒇𝒇� ,𝒎𝒎� ,𝒑𝒑,𝝓𝝓���                                                 (5) 

To sum up, CoSF-Net is a cascade of three individual submodels; this can be denoted uniformly using the 
following equation: 𝑼𝑼𝜣𝜣 = {𝑪𝑪𝜽𝜽𝟏𝟏;𝑺𝑺𝜽𝜽𝟐𝟐;𝑭𝑭𝜽𝜽𝟑𝟑}. 

2.2 Network architecture 

The overall workflow of the proposed CoSF-Net is depicted in Fig. 2 (a) and can be outlined as follows. The 
first stage estimates a coarse DVF 𝝓𝝓�  of the input pair {𝒇𝒇,𝒎𝒎} with a coarse DIR model 𝑪𝑪𝜽𝜽𝟏𝟏, deforming {𝒇𝒇,𝒎𝒎} 
through a spatial transformation network (STN) to {𝒇𝒇𝒘𝒘,𝒎𝒎𝒘𝒘}. In the second stage, the HR images {𝒇𝒇� ,𝒎𝒎� } are 
recovered from {𝒇𝒇𝒘𝒘,𝒎𝒎𝒘𝒘} through the SR model slice by slice. In the final stage, the recovered image pair {𝒇𝒇� ,𝒎𝒎� }, 
the up-sampled DVF 𝝓𝝓� , and the prior MR image 𝒑𝒑 are fed together into the fine DIR CNN 𝑭𝑭𝜽𝜽𝟑𝟑 to calculate an 
updated residual DVF 𝒗𝒗 and finally to obtain a finer DVF 𝝓𝝓∗  and the corresponding deformed HR images 
{𝒇𝒇∗,𝒎𝒎∗}. A combination of the three cascaded modules is considered the coarse–SR–fine structure. 
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Fig. 2. The overall framework of the proposed network. (a) The workflow of CoSF-Net, which can be divided 
into (b), (c), and (d) three stages. (b) Stage 1: A coarse DIR CNN to predict a rough DVF between the phases 
in 4D-MRI at the low-resolution level; (c) Stage 2: A 2.5D-cGAN-based SR model to enhance the image 
quality and resolution of the deformed 4D-MR images; (d) Stage 3: A Fine DIR CNN to further compute the 
DVF residue for improved 4D-MR images from stage 2 at a high-resolution level, same as for the normal 
MRI. 

2.2.1 Stage 1: Coarse DIR CNN 

Figure 2 (b) shows the coarse DIR CNN, which inputs a concatenation of two arbitrary phases of MRI to 
predict the DVF between them. The network architecture was inspired by VM and trained in an unsupervised 
manner. To be specific, U-Net [2] comprises a contracting path of four 3D-convolutional blocks, a bottleneck 
connection, an expansive path of four 3D-convolutional blocks, and a final output layer. The STN [3] is used for 
calculating the deformed volume 𝑴𝑴 ∘ 𝝓𝝓� , with the symbol ∘ denoting the deformable transformation operation 
based on the STN. In particular, we added an inverse-consistency penalty to render the DVF bidirectional 𝝓𝝓� =
{𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇,𝝓𝝓�𝒇𝒇𝟐𝟐𝒎𝒎}, which means that 𝒇𝒇 and 𝒎𝒎 can deform each other. Accordingly, the loss function in Eq. (2) 
contains two similarity terms: ℒ𝑠𝑠𝑖𝑖𝑠𝑠(. ), measuring the image difference between the target and warped images, 
and a diffusion regularizer ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(. ), encouraging a smooth DVF. 

ℒ1 �𝒎𝒎,𝒇𝒇,𝑪𝑪𝜽𝜽𝟏𝟏(𝒇𝒇,𝒎𝒎)� = ℒ𝑠𝑠𝑖𝑖𝑠𝑠�𝒇𝒇,𝒎𝒎 ∘ 𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇� + ℒ𝑠𝑠𝑖𝑖𝑠𝑠�𝒎𝒎,𝒇𝒇 ∘ 𝝓𝝓�𝒇𝒇𝟐𝟐𝒎𝒎� + 𝜆𝜆1ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝝓𝝓��,                      (6) 
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Negative normalized cross-correlation (NCC) was is employed in ℒ𝑠𝑠𝑖𝑖𝑠𝑠(. )  instead of the L1 or L2 norm 
calculation owing to the varying intensities among phases in 4D-MRI. The regularization parameter 𝜆𝜆1 is used 
to control the trade-off between the fidelity and regularization terms. 

2.2.2 Stage 2: SR Network 

In stage 2, the SR model uses cGANs to synthesize improved MR images from the 4D-MR image 
counterparts. Figure 2(c) illustrates the detailed architecture of the SR model, also known as the 2.5D-cGAN. 
The proposed model inputs the 2.5D images by considering the presence of limited volumetric MRI training 
data and the high inter-slice correlation within the volume. Hence, five consecutive 2D transversal slices are 
intergraded and fed into the 2.5D-cGAN for predicting the central slice. Apart from the pixel-wise L1-based 
intensity loss (ℒ𝐿𝐿1(𝑮𝑮)) and an adversarial loss (ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝑮𝑮,𝑫𝑫)), a multi-scale structural similarity index (MS-SSIM) 
(ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑮𝑮)) [4] is incorporated into the total loss function of the 2.5D-cGAN, restoring structural information 
effectively as follows: 

ℒ2(𝑮𝑮,𝑫𝑫) = ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝑮𝑮,𝑫𝑫) + 𝜆𝜆2ℒ𝐿𝐿1(𝑮𝑮) + 𝜆𝜆3ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑮𝑮) 
= 𝔼𝔼(𝑆𝑆𝐿𝐿𝐿𝐿,𝑆𝑆𝑆𝑆𝐿𝐿)[log𝑫𝑫(𝐼𝐼𝐿𝐿𝐻𝐻, 𝐼𝐼𝑆𝑆𝐻𝐻)] + 𝔼𝔼𝑆𝑆𝐿𝐿𝐿𝐿 �log �1 − 𝑫𝑫�𝐼𝐼𝐿𝐿𝐻𝐻 ,𝑮𝑮(𝐼𝐼𝐿𝐿𝐻𝐻)��� 
+𝜆𝜆2𝔼𝔼(𝑆𝑆𝐿𝐿𝐿𝐿,𝑆𝑆𝑆𝑆𝐿𝐿)[‖𝐼𝐼𝑆𝑆𝐻𝐻 − 𝑮𝑮(𝐼𝐼𝐿𝐿𝐻𝐻)‖1] + 𝜆𝜆3(1 − 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆(𝐼𝐼𝑆𝑆𝐻𝐻 ,𝑫𝑫(𝐼𝐼𝑆𝑆𝐻𝐻)))                                        (7) 

where 𝔼𝔼(. ) indicates the expected value, and the MS-SSIM index is computed using the same parameters 
proposed in a previous study [5]. For technical details, the generator 𝑮𝑮 comprises seven blocks of convolution-
BN-ReLU operations in the encoder and decoder, while the discriminator 𝑫𝑫 contains five identical blocks. 

2.2.3 Stage 3: Fine DIR CNN 

As mentioned in Section II A, a combination of the three submodels can be regarded as a coarse–SR–fine 
structure. The architecture of the fine DIR CNN is displayed in Fig. 2(d). It contains two independent paths in 
the encoder module for extracting multi-level features; one is called Reg-Image-Path for the registration 
pair {𝒇𝒇� ,𝒎𝒎� }, whereas the other is called Prior-Image-Path for 𝒑𝒑. A concatenation of both features at the same 
scale is then delivered into the decoder module. It is worth noting that the prior MR image 𝒑𝒑 is not perfectly 
matched with the moving image. Before integrating 𝒑𝒑 into the network, it was pre-aligned to be in the same 
phase as the enhanced moving image 𝒎𝒎� . Instead of explicitly calculating 𝝓𝝓∗, we adopted a residual DVF 
calculation strategy. This strategy utilizes 𝝓𝝓�  as an initial guess to obtain a warped volume using the function 
𝒎𝒎� ∘ 𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇. For back-propagation, the loss function of the fine DIR CNN is accordingly modified as follows:  

ℒ3 �𝒇𝒇� ,𝒎𝒎� ,𝑭𝑭𝜽𝜽𝟑𝟑�𝒇𝒇� ,𝒎𝒎� ,𝒑𝒑,𝝓𝝓��� = 𝛼𝛼ℒ𝑠𝑠𝑖𝑖𝑠𝑠�𝒇𝒇� ,𝒎𝒎� ∘ 𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇� + (1 − 𝛼𝛼)ℒ𝑠𝑠𝑖𝑖𝑠𝑠�𝒇𝒇� ,𝒑𝒑 ∘ 𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇� + 𝜆𝜆4ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝝓𝝓��         (8) 
where the predicted 𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇 is constrained by two similarity forms: one is controlled by 𝒇𝒇�  with improved resolution, 
whereas the other one is attributed to the prior MRI. The parameter 𝛼𝛼 is adopted to adjust the contribution 
factors of both similarity metrics. The ℒ𝑠𝑠𝑖𝑖𝑠𝑠(. ) and ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(. ) in Eq. (8) for fine DIR CNN are the same as those 
in Eq. (6) for coarse DIR CNN. Using the proposed fine DIR CNN, we could then estimate a residual DVF 𝒗𝒗 
between 𝒎𝒎� ∘ 𝝓𝝓�𝒎𝒎𝟐𝟐𝒇𝒇 and 𝒇𝒇� . 𝒗𝒗 not only reflects a more accurate DVF but also contains detailed anatomic changes. 
In doing so, the updated DVF can be obtained with 𝝓𝝓∗ = 𝒗𝒗 + 𝝓𝝓� . 
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3 EXPERIMENTS 

3.1 Dataset Preparation 

The MRI data used in this study were acquired from patients with liver tumors undergoing radiotherapy using 
a 3T scanner (Skyra, Siemens, Erlangen, Germany). The study protocol was approved by the institutional 
review board. The patients underwent regular 3D MRI scans (T1- and T2-weighted), which were designated as 
“prior MRIs.” In addition to regular 3D MRI, each patient also underwent 4D-MRI using the TWIST volumetric 
interpolated breath-hold examination (TWIST-VIBE) MRI sequence, continuously generating 72 frames 
covering several respiratory cycles. Ten frames covering a breathing cycle were then selected from the original 
4D-MRI using the body area method [6]; these frames represent the respiratory-correlated phases used in this 
study. The dimension of each volume of the 4D-MRI is 160 × 128 × 64, with a voxel size of 2.7 × 2.7 × 3.0; the 
dimensions of the prior MRI is 320 × 320 × 72, with a smaller voxel size of 1.2 × 1.2 × 3.0.  

For network training and evaluation, we retrospectively included a total of twenty-seven MRI patients, all of 
whom had a 4D-MRI scan and prior 3D MRI scans. Twenty patients were included for network training and 
validation, and the remaining seven patients were included for testing. To address the issue of limited training 
data, we performed data augmentation by expanding the dataset by 90°–180°–270° of rotation. This yielded 
2,480 2D pairs of transverse MR images for the 2.5D-cGAN training. Moreover, we set the respiratory phase 
number to 10 and quantified the degree of deformation change into 4 grades (named as phase range) according 
to the breathing amplitude for further data augmentation. Finally, a total of 3,200 volumetric pairs were obtained 
for DIR CNN training. Note that the intensity of all the images was normalized to 0–1; 90% of the 20 patients 
were randomly chosen for training, whereas the remaining 10% were assigned for validation. Regarding the 
arrangement of the seven testing datasets, four representative cases were displayed for visualization, and all 
seven patients were include d in the quantitative analysis. 

3.2 Implementation details 

Training procedure/strategy: To ensure that the three submodels in CoSF-Net play their expected roles, 
we trained the framework in two stages. First, the coarse DIR CNN and 2.5D-cGAN were pre-trained individually 
to initialize the filters in CNNs. Second, the fine DIR CNN was cascaded with the two pre-trained submodels, 
and CoSF-Net was jointly tuned in an end-to-end manner, ensuring a minimum and stable output.  

Hyper-parameter setting: A total of 500 epochs were obtained for the coarse DIR CNN. The parameter 𝜆𝜆1 
in Eq. (6) was set as 4 to ensure a trade-off performance. In the 2.5D-cGAN training process, the network 
converged after 500 epochs with a batch size of 15. We set 𝜆𝜆2 = 10 and 𝜆𝜆3 = 10 in Eq. (7). The learning rates 
of these two submodels were set to 4e-5 initially and decreased to 90% after every 30 epochs. Finally, in the 
CoSF-Net tuning procedure, the initial learning rate was set to 5e-5 and adjusted to 90% after every 10 epochs. 
Meanwhile, the hyper-parameter was set as α = 0.35 and the regularization parameter was set as 𝜆𝜆4 = 5 in Eq. 
(8) empirically. 

The proposed CoSF-Net was implemented on an NVIDIA GTX3090 GPU in the PyTorch framework. The 
corresponding training and testing codes will be available on the authors’ website once the paper is published. 
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3.3 Model Evaluation 

We evaluated the proposed CoSF-Net both qualitatively and quantitatively in the following aspects: 1) We 
analyzed the intermediate results at individual stages to evaluate the effectiveness of the proposed coarse-SR-
fine framework; 2) We compared CoSF-Net with existing DL-based neural networks and conventional 
optimization-based algorithms; 3) We conducted an ablation study to investigate the impact of the designed 
components on the network performance; 4) We analyzed tumor localization and feature recovery in 4D-MR 
images using the proposed CoSF-Net.  

3.3.1 Comparison with existing algorithms 

To evaluate the performance of the proposed method, we compared it with several state-of-the-art methods. 
In terms of the registration ability, we compared the proposed network with the following three classical 
registration algorithms: pTV algorithm [7], Elastix [8], and Demons [9]. Furthermore, two DL-based methods 
were employed to assess the effectiveness of CoSF-Net, including the supervised VM (sVM) and single-scale 
unsupervised VM (uVM) models. In implementing the supervised VM, we adopted the pTV algorithm for 
generating reference DVFs for network training. For the SR recovery ability, we used the enhanced deep SR 
network (EDSR) model [10] for comparison. All the parameters were carefully selected to ensure a fair 
comparison. 

3.3.2 Evaluation metrics  

For quantitative evaluation, we measured the error distance between the warped and fixed images using the 
rooted mean square error (RMSE), the structural similarity index metric (SSIM) [11], the peak signal-to-noise 
ratio (PSNR), and normalized mutual information (NMI) [12], respectively. These evaluation metrics reflect the 
model performance in different aspects, such as RMSE calculates the absolute difference between the restored 
image and the ground truth; the structural similarity index metric evaluates the preserving ability of structural 
information; the PSNR represents the noise suppression ability; and the NMI evaluates the correlation between 
the ground truth and the reconstructed images. A larger NMI value indicates a higher similarity with the ground 
truth, whereas a smaller value indicates a lower similarity. 
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4 RESULTS 

 
Fig. 3 The results of 4D-MRI for (a) Patient I and (b) Patient II. From left to right: moving image in original 
4D-MRI (moving_4D), fixed image in original 4D-MRI (fixed_4D), intermediate warped image from the moving 
image by coarse DIR CNN, enhanced moving image via 2.5D-cGAN, and final warped image by fine DIR 
CNN. Especially, the color-coded DVF predicted by CoSF-Net overlaps the moving_4D, showing the 
variation degree of DVF. All the volumes are displayed in the transversal, coronal, and sagittal views. The 
display window is provided at a grayscale window of C = 0.4, W = 0.8. 

4.1 Intermediate Results Analysis 

Figure 3 presents the intermediate results for Patient I (a) and II (b). Particularly, we selected the registration 
pair with the maximum phase range to test the robustness of the network; that is, the moving image is at the 
end-of-inhale (EOI) phase (first column), whereas the fixed image is at the end-of-exhale (EOE) phase (second 
column). As observed in Fig. 3, considering the LR image pair as the input, the warped volume by coarse DIR 
CNN (third column) is similar to that of the fixed image in the second column. However, misalignments still exist, 
such as that in the shape of the diaphragm (right arrows in the three visual views), which indicates that the DVF 
by coarse DIR CNN roughly depicts the contour changes of the registration pair but fails to estimate the detailed 
deformations. Using the SR model, the image quality of the generated image has improved; the artifacts are 
suppressed and small structures and sharp contour shapes are recovered, as compared with the original 4D-
MR images obtained at the EOI phase. Finally, by feeding the initial DVF using a coarse DIR CNN and an image 
pair with better resolution, the fine DIR CNN could predict a more accurate DVF (red arrows) and retain more 
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detailed anatomic structures (yellow arrows) in the resulting images of both patients. In addition to the 
intermediate results, a moving image with a color-coded updated DVF is displayed in the first column to show 
the deformation changes, which are discussed in Section IV. 

4.2 Ablation study 

 
Fig. 4 Visual comparison of Patient III in the three views for investigating the contribution of the SR model 
and a prior MRI component in the architecture of CoSF-Net. From left to right: (a) and (b) represent the 
original registration image pair in 4D-MRI; (c) the warped image by sole coarse DIR CNN; (d) the results by 
classical coarse-to-fine model; (e) the results by CoSF-Net without a prior MRI; and (f) the results by the 
complete CoSF-Net. 

 
In the ablation study, we investigated the effect of two components in CoSF-Net on the final performance, 

which are the participation of the SR model in coarse-SR-fine workflow and the incorporation of the prior MRI 
component in the fine DIR CNN. Fig. 4 presents the results for the case of patient III. After removing both the 
SR model and the prior MRI, the remaining structure was found to be a classical coarse-to-fine architecture, 
referred to as coarse–fine in Fig. 4(d). As a result, the image quality in Fig. 4(d) has not yet been improved, 
although it obtains a better DVF estimation than the pure coarse DIR CNN in Fig. 4(c). Furthermore, as shown 
in Fig. 4(e), the fine DIR CNN is simplified to a U-Net architecture without the prior MRI component, referred to 
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as CoSF-Net (U-Net). It can be seen that the image quality improves to some extent, but some detailed 
structures in the warped image appear unrealistic. Compared with Fig. 4(d) and (e), the image generated by 
the complete CoSF-Net showed superior performance, indicating that the SR model and prior MRI help preserve 
the anatomic features and topology of real patients. 

4.3 Comparison with Existing Methods 

 
Fig. 5 Visual results and statistical analysis results for Patient I. Sub-figure (a.1): The registration pair of 
original 4D-MRI. Sub-figure (a.2): Deformation results obtained by warping the moving image by the 
predicted DVF using the following models: Demons, Elastix, pTV, supervised VM, coarse DIR CNN, prior 
MRI, and CoSF-Net. Three individual slices were selected in the transversal view for comparison. Sub-figure 
(b): Four evaluation metrics (RMSE, PSNR, SSIM, and NMI) were calculated in different phase ranges as 
represented by the blue, red, yellow, and purple box plots, respectively. Note that the moving image used in 
this experiment is up-sampled directly without using the SR model. All the images are displayed in the window 
of level C = 0.4 and window W= 0.8. 
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Figure 5 (a) shows the qualitative results for Patient II using CoSF-Net and other methods for comparison. 
Three slices profiled along the superior-inferior dimension in the same respiratory phase were chosen for 
visualization. In terms of the quantitative analysis, Fig. 5(b) displays the results of the different phase ranges 
(PR = 1–4) were also involved in testing the robustness of the models. 

As shown in Fig. 5(a.2), the results obtained by Demons and Elastix showed unsatisfactory deformation. 
Both methods introduce inaccurate features or fail to maintain consistent intensities, as indicated by the red 
arrows, probably because both methods are sensitive to distorted image quality. The results using pTV maintain 
the correct physical topology and outperform those obtained using Demons and Elastix in terms of four metrics, 
as illustrated in Fig. 5(b). As for the DL-based DIR methods, compared with sVM, the sole coarse DIR CNN is 
limited in estimating enough accurate DVF due to its self-learning property. The bottom two rows display the 
deformed image from EOI to EOE using DVF predicted by CoSF-Net and the resultant image by CoSF-Net, 
respectively. Overall, CoSF-Net could predict an excellent 4D-MR image with accurate DVF estimation and high 
image quality. In the quantitative evaluation, there are no ground truth images for the real patient dataset. To 
obtain a fair comparison, we used the fixed image (EOE) as the baseline for comparative methods. Moreover, 
we used prior MRIs (EOE) as the baseline for calculating the metrics for CoSF-Net. We demonstrate that the 
registration performance of CoSF-Net is better than that of the other DL-based models and ranks second in all 
four quantitative metrics [Fig. 5(b)]; the pTV algorithm displayed the best performance, and its results were just 
slightly better than those of CoSF-Net. Besides, benefiting from the DIR plus SR mechanism, CoSF-Net 
achieves a considerable quality improvement in detailed feature recovery, whereas the other models fail.  

4.4 Analysis of Tumor Localization and Detailed Structure Recovery Ability 

 
Fig. 6 Analysis of tumor localization and motion trajectory for patient I. The transversal and coronal views of 
the original 4D-MR images are shown in the first (a) and third (c) rows, respectively, whereas the CoSF-Net 
equivalents are shown in the second (b) and fourth (d) rows. To identify the tumor location and shape, two 
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ROIs were chosen in the coronal (red rectangle) and sagittal (yellow rectangle) views. On the right side of 
the figure, successive zoom-in images from the EOE to EOI phases are shown. The display window is C = 
0.35 and W = 0.70. 

 
To demonstrate the effectiveness of tumor localization and feature recovery via CoSF-Net, we chose two 

patient cases (Patient I and IV) with apparent tumors close to the diaphragm; these tumors move with respiratory 
motion. In the two different visual views presented in Fig. 6, the tumors and diaphragm margin are indicated 
with red and yellow rectangles, respectively. Since real-patient datasets lack a HR ground truth, we used the 
original LR 4D-MR images as the baseline [Fig. 6(a)(c)]. Compared with the original 4D-MR images, the 
resulting ROIs obtained using CoSF-Net at various phases yield an improved contour depiction of the tumor 
and diaphragm while maintaining an accurate motion trajectory. 

 
Five consecutive phases of zoom-in patches (yellow rectangles) are shown in Fig. 7 for illustrating the 

detailed feature recovery performance of the proposed 2.5D-cGAN and its competitors. Although the original 
4D-MR images display the tumor’s motion trajectory near the diaphragm, it suffered from LR and poor PSNR. 
Applying EDSR to the 4D-MR images effectively reduced the noise; however, the anatomical features could not 
be recovered; over-smoothing is also observed because EDSR does not account for the non-uniqueness 
property of 4D-MRI. Unlike EDSR, the proposed 2.5D-cGAN restores tiny structures to the maximum possible 
extent, providing a satisfactory spatiotemporal resolution.  

5 DISCUSSIONS AND CONCLUSION 

In this study, we developed a unified DL framework to reconstruct a sequence of 4D-MR images with 
enhanced spatiotemporal resolution and image quality for application in radiotherapy. The proposed model 
enables simultaneous motion estimation and image resolution enhancement in 4D-MR images using a cascade 
of three submodels, including a coarse DIR CNN, an SR model, and a fine DIR CNN. Extensive experiments 

 
Fig. 7 Anatomical feature recovery results for Patient IV: (a) Original 4D-MR images, (b) images obtained 
using the EDSR, (c) images obtained using 2.5D-cGAN. An ROI is selected in the transversal view (yellow 
rectangle) to represent the detailed features affected by respiratory motion. The display window is provided 
at a grayscale window of C = 0.4 and W = 0.7. 
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have been conducted to demonstrate that the proposed CoSF-Net can predict accurate DVFs between the 
respiratory phases of 4D-MR images and effectively enhance the image resolution. Ultimately, the 4D-MR 
images generated using CoSF-Net have a much higher spatial resolution and depict more detailed anatomical 
features than the original 4D-MR images. 

As demonstrated in Fig. 3 and Fig. 4(c) and (d), a single DIR model or coarse-to-fine workflow alone cannot 
simultaneously predict the DVFs and yield high-quality images. Based on the abovementioned observations, 
we developed the CoSF-Net to achieve two tasks using one unified model. Ablation experiments [Fig. 4(c)-(e)] 
were conducted to verify the reasonability and necessity of the coarse–SR–fine mechanism.  

 
Fig. 8 A heatmap of estimated DVF for Patient I at different stages. (a) Coarse DR CNN: the estimated DVF 
by coarse DR CNN; (b) fine DR CNN: the estimated residue DVF by fine DR CNN; (c) final: final DVF 
estimation by adding (a) and (b). The magnitude of DVF is shown in color; red indicates a larger 
transformation, whereas blue color indicates that the volume is static or has smaller movements. 

 
We note that improvement of the 4D-MR image quality increased the accuracy of DVF estimation, as shown 

in the intermediate results depicted in Fig. 3. To the best of our knowledge, CoSF-Net is the first DL model that 
considers both motion estimation and image enhancement in 4D-MRI, and no such model for 4D-MRI exists 
thus far.  

In CoSF-Net, a cascade of three submodels, each of which is essential and indispensable, is well-conceived 
to comprehensively exploit the inherent image dynamics of 4D-MRI. We derive the following considerations 
concerning the design of CoSF-Net. First, we built a GAN-based SR model. Unlike traditional medical imaging 
SR tasks, the training MRI pairs exhibit varying intensity distributions and breathing-related motion patterns [13]. 
Thus, conventional CNNs with L-1 or L-2 norm-based loss functions may be inappropriate for 4D-MRI 
reconstruction. Benefiting from the mechanism of the discriminator module, GANs help the network to learn the 
dependence (perceptual loss) between image pairs, rendering the GAN results more consistent with the actual 
perception of human vision. The comparison results presented in Fig. 7 indicate that GAN is a suitable 
technique for restoring the detailed features of 4D-MRI. Second, the results of our previous studies show that 
including prior images in both classical algorithms and DL networks can improve the 4D-cone bean CT image 
quality [12], [14], [15]. However, in this study, the prior MR image is used to facilitate the estimation of DVF. 
Moreover, the prior MR image is used in both architecture design and back-propagation calculation, as 
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described in Section II.C-(3). Hence, CoSF-Net outperformed the other controlled settings when guided by 
prior MRI, as illustrated in Fig. 4 and Table I. Furthermore, as described in Section II.B-(3), we calculated the 
residual DVF to refine the updated DVF instead of making a straightforward DVF prediction based on residual 
flow networks [16]. Figure 8 presents the heatmaps of DVF generated at different stages in CoSF-Net. By 
estimating the residual DVF, we found that the final DVF, as shown in Fig. 8(c), can effectively excavate more 
detailed information than the predicted DVF through coarse DR CNN [Fig. 8(a)]. 

We also draw up the future prospects for our study as follows. First, the through-plan resolution of enhanced 
4D-MR images can be further improved. As we know that clinical MRI usually has a lower through-plan 
resolution than in-plane resolution. We will upgrade our SR model to achieve isotropic HR in our future study. 
Second, besides anatomical imaging, MRI can perform functional imaging, making it a powerful tool for 
treatment response assessment and outcome prediction. This promotes us to develop a contrast-variant 4D-
MRI (5D) model based on the currently proposed 4D-MRI network. One possible approach is to extend the 
current pair-wise registration to a group-wise registration by introducing the temporal correlation property in 
network design, perhaps by using long short-term memory (LSTM)-based architecture [17].  

In conclusion, we proposed an innovative DL model capable of simultaneous motion modeling and resolution 
enhancement for 4D-MRI. The proposed CoSF-Net integrates a GAN-based SR model into the coarse-to-fine 
registration model and presents a coarse–SR–fine framework. We also upgraded the model by considering 
prior knowledge and limited 4D-MR image datasets. Our results obtained using a wide range of real patient 
datasets showed that CoSF-Net can handle motion estimation and image resolution enhancement in a unified 
model. Moreover, CoSF-Net was shown to successfully recover 4D-MR images with a better spatiotemporal 
resolution than other state-of-the-art networks and algorithms. 
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