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Abstract— Low-dose computed tomography (CT) images
suffer from noise and artifacts due to photon starvation and
electronic noise. Recently, some works have attempted to
use diffusion models to address the over-smoothness and
training instability encountered by previous deep-learning-
based denoising models. However, diffusion models suffer
from long inference time due to a large number of sam-
pling steps involved. Very recently, cold diffusion model
generalizes classical diffusion models and has greater flex-
ibility. Inspired by cold diffusion, this paper presents a
novel COntextual eRror-modulated gEneralized Diffusion
model for low-dose CT (LDCT) denoising, termed CoreDiff.
First, CoreDiff utilizes LDCT images to displace the ran-
dom Gaussian noise and employs a novel mean-preserving
degradation operator to mimic the physical process of CT
degradation, significantly reducing sampling steps thanks
to the informative LDCT images as the starting point of the
sampling process. Second, to alleviate the error accumula-
tion problem caused by the imperfect restoration operator
in the sampling process, we propose a novel ContextuaL
Error-modulAted Restoration Network (CLEAR-Net), which
can leverage contextual information to constrain the sam-
pling process from structural distortion and modulate time
step embedding features for better alignment with the input
at the next time step. Third, to rapidly generalize the trained
model to a new, unseen dose level with as few resources
as possible, we devise a one-shot learning framework to
make CoreDiff generalize faster and better using only one
single LDCT image (un)paired with normal-dose CT (NDCT).
Extensive experimental results on four datasets demon-
strate that our CoreDiff outperforms competing methods in
denoising and generalization performance, with clinically
acceptable inference time. Source code is made available
at https://github.com/qgao21/CoreDiff.

Index Terms— Low-dose CT, denoising, diffusion model,
one-shot learning.
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I. INTRODUCTION

COMPUTED tomography (CT) is a widely-used imaging
modality in clinical diagnosis. However, X-ray ionizing

radiation in CT scans could cause health risks such as hair
loss and cancer [1], [2]. One can reduce the radiation dose
by lowering the tube current in clinical practice. Unfortu-
nately, the resulting low-dose CT (LDCT) images contain
severe noise and artifacts, compromising the radiologists’
diagnosis. When the raw data are accessible, vendor-specific
sinogram preprocessing or iterative reconstruction algorithms
can effectively remove noise from LDCT images. However,
sinogram preprocessing may cause blurred edges and resolu-
tion loss while iterative reconstruction methods suffer from
expensive computational cost [3]–[5]. In addition, raw data
are typically not available to researchers due to commercial
privacy. Unlike them, image post-processing algorithms [6]–
[8] directly process the reconstructed images and are gaining
popularity due to their plug-and-play nature without access to
raw data. For example, Ma et al. leveraged the redundancy
of information in the previous normal-dose scan to compute
non-local weights for non-local mean (NLM)-based LDCT
image denoising [9]. Li et al. utilized the analytical noise map
obtained from repeated scans of the phantom data to improve
the NLM algorithm, enabling adaptive denoising based on the
local noise level of the CT image [10]. Sheng et al. proposed
a block matching 3D (BM3D)-based algorithm for low-dose
megavoltage CT image denoising, which uses a saliency map,
derived from the residual texture information after BM3D
denoising, to enhance the visual conspicuity of soft tissue [11].

In recent years, many efforts have been made to de-
velop deep learning (DL) techniques for LDCT image post-
processing, achieving promising performance [12], [13]. Ini-
tially, some researchers optimized encoder-decoder networks
by minimizing the pixel-wise loss between the denoised and
normal-dose CT (NDCT) images; one representative model
is the residual encoder-decoder convolutional neural network
(RED-CNN) [14]. Further, Xia et al. integrated RED-CNN
into a parameter-dependent framework (PDF-RED-CNN) for
multiple geometries and dose levels [15]. Despite the out-
standing denoising performance, these methods often lead to
over-smoothing images [16], [17]. To alleviate this problem,
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some works use generative adversarial networks (GANs) to
preserve more textures and details as close to NDCT images as
possible [18]. For example, Yang et al. combined Wasserstein
GAN and perceptual loss (WGAN-VGG) to produce more
realistic denoised images [19]. Huang et al. proposed a dual-
domain GAN (DU-GAN) to learn the global and local differ-
ences between the denoised and NDCT images [20]. However,
GANs are usually difficult to train due to their adversarial
nature, and require careful design of optimization and network
architectures to ensure convergence [21].

Recently, diffusion models have received much attention
due to their impressive image generation performance [22]–
[27], enjoying the advantages of multiple generative models:
good distribution coverage similar to variational autoencoder
and better generation quality than GANs [28]–[30]. However,
since the diffusion models generate images progressively from
Gaussian noise, they suffer from expensive computational
cost for inference due to the multiple iterative sampling;
e.g. denoising diffusion probabilistic model (DDPM) [23]
requires 1,000 sampling steps. This limits their application in
various real-time scenarios, especially in the field of medical
imaging [31], [32]. Some works accelerate diffusion models
to make them practical. For example, Nichol and Dhariwal
enhanced the log-likelihood performance of the DDPM and re-
duced the sampling steps to 100 [25]. Xia et al. used a fast or-
dinary differential equation solver to accelerate the DDPM for
LDCT image denoising, requiring only 50 sampling steps [32].
Despite inference time being reduced to some extent, these
improved diffusion models focus on the trade-off between per-
formance and sampling speed within the theoretical framework
of classical diffusion models. Recently, a generalized diffusion
model, referred to as cold diffusion, extends classical diffusion
models by gradually degrading images through a pre-defined
degradation operator, such as adding various types of noise,
blurring, downsampling, etc [33], [34]. Cold diffusion uses a
learnable restoration operator to reverse the diffusion process
and generates images through a “restoration-redegradation”
sampling process. Although cold diffusion allows customizing
the diffusion process, its performance is subject to the learned
restoration operator. In practice, the learned restoration opera-
tor may be imperfect, leading to accumulated errors between
the restored and ground truth images after multiple sampling
iterations and causing non-negligible pixel-wise deviations.

In this paper, we propose a contextual error-modulated
generalized diffusion model (CoreDiff) for LDCT denoising
inspired by cold diffusion. To accelerate sampling, we de-
velop a mean-preserving degradation operator applicable to
the LDCT denoising task with the LDCT images as the
endpoint of the diffusion process (forward) and the starting
point of the sampling process (reverse). In doing so, the
number of sampling steps can be significantly reduced since
LDCT images (warm state) are more informative than random
Gaussian noise (hot state). To alleviate the accumulated error
caused by imperfect restoration operators during the sampling
process, we further propose a novel contextual error-modulated
restoration network (CLEAR-Net), which can leverage rich
contextual information from adjacent slices to mitigate struc-
tural distortion in z-axis, and rectify the misalignment between

the input image and time-step embedding features through an
error-modulated module. Finally, benefiting from the proposed
mean-preserving degradation operator, we devise a one-shot
learning framework, which can quickly generalize CoreDiff
to a new, unseen dose level using one single LDCT image
(un)paired with NDCT.

In summary, the contributions of this work are listed as
follows. First, we propose a novel generalized diffusion model
CoreDiff for LDCT denoising, in which the resulting diffusion
process mimics the physical process of CT image degradation.
To the best of our knowledge, this is the first work to extend
the cold diffusion model for LDCT denoising. Second, we
introduce a novel restoration network CLEAR-Net, which
can mitigate accumulated errors by constraining the sampling
process using contextual information among adjacent slices
and calibrating the time step embedding feature using the
latest prediction. Third, we further devise a one-shot learning
framework, which can quickly and easily adapt the trained
CoreDiff to a new, unseen dose level. This can be done
with one single LDCT image (un)paired with NDCT. Fourth,
extensive experiment results on four test datasets demonstrate
the superior performance of the proposed CoreDiff, with a
clinically acceptable inference time of 0.12 seconds per slice.

II. METHOD

In this section, we first introduce the basic principles of
the cold diffusion model and the error accumulation issue.
Then we present our CoreDiff for LDCT denoising in a
generalized diffusion model framework with a new mean-
preserving diffusion process and a new contextual error-
modulated restoration network (CLEAR-Net), followed by a
one-shot learning framework for rapid generalization.

A. Preliminaries: Cold Diffusion

Cold diffusion model is a generalized diffusion model [33],
which extends the diffusion and sampling of Gaussian noise to
any type of degradation such as adding various types of noise,
blurring, downsampling, etc. Specifically, given an image x0

from the training data distribution Q, a customized degrada-
tion operator D(·) is used to gradually degrade the image x0

(cold state) into the image xT sampled from a random initial
distribution P (hot state), e.g. Gaussian distribution, where T
is the total number of time steps for diffusion. Then, image
xt of any time step t during the diffusion process is defined
as xt = D(x0,xT , t), where t corresponds to the degree of
degradation and the operator D(·) should be continuous for
any t. In the context of LDCT denoising, adding noise is the
most related degradation operator. For the diffusion process
of adding noise, the degradation operator in the cold diffusion
model is the same as the one used in classical diffusion models,
defined as:

xt = D(x0,xT , t) =
√
αtx0 +

√
(1− αt)xT , (1)

where xT is random noise with known distribution and αt <
αt−1, ∀ 1 ≤ t ≤ T .
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Fig. 1. Overview of the proposed CoreDiff for low-dose CT denoising. The introduced generalized diffusion model leverages a novel degradation
operator to mimic the physical process of CT image degradation during the diffusion process. The proposed CLEAR-Net can alleviate the
accumulated error and is trained in a two-stage manner for each time step; one key feature of CLEAR-Net is the error-modulated module (EMM)
that can calibrate the time step embedding feature with the latest prediction and the given input LDCT image.
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Fig. 2. Comparison of (a) the degradation operator in Eq. (1) and (b)
the proposed one in Eq. (6). The proposed operator achieves a mean-
preserving process, simulating the physical process of CT degradation.

In the reverse process, we first sample xT from P , and
then use a restoration operator R(·) to reverse the diffusion
process, which can be expressed as follows:

x̂0 = R(xt, t) ≈ x0. (2)

In practice, R(·) is a neural network parameterized by θ,
which can be optimized by the following objective function:

min
θ

Ex0∼Q,xT∼P ∥Rθ(D(x0,xT , t), t)− x0∥. (3)

Note that for any t, Rθ(·) can directly generate the restored
image x̂0 from xT . However, we highlight that such a one-
step prediction could produce blurred image x̂0 with severe
detail loss [33].

To address this, following the annealing sampling algorithm
in classical diffusion models [23], [25], [28], the cold diffusion
model uses a “restoration-redegradation” sampling algorithm
to gradually generate images with a total of T sampling steps.
Image x̂t−1 at time step t− 1 can be calculated based on the
prediction x̂0 as follows:

x̂t−1 = D(x̂0,xT , t−1). (4)

Although such an iterative sampling algorithm can produce
sharper images than a one-step prediction, the prediction error
between x0 and x̂0 could introduce misalignment between
x̂t−1 and time step t − 1. As a result, the prediction bias
of Rθ(·) may further worsen by the misalignment, as er-
rors are accumulated during the sampling process. Bansal et
al. proposed an improved sampling algorithm to reduce this
accumulated error [33]:

xt−1 = xt −D(x̂0, x̂T , t) +D(x̂0, x̂T , t−1), (5)

where x̂T =
(
xt −

√
αtx̂0

)
/
√

(1− αt). Although the im-
proved sampling algorithm in Eq. (5) mitigates the issue of
error accumulation and has been shown to produce better
image quality [33], [34], it does not rectify the misalignment
between the input and its corresponding time step, which could
cause a non-negligible shift in the pixel value.

B. The Proposed CoreDiff Model
Fig. 1 presents the overall architecture of our CoreDiff,

which involves a generalized diffusion model with LDCT
images as the endpoint of the diffusion process, a new mean-
preserving degradation operator to mimic the physical process
of CT degradation, and a novel CLEAR-Net to address the
accumulated errors and misalignment in cold diffusion.

1) Generalized diffusion model for low-dose CT: Previous
diffusion-based LDCT denoising methods [31], [32] typically
characterize the diffusion process as the addition of Gaussian
noise and use LDCT images as a condition to predict the
corresponding NDCT image. However, it is important to note
that the statistical characteristics of noise in CT images are
complex and cannot be simply modelled by a Gaussian distri-
bution. Moreover, for noise with zero means, it is commonly
assumed that a clean image represents the expectation of
multiple sets of noise measurements [35]–[37]. In the context
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Algorithm 1 Training for CoreDiff
Input: Paired ND/LDCT image sets I = {(x0,xT )i}Ni=1, to-

tal time steps T
Output: Trained CLEAR-Net Rθ

1: Initialization: Randomly initializes CLEAR-Net Rθ

2: repeat
3: Sample (x0,xT ) ∼ I
4: Sample t ∼ Uniform({1, . . . , T})
5: Calculate xc

t by Eq. (6) and Concat(·) ▷ Stage I
6: x̂0 ← Rθ (x

c
t, t)

7: Calculate x̂c
t−1 by Eq. (4) and Concat(·) ▷ Stage II

8: ̂̂x0 ← Rθ

(
x̂c
t−1, t−1,Fϕ (x̂0,xT )

)

9: Update θ,ϕ by Eq. (9)
10: until converged

of the LDCT denoising task, we consider that the NDCT image
x0 represents the expectation of a collection of its LDCT
counterparts {xi

T }Ni=1. However, as shown in Fig. 2(a), we find
that because the sum of

√
αt and

√
(1− αt) is not consistently

equal to 1, the expectation of intermediate images calculated
by Eq. (1) deviates from x0 and exhibits obvious CT number
drifts during the diffusion processes. Therefore, the widely-
adopted degradation operator in Eq. (1) departs from the actual
physical process of CT degradation due to the dose reduction.

Unlike previous diffusion-based methods that transform the
LDCT denoising task into a conditional image generation task
with random Gaussian noise as the end point of the diffusion
process and require a large number of steps to generate an
accurately estimated image, we propose a generalized diffu-
sion model for LDCT denoising, which uses LDCT images
as the endpoint of the diffusion process, i.e. xT . To make
the diffusion process mimic the physical process of CT image
degradation, we introduce a new degradation operator D(·)
defined as follows:

xt = D(x0,xT , t) = αtx0 + (1− αt)xT , (6)

where image xt at each time step retains the noise statistics
specific to LDCT image xT . As shown in Fig. 2(b), another
merit of employing this operator is its capability to ensure that
the intermediate image xt of the diffusion process maintains
the same expectation x0, without introducing additional CT
number shifts. Therefore, we refer to this degradation operator
as the mean-preserving degradation operator; we note that in
a practical scenario, it may not be strictly mean-preserving
due to complicated noise and the presence of artifacts. Such
property not only makes the diffusion process of CoreDiff
consistent with the LDCT image degradation process but
also is important for our one-shot learning framework. The
LDCT image xT can be considered as an intermediate state
between the cold state (clean image) and the hot state (random
noise), which we refer to as the warm state. As described in
Sec. II-A, the sampling process of cold diffusion and classical
Gaussian diffusion models starts from random Gaussian noise
and progressively diminishes the noise of the image until the
x̂0 is generated. Therefore, they require a large number of
sampling steps to generate an image with a noise level similar

Algorithm 2 Sampling for CoreDiff
Input: A test LDCT image xT

Output: Denoised image x0

1: Load the trained CLEAR-Net Rθ

2: xc
T ← Concat(x−1

T ,xT ,x
+1
T )

3: for t = T, T − 1, . . . , 1 do
4: x0 ← Rθ (x

c
t , t,Fϕ (x0,xT ))

5: Calculate xc
t−1 by Eq. (5) and Concat(·)

6: end for

to that of a LDCT image, which contains the fundamental
semantic information of the NDCT image. As a result, the
proposed CoreDiff can perform sampling from the warm state
using a smaller T , instead of starting from random Gaussian
noise.

2) Contextual Error-modulated Restoration Network
(CLEAR-Net): To mitigate accumulated errors and the
misalignment in cold diffusion caused by an imperfect
restoration network, we introduce a novel restoration network,
called CLEAR-Net. Based on the “restoration-redegradation”
sampling algorithm, we split each time step in the training
process into two stages, as shown in Fig. 1: 1) in Stage I, we
first obtain the degraded image xt using Eq. (6), and then
use CLEAR-Net, Rθ(·), to estimate x̂0; and 2) in Stage II,
we perform the redegradation operation in Eq. (4) to compute
x̂t−1 based on the latest prediction x̂0, and then use the same
network, Rθ(·), to predict the NDCT image. The novelties
of our CLEAR-Net are two-fold. On the one hand, inspired
by the contextual information used in [5], [31], we introduce
the contextual information from adjacent slices of xT to
mitigate the structural distortion during the sampling process.
More specifically, we assume the adjacent slices of xT are
x−1
T and x+1

T , corresponding to its upper and lower slice,
respectively. We concatenate xt ∈ R1×H×W at each step and
the adjacent slices at the starting point, x−1

T and x+1
T , along

the channel dimension, which yields a contextual version of
xt, i.e. xc

t = Concat(x−1
T ,xt,x

+1
T ) ∈ R3×H×W . Since the

adjacent slices remain unchanged during sampling, thereby
constraining the network Rθ(·) to produce continuous z-axis
structures.

On the other hand, CLEAR-Net leverages an error-
modulated module (EMM) to calibrate the misalignment
between the input to the network x̂t−1 and the time-step
embedding features of t − 1. Specifically, our EMM is a
feature-wise linear modulation module [38]–[40] to modulate
the time step embedding features, in which the modulation
factors at time step t− 1 are estimated as follows:

βt−1,γt−1 = Fϕ(x̂0,xT ), x̂0 = Rθ(xt, t), (7)

where Fϕ(·) is a shallow network parameterized by ϕ to
estimate the modulation factors based on the latest prediction
x̂0 and the initial input LDCT image xT . Then the time step
embedding features of t− 1 are modulated as follows:

f̃ t−1=βt−1f t−1 + γt−1, f t−1=MLP(SinPE(t−1)), (8)

where SinPE(·) represents Sinusoidal position encoding for
time step t− 1, f t−1 is the time step embedding feature from
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a multi-layer perceptron (MLP), and f̃ t−1 is the modulated
one. Note that the proposed EMM is only involved in Stage
II and the modulated features are used after each up-/down-
sampling operation in Rθ(·).

With the proposed CLEAR-Net, the final training objective
of our CoreDiff is defined as follows:

min
θ,ϕ

E
[
∥Rθ(x

c
t, t)− x0︸ ︷︷ ︸

Stage I

∥2 + ∥ ̂̂x0 − x0︸ ︷︷ ︸
Stage II

∥2
]
, (9)

where ̂̂x0 denotes the output of Rθ(·) at time step t − 1 in
Stage II; i.e. ̂̂x0 = Rθ(x̂

c
t−1, t−1,Fϕ(x̂0,xT )) and x̂c

t−1 =
Concat(x−1

T , x̂t−1,x
+1
T ).

Finally, in the sampling process of CoreDiff, the degradation
operator and the restoration operator are performed only once
at each time step. With the trained CLEAR-Net, we use
the improved sampling algorithm in Eq. (5) and replace the
coefficients according to our degradation operator in Eq. (6) to
infer the final denoised image. The training and sampling (in-
ference) procedures are shown in Algs. 1 and 2, respectively.

C. One-shot Learning for Rapid Generalization
LDCT images acquired in clinical practice are diverse due

to different equipments and protocols. How to rapidly adapt
one trained model to new unseen dose levels using as few as
resources is an important clinical question [15], [41], [42].

Here, we devise a one-shot learning (OSL) framework
specifically designed for the trained CoreDiff with only as few
as T learnable parameters and enable training with one single
LDCT image, as depicted in Fig. 3. With the introduced mean-
preserving degradation operator in Eq. (6), the “restoration-
redegradation” process of the CoreDiff is able to progressively
remove the noise and artifacts from the image, yielding a series
of denoised images with the same mean and varying degrees
of noise. Our idea is to integrate these images to produce a
visually optimal denoised image for a new, unseen dose level,
which is implemented as:

xopt =
∑T−1

t=0
wtxt s.t.

∑T−1

t=0
wt = 1, ∀t, wt ≥ 0, (10)

where wt, t = 0, . . . , T − 1 are the learnable weights used
to synergize the images at each step, and xopt represents the
optimal denoised image for the new dose level. When training
this one-shot learning framework, we freeze the parameters
of CLEAR-Net and only learned wt, t = 0, . . . , T − 1.
Therefore, we can train the framework by dividing one single
image into multiple patches. Even though the new LDCT and
NDCT images are unpaired, our OSL framework would not
introduce structural distortions since all xt correspond to the

same NDCT image. To ensure that xopt has a better visual
perception without over-smoothing, we use the perceptual
loss [19] to guide the learning of those T parameters.

III. EXPERIMENTS AND RESULTS

A. Datasets

We used four datasets in the experiments, covering different
doses, centers, and objects.

1) Mayo 2016 Dataset: We used the “2016 NIH-AAPM-
Mayo Clinic Low-Dose CT Grand Challenge” dataset for
training and testing [43], which contains 5,936 1mm thickness
normal-dose CT slices from 10 patients. We randomly selected
9 patients as the training set and the remaining one as the
test set. To obtain different dose level images, a proven
LDCT simulation algorithm with the widely-recognized “Pois-
son+Gaussian” noise model was used to generate low-dose
projection [44]:

pld = ln I0
Poisson(I0 exp(−phd))+Gaussian(0,σ2

e)
, (11)

where pld and phd represent the low-dose and normal-dose
projections, respectively. I0 is the number of incident photons,
which is set to 1.5×105. σ2

e is the variance of electronic noise,
which is fixed at 10 according to [15]. Then, the filtered back
projection (FBP) algorithm was used to reconstruct images. In
this experiment, we simulated 50%, 25%, 10% and 5% dose
data, of which 5% corresponds to ultra-low-dose situation [45].
To perform a fair comparison, all deep learning methods were
trained and tested on either 25% or 5% doses. 50% and 25%
doses of test data were used to validate the generalization
performance of our one-shot learning framework.

2) Mayo 2020 Dataset: To examine the generalization per-
formance of different methods to new dose levels on the same
center dataset, “Low Dose CT Image and Projection Data”
latest released by Mayo Clinic in 2020 was used as external
testing, which is named Mayo 2020 dataset [46]. This dataset
contains 299 scans from two vendors, providing 25% dose
data for the head and abdomen and 10% dose data for chest
scans. We randomly selected 5 chest and 5 abdomen scans,
containing 800 images for mixed dose levels testing.

3) Piglet Dataset: To further examine the generalization
performance of different methods on a different center dataset,
we also used a real piglet dataset acquired using a GE
Discovery CT750 HD scanner, which contains a total of 850
CT images [47]. This dataset provides 50%, 25%, 10%, and
5% dose scans corresponding to each NDCT scan. We chose
two dose data 25% and 10% in this experiment.

4) Phantom Dataset: We also used a publicly available real
phantom dataset (Gammex 467 CT phantom) to examine the
clinical utility of the proposed method. This dataset contains
9 different dose scans (from 33 to 499mAs) using the Thorax
protocol [48]. We chose two dose data 271mAs (54.31%) and
108mAs (21.64%) in this experiment. For each scan, slice 10
to 21 were chosen to ensure optimal visibility of all cylindrical
implants.
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(a) (b) (c) (d) (e) (f) (g)

(h) (j) (k) (l) (m)(i)

Fig. 4. Qualitative results of a 25% dose abdomen CT image from Mayo 2016 dataset. (a) NDCT image (Ground truth), (b) FBP, (c) PWLS, (d)
RED-CNN, (e) PDF-RED-CNN, (f) WGAN-VGG, (g) CNCL-U-Net, (h) DU-GAN, (i) DDM2, (j) IDDPM-1000, (k) IDDPM-50, (l) IDDPM-10, and (m)
CoreDiff-10 (ours). The display window is [-100, 200] HU. The red ROI is zoomed in for visual comparison and the orange arrow points to one
lesion.

TABLE I
QUANTITATIVE RESULTS (MEAN±SD) ON 25% DOSE TEST DATA FROM MAYO 2016 DATASET

PSNR(dB) SSIM RMSE(HU) FSIM VIF NQM(dB)

FBP 34.16±1.76 0.7763±0.0605 40.0±8.0 0.9603±0.0108 0.618±0.062 32.40±2.18
PWLS 38.26±1.29 0.9449±0.0091 24.7±3.5 0.9794±0.0053 0.633±0.052 29.94±2.20
RED-CNN 39.29±1.53 0.9599±0.0106 22.1±4.4 0.9799±0.0044 0.574±0.033 29.64±1.98
PDF-RED-CNN 42.94±1.32 0.9685±0.0103 14.4±2.3 0.9884±0.0038 0.667±0.049 35.96±1.85
WGAN-VGG 40.12±0.98 0.9419±0.0118 19.9±2.3 0.9836±0.0031 0.593±0.038 32.97±1.39
CNCL-U-Net 40.91±1.05 0.9598±0.0118 18.2±2.2 0.9836±0.0040 0.606±0.045 32.23±1.57
DU-GAN 41.50±1.22 0.9591±0.0121 17.0±2.5 0.9875±0.0032 0.660±0.050 34.55±1.89
DDM2 37.83±1.11 0.8773±0.0402 25.9±3.6 0.9766±0.0037 0.591±0.048 28.93±1.71
IDDPM-1000 41.30±1.20 0.9593±0.0116 17.4±2.5 0.9860±0.0036 0.626±0.048 34.20±1.85
IDDPM-50 41.49±1.18 0.9582±0.0122 17.0±2.4 0.9871±0.0034 0.634±0.047 34.77±1.79
IDDPM-10 33.02±1.29 0.6934±0.0912 45.2±7.0 0.9664±0.0075 0.479±0.040 29.79±1.29
CoreDiff-10 (ours) 43.92±1.33 0.9744±0.0087 12.9±2.1 0.9919±0.0026 0.724±0.047 37.84±1.76

B. Implementation Details

Following [49], we used a U-Net as the backbone of the
proposed CLEAR-Net, which consists of two downsampling
blocks, one middle block, two upsampling blocks, and an
output convolutional layer. The input to CLEAR-Net is of
size 3× 512× 512 containing the contextual information of
adjacent slices. We used Adam optimizer to optimize CoreDiff
with a learning rate of 2× 10−4 and a total of 150k iterations
for training. α1, . . . , αT were set to vary linearly from 0.999
to 0. We conducted data simulations based on the MIRT tool-
box [50]. We implemented CoreDiff in PyTorch and trained it
on one NVIDIA RTX 3090 GPU (24GB) with a mini-batch
of size 4. For our one-shot learning framework training, we
divided each image into 81 patches of size 256 × 256 with
a stride of 32. The mini-batch size used for training was 8,

the learning rate was set to 2× 10−3, and the total training
iterations were 3k. During the testing phase, we obtained the
optimal denoised image by directly multiplying the images of
size 512 × 512 output by CoreDiff with the learned weights
according to Eq. (10).

We compared our CoreDiff with four types of LDCT denois-
ing methods, including 1) iterative reconstruction algorithm:
Penalized Weighted Least Squares model (PWLS) [4]; 2)
RED-CNN-based methods: RED-CNN [14] and PDF-RED-
CNN [15]; 3) GAN-based methods: WGAN-VGG [19], DU-
GAN [20], and Content-Noise Complementary Learning with
U-Net (CNCL-U-Net) [51]; and 4) Diffusion-based methods:
Denoising Diffusion Models for Denoising Diffusion MRI
(DDM2), and Improved DDPM (IDDPM) [25]. We set the
hyperparameters of the compared DL-based methods follow-
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profile

Fig. 5. Qualitative results of a 5% dose abdomen CT image from Mayo 2016 dataset. (a) NDCT image (Ground truth), (b) FBP, (c) PWLS, (d)
RED-CNN, (e) PDF-RED-CNN, (f) WGAN-VGG, (g) CNCL-U-Net, (h) DU-GAN, (i) DDM2, (j) IDDPM-1000, (k) IDDPM-50, (l) IDDPM-10, and (m)
CoreDiff-10 (ours). The display window is [-100, 200] HU. The red ROI is zoomed in for visual comparison and the orange arrow points to one
lesion.
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Fig. 6. Profile plots of the blue line in Fig. 5 by different methods.

ing the original paper or official open-source codes, while
all hyperparameters of PWLS adhered to the settings pro-
vided in the open-source code of [3]. Specifically, the total
iterative number of PWLS was set to 20. We also trained
an additional PDF-RED-CNN on all doses of training data
from the Mayo 2016 dataset, referred to as PDF-RED-CNN∗;
we adjust the 7 geometry and dose conditional parameters
used in the original paper to 1 parameter, i.e., dose level.
For the DDM2 training, we replaced the slice-wise pre-trained
MRI denoising model with Noise2Sim [52], which is a well-
designed LDCT denoising model. We modified the IDDPM
in reference to some works focused on developing diffusion
models for LDCT image denoising tasks [31], [32]. The LDCT
image was concatenated with the sampling image along the
channel dimension at each time step. Then we fed the concate-

nated image into the network to guide IDDPM in generating
the corresponding denoised image. We set T = 1000 for
IDDPM training as suggested by their original paper, and then
used 1000, 50, and 10 sampling steps during inference for
comparison; the resultant models were named IDDPM-1000,
IDDPM-50, and IDDPM-10. Our CoreDiff used the same
number of steps for training and inference; unless otherwise
noted, T = 10 for CoreDiff and the resultant model was named
CoreDiff-10.

Three commonly-used objective image quality assessment
metrics were used to quantitatively evaluate the denoising
performance: peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) index, and root mean square error (RMSE).
In addition, we also used three new objective IQA metrics,
i.e. feature similarity index (FSIM) [53], visual information
fidelity (VIF) [54], and noise quality metric (NQM) [55],
which have demonstrated improved alignment with subjective
assessments made by radiologists on medical images [56].
Higher PSNR, SSIM, FSIM, VIF, and NQM and lower
RMSE indicate better performance. Unless otherwise noted,
all metrics were calculated based on a CT window of [-1000,
1000]HU.

C. Performance Comparison on Mayo 2016 Dataset

In this subsection, we evaluated the denoising performance
of different models on the 25% and 5% doses of test data
from the Mayo 2016 dataset; note that all the models were
also trained on the same doses.
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TABLE II
QUANTITATIVE RESULTS (MEAN±SD) ON 5% DOSE TEST DATA FROM MAYO 2016 DATASET AND THE COMPUTATIONAL TIME FOR DENOISING A

SINGLE IMAGE. THE REPORTED TIME FOR DEEP LEARNING METHODS EXCLUDES THE TIME REQUIRED FOR FBP RECONSTRUCTION

PSNR(dB) SSIM RMSE(HU) FSIM VIF NQM(dB) Time(s)

FBP 25.49±2.15 0.4310±0.0908 109.5±25.4 0.8427±0.0378 0.379±0.062 23.53±2.70 -
PWLS 34.87±0.95 0.8736±0.0084 36.3±3.9 0.9560±0.0073 0.479±0.045 25.58±2.03 3.50
RED-CNN 37.43±0.95 0.9363±0.0136 27.0±3.0 0.9665±0.0059 0.466±0.036 27.43±1.02 0.01
PDF-RED-CNN 39.25±1.22 0.9445±0.0147 22.0±3.1 0.9737±0.0071 0.527±0.049 29.91±1.98 0.01
WGAN-VGG 34.68±0.77 0.8821±0.0199 37.0±3.3 0.9528±0.0065 0.384±0.036 24.24±1.29 0.01
CNCL-U-Net 38.34±1.07 0.9341±0.0155 24.4±3.0 0.9684±0.0066 0.493±0.045 28.91±1.71 0.02
DU-GAN 37.39±1.13 0.9287±0.0161 27.2±3.5 0.9708±0.0063 0.495±0.046 27.80±1.86 0.01
DDM2 29.21±1.64 0.5908±0.0804 70.5±13.6 0.9206±0.0180 0.399±0.054 21.10±2.23 28.3
IDDPM-1000 37.31±1.14 0.9177±0.0263 27.5±3.6 0.9695±0.0068 0.482±0.046 28.01±2.03 94.2
IDDPM-50 37.95±1.28 0.9170±0.0362 25.6±3.8 0.9725±0.0064 0.500±0.047 29.04±2.01 4.67
IDDPM-10 34.80±2.52 0.8063±0.1125 38.1±12.8 0.9702±0.0056 0.469±0.041 28.20±1.86 0.96
CoreDiff-10 40.71±1.26 0.9576±0.0123 18.6±2.7 0.9830±0.0048 0.597±0.050 32.36±1.95 0.12

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

NDCT image

NDCT image

25% dose

5% dose

Fig. 7. Qualitative results of selected ROIs for calculating CNR. (a)
NDCT image (Ground truth), (b) FBP, (c) PWLS, (d) RED-CNN, (e) PDF-
RED-CNN, (f) WGAN-VGG, (g) CNCL-U-Net, (h) DU-GAN, (i) IDDPM-
1000, (j) IDDPM-50, (k) IDDPM-10, and (l) CoreDiff-10 (ours). The blue
ROI is extracted in the lesion region and the yellow ROI is extracted in
the background. The red ROI containing the above two types of ROIs is
zoomed in for visual comparison.

1) Evaluation on the 25% dose: Fig. 4 presents a representa-
tive slice of 25% dose test data denoised by different methods
for visual comparison. The orange arrow indicates the location
of the lesion in the red region of interest (ROI). Although the
RED-CNN-based methods effectively remove noise from the
LDCT image, it tends to blur fine details. Among the GAN-
based methods, WGAN-VGG introduces velvet artifacts, and
DU-GAN provides textures closer to NDCT images. CNCL-
U-Net preserves the most details, but its residual map shows
a noticeable difference in predicting the bone edge. Among
the diffusion-based models, DDM2 exhibits obvious artifacts
and CT number drift. We conjectured that this phenomenon
may result from the fact that DDM2 assumes the image noise
adheres to a Gaussian distribution, which deviates from the
actual noise distribution of CT images. Both in terms of texture
preservation and detail retention, IDDPM and our CoreDiff
surpass other compared methods. For the IDDPM, lowering
the number of sampling steps T to 50 has little impact on
the denoising performance. However, when T is reduced to
10, the model produces the poorest results due to much
insufficient sampling. In addition, IDDPM-1000/-50 erase the
critical lesion information, while our CoreDiff retains them
well. The residual map confirms that our approach has the

TABLE III
COMPARISON OF CNR AND MEAN PIXEL VALUES FOR LESION ROIS

ACROSS DIFFERENT METHODS

25% dose 5% dose
CNR Mean CNR Mean

Ground truth 1.0456 106.6960 2.2971 64.6133
FBP 0.3482 106.0759 0.2179 74.5219
PWLS 1.0207 109.3893 1.3154 91.1295
RED-CNN 1.9308 110.8473 6.1873 80.9604
PDF-RED-CNN 1.5268 110.6010 5.4688 78.2443
WGAN-VGG 1.0120 101.5679 1.0363 71.3906
CNCL-U-Net 1.0309 119.2151 4.2600 91.2229
DU-GAN 0.9932 115.3734 1.2580 83.6046
IDDPM-1000 0.7855 112.3634 1.2247 115.3525
IDDPM-50 1.0991 116.8319 2.9835 99.0598
IDDPM-10 0.3222 115.6313 1.7250 91.9786
CoreDiff-10 (ours) 1.4406 109.2925 4.5688 70.2043

least prediction bias.
Table I presents the quantitative results of all methods. Our

CoreDiff outperforms all DL-based methods and the iterative
reconstruction algorithm. Notably, our method outperforms the
second-best method (PDF-RED-CNN) by a large margin in
terms of all metrics.

2) Evaluation on the 5% dose: Fig. 5 presents the qualitative
results of 5% dose test data. In this ultra-low dose scenario, the
FBP image suffers from significantly severe noise and streak
artifacts due to the photon starvation effect, making it unac-
ceptable for clinical diagnosis. The denoising performance of
some denoising methods has a sharp decline. Fig. 5 shows that
RED-CNN-based methods and CNCL-U-Net produce over-
smoothed results. In addition, both PWLS and WGAN-VGG
introduce noticeable artifacts to the denoised images. The
DU-GAN obtains the best performance besides the diffusion-
based methods. However, the denoising result of DU-GAN
shrinks the lesion size. Other diffusion-based models, except
for IDDPM-10 and DDM2, consistently exhibit remarkable
performance in ultra-low-dose denoising tasks, showing great
promise for LDCT denoising. Among them, our CoreDiff
exhibits the best denoising performance both in terms of
residual maps and zoomed-in ROIs. Furthermore, Fig. 6 shows
the profile results of the different methods, as indicated by
the blue line in the NDCT images in Fig. 5. The red arrow
indicates that our CoreDiff maintains the CT number better
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Fig. 8. Ablation study on different T settings for CoreDiff. (a) NDCT
image (Ground truth), (b) FBP, (c) T = 1, (d) T = 10, (e) T = 50,
and (f) T = 250. The display window is [-100, 200] HU. The tissue
boundaries in the red ROI are zoomed in for comparison. Quantitative
results are provided in the lower left corner and calculated based on the
display window. Time (sec.) is the average inference time of CoreDiff on
the whole test set for different T settings.

than other methods.
Table II presents the quantitative results of 5% dose test

data. Our CoreDiff also surpasses all competing methods.
On average our CoreDiff achieves around +1.46 dB PSNR,
+1.39% SSIM, and -15.45% RMSE over the second-best PDF-
RED-CNN. In addition, Table II also reports the computational
time of denoising a single image by different methods. The
inference speed of the CoreDiff is much faster than that
of diffusion-based models, which has reached a clinically
acceptable level.

In addition, we incorporated the contrast-to-noise ratio
(CNR) [57], [58] to assess the detectability of low-contrast
lesions in Figs. 4 and 5. The higher the CNR between the
lesion and the background ROIs, the increased probability
of detecting low-contrast lesions. As shown in Fig. 7, we
carefully selected the blue lesion ROIs and the yellow back-
ground ROIs from two slices, and the CNR values for ROIs
denoised by different methods are presented in Table III. It
can be observed that both RED-CNN and PDF-RED-CNN
achieve the top two CNR values, while our method ranks third.
Nonetheless, as depicted in Fig. 7, both RED-CNN and PDF-
RED-CNN blur the edges of lesions, which is important for
doctors in staging the disease and determining its benign or
malignant nature. Considering that CT numbers are often used
to differentiate healthy tissues from diseased ones in many
clinical practices, we also calculated mean pixel values of
lesion ROIs in Table III. Notably, our CoreDiff demonstrates
the CT number of the lesion ROI closest to the ground truth.

D. Ablation Study

We conducted ablation studies to examine the effects of
different T settings and all components in CoreDiff. All the
models were trained and tested on the 5% dose data from
Mayo 2016 dataset.

TABLE IV
ABLATION STUDY OF DIFFERENT MODULES ON 5% DOSE TEST DATA

FROM MAYO 2016 DATASET

Warm CLEAR-Net PSNR SSIM RMSE
CTX EMM (dB) (HU)

- - - 39.96±1.46 0.9501±0.0143 26.8±3.5
✓ - - 41.59±1.57 0.9628±0.0123 22.2±3.1
✓ ✓ - 42.56±1.52 0.9680±0.0109 19.9±2.7
✓ ✓ ✓ 43.04±1.55 0.9713±0.0101 18.8±2.7

TABLE V
THE WEIGHT DISTRIBUTION IN THE ONE-SHOT LEARNING FRAMEWORK

USING PAIRED OR UNPAIRED SLICES (PAIR. VS UNPA.)

Dose Type w0 −→ w9

50% pair. 0.33 0.21 0.14 0.08 0.03 0.03 0.04 0.04 0.05 0.05
unpa. 0.33 0.22 0.14 0.09 0.03 0.03 0.04 0.04 0.04 0.04

25% pair. 0.44 0.29 0.12 0.04 0.02 0.01 0.02 0.02 0.02 0.02
unpa. 0.50 0.28 0.11 0.03 0.01 0.01 0.01 0.01 0.02 0.02

1) Ablation on different T settings: We evaluated the perfor-
mance of CoreDiff with T = 1, 10, 50, and 250 for training
and inference. Fig. 8 presents the denoised images under
different T settings. When T = 1, CoreDiff reduces to a
one-step restoration, resulting in blurred edges in the denoised
image. As T increases, the tissue boundaries become gradually
sharper, but the inference time also increases accordingly. In
addition, the prediction errors of the restoration network are
also accumulated as T increases. For example, when T = 1,
the PSNR and RMSE values are highest, corresponding to
fewer pixel-level errors and over-smoothed images. When
T = 10, the SSIM of CoreDiff is the highest, and the denoised
image is visually closest to the ground truth. However, setting
T ≥ 50 results in a gradual decline in the quantitative
performance of the CoreDiff. Despite the presence of our
CLEAR-Net, the accumulated errors cannot be disregarded as
T becomes large. Therefore, considering the sharpness of the
denoised images, quantitative performance, and inference time
of the method, T = 10 is a suitable setting for our CoreDiff.

2) Ablation on different components: We further examined
the effects of our generalized diffusion process with a mean-
preserving degradation operator, the introduced contextual
information, and EMM in our CLEAR-Net. For a fair com-
parison, we set the total sampling steps T of the original cold
diffusion to 10 as the baseline. For simplicity, the proposed
generalized diffusion process with the LDCT image (warm
state) is abbreviated as Warm and the introduction of contex-
tual information is abbreviated as CTX. Table IV presents the
quantitative comparison of different components, which shows
that all the proposed components contribute significantly to
the overall denoising performance of CoreDiff. On average
our CoreDiff with all components achieves around +3.08 dB
PSNR, +2.23% SSIM, and -29.85% RMSE over the baseline.

E. One-shot Generalization to New Doses and Datasets
We further conducted experiments on four different test

datasets to evaluate the effectiveness of our one-shot learn-
ing framework, which can examine the generalization to 1)
different doses from the same dataset (Mayo 2016 dataset),
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Fig. 9. Qualitative results of a 50% dose CT image denoised by
different methods trained on 5% dose training data, both training and
test data from Mayo 2016 dataset. (a) NDCT image (Ground truth), (b)
FBP, (c) RED-CNN, (d) PDF-RED-CNN∗, (e) WGAN-VGG, (f) CNCL-U-
Net, (g) DU-GAN, (h) IDDPM-1000, (i) IDDPM-50, (j) CoreDiff-10 (ours),
(k) CoreDiff+OSLp-10 (ours), and (l) CoreDiff+OSLu-10 (ours). The
display window is [-100, 200] HU. The red ROI is zoomed in for visual
comparison and the orange arrow points to a key detail.

2) different collections from the same center (Mayo 2020
dataset), 3) different species from different centers (Piglet
dataset), and 4) phantom data from different centers (Phantom
dataset). For all experiments in this subsection, except for
PDF-RED-CNN∗, all models (including ours) were trained
on the Mayo 2016 dataset with 5% dose data. In particular,
PDF-RED-CNN∗ was trained using all dose data from Mayo
2016 dataset. Additionally, the dose of test data employed in
the generalization experiments varied across different datasets.
For the new dose from any dataset, we only selected one new
LDCT image and one (un)paired NDCT image for training the
weights of the OSL framework in Eq. (10). If the new LDCT
and NDCT images are paired, the resultant OSL model is
referred to as CoreDiff+OSLp. To ease the pairing requirement
of the new training data, we also consider the unpaired
scenario, in which LDCT and NDCT images were collected
at different times. To achieve this, we selected a NDCT image
below two slices of the corresponding LDCT image as the
training label to simulate the presence of slight shifts for
unpaired training; the resultant OSL model is referred to as
CoreDiff+OSLu.
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Fig. 10. Qualitative results of a 25% dose CT image denoised by
different methods trained on 5% dose training data, both training and
test data from Mayo 2016 dataset. (a) NDCT image (Ground truth), (b)
FBP, (c) RED-CNN, (d) PDF-RED-CNN∗, (e) WGAN-VGG, (f) CNCL-U-
Net, (g) DU-GAN, (h) IDDPM-1000, (i) IDDPM-50, (j) CoreDiff-10 (ours),
(k) CoreDiff+OSLp-10 (ours), and (l) CoreDiff+OSLu-10 (ours). The
display window is [-100, 200] HU. The red ROI is zoomed in for visual
comparison and the orange arrow points to a key detail.

1) Generalization to new dose levels on the Mayo 2016
dataset: We examined the generalization of our CoreDiff to
new dose levels, in which the model was trained on 5% dose
data and evaluated on 50% and 25% dose test data, both
from the Mayo 2016 dataset. Note that comparing PDF-RED-
CNN∗, CoreDiff+OSLp, and CoreDiff+OSLu to other methods
is not fair because they used additional training data of 50%
and 25% doses.

Table V presents the learned weights by CoreDiff+OSLp

and CoreDiff+OSLu. Weight distributions derived from paired
and unpaired training are highly correlated, indicating the
flexibility of the OSL framework for clinical use.

Fig. 9 presents the qualitative results of a 50% dose LDCT
image. Both RED-CNN and CNCL-U-Net appear to smoothen
the image due to the fact that the level of noise in the test
image is higher than the one in the training image. While
DU-GAN and IDDPM successfully preserve image texture
information, certain details, such as blood vessels, are lost.
Although our CoreDiff tends to remove more noise than
necessary, it is prone to preserve critical anatomical details.
We highlight our CoreDiff+OSLp and CoreDiff+OSLu yield a
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Fig. 11. Qualitative results of a 10% dose chest CT image from Mayo
2020 dataset. (a) NDCT image (Ground truth), (b) FBP, (c) PWLS, (d)
RED-CNN, (e) PDF-RED-CNN∗, (f) WGAN-VGG, (g) CNCL-U-Net, (h)
DU-GAN, (i) IDDPM-1000, (j) IDDPM-50, (k) CoreDiff-10 (ours), and (l)
CoreDiff+OSLu-10 (ours). The display window is [-1350, 150] HU. The
red ROI is zoomed in for visual comparison and the orange arrow points
to a key detail.

visual perception effect closer to the ground truth. In contrast,
PDF-RED-CNN∗ may introduce some distortions. Fig. 10
presents the qualitative results of a 25% dose LDCT image,
which can draw similar conclusions.

2) Generalization to the Mayo 2020 dataset: We further
evaluated the effectiveness of the proposed CoreDiff and
CoreDiff+OSLu on the 25% and 10% doses from the Mayo
2020 dataset. To simulate the clinical application scenario as
closely as possible, we chose a chest slice of 5% dose and a
abdomen slice of 25% dose, as well as their unpaired normal-
dose slices, to train two one-shot models, respectively. By
combining with these two separate one-shot models, we can
quickly generalize our CoreDiff to mixed dose levels test data.

Fig. 11 presents the denoising results of a representative
chest slice from Mayo 2020 dataset. All methods remove
noise to some degree. RED-CNN-based methods smoothen the
images, and the numerous details in the lungs were lost in the
ROI. PDF-RED-CNN∗ leads to some detail loss partially due
to the gap between our incident photon number setting for 10%
dose and the one used by Mayo Clinic. While PWLS preserves
more information compared to RED-CNN-based methods, it
may not provide sufficient noise reduction. Among the GAN-

TABLE VI
QUANTITATIVE RESULTS (MEAN±SD) ON MAYO 2020 DATASET

PSNR(dB) SSIM RMSE(HU)
FBP 29.06±8.72 0.6246±0.3002 108.7±84.2
PWLS 31.96±5.29 0.7653±0.1947 60.3±32.3
RED-CNN 32.57±4.83 0.7650±0.1918 54.7±27.3
PDF-RED-CNN∗ 33.69±6.20 0.7735±0.1986 52.2±31.0
WGAN-VGG 31.09±4.44 0.7475±0.1922 63.5±29.9
CNCL-U-Net 33.15±4.87 0.7612±0.1954 51.3±25.9
DU-GAN 32.73±5.42 0.7546±0.2030 55.7±30.6
IDDPM-1000 32.41±4.29 0.7849±0.1540 53.8±23.8
IDDPM-50 32.67±4.48 0.7887±0.1543 52.7±24.2
CoreDiff-10 34.10±5.28 0.7964±0.1746 46.8±24.5
CoreDiff+OSLu-10 34.13±5.37 0.8107±0.1626 46.8±24.9

based methods, CNCL-U-Net performs best but also causes the
offset of the background value. The diffusion-based methods
exhibit a good trade-off between noise suppression and image
fidelity. Finally, the proposed OSL framework is proven to
be instrumental in enabling CoreDiff to achieve textures that
closely resemble the ground truth.

Table VI presents the quantitative results. Among the com-
pared methods, PDF-RED-CNN∗ has the highest PSNR, which
benefits from the training with multiple doses of data, while
IDDPM has the highest SSIM, indicating better preservation of
the structural information. Surprisingly, our CoreDiff achieves
better performance than them, even when trained only on
5% dose data without the additional OSL framework. We
conjectured that this is due to the fact that a more reasonable
diffusion-based method allows the model to progressively
remove noise from the image and avoid structural distortion.
In addition, the contextual error modulation module makes
CoreDiff more robust to variation of inputs. The OSL frame-
work further improves PSNR and SSIM, indicating that the
CoreDiff+OSLu can produce more visually realistic texture
and structural information by learning an optimal denoised
image.

3) Generalization to the piglet dataset: We also examined
the proposed one-shot framework in enhancing the general-
ization performance on the piglet dataset. We tested all the
trained models on 25% and 10% doses of data from the piglet
dataset. One slice is also selected from this piglet dataset with
its (un)paired normal-dose slice to train our CoreDiff+OSLp,
and CoreDiff+OSLu.

Figs. 12 and 13 show the denoising results of two represen-
tative slices of 25% and 10% doses. In the 10% dose scenario,
RED-CNN, WGAN-VGG, and CNCL-U-Net severely blur
the denoised image. While DU-GAN and IDDPM manage
to avoid global smoothing, they still result in the loss of
crucial local details. PDF-RED-CNN∗ and CoreDiff success-
fully preserve fine details. When integrated with the OSL
framework, the denoised images from CoreDiff+OSLp and
CoreDiff+OSLu exhibit textures closest to the NDCT image.
CoreDiff+OSLp and CoreDiff+OSLu also improve the quanti-
tative performances over CoreDiff, and outperform other meth-
ods. In the 25% dose scenario, surprisingly, the quantitative
metrics of the remaining methods except CoreDiff+OSLp and
CoreDiff+OSLu are even worse than that of FBP. This observa-
tion highlights the limitations of DL-based models when gen-
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(a)

(d)

(b) (c)

(e) (f)

(g) (h) (i)

(j) (k) (l)

PSNR=40.09
SSIM=0.9682
RMSE=19.1

PSNR=38.40
SSIM=0.9497
RMSE=23.2

PSNR=40.26
SSIM=0.9637
RMSE=18.7

PSNR=35.30
SSIM=0.9148
RMSE=33.1

PSNR=36.39
SSIM=0.9239
RMSE=29.2

PSNR=37.59
SSIM=0.9454
RMSE=25.5

PSNR=37.19
SSIM=0.9226
RMSE=26.7

PSNR=37.64
SSIM=0.9229
RMSE=25.3

PSNR=40.16
SSIM=0.9475
RMSE=18.9

PSNR=40.70
SSIM=0.9707
RMSE=17.8

PSNR=40.69
SSIM=0.9707
RMSE=17.8

Fig. 12. Qualitative results of a 25% dose piglet CT image denoised
by different methods. (a) NDCT image (Ground truth), (b) FBP, (c)
RED-CNN, (d) PDF-RED-CNN∗, (e) WGAN-VGG, (f) CNCL-U-Net,
(g) DU-GAN, (h) IDDPM-1000, (i) IDDPM-50, (j) CoreDiff-10 (ours),
(k) CoreDiff+OSLp-10 (ours), and (l) CoreDiff+OSLu-10 (ours). The
display window is [-100, 200] HU. The red ROI is zoomed in for visual
comparison and the orange arrow points to a key detail.

eralizing across multi-center, multi-species CT data. However,
the denoised images by CoreDiff+OSLp and CoreDiff+OSLu

within our OSL framework consistently demonstrate superior
visual quality and quantitative performance.

4) Generalization to the phantom dataset: To further
examine the clinical utility of the proposed CoreDiff,
CoreDiff+OSLp, and CoreDiff+OSLu, we conducted gener-
alization experiments on the phantom dataset and chose a
channelized Hotelling observer (CHO) to quantitatively assess
the performance of different methods on the low-contrast
signal detection task. The utility of CHO has been explored
in assessing the low-contrast detection task performance of
different CT image reconstruction algorithms, demonstrating
a high correlation with human observers [59]–[61]. The signal-
to-noise ratio (SNR) is used to measure the detection perfor-
mance of CHO using images denoised by different methods as
input; the larger, the better. As shown in Figs. 14 and 15, we
fed the blue signal-present ROIs and the yellow signal-absent
background ROIs into CHO for signal detection. All trained
models are tested on 54.31% and 21.64% doses of data from
this phantom dataset. For PDF-RED-CNN∗, we utilized the
nearest corresponding doses (25% and 50%) as conditional
inputs within the parameter-dependent framework.

(a)

(d)

(b) (c)

(e) (f)

(g) (h) (i)

(j) (k) (l)

PSNR=35.75
SSIM=0.9203
RMSE=31.7

PSNR=35.14
SSIM=0.9418
RMSE=34.0

PSNR=36.23
SSIM=0.9439
RMSE=30.0

PSNR=32.62
SSIM=0.9011
RMSE=45.4

PSNR=34.52
SSIM=0.9239
RMSE=36.5

PSNR=35.02
SSIM=0.9321
RMSE=34.4

PSNR=34.85
SSIM=0.9286
RMSE=35.1

PSNR=35.42
SSIM=0.9237
RMSE=32.9

PSNR=36.72
SSIM=0.9420
RMSE=28.3

PSNR=36.83
SSIM=0.9530
RMSE=28.0

PSNR=36.83
SSIM=0.9530
RMSE=28.0

Fig. 13. Qualitative results of a 10% dose piglet CT image denoised
by different methods. (a) NDCT image (Ground truth), (b) FBP, (c)
RED-CNN, (d) PDF-RED-CNN∗, (e) WGAN-VGG, (f) CNCL-U-Net,
(g) DU-GAN, (h) IDDPM-1000, (i) IDDPM-50, (j) CoreDiff-10 (ours),
(k) CoreDiff+OSLp-10 (ours), and (l) CoreDiff+OSLu-10 (ours). The
display window is [-100, 200] HU. The red ROI is zoomed in for visual
comparison and the orange arrow points to a key detail.

TABLE VII
SNR OF CHANNELIZED HOTELLING OBSERVERS USING IMAGES

DENOISED BY DIFFERENT METHODS AS INPUT

271 mAs (54.31%) 108 mAs (21.64%)

NDCT 10.92 10.92
FBP 9.09 7.71
RED-CNN 5.72 4.49
PDF-RED-CNN∗ 7.95 6.70
WGAN-VGG 7.51 4.95
CNCL-U-Net 8.09 5.68
DU-GAN 7.45 7.71
IDDPM-1000 4.37 4.10
IDDPM-50 2.58 2.49
CoreDiff-10 8.24 8.03
CoreDiff+OSLp-10 11.48 9.40
CoreDiff+OSLu-10 11.39 9.36

Figs. 14 and 15 present a representative slice of 54.31%
and 21.64% doses denoised by different methods. RED-CNN
and CNCL-U-Net blur the edges of cylindrical implants, while
WGAN-VGG and IDDPM introduce obvious artifacts. DU-
GAN exhibits inadequate noise suppression in denoised im-
ages. Although PDF-RED-CNN∗ outperforms other compared
methods, it falls short in preserving edge details in the 21.64%
dose scenario compared to our CoreDiff. The proposed OSL
framework aids our model in producing background textures



GAO et al.: CONTEXTUAL ERROR-MODULATED GENERALIZED DIFFUSION MODEL 13

(a)

(d)

(b) (c)

(e) (f)

(g) (h) (i)

(j) (k) (l)

PSNR=43.62
SSIM=0.9723
RMSE=13.2

PSNR=41.18
SSIM=0.9655
RMSE=17.5

PSNR=42.04
SSIM=0.9446
RMSE=15.8

PSNR=37.47
SSIM=0.9449
RMSE=26.8

PSNR=40.51
SSIM=0.9558
RMSE=18.9

PSNR=41.72
SSIM=0.9547
RMSE=16.4

PSNR=40.57
SSIM=0.9428
RMSE=18.7

PSNR=41.36
SSIM=0.9446
RMSE=17.1

PSNR=44.84
SSIM=0.9728
RMSE=11.5

PSNR=45.09
SSIM=0.9770
RMSE=10.9

PSNR=44.89
SSIM=0.9760
RMSE=11.2

Fig. 14. Qualitative results of a 54.31% dose phantom CT image
denoised by different methods. (a) NDCT image (Ground truth), (b)
FBP, (c) RED-CNN, (d) PDF-RED-CNN∗, (e) WGAN-VGG, (f) CNCL-
U-Net, (g) DU-GAN, (h) IDDPM-1000, (i) IDDPM-50, (j) CoreDiff-10
(ours), (k) CoreDiff+OSLp-10 (ours), and (l) CoreDiff+OSLu-10 (ours).
The display window is [-100, 200] HU. The blue signal-present ROI and
yellow signal-absent background ROI are selected as the input to CHO
for signal detection.

that are close to NDCT images, resulting in more favorable
visual results.

Table VII presents the quantitative task-specific performance
of different methods. The performance of methods besides
CoreDiff is even inferior to that of FBP, which may be
attributed to the shift in distribution between the test data
(phantom) and the training data (patient). Consistent with the
qualitative analysis, the performance of our CoreDiff is still
optimal. When integrated with the OSL framework, the task-
specific performance of our model was further enhanced, even
surpassing NDCT in the 54.31% dose scenario.

IV. DISCUSSION

A. Discussion on the Benefits of CoreDiff

The experimental results show that our CoreDiff out-
performs other competing models in terms of quantitative,
qualitative, and task-specific performance, demonstrating the
potential of generalized diffusion models for LDCT denoising.
It should be noted that even with 1,000-step sampling, the
IDDPM modified for LDCT denoising task performs poorly
than our CoreDiff. Here, we discuss the advantages of the
proposed CoreDiff compared to other diffusion-based LDCT

(a) 

(d)

(b) (c)

(e) (f)

(g) (h) (i)

(j) (k) (l)

PSNR=38.82
SSIM=0.8905
RMSE=22.9

PSNR=41.19
SSIM=0.9652
RMSE=17.4

PSNR=43.35
SSIM=0.9717
RMSE=13.6

PSNR=37.17
SSIM=0.9417
RMSE=27.7

PSNR=40.46
SSIM=0.9549
RMSE=19.0

PSNR=41.26
SSIM=0.9491
RMSE=17.3

PSNR=40.48
SSIM=0.9418
RMSE=18.9

PSNR=41.54
SSIM=0.9484
RMSE=16.8

PSNR=44.55
SSIM=0.9711
RMSE=11.8

PSNR=44.74
SSIM=0.9756
RMSE=11.3

PSNR=44.60
SSIM=0.9749
RMSE=11.5

Fig. 15. Qualitative results of a 21.64% dose phantom CT image
denoised by different methods. (a) NDCT image (Ground truth), (b)
FBP, (c) RED-CNN, (d) PDF-RED-CNN∗, (e) WGAN-VGG, (f) CNCL-
U-Net, (g) DU-GAN, (h) IDDPM-1000, (i) IDDPM-50, (j) CoreDiff-10
(ours), (k) CoreDiff+OSLp-10 (ours), and (l) CoreDiff+OSLu-10 (ours).
The display window is [-100, 200] HU. The blue signal-present ROI and
yellow signal-absent background ROI are selected as the input to CHO
for signal detection.

denoising methods from the following three aspects. 1) Bene-
fits from the deterministic sampling process:Recently, several
LDCT denoising methods based on diffusion models have
been proposed [31], [32]. However, most of them follow the
classical Gaussian diffusion model framework, transforming
the LDCT image denoising task into a conditional generation
task. The sampling process of Gaussian diffusion models can
be unified into a stochastic differential equation (SDE) to
guarantee good target distribution coverage [28]. However, it
is important to note that the image denoising task differs from
the image generation task, as it solely requires establishing
a one-to-one map between the denoised image and the clean
image. In this work, we built a deterministic sampling process
based on a generalized diffusion model, which not only
speeds up the sampling process but also benefits image de-
noising tasks. 2) Benefits from the proposed mean-preserving
degradation operator: Fig. 2 shows that the commonly-used
degradation operator in Gaussian diffusion models deviates
from the physical process of CT image degradation as the
dose decreases. The proposed mean-preserving degradation
operator not only introduces LDCT image-specific noise and
artifacts into each time step of the diffusion process, but also
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ensures that for each pixel in the intermediate image, its CT
number should have the same mean value as the one in the
NDCT image. 3) Benefits from the proposed CLEAR-Net: The
issue of error accumulation during the sampling process of
diffusion models is more critical for image denoising tasks
due to the pursuit of pixel-level accuracy. In this work, we
proposed a novel restoration network CLEAR-Net, which
can leverage contextual information to constrain the sampling
process from structural distortion and modulate time step
embedding features for better alignment with the input at the
next time step.

B. Discussion on the One-shot Learning Framework
We also evaluated the proposed one-shot learning frame-

work on four datasets and extensive experimental results
confirmed the strong generalization over existing methods with
as few as resources. Here, we considered 5% to be an ultra-
low-dose situation, and the actual dose used in the majority of
clinical scans exceeds 5%. However, when the dose of test
data is lower than one of the training data, the output of
CoreDiff without OSL after 10 sampling steps is already the
optimal denoised result we can obtain. Hence, further research
is required to explore how our CoreDiff can generalize from
high-dose available training data to low-dose test data. Recent
works such as GMM-U-Net [41] and PDF [15] have also
focused on the generalization issue, and the main differences
between our work and them are as follows. 1) They were based
on previous deep learning frameworks, which are limited in
LDCT imaging quality. Our work explored how to enhance
the robustness of diffusion models in dealing with intricate
LDCT denoising scenarios at the first time. 2) PDF takes the
input of dose, imaging geometry, and other information as
conditions during the training phase to enhance its robustness
in reconstructing various test data. However, its performance
on test data with geometry and dose levels not encountered
during training will be compromised. GMM-U-Net adopted
a Gaussian mixture model (GMM) to characterize the noise
distribution of LDCT images, necessitating the empirical se-
lection of different numbers of Gaussian models and loss
function weights for diverse datasets. Compared with them,
we only used one new LDCT image and one (un)paired
NDCT image for our one-shot learning framework training,
eliminating the need for empirical hyperparameter tuning on
the test data, thus enabling rapid adaptation to new unseen
dose levels. 3) We validated the potential of CoreDiff on the
highly demanding task of ultra-low-dose imaging. In contrast,
the doses of test data they used were higher than our ultra-
low-dose level.

C. Discussion on the Limitations
We acknowledge some limitations in this work. First, in

practical scenarios, since the mean of noise in LDCT images
may not be exactly 0, the proposed degradation operator is
not a strictly “mean-preserving degradation operator”. The
causes of noise in LDCT images are notably intricate and can
be influenced by a multitude of factors, including scattering,
beam hardening, patient motion, metal implants, etc [62].

Therefore, further improvements of the degradation operator
are required to better approximate the actual LDCT physical
degradation process. Second, although the sampling speed of
our CoreDiff is considerably faster than that of DDM2 and
IDDPM, its inference time is still 10 times that of RED-
CNN-based and GAN-based models. Several recent techniques
aimed at accelerating diffusion models could potentially be
integrated into our CoreDiff to further reduce sampling steps.
Examples include latent space sampling technology employed
by stable diffusion [63] and the knowledge distillation technol-
ogy utilized by consistency models [64]. However, a reduction
in sampling steps implies that the one-shot learning framework
would utilize fewer intermediate images, necessitating a trade-
off between generalization performance and inference time.
Third, since the test data comprises only two lesions, con-
ducting a task-driven reader study does not yield statistically
significant results. We intend to incorporate a larger test patient
dataset in future studies to perform a multi-reader, multi-case
study (MRMC) study.

V. CONCLUSION

In this work, we proposed a novel contextual error-
modulated generalized diffusion model for LDCT image de-
noising, termed CoreDiff. The presented CoreDiff utilizes (i)
the LDCT images as the informative endpoint of the diffu-
sion process, (ii) the introduced mean-preserving degradation
operator to mimic the physical process of CT degradation,
(iii) the proposed restoration network CLEAR-Net to alleviate
the accumulated error and misalignment, and (iv) the devised
one-shot learning framework to boost the generalization. Ex-
perimental results demonstrate the effectiveness of CoreDiff,
especially in the ultra-low-dose case. Remarkably, our CoreD-
iff model only requires 10 sampling steps, making it much
faster than classical diffusion models for clinical use.
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