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Abstract— Directionally sensitive radiomic features in-
cluding the histogram of oriented gradient (HOG) have
been shown to provide objective and quantitative mea-
sures for predicting disease outcomes in multiple cancers.
However, radiomic features are sensitive to imaging vari-
abilities including acquisition differences, imaging artifacts
and noise, making them impractical for using in the clinic
to inform patient care. We treat the problem of extracting
robust local directionality features by mapping via optimal
transport a given local image patch to an iso-intense patch
of its mean. We decompose the transport map into sub-
work costs each transporting in different directions. To test
our approach, we evaluated the ability of the proposed
approach to quantify tumor heterogeneity from magnetic
resonance imaging (MRI) scans of brain glioblastoma multi-
forme, computed tomography (CT) scans of head and neck
squamous cell carcinoma as well as longitudinal CT scans
in lung cancer patients treated with immunotherapy. By
considering the entropy difference of the extracted local
directionality within tumor regions, we found that patients
with higher entropy in their images, had significantly worse
overall survival for all three datasets, which indicates that
tumors that have images exhibiting flows in many direc-
tions may be more malignant. This may seem to reflect high
tumor histologic grade or disorganization. Furthermore, by
comparing the changes in entropy longitudinally using two
imaging time points, we found patients with reduction in
entropy from baseline CT are associated with longer overall
survival (hazard ratio = 1.95, 95% confidence interval of 1.4-
2.8, p = 1.65e-5). The proposed method provides a robust,
training free approach to quantify the local directionality
contained in images.

Index Terms— Optimal transport, MRI, CT, radiomic fea-
tures, imaging processing

I. INTRODUCTION

Computerized feature extraction has remained a key topic
ever since image data was first digitalized. Local directionality
is an important feature in image processing. Over the past
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several decades, multiple different image feature describers
have been proposed to extract such information. Steerable
filters are synthesized filters of arbitrary orientations from
linear combinations of basis filters [1]. Scale-Invariant Fea-
ture Transform (SIFT) and Histogram of Orientated Gradient
(HOG) are two feature describers based on histogram of
gradients [2], [3]. Image feature describing directionality are
widely used for object detection, object matching and network
pretraining [4]–[6].

More specifically, many directional related features are used
in radiomics analysis. The Gabor filter is a linear filter based
on the Gaussian kernel and sinusoidal plane wave. It gives
an orientation based representation of the image. Wavelets are
time and frequency localized functions that can be used to
decompose signals into different scales or resolutions, which
may also represent directionality [7]. The Gray-Level Co-
Occurrence Matrix (GLCM) is a method used to calculate
the number of occurrences of neighboring pixels with respect
to each gray level value [8]. It utilizes two parameters: the
distance between the pixels and the angle at which the co-
occurrences are counted.

The Wasserstein distance is a powerful metric for distri-
butions, or more generally measures, which is known to be
robust compared to other metrics (or divergences) given its
property of stability to small perturbations in the input data
(via weak continuity). It is naturally defined by the optimal
cost of transporting one distribution to another, which was first
motivated by the civil engineering problem of relocating a pile
of soil to an excavation site by Gaspard Monge in 1781 [9]–
[12]. A relaxation was proposed by the Russian mathematician
Leonid Kantorovich in 1942 [13], and so the optimal transport
problem is many times called the Monge-Kantorovich problem.
It gives a distance of the space of probability distributions.

Optimal mass transport methods are widely used in signal
processing, machine learning, computer vision, meteorology,
statistical physics, quantum mechanics, and network theory
[14]–[19]. Some examples include Zhu et al. and Pouryahya et
al. employed distances derived from the optimal mass transport
theory to study multiomics networks for cancer subtype clus-
tering [20], [21]. A regularized version of optimal transport
is utilized to visualize fluid flows in the glymphatic system
[22], as well as an unbalanced version of the Wasserstein
distance is utilized to identify high-risk normal tissue regions
associated with worse mortality from spillover radiation in
radiation treatments [23].

In this work, we make use of the robust property of the
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Wasserstein distance for image local analysis in order to
extract directional information from the optimal transport map
instead of gradient. The optimal transport based computation
increases robustness to noise, making it preferable for a variety
of medical image analysis applications. In the following sec-
tions, we sketch some of the background on commonly used
optimal transport models. Then we first detail our proposed
methodology in terms of the continuous case in general and
then introduce the discrete case with an additional multi-scale
integration step, which we specifically use for image feature
extraction. Quantitative comparison and illustrative examples
of our method are included in the Experiments section. We
conclude this note with some discussion about future work on
this topic. The contributions of this work include:

• Novel features characterizing local directionality are de-
veloped, using an optimal mass transport methodology,
which is robust to local image variations and recon-
structions required for reproducible and reliable radiomic
analysis.

• Our multi-scale recombination which utilize the unique
structure of optimal transport further increases the ro-
bustness of the method and is able to extract directional
features at different scales.

• The parallelized implementation allows for faster compu-
tation of the feature calculations.

• We demonstrate ability of our features to prognosti-
cate patient outcomes using magnetic resonance imaging
(MRI) and computed tomography (CT) images for brain,
head & neck and lung cancers, respectively.

II. BACKGROUND

Optimal transport was originally formulated by Gaspar
Monge in 1781 and given a relaxed formulation by Leonid
Kantorovich in 1942, and hence is known as the Monge-
Kantorovich problem [9], [10]. We will use the Kantorovich
version in this paper which may expressed as follows:

WK(µ0, µ1) = inf
π∈Π(µ0,µ1)

∫
Rn

c(x, y)dπ(x, y), (1)

where µ0, µ1 are two absolutely continuous measures on Rn,
Π(µ0, µ1) denotes the set of all the couplings between µ0 and
µ1 (measures on Rn×Rn whose two marginals are µ0 and µ1:
π(·×Rn) = µ0(·), π(Rn×·) = µ1(·)). In the present work, we
will take c(x, y) = ||x−y||. More generally, one may employ
any lower semi-continuous function such that c(x, y) ≥ a(x)+
b(y) for all x, y, where a ∈ L1(µ0), b ∈ L1(µ1). In terms of
discrete probability densities, the Kantorovich model may be
expressed as a standard linear programming problem, which
may be solved very efficiently. The discrete form of the
Kantorovich optimal transport may be formulated as follows:

dK(ρ0, ρ1) = min
Π∈RM×N

M∑
i=1

N∑
j=1

C(i, j) ·Π(i, j) (2a)

subject to: Π1⃗N = ρ0, (2b)

ΠT 1⃗M = ρ1, (2c)

where ρ0 ∈ RM
+ and ρ1 ∈ RN

+ are densities of M/N
discrete locations of initial/target distributions and their total

mass needs to be preserved as a prerequisite (
∑M

i=1 ρ0(i) =∑N
j=1 ρ1(j)). C is a point to point cost matrix and 1⃗N (⃗1M )

is an all-1 vector of length N(M).

III. METHODS

A. Continuous case
In the Monge-Kantorovich problem, Π is a generalized

transport map between two distributions [9], [10], which spec-
ifies the amount of mass that is transported from location x in
the initial distribution to location y in the target distribution,
from which one derives a transport direction. To extract the
local directionality, Kantorovich optimal transport between the
original distribution and a smoothed one on a given local
image patch X is employed. Namely, we consider

Wp
K,X (ρ) = inf

Π

∫
X×X

c(x, y) ·Π(x, y)dxdy, (3a)

subject to:
∫
X
Π(x, y)dy = ρ(x)1X (x), (3b)∫

X
Π(x, y)dx = K(ρ1X )(y), (3c)

where 1X is the indicator function, and K denotes any mass
preserving smoothing filter on X ,∫

X
ρ(x)dx =

∫
X
K(ρ)(y)dy. (4)

In the present work we will employ the following simple filter:

K(ρ)(y) =
∫
X ρ(x)dx

|X |
= constant. (5)

By considering the transport distance (3), we can quantita-
tively measure how different the patch is from its feature
removal/smoothed version. Notice that the optimal transport
also gives an optimal transport map Π, from which one derives
the probability Π(x, y) of each point x ∈ X to be transported
to any other point y ∈ X . The displacement vector y − x
together with the probability gives a natural directionality at
each point. By collecting all the sub-transport work in the same
direction, we can define a distribution ρΘ on Sn in terms of
directionality of the patch X as follows:

Wp
Θ,X (θ) =

∫ ∞

0

∫
X
λ ·Π(x, x+ λθ)dxdλ, (6)

which is a decomposition of the total transport work into all
possible directions.

Proposition 1: WΘ,X (θ) is decomposition of the total
transport in (3):

WK,X (ρ) =

∫
SN

Wp
Θ,X (θ)dθ, (7)

Proof:∫
Sn

WΘ,X (θ)dθ

=

∫
Sn

∫
{(x,y)|(x,y)∥θ}

||x− y|| ·Π(x, y)(dxdy)dθ

=

∫
X
c(x, y) ·Π(x, y)dxdy =WK,X (ρ).
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Fig. 1: An illustration of the proposed WHOG method. Local patches of varying sizes and positions are extracted from within
the tumor region of an image. For each one, the optimal transport problem of transporting the local patch to a mean value
patch is computed. The resulting optimal transport matrix gives a map matrix, each entry of which represents a sub-transport
work value with a clearly defined direction. The values of sub-transport work in the matrix are decomposed into an nb binned
vector, which represents the directionality of the patch. Multiscale feature recombination is employed to gather information
from different scales, and directionality vectors are used to compute entropy on each patch. Finally, the output WHOG feature
is the average entropy of all the patches within the tumor region.

The latter result indicates thatWK,X decomposes the transport
distance into different directions.

B. Discrete case

For application of our directionality distribution, we employ
a discrete version of (6) to extract the local directionality
of images. We choose to use the same output format as the
HOG because they extract the same type of local information.
Because of the similarity, we call our method Wasserstein
HOG (WHOG). Note that we only borrow the name HOG
because of the similar information extracted. Our method does
not depend on the gradient. We consider the following discrete
version of Kantorovich optimal transport:

dK,Xn
(ρ0) = min

Π∈Rn2×n2

n2∑
i=1

n2∑
j=1

C(i, j) ·Π(i, j) (8a)

subject to: Π1⃗n2 = ρ0, (8b)

ΠT 1⃗n2 = ρ1 =

∑
ρ0

n2
1⃗, (8c)

where Xn is a local n × n image patch and ρ0 ∈ Rn2

+ is the
flattened image intensity on that patch. An iso-intense patch
with the mean value of ρ0 as intensity of all pixels on that
patch is used as ρ1 ∈ Rn2

+ . Further, the cost matrix C ∈
Rn2 × Rn2

is taken as the standard pairwise distance matrix.
Local image directions are extracted from the matrix W =

C . . .Π∗ by regrouping the entries into bins where Π∗ is the

optimal solution to the optimization (Fig. 1). Each entry of
W has a corresponding orientation given by the transport
starting point and end point locations. For the (i, j) entry of
W (i ̸= j), the ith location in the density vector corresponds
to a coordinate (u1, v1) in the original n × n grid and the
jit location in the density vector corresponds to another
coordinate (u2, v2) in the original n×n grid. The directionality
of the sub-transport route is given as:

θ = arctan(
v1 − v2
u1 − u2

). (9)

We evenly divide [0, π] into nb bins and add up all the wij

values in their corresponding bins. So each bin contains all the
sub-work of the optimal transport in its corresponding direc-
tion. The nb-vector is a representation of local directionality.
The sum of nb values in the feature vector coincides with
the sum of all wij , which is the Wasserstein distance (total
work) by the same reasoning as Proposition 1. On the other
hand, we decompose the distance into components in the nb

directions. This gives a similar feature vector that characterizes
local directionality as in HOG, but is more robust. From
a different perspective, optimal transport has been used in
registration [16]. The proposed feature may be understood
as a summary of the directions of corresponding points of a
generalized local registration from each local patch to an iso-
intense patch, where the ”registration” based on the optimal
transport method (8) is not 1-to-1, but 1-to-n.
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C. Discrete case with multi-scale recombination

Multi-scale is a commonly used technique in image pro-
cessing. In this current work, we find it extremely useful to
use different patch sizes. To deal with the problem of aligning
patches of various sizes and centered in different locations, we
first extract directionality vectors on the level of pixel and then
recombine together, making a minor change from the method
of the last section (III-B), which has the same form of output
as before. But instead of using one fixed patch size n, we
use multiple patch sizes and multiple patch starting positions:
(n1, p1), (n2, p2), ..., (ni, pi), ..., (nk, pk), where ni ∈ Z is
a patch size and pi ∈ {1, 2, ..., ni} × {1, 2, ..., ni} ⊂ Z2

is to shift the grid of all patches. The Kantorovich optimal
transport problem in the same form of (8) with different
patch parameters is solved. Instead of deriving just one nb

directionality vector from the entire matrix W for that patch,
n2
i of nb−vectors for each pixel are extracted from each row of

the matrix W . Noting that each row of the matrix W specifies
the optimal transport plan for a pixel on that patch, the n2

i

vectors represent the directionality on all of the n2
i pixels of

that patch. For that purpose, we further decompose the matrix
W in an even finer level. To get the same output format as
before, for a given output patch size n, we simply sum all
n2 × k nb−vectors on each output patch. So the final output
contains information of a neighborhood in the perspective of
multi-scale.

D. Implementation of discrete case

Because of the translational invariance of the pairwise
distance within a given patch, the cost matrix C is the same
for a fixed ni. It is the pairwise distance matrix of all
the lattice points, and it is constructed beforehand to save
computational cost. In addition, the nb mask matrices Mj’s
for each directional bin are also constructed. They are also
the same for a fixed value of ni. The main step is solving a
linear programming problem (2) for each patch from an input
image I . The 2D intensity is vectorized and reformulated as
a standard linear programming problem, which is solved via
the dual-simplex algorithm [24]. The output solution of the
transport matrix is then decomposed into nb directions using
mask matrices, and the pixelwise transport cost is computed by
summing each row of the transport matrix, which is stored in
the nb matrices (IPVi

(:, :, 1), ..., IPVi
(:, :, nb)) of the same size

as the original image I . IPVi
’s from different patch parameters

(ni, pi) sum up to be the multiscale pixelwise directionality
matrices IPV . Finally, the features are output as the sum
on each output patch. We implemented our proposed method
in MATLAB. For the linear programming part, the built-in
linprog function is used. Parallelization was utilized for speed-
up by taking advantage of the independence of computations
on different scales and different patches (See Algorithm 1).

Algorithm 1 Wasserstein HOG
Inputs: Gray scale image I , patch size n, number of bins nb

Parameters: Multi-scale parameters (n1, p1), ..., (nk, pk)
Outputs: Directionality vector field

1: for 1,...,i,..., k do
2: Construct n2

i by n2
i cost matrix C

3: for 1, ..., j,..., nb (in parallel) do
4: Construct an indicator matrix Mj ∈ Rn2

i×n2
i for all

transport directions within the range of j’th direc-
tionality bin

5: end for
6: for each patch X in I starting from pixel pi

with step = ni (in parallel) do
7: Get intensity ρ on patch X
8: Construct mean value patch ρm
9: Solve (8) via linprog for ΠX using C, ρ, ρm

10: WX = ΠX . ∗ C
11: for 1, ..., j,..., nb do
12: Assign j’th pixel-wise directional work portion to

each pixel on X :
IPVi

(X , j)← sum(WX . ∗Mj , 2)
13: end for
14: end for
15: end for
16: IPV =

∑k
i=1 IPVi

17: for each output patch Xo do
18: Sum to get final directionality vector fXo

on patch Xo:
fXo(1 : nb) =

∑
p∈Xo

IPV (p, 1 : nb)
19: end for

IV. EXPERIMENTS

A. Comparison with conventional HOG

A brief overview of extracting the standard histogram of ori-
ented gradients (HOG) features is provided for completeness.
The first step involves computation of the image gradients,
which typically uses the Sobel image filters, described as:

[
1 0 −1

]
,

 1
0
−1


to compute the x and y coordinate derivatives (gx, gy) for
each pixel. The directionality of a pixel located at {x, y} is
computed using the direction of the gradient vector:

θ = arctan(
gy
gx

). (10)

Second, patch histograms of oriented gradients are computed
by binning the pixels within the patch using θ values, with
the number of bins corresponding to the chosen discretization
for the gradient θ. The sums of gradient vector norms g =√
g2x + g2y present in all bins are then combined to form a

feature vector of that patch. Feature vectors of neighboring
patches are normalized together to alleviate artifacts caused
by light variations. Patch sizes used to construct the HOG
features were determined empirically and was set to 8 by 8.
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Of note, the computation of directionality (9) using WHOG
is very different from HOG (10). Specifically, the directionality
of features using HOG is based on image gradient, which is
sensitive to image noise. WHOG, on the other hand, considers
constituents of all the possible sub-transport routes traversing
the grid points between all pairs of pixels to compute the
direction, thus making WHOG more robust to image noise
than the HOG approach. The robustness of WHOG to noise is
illustrated by the toy examples in Fig. 2, wherein both WHOG
and HOG perform similarly well without noise. However,
when more noise is added (Gaussian noise with mean= 0,
σ = {0, 0.01, 0.01, 0.1, 0.15}), WHOG computed directions
show very little change. HOG on the other hand, gradually
loses directionality until the histogram is evenly distributed to
all the bins with the highest noise levels.

Fig. 2: HOG vs WHOG under different noise levels: for both
methods, we use 8 by 8 patch and 9 bins.

The qualitative performance of the two methods for extract-
ing the gradient orientations using rose plots within the tumor
and at its boundary (yellow box in Fig. 3) shows that WHOG
(Fig. 3b) extracts both the large and small differences in edge
orientations with stronger resolution of differences compared
to the HOG method (Fig. 3a). Furthermore, clear edge orien-
tations are lost with HOG within the tumor, but continue to
be extracted for the WHOG, indicating that WHOG may be
better at extracting clear directionality even inside tumors.

(a) (b)

Fig. 3: An example of a brain GBM slice from a TCIA dataset.
(a): Rose plot of the HOG with a zoom-in view of the tumor
region, (b): Rose plot of the WHOG with a zoom-in view of
the same tumor region.

B. Quantifying image tumor heterogeneity using WHOG
Imaging tumor heterogeneity has been shown to be as-

sociated with biological heterogeneity by multiple radiomics
studies [25]–[27]. In particular, radiomic features constructed
with oriented edges from CT as well as MRI scans were shown
to be associated with survival and treatment outcomes in solid
cancers [28], [29]. Hence, we asked whether the imaging
tumor heterogeneity quantified as average entropy of the local
feature directionality (described in the subsequent subsection)
is associated with survival and treatment outcomes in three dif-
ferent solid cancers, namely glioblastoma multiforme (GBM)
in the brain, oro/nasopharynx cancer in the head and neck,
and non-small cell lung cancer (NSCLC) using three separate
datasets. Two of the three datasets were sourced from the
publicly available the Cancer Imaging Archive (TCIA) and
previously used in radiomic studies for brain [30], head and
neck cancer [6]. The third dataset in NSCLC patients treated
with immunotherapy was previously used for evaluating deep
learning segmentation of lung tumors [31]. Description of
the analyzed datasets and the outcomes are provided in the
subsequent subsection.

1) Entropy formulation: Because we are only interested in
the flows within the tumor, we utilized the tumor masks and
considered transport problem only within the tumor region:

d̃K,Xn
(ρ0) = min

Π∈Rn2×n2

n2∑
i=1

n2∑
j=1

C(i, j) ·Π(i, j) (11a)

subject to: Π1⃗n2 = ρ0. ∗ ⃗mask, (11b)

ΠT 1⃗n2 = ρ1 =

∑
ρ0. ∗mask∑

mask
× ⃗mask,

(11c)

where both the original patch and the iso-intense patch are
taken to be within the tumor region. The following is the
same set-up as in the section III-C. By considering the sub-
transport route direction derived from (9), a vector vp ∈ Rnb

which represents the directionality of patch q is computed
using multi-scale recombination. Notice that

nb∑
c=1

vq(c) = d̃K,Xn
(ρ0),

which gives a measure of the strength of directionality of
a given patch, which may not sum up to be 1. The local
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directional distribution is defined as the normalized vq:

Pq(c) =
vq(c)∑nb

c=1 vq(c)
. (12)

Finally, entropy is defined as the average of all patches within
the tumor region (the patch intersects more than 80% of mask
area):

S =
1

|Q|
∑
q∈Q

nb∑
c=1

−Pq(c) log(Pq(c)), (13)

where Q is the set of all feasible patch q.
Finally, CoLlAGe [28], a recently developed radiomic mea-

sure quantifying imaging heterogeneity using histogram of
oriented gradients together with cooccurrence matrix formu-
lation was evaluated as a benchmarking metric to assess the
gains achieved using WHOG as a novel radiomic measure of
imaging tumor heterogeneity.

We used n = 8 and nb = 9 for both WHOG and HOG
in the following tests, which is the default setting of HOG
from MATLAB. For the latent multi-scale parameters, we used
(4, (1, 1)), (4, (3, 3)), (8, (1, 1)) and (8, (5, 5)) – four different
sets of patches, which are patches starting from origin or the
first patch center for both patch sizes equal to 4 or 8.

We used the implementation of CoLlAGe from CERR with
all default parameters [32].

C. Patient datasets description

1) Brain GBM MRI dataset: This cohort consisted of 50
patients diagnosed with GBM and arose from a multi-
institutional open-source dataset sourced from 28 different
institutions and provided by the TCIA [33] and was used in
our prior work on radiomics analysis [30]. In order to limit
the number of analyzed features, we restricted the analysis to
fluid attenuation inversion recovery (FLAIR) images provided
by the cohort alone as these depict tumors as well as edema
outside of the tumor. Tumor features were extracted within
segmentations generated using a semi-automatic method and
available from prior publication [30].
In addition to the imaging data, TCIA also provides matched
overall survival (OS), and relevant clinical data for these pa-
tients, which were used in the univariate and multivariable Cox
proportional hazards regression model to measure associations
of WHOG and HOG features with OS.

2) Head and neck CT dataset: The head and neck dataset
consisted of 136 patients diagnosed with head and squamous
cell carcinoma treated with radiotherapy and was used in a
large radiomics analysis paper by Aerts et al. [6] and made
available together with the gross tumor volume segmentations
in the TCIA. All CT scans were acquired in the MAASTRO
clinic, the Netherlands.
The standardized pre-processing steps were applied as de-
scribed previously in [34]. In order to increase contrast on
CT, all image slices were subject to intensity clipping, with
the clip range values corresponding to those that covered the
mean intensity of the tumor regions. The same clipping upper
and lower bounds of 1000 Hounsfield unit (HU) to 1200 HU
were applied. The clipping range was set to 200 HU.

Together with the CT scans, volumetric segmentations pro-
duced by the radiation oncologist and relevant clinical data
such as the disease free survival, OS, biological sex at birth,
human papilloma virus (HPV) status, age, and other confound-
ing clinical variables were also provided with the dataset and
were used in the univariate and multivariable Cox proportional
hazards regression analyses.

3) Lung immunotherapy longitudinal CT dataset: 143 stage
III-IV NSCLC patients treated with immunotherapy who un-
derwent serial CT imaging at baseline (pre-treatment) and 9
weeks after treatment initiation were analyzed. This dataset
was used in our prior segmentation studies and the segmenta-
tion results were utilized in this study [31], [35].
Clinical outcomes included progression free survival (PFS),
defined as the time from the date of primary surgery to the date
of documented first recurrence on the basis of findings on a CT
scan, physical examination results, or death prior to recurrence,
and OS defined as the time interval between surgery and the
date of death or censure. In addition, clinical variables such as
patient age, biological sex at birth, and smoking status were
also available for measuring associations of WHOG and HOG
features using univariate and multivariable Cox proportional
hazards regression.

4) RIDER lung CT dataset: The RIDER Lung CT collection
consists of 31 patients with non–small cell lung cancer [36].
It was constructed as part of a study to evaluate the variability
of tumor unidimensional, bidimensional, and volumetric mea-
surements on same-day repeat computed tomographic (CT)
scans. Each patient who underwent two chest CT scans within
15 minutes using the same imaging protocol, were included
in this study. Three radiologists independently measured the
two greatest diameters of each lesion on both scans, and
during another session, measured the same tumors of the first
scan [37].

D. Comparing methods
We compared our proposed method with CoLlAGe [28],

HOG [3], wavelet [6], Gabor [38] and GLCM [8]. We used
the implementation HOG of extractHOGFeatures function
from the Image Processing and Computer Vision package.
CoLlAGe, wavelet, Gabor and GLCM features are extracted
via the implementation from CERR [32]. We chose the output
patch size [8, 8] from the same default setting from both HOG
and CoLlAGe (the same for WHOG). For wavelet, Gabor
and GLCM features, we used the standard feature extraction
pipeline which all parameters are set to in accordance with the
IBSI guidelines [39].

E. Statistical analysis
Statistical evaluation of the association of the entropy of

WHOG, CoLlAGe, HOG, wavelet, Gabor and GLCM fea-
tures was performed with the available outcomes for each
dataset using univariate Cox proportional hazards regression.
Multivariable Cox proportional hazards regression was also
done by adjusting for known clinical variables including age,
biological sex at birth, smoking status, and HPV status, as
appropriate and available for the different datasets. Adjustment
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for multiple comparisons between the three features was done
using Bonferroni correction. Only p-values with p < 0.05
were considered significant. Measurement of association was
performed using dichotomized low-risk (≤ median of entropy
feature) and high-risk (> median of entropy feature) groups.
Kaplan-Meier (KM) survival analysis was performed using the
dichotomized patient curves. Population median values were
chosen as an unbiased cutoff to dichotomize patients and avoid
need for calibrating the best cut-off value from the individual
datasets.

V. RESULTS

A. Brain GBM: association of entropy features with
overall survival

Results of univariate and multivariable (adjusted for age,
tumor volume, biological sex at birth and MGMT methylation)
Cox proportional hazards regression using the dichotomized
high and low-risk groups determined using entropy of WHOG,
CoLlAGe, and HOG features are shown in Table I.

Univariate Analysis Multivariable Analysis
p-value HR (95% CI) p-value HR (95% CI)

WHOG 0.030 2.1 (1.0-4.0) 0.021 2.4 (1.1-4.0)
CoLlAGe 0.049 1.9 (1.0-3.7) 0.059 1.9 (0.9-3.9)
HOG 0.160 1.6 (0.8-3.0) 0.238 1.5 (0.7-2.9)
Wavelet 0.058 1.9 (1.0-3.9) 0.124 1.7 (0.9-3.6)
Gabor 0.071 0.55 (0.3-1.1) 0.139 0.5 (0.2-1.2)
GLCM 0.26 1.4 (0.8-2.7) 0.555 1.2 (0.6-2.4)

TABLE I: Univariate and multivariable Cox proportional haz-
ards regression analysis on brain GBM MRI data. HR: hazard
ratio; CI: confidence interval

KM analysis showed that entropy of WHOG resulted in
a stronger association with OS (p = 0.027) compared with
entropy of CoLlAGe (p = 0.047) and entropy of HOG (p =
0.106) features, the latter of which was not associated with OS.
Fig. 4a, Fig. 4f and Fig. 4e show the KM curves for the entropy
of WHOG, CoLlAGe, and HOG features, respectively. Fig. 6
shows two representative patients randomly selected from low
and high-risk groups as determined using the WHOG entropy
feature.

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Kaplan-Meier plots of survival difference between
the high entropy group and the low entropy group of brain
GBM patients of method WHOG (a), CoLlAGe (b), HOG (c),
Wavelet (d), Gabor (e) and GLCM (f)

.

Robustness of features to noise: We tested the robustness
of the extracted features to noise and the impact of added
noise in measuring the association with OS by adding zero-
centered Gaussian noise as well as Rician noise [40], [41].
WHOG features showed less variability measured using coef-
ficient of variation for the different noise levels. Importantly,
the WHOG features extracted at the different noise levels
remained associated with OS for larger amounts of added noise
when compared to other features, indicating the stability of
WHOG to added image noise (see Table ??). On the other
hand, CoLlAGe features were not associated with OS with
any added noise. Wavelet features gave the smallest p-value
of Rician noise σ = 10−3, with the high risk group and low
risk group reversed from the original case. The result could
be caused by random effects (see Table ??).

. As seen from the results, HOG and wavelet showed a
(marginal) dependence on the magnet strengths indicating
reduced robustness compared to other methods.

WHOG CoLlAGe HOG
GE and non-GE 0.751 0.622 0.505
1.5 Tesla vs. 3 Tesla 0.977 0.627 0.055

Wavelet Gabor GLCM
GE and non-GE 0.2691 0.5768 0.8353
1.5 Tesla vs. 3 Tesla 0.0176 0.5672 0.8863

TABLE III: Wilcoxon rank sum test on differences of scanner
manufacturers and magnetic strength.
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Comparison of patients assigned to high and low entropy
groups by WHOG and CoLlAGe: We compared patients
assigned to different risk groups by WHOG and CoLlAGe
methods (see Table IV). Fisher exact test of the patient risk
groups showed significant agreement in the assigned risk
groups (p = 7.26e−06). Spearman rank correlation coefficient
of the WHOG and CoLlAGe features was also high (Spearman
ρ of 0.85). These results indicate that the two features result
in similar grouping of patients, albeit WHOG indicates higher
robustness to noise compared to the CoLlAGe method. Fig. 5
shows two examples where WHOG and CoLlAGe resulted
in opposite categorization of patients into low and high-
risk groups. In particular, CoLlAGe-based dichotomization
grouped the image in Fig. 5a into a low-risk group even though
the tumor appeared non-homogenous due to the presence of
edema and differential contrast in various parts of the tumor.
WHOG, on the other hand, placed this patient in the high-risk
group and the patient was associated with a shorter OS of 10.8
months. Another representative example where the CoLlAGe
categorized the image into the high-risk group, although the
presence of homogenous sub-regions is shown in Fig 5(b).
WHOG grouped this patient in the low-risk group and the
patient was associated with a longer OS of 13.9 months.

(a) (b)

Fig. 5: Two examples of WHOG and CoLlAGe with divergent
grouping of patients into low vs. high-risk groups: (a) WHOG
based categorization was high-risk but CoLlAGe categoriza-
tion was low-risk, (b) CoLlAGe categorization was high-risk
but WHOG categorization was low-risk.

(a) (b) (c)

(d) (e) (f)

Fig. 6: WHOG categorized high-risk group patients ((a),
(b) and (c)) and low-risk group patients ((d), (e) and (f)).
Representative central slices are shown. (a),(d): original slice
(boundaries of tumors are indicated by the red lines); (b),
(e): rose plot of directionality; (c), (f): heatmap of voxel-wise
WHOG entropy.

CoLlAGe
WHOG Low entropy group High entropy group

Low entropy group 20 4
High entropy group 4 19

TABLE IV: Comparison of WHOG low/high entropy groups
vs CoLlAGe low/high entropy groups.

B. Head & neck cancer: association with overall survival
Results of univariate and multivariable (adjusted for age,

biological sex at birth, tumor volume and overall HPV p16
status) Cox proportional hazards regression using the di-
chotomized high and low-risk groups determined using en-
tropy of WHOG, CoLlAGe, and HOG features are shown in
Table V.

Univariate Analysis Multivariable Analysis
p-value HR (95% CI) p-value HR (95% CI)

WHOG 0.011 1.9 (1.2-3.1) 0.157 1.5 (0.8-2.8)
CoLlAGe 0.048 1.6 (1.0-2.6) 0.849 1.1 (0.5-2.0)
HOG 0.290 1.3 (0.8-2.1) 0.622 1.1 (0.7-2.0)
Wavelet 0.680 1.1 (0.7-1.8) 0.831 0.9 (0.6-1.6)
Gabor 0.320 1.3 (0.8-2.1) 0.636 0.9 (0.5-1.5)
GLCM 0.041 1.7 (1-2.7) 0.664 1.1 (0.7-2.0)

TABLE V: Univariate and multivariable Cox proportional
hazards regression analysis on head & neck CT dataset. HR:
hazard ratio; CI: confidence interval

WHOG entropy based patient dichotomization resulted in
a significant association with OS (p = 0.009) compared to a
borderline association when using CoLlAGe (p = 0.046) and
no association for HOG entropy based patient dichotomization
(p = 0.386). Fig. 7 and Fig. 9 show KM survival curves
for the WHOG and CoLlAGe entropy based patient groups,
respectively. Fig. 8 shows two representative patients randomly
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selected from low and high-risk groups as determined using
the WHOG entropy feature.

Fig. 7: Kaplan-Meier plots of survival difference between the
high entropy group and the low entropy group of head and
neck patients of method WHOG.

(a) (b) (c)

(d) (e) (f)

Fig. 8: Central tumor slices from representative patients cho-
sen from high-risk ((a), (b) and (c)) and low-risk ((d), (e)
and (f)) groups as selected using WHOG entropy feature. CT
image slices with tumor contour are shown in (a) and (d).
Rose plots showing the directionality of image gradients as
computed using WHOG are shown in (b) and (e). Finally,
heatmaps of voxel-wise WHOG entropy for the two patients
are shown in (c) and (f).

Comparison of patients assigned to high and low entropy
groups by WHOG and CoLlAGe: The WHOG entropy and
CoLlAGe entropy features were strongly correlated (Spearman
rank correlation coefficient of ρ = 0.7143) with a high
agreement in the grouping of patients into the high and low-
risk groups. However, WHOG entropy was more strongly
associated with OS compared to the CoLlAGe entropy as
shown in Table V. Fig. 10 shows two examples where WHOG
and CoLlAGe resulted in opposite categorization of patients
into low and high-risk groups. In particular, CoLlAGe-based
dichotomization grouped the image in Fig. 10a into a low-
risk group while WHOG placed this patient in the high-risk
group and the patient was associated with a shorter OS of 16
months. Another representative example where the CoLlAGe
categorized the image into the high-risk group, although the

presence of homogenous sub-regions is shown in Fig 10 (b).
WHOG grouped this patient in the low-risk group and the
patient was associated with a longer OS of 135 months.

Fig. 9: Kaplan-Meier plots of the high entropy group and the
low entropy group from CoLlAGe in head and neck patients.

(a) (b)

Fig. 10: Two examples of WHOG and CoLlAGe with diver-
gent grouping of patients into low vs. high-risk groups: (a)
a patient with a low OS of 15 months and WHOG correctly
classified the patient into high-risk but CoLlAGe classified
the patient as low-risk, (b) a patient with a longer OS of
135 months, which was correctly categorized as low-risk using
WHOG but incorrectly using CoLlAGe as high-risk.

C. Lung cancer treated with immunotherapy: association
with overall survival using longitudinal CT scans

Different from prior disease sites, we studied whether
longitudinal changes in the entropy features extracted from
the CT scans using WHOG and other features are able to
predict OS. Longitudinal analysis using the change in the
radiomic features requires features that are robust to imaging
differences in order to capture real changes resulting from
image noise and acquisition differences. Change in entropy
was computed between the pre-treatment CT scan (S0) and the
first CT scan acquired 9 weeks after starting treatment (S1) as
the difference in average entropy computed within segmented
tumors or ∆S = S1 − S0.

As shown in Table VI, only the change in WHOG entropy
was associated with OS in both univariate and multivariable
(adjusted for age, biological sex at birth, smoking, treatment,
tumor volume and tumor volume change) Cox proportional
hazards regression analysis. HOG entropy based univariate
analysis showed an association with OS, but it was not
associated in the multivariable analysis. Furthermore, WHOG
entropy resulted in a stronger association, indicated by smaller
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p-values than HOG entropy. Different from the other two
datasets, CoLlAGe showed no association with OS.

Univariate Analysis Multivariable Analysis
p-value HR (95% CI) p-value HR (95% CI)

WHOG 2.7e-5 2.2 (1.5-3.2) 0.0004 2.1 (1.4-3.2)
CoLlAGe 0.670 1.1 (0.8-1.5) 0.970 1.0 (0.7-1.5)
HOG 0.001 1.6 (1.1-2.4) 0.470 1.2 (0.8-1.8)
Wavelet 0.51 1.2 (0.8-1.7) 0.789 1.1 (0.7-1.5)
Gabor 0.15 0.8 (0.5-1.1) 0.771 0.9 (0.6-1.4)
GLCM 0.13 1.4 (1.0-1.9) 0.274 1.2 (0.8-1.8)

TABLE VI: Univariate and multivariable Cox proportional
hazards regression analysis performed on the lung cancer
dataset using longitudinal or delta entropy features. HR: hazard
ratio; CI: confidence interval

Fig. 11: Kaplan-Meier plots of association with OS computed
using dichotomized patients (low-risk as ∆SWHOG ≤ 0 vs.
high-risk as ∆SWHOG > 0) using WHOG entropy.

The KM curves showing the association of the WHOG
entropy change with OS are shown in Fig. 11. Additionally,
we studied whether the WHOG entropy features computed
from the individual CT (baseline and 9-week) scans showed
an association with OS. As shown in Fig. 12a, the features
computed from the baseline image did not show an association
with OS (p = 0.444), but those computed after the first
treatment scan (Fig. 12b) did (p = 0.0172). On the other hand,
the delta WHOG entropy feature showed a stronger association
(p < 0.0001) compared to the WHOG entropy computed from
the 9-week CT.

(a) (b)

Fig. 12: Kaplan-Meier plots of association with OS computed
using dichotomized patients using (a) (low-risk as ≤ S0

WHOG

vs. high-risk as > S0
WHOG) and (b) (low-risk as ≤ S1

WHOG

vs. high-risk as > S1
WHOG), where the computed features are

WHOG entropy measures, 0 corresponds to features extracted
within tumor from baseline CT and 1 corresponds to features
extracted within tumor from 9-week CT scans, respectively.

Of note, the high-risk patients were those in whom the delta
entropy increased with the WHOG feature, indicating higher
imaging heterogeneity within tumor after treatment (median of
0.0492 and inter-quartile range (IQR) of 0.0450). On the other
hand, patients grouped as low-risk using the delta WHOG
feature had a decrease in the entropy (median of -0.0632 and
IQR of 0.1046).

We next evaluated the association of patients in the high-risk
∆SWHOG > 0 vs. low-risk ∆SWHOG ≤ 0 groups with dis-
ease response, namely, partial or complete response (PR/CR),
stable disease (SD), and progression of disease (POD). Fisher
exact test showed a significant difference (p = 3.78 × 10−6)
between the two groups, showing a larger proportion of POD
in the group with increased tumor heterogeneity than the group
with decreased WHOG entropy (Table VII). On the other hand,
patients who had a reduction in WHOG entropy, had a higher
prevalence of stable disease.

Group
Response POD SD PR/CR

∆SWHOG > 0 38/65.52% 5/8.62% 15/25.86%
∆SWHOG < 0 33/26.40% 50/40.00% 42/33.60%

TABLE VII: Response counts and percentages of the entropy
increase group, the minor change group and the entropy
decrease group from the baseline images to the 9-week images
after the start of immunotherapy. POD: progression of dis-
ease, SD: stable disease, PR: partial response, CR: complete
response.

D. RIDER lung CT dataset: Reproducible and robust
image feature

Figure 13 shows the feature values (normalized by mean
and standard deviation to align different features into the same
range) from two CT scans that were taken 15 minutes apart.

Fig. 13: Scatter plots of normalized features extracted from
two CT scans of HOG vs WHOG, CoLlAGe vs WHOG,
Wavelet vs WHOG and Gabor vs WHOG.

Robustness as a repeatable feature: The robustness of
the proposed WHOG image feature and other features in
terms of repeatability was measured by the Pearson correlation
coefficients and p-values between the output from two time
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points. To mitigate the effect of WHOG using multi-scale,
single-scaled features of WHOG are extracted compared to
HOG and CoLlAGe features with the same scale (patch
size). Table VIII shows that Pearson correlation coefficients
and p-values between two feature outputs. We expect robust
radiomic features to have similar values in two consecutive
CT measures. So higher correlation coefficients of WHOG
features than other methods indicates that it is indeed a robust
feature.

WHOG(4) WHOG(8) WHOG(4+8) HOG(4) HOG(8)
ρ 0.7332 0.7542 0.7568 0.6701 0.6034
p 2.71e-06 9.59e-07 8.37e-07 3.72e-05 3.26e-04

CoLlAGe(4) CoLlAGe(8) Wavelet Gabor GLCM
ρ 0.5755 0.3752 0.5437 0.4705 0.1040
p 7.06e-04 0.0375 0.0016 0.0076 0.5777

TABLE VIII: Pearson correlation coefficients and p-values
between two feature outputs from CT scans of 15 minutes
apart. The numbers in apprentices are the patch sizes used in
computation. In particular, WHOG(4+8) is the multi-scale ver-
sion of WHOG feature used in experiments of other data sets.
Wavelet, Gabor and GLCM parameters are defined according
to IBSI guidelines.

VI. CONCLUSION AND FUTURE WORK

The present work makes use of optimal transport for the
local analysis of general distributions. We explore the expres-
sions under three commonly used optimal transport models.
In particular, we utilize the discrete Kantorovich version for
image directionality feature extraction. Because of the robust
nature of optimal transport, we find our method performs well
even in the presence of noise. The main reason for this is
that our approach does not use gradients, and the underlying
Wasserstein metric is continuous to perturbations in the data.

We reached a similar conclusion about image directionality
and tumor heterogeneity as in [28]. They performed classifica-
tions based on their HOG based feature vectors. In principle,
we can replace their HOG extracted feature by our WHOG
feature. By doing this, we hope that the classification accuracy
may be improved.

One area of improvement for the proposed algorithm con-
cerns the speed of computation. We noticed in our experi-
ments, that the WHOG method took more time to compute
than the other tested methodologies. To test feasibility, our
implementation only used standard dual-simplex algorithm of
linear programming. There are a number of other algorithms
for the step of solving the Monge-Kantorovich problem, which
should lead to a better performance [42], [43].

We plan to further evaluate ability of our method to study
pathology images [44]–[47]. The microscopic features in these
high resolution images contain information for which our
proposed method may better capture directionality, and thus
distinguish different biological processes occurring in different
tissues. Our preliminary results indicate that our WHOG
extracted feature may indeed be correlated with tumor stage
and recurrence (See an example in Figure 14).

Fig. 14: An example of extracting WHOG feature from a
pathology image: Centroids of different cell types are ex-
tracted. An optimal transport map is used to compute direc-
tionality on a patch following a similar pipeline as done for
other image types.

The WHOG feature has the potential to be integrated into
complex clinical applications. We have demonstrated its ability
to quantify tumor heterogeneity and its applicability to several
modalities of medical imaging data. It may be utilized in
conjunction with other commonly used image features for pa-
tient prognosis prediction. We have indicated that the WHOG
directionality feature, extracted from image data, represents
an attractive robust alternative to the more standard HOG
or CoLlAGe techniques. It is interpretable, carries prognostic
information, and may be incorporated into a machine learning
framework to enhance performance.

The method can be easily modified to the case of color
imagery by looking at the transport map between a local cube
and a pure color cube. We also want to test on the 3D extension
so that the directionality is within the transverse plane, frontal,
and sagittal directions. Finally, we plan to consider certain
possible connections between the extracted WHOG features
and the fractal dimension of the tumor especially for MRI
data where textural information is more clearly exposed.
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