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Abstract— Cortical cataract, a common type of cataract,
is particularly difficult to be diagnosed automatically due to
the complex features of the lesions. Recently, many meth-
ods based on edge detection or deep learning were pro-
posed for automatic cataract grading. However, these meth-
ods suffer a large performance drop in cortical cataract
grading due to the more complex cortical opacities and un-
certain data. In this paper, we propose a novel Transformer-
based Knowledge Distillation Network, called TKD-Net, for
cortical cataract grading. To tackle the complex opacity
problem, we first devise a zone decomposition strategy to
extract more refined features and introduce special sub-
scores to consider critical factors of clinical cortical opac-
ity assessment (location, area, density) for comprehen-
sive quantification. Next, we develop a multi-modal mix-
attention Transformer to efficiently fuse sub-scores and
image modality for complex feature learning. However, ob-
taining the sub-score modality is a challenge in the clinic,
which could cause the modality missing problem instead.
To simultaneously alleviate the issues of modality missing
and uncertain data, we further design a Transformer-based
knowledge distillation method, which uses a teacher model
with perfect data to guide a student model with modality-
missing and uncertain data. We conduct extensive experi-
ments on a dataset of commonly-used slit-lamp images an-
notated by the LOCS III grading system to demonstrate that
our TKD-Net outperforms state-of-the-art methods, as well
as the effectiveness of its key components. Codes are avail-
able at https://github.com/wjh892521292/Cataract TKD-Net.

Index Terms— Cataract Grading, Knowledge Distillation,
Transformer, Medical Imaging Classification
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I. INTRODUCTION

CATARACT is the current leading cause of visual im-
pairment and even blindness [1]. Studies have shown

that about 314 million people worldwide suffer blindness or
visual impairment caused by cataracts [2]. Cataracts can be
categorized into three types: nuclear, cortical, and posterior
subcapsular cataract [3]. In cortical cataracts, contrast sen-
sitivity is significantly reduced at high spatial frequency in
daylight and at low spatial frequency in night light. The
prevalence of cortical and nuclear cataracts is much higher
than posterior subcapsular cataracts. Unfortunately, no definite
drug can treat or prevent any type of cataract. To date, surgical
removal of the lens and implantation of intraocular lens are
the only beneficial treatments [4]. In this sense, timely and ac-
curate cataract diagnosis (i.e., grading), especially for cortical
cataract, is critical for planning treatment to minimize visual
impairment [5]. However, clinically, cataract diagnosis needs
a face-to-face consultation with the slit-lamp, which imposes
a huge accessibility burden on the rapidly aging populations,
especially in rural and economically disadvantaged areas. In
light of the powerful representation capabilities of recent deep
learning (DL) techniques on medical image analysis, several
DL methods have been developed for automatic cataract
grading [6], [7].

Despite considerable progress, the current automatic cortical
cataract grading still suffers from low practical performance
due to two specific issues. (1) Complex cortical opacities. As
shown in Fig. 1(a), cortical cataracts are often wedge-shaped
radially oriented opacities originating from the peripheral edge
of the lens. Note that the shadow of the examiner’s glove and
reflected light from the slit-lamp are disturbing features, whose
color is similar to cortical cataract. Besides, since cortical
cataracts may appear as dense sheets or diffuse blocks and
may extend from the periocular to the center, the morphology
can be varied and complex, making it hard to grade com-
prehensively. According to clinical research and experience,
the severity of cortical cataract is determined by various key
factors including opacity location [8], [9], opacity area [9],
[10], and opacity density [8], [11]. Examples of these are
shown in Fig. 1(b). It has been observed that wider areas [10],
higher density [12], and central location of opacities [9]
correspond to a more severe grade of cataract. Nevertheless,
clinically, assessing and quantifying cortical opacities based
on these specific factors is laborious and error-prone. Even
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Cortical opacitiesReflect light

Shadow of glove

(a) A slit-lamp image of cortical cataract. The green area indicates
cortical opacities. The red and pink areas indicate the shadow of the
glove and reflect light respectively, which are disturbing features.

I II III

(b) Three examples of cortical cataract with grade 5, which are graded
as level 5 mainly due to three different factors: (I) wide areas; (II) high
density; (III) extension to the central area.

Fig. 1. Illustrating (a) clinical features and (b) grading factors of cortical
opacities.

for computer-aided methods, it is still a challenge to extract
and quantify (grade) cortical opacities. In the literature, only
a few machine learning (ML) methods [13] were designed
for cortical cataract extraction and grading. In these ML
methods, cortical opacities were mainly extracted by edge
detection [8], [14], [15] and the grading was mainly based
on an ML classifier [16], [17] or artificial threshold [15],
[18]. Hence, the performance of these methods is limited
by the low quality of the edge detection, which can lose
most key features of opacities. On the other hand, known DL
methods for cataract grading neglected the specific diagnostic
images and criteria for cortical cataracts that are different
from other cataracts, and did not incorporate the above clin-
ical experience into the model design or did not focus on
extracting features of cortical opacities. As a result, these DL
methods have limited generalization ability on cortical cataract
grading. (2) Uncertain annotations. As discussed above, the
combination of various factors decides cortical cataract grades,
which largely enhances the difficulty of doctors’ decisions.
Consequently, for the same case, different doctors may provide
different grades and even the same doctor may not give
exactly the same grade at different annotation times [19] (see
Fig. 2). The grading (dis-)agreement also leads to uncertain
annotations. With low-quality annotations, training a credible
DL model under supervised learning is hard. A common
practice is to adopt labels obtained via either the majority vote
or simply one annotation version from a preferred rater [20]–
[22]. However, DL models trained by these strategies can be
over-confident (i.e., easily fall into specific distributions or
individual subjectivity), resulting in poor generalization [23],
[24]. Random sampling of uncertain labels in training may be
a better calibrated strategy to some extent [23], [24]. But, a
principled approach is still highly desirable that can directly
deal with inconsistent information from uncertain labels [25].

In this paper, we propose a novel DL framework, called
Transformer-based Knowledge Distillation Network (TKD-
Net), for cortical cataract grading, which is capable of captur-

Multiple doctors

Single doctor

：4 ：4 ：5

：5 ：4 ：5

Different time instance

Grade

Fig. 2. Two types of uncertain annotations: (i) Multiple doctors may
give different grades to the same image; (ii) the same doctor may give
different grades to the same image at different annotation times.

ing complex cortical opacities with uncertain annotations. To
better extract the complex cortical opacities, we propose to in-
corporate clinical experience into the model by first designing
a zone decomposition strategy to consider the location influ-
ence of opacities, and then introducing two pairs of triplet sub-
scores to explore the area and density influence of opacities.
Specifically, we decompose the original imaging features into
two zones: the central zone and periocular zone, and give each
zone three sub-scores including (A): the area of typical cortical
opacity, (B): the severity of typical cortical opacity, and (C):
the severity of the rest background opacity. After that, we
develop a multi-modal Transformer to fuse imaging features
of the two zones and sub-scores prior clinical knowledge. As
such, our model can focus more on the quantitative features
of opacity and also the relations between them. However,
the sub-scores modality may be missing since it is usually
difficult to obtain. To address the modality-missing issue as
well as uncertain data simultaneously, we develop a novel
knowledge distillation method to (1) transfer the sub-score
information from the teacher network with perfect data to the
student network with modality-missing and uncertain data, and
(2) utilize special soft labels to replace the uncertain labels
for uncertain data training supervision. The soft labels are
high-dimensional logit embeddings from the teacher network
that possess more spatial information for reliable supervision.
Specifically, we collect the grading annotations of a doctor
at three different time instances, in which the unified opinion
samples are regarded as certain data and the remaining samples
as uncertain data. The inputs of the teacher network are
only certain data including images and sub-scores, while the
student network receives both certain and uncertain data that
include images only. Finally, to train and validate our model in
order to provide a more reliable clinical reference, we build a
dataset with commonly-used slit-lamp images and the LOCS-
III grading system.

In summary, our main contributions are as follows:

• We propose a novel Transformer-based knowledge distil-
lation network, TKD-Net, to address the challenges and
explore the potential of DL in cortical cataract analy-
sis, and apply a clinical diagnosis-guided DL algorithm
specifically for cortical cataract grading.

• We propose a zone decomposition strategy with addi-
tional sub-scores to masterly explore the critical factors
of cortical opacity assessment, while further developing
a Multi-modal Mix-Attention Transformer to efficiently
fuse the multi-modal features.

• We design a knowledge distillation strategy to mitigate
the problem of modality missing and uncertain annota-
tions based on the Transformer module.
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• We conduct extensive experiments to verify the effec-
tiveness of TKD-Net based on a dataset of commonly-
used slit-lamp images annotated by the LOCS III grading
system.

II. RELATED WORK

A. Slit-lamp Images and LOCS III System

Different types of source images were used for cataract
grading in prior studies, including fundus images [26]–[28],
digital camera images [29], ultrasonic images [30], retroillu-
mination images [14], [31], OCT images [32], and slit-lamp
images [33]. Further, the grading systems include lens opacity
classification system (LOCS) I to III [3], [10], [34], Wisconsin
grading system (WGS) [19], Oxford clinical cataract classifi-
cation and grading system (OCCCGS) [35], and other rough
manual classification standards [36]–[38]. Thus, it is difficult
to make comparisons between various studies using different
types of images and grading systems. Worse, most studies used
low-quality fundus images and rough grading systems to train
models, which cannot provide a reliable clinical reference.

LOCS III is an improved LOCS system for evaluating
slit-lamp and retroillumination images of cataract, and slit-
lamp images are widely used in clinical practice. To our
best knowledge, cortical cataracts are more clear in slit-lamp
images and the LOCS III grading system is more refined and
referable. As shown in Fig. 1(a), in slit-lamp images, opacity
features are exhibited as white radial lines from the edge to
the center. In clinic, LOCS III can score slit-lamp images from
0.1 to 5.9 with the reference standard 1 through 5 as shown
in Fig. 3, according to the area, location, and density of the
opacity. Thus, by comparing the aggregate area of the opacity
in the unknown images with that in the standard images of
LOCS III, experts can regard the cortical cataract grading as a
7-class classification: 0 (transparent), 0.1-0.9, 1.0-1.9, 2.0-2.9,
3.0-3.9, 4.0-4.9, and 5.0-5.9.

Therefore, it is promising to study a unified clinical dataset
and a corresponding DL model for cortical cataract grading
based on slit-lamp images and the LOCS III grading system.

B. Cataract Grading

Many DL methods have been proposed for cataract grading.
Zhang et al. [36] presented the first DL method for cataract
grading that used a convolutional neural network (CNN) to
automatically extract features and grade cataract into normal,
mild (slight), medium, or severe ones. Some studies [28],
[39] also showed that DL methods using CNN perform better
in cataract grading compared to ML methods. A few meth-
ods [37], [38] proposed to combine DL and ML for six-level
cataract grading (non-cataractous, slightly mild, mild, medium,
slightly severe, and severe). A recent study [40] collected
over 25000 retinal photograph images for automatic detection
of visually significant cataracts using a DL algorithm. Some
studies focused only on nuclear cataract. Xu et al. [41]
proposed a fully DL method for nuclear cataract grading that
first localized nuclear regions in slit-lamp images by Faster R-
CNN, and then applied a ResNet-101 [41] based classification

Fig. 3. The LOCS III classification standard reference.

model. Zhang et al. [42] developed a CNN model, GraNet,
for nuclear cataract classification on AS-OCT images.

For cortical cataract grading, previous methods mainly
extracted opacity textures based on the Canny and Laplacian
edge detection [14], [15]. Li et al. [8] improved the edge
detection with non-linear least-square ellipse fitting. Chow et
al. [31] proposed to use local entropy filtering to improve the
robustness of the edge detection. Gao et al. [18] performed
pterygium detection on cornea images to enhance the auto-
matic detection and grading of cortical cataract. Gao et al. [17]
proposed to fuse intensity histogram and texture information
for automatic cortical cataract grading with the SVM classifier.

But, DL methods specifically designed for cortical cataract
grading are still lacking. We postulate that this is due to
the following issues: complex cortical opacities and uncertain
annotations. Hence, we propose a novel DL method to tackle
these issues, which is the first DL model for cortical cataract
grading and outperforms all existing cataract grading methods.

C. Multi-modal Transformers for Medical Image Analysis

Transformer [43] was first applied in the natural language
processing (NLP) field. With powerful capabilities in rep-
resentation learning, many Transformer-based models were
developed for multi-modal fusion in medical image analysis.
For example, TranMed [44] leveraged a vision Transformer
(ViT) to fuse multi-modal MRI images for classification.
Zhang et al. [45] proposed TransFuse to effectively fuse multi-
modal features for medical image segmentation (2D and 3D).
Some studies [46], [47] used a ViT to fuse multi-modal MRI
features for MRI reconstruction. Tulder et al. [48] proposed
a cross-view Transformer to fuse multi-modal features from
different views of X-ray images for registration. However, the
cross-attention applied in this multi-modal Transformer could
incur high computation costs. These studies demonstrated
that Transformers possess a powerful ability for multi-modal
fusion. A recent work [49] showed that using only a few
tokens for attention can improve fusion performance and at
the same time reduce computation cost. Inspired by this, we
design a novel mix-attention Transformer, which uses only a
fusion token for attention and can generate a scaleable weight
to control the fusion ratio between different modalities.

D. Knowledge Distillation on Medical Image Analysis

Knowledge distillation [50] was first proposed to transfer
knowledge from a cumbersome model to a small model which
is more suitable for deployment. Researchers then found that
knowledge distillation can learn multi-modal information with
incomplete modalities [51], [52]. Hence, knowledge distilla-
tion has been widely applied to medical multi-modal analysis
settings where some modalities may be missing. Hu et al. [53]

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3327274

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Uncertain data

Certain data Zone
Decomposition

(c) Multi-modal Mix-attention
Transformer

Uncertain data

Certain data Zone
Decomposition

(c) Multi-modal Mix-attention
Transformer

Sub-scores

(a) Zone Decomposition

Dim Matching

Feature 
Distillation

Head Classifier

Classifier

Soft Label 
Distillation

Soft label

Head

Soft label

CrossEntropy
Loss

Teacher TKD-Net

Student TKD-Net

(b) Dim Matching

A B C A' B' C'
Sub-scores

Channel-wise FC

… … … … … …

(d) Knowledge 
Distillation

B
ac

kb
on

e

3X
3 

Po
ol

in
g

divide

M
ea

n Central features

Periocular features

!!

!"Feature map

Fig. 4. An overview of our proposed Transformer-based Knowledge Distillation Network TKD-Net.

proposed to use knowledge distillation to transfer knowledge
from a trained multi-modal network to a mono-modal one
for medical image segmentation. Xing et al. [54] proposed a
discrepancy and gradient-guided knowledge distillation frame-
work to transfer privileged knowledge from a multi-modal
teacher network to a student network for pathological glioma
grading. Yang et al. [55] proposed an affinity-guided dense
tumor-region knowledge distillation mechanism to align fea-
tures for brain tumor segmentation with missing modalities.

In this paper, inspired by the previous knowledge distillation
work, we explore how to adapt knowledge distillation in
our Transformer module to mitigate the problem of modality
missing and uncertain annotations simultaneously.

III. METHOD

A. Problem Formulation
We formulate the task of cortical cataract grading as an im-

age classification problem. Given a set X of slit-lamp images
and the clinical sub-scores C, our goal is to predict the cortical
cataract grading scores Ỹ = f(X,C; Θ), where f is the model
with parameters Θ. Let S = {(x1, c1, y

′
1), . . . , (xn, cn, y

′
n)} be

the training set of data, where xi is the i-th image, ci is the
corresponding clinical score, and y′i either is the corresponding
certain label yi or is an uncertain label set ŷi. That is because,
in our task, some samples are annotated with different labels
by the same doctor at three different time instances. We define
these samples as uncertain data with an uncertain label set ŷi
for xi. The remaining samples with consistent annotations yi
are certain data. Meanwhile, due to high acquisition cost, the
sub-score modality ci is only used for teacher model training.

In our approach, we only use certain data with full modality
(i.e., (x, c, y)) to train the teacher network, which then guides
the student network with both certain and uncertain data
but missing sub-score modality (i.e., (x, y′)) via knowledge
distillation. Thus, our student network relies only on images
and does not require the sub-score modality in inference.

B. Overview
In Fig. 4, we show the overall architecture of our proposed

TKD-Net, a knowledge distillation network with a teacher-

student structure. In a nutshell, in TKD-Net, we first carefully
design Zone Decomposition and Dim Matching to capture key
clinical features, and then build a multi-modal mix-attention
Transformer to fuse multi-modal features and obtain more
complex cortical opacity representations. Specifically, TKD-
Net first splits a raw image into nine patches to decompose
the central and periocular features based on location influence,
while designing three quantitative sub-scores for area and
density of cortical opacities. After that, to fuse image features
between the zones with sub-scores modality, the multi-modal
mix-attention Transformer module assigns different weights
to different zones. After fusion, the obtained embeddings can
be used for classification via cross-entropy loss by the last
classifier. To further handle sub-scores modality missing and
uncertain label problems, TKD-Net develops knowledge distil-
lation through both token distillation and soft label distillation.

C. Zone Decomposition and Sub-scores

In clinical practice, the location, area, and density of opacity
are three decisive factors for assessing the severity of cortical
cataract [8], [9]. Thus, we incorporate these three factors into
our model design, i.e., we propose a zone decomposition
strategy to separately model the location factor of cortical
opacities, and introduce two pairs of triplet scores for assessing
the area and density factors of cortical opacities. Below, we
describe the zone decomposition and sub-scores.

1) Zone Decomposition: Doctors assign more importance
to the central zone of the lens since it has bigger influence
on the visual acuity [56], [57]. The central zone in most re-
searches [9], [56]–[58] is defined as the central 3-mm diameter
area of the pupil. More attention should be paid to lesions in
the central zone. Correspondingly, the pupillary margin area
is the periocular zone. By manual estimation, we find that
when dividing an image equally into 9 patches, the size of the
middle patch corresponds exactly to 3-mm diameter. Based on
this observation, we propose a zone decomposition strategy to
split the extracted central zone features and periocular zone
features of an input image, as shown in Fig. 4(a). Specifically,
we first divide the input image into 3 × 3 patches, and use
a backbone network to extract features. The shape of the
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TABLE I
DETAILED DESCRIPTIONS OF THE THREE SUB-SCORES.

Description Scores

A The area of typical cortical opacity.

0 = N/A;
1 = within 1 quarter;
2 = within 2 quarters;
3 = within 3 quarters;

4 = full.

B
The severity of typical cortical opacity
(linear, cuneiform, or clustered opacity
with high density).

0 = N/A;
1 = light;

2 = medium;
3 = dense.

C
The severity of the rest background
opacity (circumferential, nebula or
diffuse opacity with low density).

0 = N/A;
1 = light;

2 = medium;
3 = dense.

obtained feature map is (H,W,C), where H = W = 3 and
C = 2048. Then, we take the feature map of the central patch
as the central features, and obtain the periocular features by
averaging those of the other 8 patches. Accordingly, both the
central and periocular features are a vector of size 2048, and
both these vectors will be divided into 4 tokens of size 512
each before being fed into the Transformer module.

Interestingly, our zone decomposition offers two advantages.
(i) Averaging the feature maps of the 8 pupillary margin
patches is equivalent to reducing the weight of the periocular
zone features to about 1/8 of their sum, so that the weight of
the central zone is relatively “lifted” to encourage the model
to focus more on the opacity of the central zone. (ii) Zone
decomposition is beneficial to separately extracting specific
features in the zones, since the opacities of the central and
periocular zones vary in shape (e.g., the central zone often has
patchy opacity and the periocular zone has diffuse opacity).

2) Sub-scores: Considering that the LOCS III grading
system offers only a single number for cataract, to explore
more labeling possibilities for ophthalmologists’ diagnosis
and simultaneously incorporate more prior knowledge into
the model design, we introduce several sub-scores to assess
the area and density of cortical opacities as an additional
modality of input data. All the sub-scores are labeled by an
ophthalmologist who is an attending doctor in the cataract
field. According to the standard in [9], we divide the zone
within the pupil range into 2 parts: (1) the central zone (a
central 3-mm diameter area); (2) the peripheral zone (the
rest area within the pupil range). We classify the shape of
cortical opacity into two types: (1) typical cortical opacity
(wedge-shaped and radially oriented); (2) background cortical
opacity (extending in a circumferential manner around the
more peripheral cortex). Thus, both the central zone and
peripheral zone are scored according to Table I with 3 labels,
i.e., (A, B, C) and (A′, B′, C ′), respectively. Sub-score A (A′)
refers to the area of typical cortical opacity, which is assessed
by the number of quarters that are involved by the opacity
(we simplify the octant division of the circumference [9] to
the quadrant division). Sub-scores B (B′) and C (C ′) refer to
the severity of typical cortical opacity and background cortical
opacity, respectively. According to the standard in [59], we
grade sub-scores B and C on 4 scales, with a higher score
indicating a larger or denser opacity.

In order to let the dimension of the sub-scores match that
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Fig. 5. The architecture of the Multi-modal Mix-Attention Transformer
and Transformer-based knowledge distillation.

of the image features for convenient concatenation, we use a
channel-wise fully connected (FC) layer to expand each sub-
score to 512 dimensions which are the same as the image
feature tokens, as shown in Fig. 4(b).

D. Multi-modal Mix-attention Transformer

Aiming to fuse the image and clinical score information
and simultaneously interact with the central and periocular
features, we propose a Mix-Attention Transformer (MAT)
formed by several MAT blocks, as shown in Fig. 5. As the
output of Zone Decomposition, the central feature vector and
periocular feature vector are divided into P + 1 tokens. P
tokens are image feature tokens and the remaining one is the
mix token. Note that tokens are basic units in the Transformer
that are equivalent to a one-dimensional vector of the same
size. The input of each MAT block is a token sequence
z formed by a CLS (“classification”) token zcls (randomly
generated initially and its representation can be passed to a
classifier for downstream classification tasks), P image feature
tokens {xi}Pi=1, P sub-score tokens {ci}Pi=1, and a mix token
zm (used for fusion in the mix-attention function), as follows:

zk = g(xk, ck, zclsk , zmk
) = [zclsk , x

1
k, . . . , x

P
k , c

1
k, . . . , c

P
k , zmk

],
(1)

where k ∈ {cen, per}. Thus, zk denotes the central or
periocular token sequence. Since there are 3 sub-scores for
each zone, we set P = 3 to make the numbers of imaging
tokens and sub-score tokens consistent to balance the image
information and sub-score information. Specifically, each MAT
block contains a basic Transformer encoder layer and a mix-
attention operation, as presented below.

1) Basic Transformer Layer: The basic Transformer layer
can deeply fuse the image information and sub-score infor-
mation since the relationship between the tokens is efficiently
learned during the multi-head self-attention process. Following
the vanilla Transformer [43], each layer includes Multi-Headed
Self-Attention (MSA), Layer Normalization (LN), and feed-
forward network (FFN) layers applied using residual connec-
tions. These processes at the lth layer can be formulated as:

zlhidden = LN(MSA(zlcen/per)) + zlcen/per,

yl+1
cen/per = LN(FFN(zlhidden)) + zlhidden.

(2)

Then, the mix-attention operation is applied to the central
features and periocular features for delivering information
from one zone to another zone, as follows:

zl+1
cen , z

l+1
per = Mix-attention(yl+1

cen , y
l+1
per ). (3)
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After that, the delivered information is with other infor-
mation at the next basic Transformer layer. Thus, obviously,
the core insight of our MAT is mix-attention, i.e., reweighted
fusion between different zones.

2) Mix-attention: Inspired by [49], our proposed mix-
attention utilizes only a single token to condense information
in limited attention flows. However, considering the different
importance of the central features and periocular features, the
average strategy used in [49] cannot take account of that. In
order to tackle this issue for effective fusion, we design a
special mix-attention to not only avoid redundant attention
flow but also assign different weights to the central features
and periocular features. In our design, the mix-attention is
performed only on mix tokens. Specifically, assume the output
token sequences of the basic Transformer layer are as follows:

yl+1
cen = [zl+1

cen′ ||zl+1
m′

cen

], yl+1
per = [zl+1

per′
||zl+1

m′
per

]. (4)

The mix-attention is designed to fuse mix tokens at a preset
ratio, formulated as:

zl+1
mcen

= zl+1
mper

= λ× zl+1
m′

cen

+ (1− λ)× zl+1
m′

per

,

zl+1
cen = [zl+1

cen′ ||zl+1
mcen

],

zl+1
per = [zl+1

per′
||zl+1

mper
],

(5)

where λ is a hyper-parameter to assign different weights to the
central features and periocular features. As one may see, the
attention flow is only admitted to passing between the central
and periocular features through the mix token. This gives three
advantages. (1) Avoiding full (pair-wise) attention between
the central and periocular features, thus reducing computation
cost. (2) Most tokens do not interact directly with the features
of another zone, and this allows to retain the specific features
of each zone to the greatest extent for maintaining the integrity
of information. (3) By presetting λ > 0.5, the mix-attention is
able to force the model to focus more on the central features,
and this is more in line with clinical prior knowledge.

E. Transformer-based Knowledge Distillation
1) Token Distillation: In clinical practice for cataract grading,

images are the most accessible references made by machines.
In contrast, sub-scores need manual evaluation that are difficult
to obtain. Thus, for most patient samples in clinical practice,
only images are included with no additional diagnostic infor-
mation. This fact leads to lots of missing modality samples
and the model cannot inference these samples if the model is
trained with full modality samples. To address this issue, we
propose token distillation based on transfer learning between
the CLS tokens from the teacher network (ztcls) to the stu-
dent network (zscls). Specifically, for the ith layer, the token
distillation loss is:

Lfi =
1

2
[Smoo-L1(ztclscen , z

s
clscen)+Smoo-L1(ztclsper , z

s
clsper )],

(6)
where Smoo-L1 denotes the smooth-L1 loss. Then, by aver-

aging all the token distillation losses of the layers, the final
token distillation loss is:

LTD =
1

n

N∑
i=1

Lfi . (7)

TABLE II
PERFORMANCE COMPARISON OF POPULAR BACKBONE MODELS.

Method Accuracy Recall Precision F1-score Kappa MCC Params.
ViT [60] 63.7 55.6 58.4 56.5 51.9 51.7 86M
VGG-19 [61] 64.1 58.5 59.8 58.7 57.4 57.5 143M
ResNet-18 [62] 77.2 64.9 68.7 66.7 72.4 72.5 12M
ResNet-50 [62] 78.2 66.1 69.5 67.2 74.2 74.3 25M
ResNet-101 [62] 77.9 66.3 69.4 67.5 72.7 72.8 44M
DenseNet [63] 74.8 64.7 65.1 64.9 66.7 66.8 20M
InceptionV3 [64] 58.5 48.6 57.5 50.6 43.6 44.0 24M

Our token distillation between CLS tokens is specially de-
signed using Transformer since the CLS tokens are used to ag-
gregate all the tokens’ information for the final classification.
On the other hand, compared to the distillation between all the
corresponding tokens of the teacher and student networks, our
token distillation only through CLS tokens is more efficient
since the distillation cost is significantly reduced.

2) Soft Label Distillation: In order to address the problem
of uncertain labeled training data, we propose soft label
distillation, which generates soft labels through the teacher-
student network for supervision, rather than using uncertain
labels. Since the teacher network is trained with certain data,
we take the soft labels generated by the teacher network as
“ground truth” for supervising the student network learning.
The generation of soft labels is based on the embeddings
encoded by both the CLS tokens using a fully connected (FC)
layer. Specifically, the soft label distillation loss is as follows:

LSLD = KL(FC([ztclscen∥z
s
clscen ]), FC([ztclsper∥z

s
clsper ])),

(8)
where KL denotes the Kullback–Leibler divergence.

Since CLS tokens are used for final classification, the soft
labels generated with CLS tokens could be viewed as a high
dimensional transformation of true labels. By training the
teacher model with only certain data, we regard the soft labels
in the teacher model as true labels of the uncertain data. By
soft label distillation, we force the soft labels of the student
model to align with the soft labels of the teacher model so as
to achieve the supervised training with uncertain data.

F. Overall Loss Functions
For both the teacher and student networks, their total losses

include the following Cross-Entropy (CE) loss for certain data
with images and certain labels:

LCE =
1

Ncertain

Ncertain∑
i=1

∑
j∈C

yji f
j(xi, ci; Θ). (9)

The student network’s total loss also consists of the token
distillation loss and soft label distillation loss, while the
teacher network does not. Thus, the total losses of the teacher
and student networks are as follows:

Lt
tot = LCE , Ls

tot = LCE + α(LTD + LSLD), (10)

where α is a hyper-parameter that controls the importance of
the terms. We set α = 0.5 based on experiments.

IV. EXPERIMENTS

A. Experimental Settings
1) Dataset and Pre-processing: Our dataset contains 2150

samples of slit-lamp images, including 150 normal samples
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TABLE III
PERFORMANCE COMPARISON OF TKD-NET WITH KNOWN METHODS.

Method Year Accuracy Recall Precision F1-score Kappa MCC
Zhang et al. [38] 2019 77.2 64.9 68.7 66.7 72.4 72.5
Xu et al. [41] 2019 77.9 66.3 69.4 67.5 72.7 72.8
Khan et al. [39] 2021 64.1 58.5 59.8 58.7 57.4 57.5
Tham et al. [40] 2022 78.2 66.1 69.5 67.2 74.2 74.3
CataractNet [28] 2021 54.3 42.8 51.4 43.4 37.1 37.8
GraNet [42] 2020 78.8 66.9 70.9 68.9 74.5 74.5
DeepLensNet [65] 2022 74.4 63.5 65.6 64.0 66.7 66.8
Ensemble CNN [66] 2022 74.2 62.5 65.9 63.8 64.5 64.6
Stacking Ensemble [67] 2022 74.4 63.6 66.0 64.4 64.9 65.0
CataractEyeNet [68] 2023 63.0 52.4 58.7 54.0 47.3 47.4
TKD-Net (ours) - 82.1 71.4 73.0 71.8 78.7 78.8
TKD-Net (Teacher) - 95.1 81.6 82.0 81.8 90.7 90.8

(77 women and 73 men; 27.8±5.3 years) and 2000 cataract
samples (1092 women and 908 men; 71.4±14.6 years). Only
one eye of each patient and subject was included. The labels
of 1670 samples are certain and the labels of the other 480
samples are uncertain. Based on the LOCS III standard, each
sample of the certain data is graded by an experienced expert
in 7 ranking categories. To avoid negative influence of the
relatively complex background, we crop the lens region of
each original image as an input image after the lens region is
localized by Faster R-CNN [69]. All the cropped images are
resized to the size of 224 × 224 and normalized by subtracting
the ImageNet means and stds. We have obtained approval
by the Medical Ethical Committee of our cooperated hospital
(No. ChiCTR2300071279) for scientific research using these
slit-lamp images.

2) Implementation: Our experiments use a computer with an
Intel i7 processor and an NVIDIA GTX 3090 GPU. The code
is built on the PyTorch platform. We adopt the SGD optimizer
and set the batch size as 16 for training all the models. The
initial learning rate is set as 0.01 and is reduced by a factor
of 10 at 12, 24, and 36 epochs. The warm step is set to 50
iterations. For the hyper-parameters of the MSA, the number
of heads is 3, the number of blocks is 12, the input dimensions
are 512, the forward dimensions are 768, and the activation
is GeLU. For data augmentation, we use random horizontal
flipping. The images with certain labels are randomly divided
by 75%, 5%, and 20% for training, validation, and testing,
respectively. Especially, the teacher network is trained with
only certain data while the student network is trained with both
certain and uncertain data. For both the teacher and student
networks, the validation and testing samples only contain
certain data. The known methods are implemented using
the original papers’ codes or re-implemented based on the
original papers. When training the known models, the labels
of uncertain data are determined by a random strategy [23].

3) Evaluation Metrics: We conduct quantitative evaluation
using several widely-used metrics: Accuracy, Recall, Preci-
sion, F1-score, Kappa, and MCC.

B. Backbone Analysis
To determine the best option for our backbone, we conduct

extensive experiments and compare the accuracy and computa-
tional costs of a set of widely-used backbone models. Table II
shows the results, from which we observe that although

ResNet-50
TKD-Net
TeacherGraNet

TKD-Net
Student Image

Manual
Annotation

Fig. 6. Visualized feature maps of known methods and our TKD-Net.

some other backbones use fewer parameters than ResNet-
50, their performance is not as good as ResNet-50. ResNet-
50 achieves generally the best performance with relatively
low computational costs. Thus, we choose ResNet-50 as our
backbone model.

C. Comparison with Known DL Methods

We compare the performance of our proposed TKD-Net
against the following known DL methods for cataract grading.

• Khan et al. [39]: It applied a VGG-19 pre-trained model
as the feature extractor, and only the fully connected layers
were trained for cataract detection.

• Zhang et al. [38]: It applied ResNet-18 as the feature
extractor and attached an SVM classifier for 6-level cataract
grading.

• Tham et al. [40]: It applied ResNet-50 as the feature
extractor and attached an XGBoost classifier for cataract
detection.

• Xu et al. [41]: It localized the nuclear regions in slit-lamp
images with Faster R-CNN, followed by a ResNet-101 based
grading model.

• CataractNet [28]: It proposed a 16 layers dense CNN for
feature extraction and cataract detection.

• GraNet [42]: It proposed a new grading block network based
on ResNet-18, and used both focal loss and cross-entropy
loss to train the model for nuclear cataract classification.

• CataractEyeNet [68]: It used VGG-19 and added additional
20 conventional layers for cataract detection.

• DeepLensNet [65]: It applied DenseNet for cataract grading.
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TABLE IV
ABLATION STUDY FOR THE TEACHER NETWORK AND STUDENT NETWORK. ZD = ZONE DECOMPOSITION, MMT = MULTI-MODAL MIX-ATTENTION

TRANSFORMER, SS = SUB-SCORES, TD = TOKEN DISTILLATION, AND SLD = SOFT LABEL DISTILLATION.

Method Teacher Student Accuracy Recall Precision F1-scoreZD MMT SS TD SLD

Teacher

78.2 66.1 69.5 67.2
✓ 80.0 68.6 71.0 69.7

✓ 85.9 72.3 74.9 73.8
✓ ✓ 80.9 69.5 72.3 70.6
✓ ✓ 86.1 72.6 75.2 74.2
✓ ✓ ✓ 95.1 81.6 82.0 81.8

Teacher
+

Student
✓ ✓ ✓

80.7 68.8 72.0 69.7
✓ 81.4 70.4 72.8 70.9

✓ 80.9 69.7 72.4 70.7
✓ ✓ 82.1 71.4 73.0 71.8

(a) (b)

Fig. 7. (a) Performance of our TKD-Net with different weights of α.
(b) The learning curves of the TKD-Net with and without the sub-scores
guidance.

• Ensemble CNN [66]: It combined the models of AlexNet,
Inception V3, Xception, and InceptionResNetV2 for
cataractdetection and grading.

• Stacking Ensemble [67]: It combined the models of In-
ception V3, MobileNet-V2, and NasNet-Mobile for cataract
grading.

We present the results in Table III, from which several
observations can be made. (1) On our task, the best performing
models are all ResNet based ones (i.e., [38], [40]–[42]), which
further show the advantages of ResNet and it is effective
to choose ResNet as our backbone model. (2) Compared to
the previous DL methods, our Teacher TKD-Net improves
the grading performance significantly in various metrics. This
validates the effectiveness of our proposed TKD-Net for cor-
tical cataract grading. This is because TKD-Net incorporates
clinical diagnostic criteria into the model design and utilizes
clinical prior knowledge as information supplement to assess
cortical opacities comprehensively. (3) Compared to the state-
of-the-art DL models for cataract grading [28], [42], when only
images are used as input, our Student TKD-Net still outper-
forms them significantly, which demonstrates the superiority
of our TKD-Net benefited from knowledge distillation.

In addition, we visualize some feature maps of the two best-
performing baselines and our model in Fig. 6, to further show
the effectiveness of our TKD-Net. These feature maps are from
the Conv4 stages of the backbones (we omit the Conv2 and
Conv3 stages, as they do not show much difference). For each
such stage, we average the features in the channel dimension,
and then apply a sigmoid function and upsample them to the
original image size. From these feature maps, one can observe
that compared to GraNet and ResNet-50, our student TKD-Net
focuses more on opacities, demonstrating the effectiveness of
our proposed feature zone decomposition and Transformer-

TABLE V
PERFORMANCE COMPARISON OF TKD-NET WITH DIFFERENT

TRANSFORMER METHODS. IPS = IMAGE PER SECOND.

Method Accuracy Recall Precision F1-score IPS

Baseline 86.1 72.6 75.2 74.2 60

Vanilla self
-attention [43] 94.3 80.4 81.8 81.0 30

Vanilla cross
-attention [43] 93.22 80.3 79.2 79.7 44

Bottleneck
attention [49] 92.91 79.1 79.9 79.4 50

TKD-Net
(mix-attention) 95.1 81.6 82.0 81.8 53

based knowledge distillation strategies. By focusing more on
the opacities, our method can better capture and quantify the
opacity textures and obtain accurate grading performance, thus
providing a more reliable clinical reference for doctors. Note
that our teacher TKD-Net can pay more attention to opacities
since the additional sub-scores may substitute part of opacities
features. That is, the teacher TKD-Net utilizes sub-scores for
opacity assessment and exhibits less dependence on images.

D. Ablation Study
1) Efficiency of Key Components: We conduct ablation

experiments for both the teacher and student networks, to
evaluate the role of each key component in our TKD-Net.
The results are shown in Table IV.

The ablation experiments for the teacher network include
the zone decomposition (ZD) strategy, the multi-modal mix-
attention Transformer (MMT) module, and the sub-score
utilization (SS). From Table IV, we can draw several ob-
servations. (1) Compared with the baseline model, ResNet-
50, our ZD strategy improves in all the metrics, showing
that our separated feature modeling of the central zone and
periocular zone to focus more on the central zone is effective.
(2) MMT without sub-scores slightly improves the model
performance, showing that MMT can better fuse features of
different regions. (3) Only adding the sub-scores as more
references (like experts do in clinical practice), the grading
performance is significantly improved. It suggests that the
sub-scores can provide detailed guidance for extracting and
summarizing opacity lesion features. (4) With the sub-scores,
applying MMT achieves the best Accuracy of 95.1%, a further
improvement by 9.0%. The Recall, Precision, and F1-score are
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(a) (b) (c) (d)

Fig. 8. (a) Performances of the teacher and student networks with different values of the mix ratio λ. It achieves the best performance when λ =
0.6. (b) The impact of using mix-attention for fusion that starts at different fusion blocks Lf . (c) Performances of different model versions in the four
metrics. (d) Performances of different model versions with different distillation losses.

TABLE VI
PERFORMANCE COMPARISON OF TKD-NET WITH OTHER KNOWLEDGE

DISTILLATION METHODS.

Method Accuracy Recall Precision F1-score
Xiong et al. [70] 80.2 67.0 71.3 70.0
Choi et al. [71] 79.8 68.2 70.9 69.2
ProtoKD [72] 81.4 70.3 72.5 70.6
Xing et al. [73] 81.2 70.0 72.2 70.4
TKD-Net (ours) 82.1 71.4 73.0 71.8

also improved by 9.0%, 6.8%, and 7.6%, respectively. The
significant improvements show that MMT is more effective
for multi-modal fusion and is able to utilize the sub-scores to
adjust the weight of the model’s attention for each zone.

For the student network, the effect of knowledge distillation,
including token distillation (TD) and soft label distillation
(SLD), is evaluated based on the trained teacher network with
the above schemes. Table IV reports the detailed results, from
which several observations can be made. (1) Compared with
the baseline teacher network, by loading the pre-trained model
weights from the best teacher network without any distillation
process, the baseline student network achieves an Accuracy of
80.7%, providing an improvement of 2.5%. This shows that
the teacher network indeed learns relevant information from
the sub-scores and retains a small part of the information
in the student network even if the sub-scores are missing.
(2) By using the TD scheme based on the Transformer, the
model outperforms the baseline student network by 0.7% in
Accuracy, 1.6% in Recall, 0.8% in Precision, and 1.2% in
F1-score, validating the effectiveness of the feature alignment
between the CLS tokens for modeling the missing modal. (3)
SLD is effective for learning missing modal features, and the
model obtains competitive performances, which shows that
the soft labels can replace the ambiguous labels for uncertain
data. (4) With both our distillation schemes TD and SLD, our
TKD-Net has a final Accuracy of 82.1%, Recall of 71.4%,
Precision of 73.0%, and F1-score of 71.8%, which outperforms
the baseline model by a large margin and achieves the best
performance, indicating the superiority of our approach.

2) Different Weights of Distillation Loss: We also vary the
trade-off weight of the distillation loss and analyze its sensi-
tivity to the hyper-parameter α in Eq. (10). Specifically, we use
a range of α ∈ [0, 1] with a step size of 0.1, and observe the
grading results. As shown in Fig. 7(a), our method achieves
the best performance when α = 0.5, while a larger weight
of the distillation loss will overwhelm the supervised one and
lead to underfitting.

3) Learning Curves of Validation Loss: In Fig. 7(b), we plot
the learning curves of the validation loss in the TKD-Net with

and without the sub-scores guidance. It can be seen that the
TKD-Net without sub-scores model faces a certain overfitting
issue (the validation loss unexpectedly begins to increase as
the model is trained with more iterations). But, the TKD-Net
with sub-scores model can deal with the overfitting issue (the
validation loss maintains a balanced fitting state as the model
is trained with more iterations), which we think benefits from
the more consistent information brought by sub-scores.

E. Multi-modal Transformer Analysis
Next, we compare our mix-attention Transformer with other

multi-modal Transformer methods, and explore several dif-
ferent settings for the multi-modal mix-attention Transformer
component.

1) Comparison with Other Multi-modal Transformer Methods:
Our method provides an alternative approach to efficiently fuse
the image and sub-score features simultaneously with mix-
attention. To validate this capability, we compare our approach
with the baseline and other multi-modal attention methods, as
follows.
• Baseline: Use fully connected layers to fuse multi-model

features.
• Vanilla self-attention [43]: Concatenate the multi-modal

feature tokens and apply unrestricted pairwise self-attention
between all the tokens at each layer.

• Vanilla cross-attention [43]: Concatenate the multi-modal
feature tokens and use them to update each modality by
the multi-head cross attention.

• Bottleneck attention [49]: Assign several bottleneck tokens
to each modality and use self-attention within the modalities;
then average bottleneck tokens at the end of each layer.
Table V shows performance results and inference time of

the entire pipeline with different attention modules. The base-
line method attains the fastest inference speed since the FC
layers incur less computational costs, but its performances in
Accuracy and other metrics are not very good. In contrast, the
methods with Transformers gain great increases in Accuracy
and other metrics, albeit at the expense of lower inference
speeds. Among these Transformer-based methods, our method
achieves the highest performances in all the metrics and
remains competitive in inference speed with only a slight
decline from that of the baseline method. This validates the
comprehensive ability of our proposed mix-attention approach
in both Accuracy and inference speed for multi-model fusion.

2) Different Settings for the Mix-attention Transformer: The
hyper-parameter λ is used to assign different weights to the
central and periocular features. To determine the best setting
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TABLE VII
PERFORMANCE COMPARISON WITH DIFFERENT SUB-SCORE INPUTS.

Sub-score Input Accuracy Recall Precision F1-score
None 80.9 69.5 72.3 70.6

Only A 85.4 73.9 74.1 73.9
Only B 81.6 70.0 71.8 70.8
Only C 87.9 74.0 75.6 74.7
A + B 86.7 75.5 76.0 75.7
A + C 94.2 78.1 79.5 78.7
B + C 90.7 76.8 78.0 77.4

A + B + C 95.1 81.6 82.0 81.8

for λ and verify the clinical prior knowledge, we conduct
ablation experiments for the value of λ varying from 0 to
1 with a step size of 0.1. The results are given in Fig. 8(a).
It is observed that both the teacher and student networks of
TKD-Net attain the best performances when λ = 0.6, showing
that the central features are more important than the periocular
features, which is in line with the clinical prior knowledge.

3) When to Start Mix-attention for Fusion?: In default, the
mix-attention is applied in all the MAT blocks. However, in
most cases, mid fusion is considered a better way for fusion.
Hence, we investigate the impact of varying the starting block
Lf in which mix-attention begins to be applied. We conduct
experiments with Lf = 0, 2, 4, 6, 8, 10, 12 for both the teacher
and student networks. Fig. 8(b) shows the results. One can
see that for both the teacher and student networks, mid fusion
outperforms both early (Lf = 0) and late (Lf = 12) fusion.
For the student network, the best performance is attained by
using fusion layer Lf = 6. This suggests that the model
benefits from multiple blocks of cross-modal (mean central
and periocular features) information flow in the later blocks,
allowing earlier blocks to specialize in learning unimodal
features. However, the best performance of the teacher network
is obtained by using fusion layer Lf = 4. We hypothesize
that this is due to the added sub-scores, from which the
supplementary clinical information can accelerate the process
of image feature extraction to advance the process of feature
fusion. In order to obtain the best performance for the student
network, we set Lf = 6.

F. Knowledge Distillation Analysis
We first compare our Transformer-based knowledge dis-

tillation approach with other known knowledge distillation
methods. Then we explore the premises and necessity of
knowledge distillation and also the best loss function settings.

1) Comparison with Other Knowledge Distillation Methods:
To validate the effectiveness of our Transformer-based knowl-
edge distillation approach, we compare TKD-Net with previ-
ous knowledge distillation methods used in medical disease
diagnosis [70]–[73]. These known methods are all CNN-
based knowledge distillation models while our method is the
first knowledge distillation approach based on Transformer.
Xiong et al. [70] and Choi et al. [71] proposed to apply
knowledge distillation during the feature-extracting process.
Wang et al. [72] and Xing et al. [73] proposed to apply
knowledge distillation during both the feature-extracting pro-
cess and the predicting head of the model. The comparison
results are shown in Table VI. One can see that compared
to the previous knowledge distillation methods, our proposed

TABLE VIII
PERFORMANCE COMPARISON OF REGRESSING SUB-SCORES AND OUR

TRANSFORMER-BASED KNOWLEDGE DISTILLATION APPROACH.

Method Accuracy Recall Precision F1-score
Regressing
sub-scores 80.5 67.4 71.6 70.6

Ours
TKD-Net 82.1 71.4 73.0 71.8

TKD-Net obtains the best performances in all the metrics,
demonstrating the superiority of our proposed Transformer-
based knowledge distillation approach.

2) Do the Uncertain Data Matter?: In our approach, the
strategy is based on two premises that need to be verified:
(1) training with additional uncertain data can be better
than training with only certain data; (2) for the utilization
of uncertain data, knowledge distillation and soft labels are
better than randomly assigned labels. To verify premise (1),
we conduct experiments that use only certain data to train
TKD-Net. For premise (2), we conduct experiments that use
both certain data and uncertain data in which the label of
each uncertain sample is randomly chosen from the adjacent
categories. From Fig. 8(c), we find that when uncertain data are
assigned with labels from the adjacent categories randomly for
training, the model yields the worst performance, which shows
that randomly assigned labels may give massive error-prone
information and a better strategy is not to use such random
labels. Furthermore, compared to the using-only-certain-data
model, our approach that uses knowledge distillation to pro-
vide soft labels to uncertain data achieves higher performance,
validating that uncertain data possess useful information for
guidance, and the knowledge distillation and soft labels help
the model to become more effective.

3) Different Losses for Distillation: In our proposed TKD-
Net, the losses for token distillation and soft label distillation
are selected from several commonly-used losses: Smooth
L1 loss, MSE loss (L2 loss), Kullback-Leibler divergence
(KL), and Maximum Mean Discrepancy (MMD). Extensive
experiments are conducted to select the best for these loss
functions. The heatmap in Fig. 8(d) reports the results. From
the heatmap, one can find that the combination of Smooth-L1

loss for token distillation (TD) and KL for soft label distillation
(SLD) achieves the best performance.

G. Sub-score Analysis
1) Different Combinations: Finally, we explore the impacts

of different sub-scores and their combinations on the model
performance. The experimental results are given in Table VII,
from which several conclusions can be drawn. (1) All three
sub-scores are beneficial to the model performance improve-
ment, and this validates the clinical effectiveness and reli-
ability of introducing the sub-scores. (2) The performance
improvement by the addition of sub-score C is more significant
while the improvement is much smaller when adding only sub-
score B. This suggests that it may be difficult for the model
to capture the low-density cortical opacity features of the
images, but the model can capture high-density cortical opacity
features very well. (3) When combining the sub-scores, the
improvement is bigger than the sum of the improvements
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by using each individual sub-score alone which is involved
in the combination. For example, compared to the baseline,
the model with only sub-score C improves Accuracy by 7%
and the model with only sub-score A improves Accuracy by
4.5%, but the model with both sub-scores A and C improves
Accuracy by 13.3%, which is bigger than 7% + 4.5% = 11.5%.
This shows that using sub-scores in combination can provide
more information, and further illustrates the effectiveness and
necessity of using the three sub-scores and their combination.

2) Regressing Sub-scores by Multi-Task Learning?: Note
that in our design, we take sub-scores as additional features
for enhancing the model performance. Another possible way
is to utilize sub-scores as labels via multi-task learning. That
is, here our goal is to regress these sub-scores and grade the
cortical cataract simultaneously. In this way, the loss function
contains the cataract grade classification loss (Cross Entropy
Loss) and sub-scores regressing loss (MSE loss). We conduct
experiments to explore the effectiveness of this scheme, as
shown in Table VIII. We find that this multi-task learning
based scheme does not show very good performance. We think
this is due to that regressing these sub-scores is as difficult
as cataract grading, and learning both sub-scores and grading
labels increases the difficulty of model fitting.

V. DISCUSSIONS

On our TKD-Net for cortical cataract grading, the following
points are worth noting. (1) Feature zone decomposition based
on positions is a new way for separate lesion area modeling
and grading performance improvement. Extensions of this
technique can be further explored and have a potential to
be widely applicable in other ophthalmic disease diagnoses,
since the disease severity of the periocular area and that of the
center area are usually different and the center area is often
much more important. (2) Multi-modal fusion is used widely
in medical image analysis. In this work, our mix-attention
Transformer provides support for efficient multi-modal fusion.
But, how to improve multi-modal fusion is worth further
exploration. (3) Our idea is motivated by the hypothesis that
clinical diagnosis details can help deep learning to better
capture features. The promising results show that developing
deep learning models from a clinical perspective is highly
beneficial and important. (4) Our method achieves significant
performance improvement using sub-scores for multi-modal
learning and knowledge distillation. However, a limitation is
that sub-scores have not been used in the LOCS III grading
system as a recognized evaluation standard. In the future,
through further research and verification, we mainly focus on
improving our proposed sub-scores and hope to develop the
LOCS III grading system by adding the proposed sub-scores as
a recognized evaluation standard for more reliable reference.

Another limitation is that the reflective shadows/lights are
common in the images in our dataset, this will have a
certain impact on model feature extraction. In fact, reflective
shadows/lights often appear in other disease images taken by
optical instruments as well. In order to eliminate the systematic
error, how to remove the reflective shadows/lights is also worth
exploring which is another major goal of our future work.

VI. CONCLUSIONS

In this paper, we studied the key issues in cortical cataract
image analysis, including the difficulties of quantifying opacity
features and uncertain labels for the common subjectivity of
doctors. We presented a new Transformer-based knowledge
distillation network, TKD-Net, for cortical cataract grading.
Our proposed feature zone decomposition strategy decomposes
image features based on two regions, i.e., central features and
periocular features, to analyze their relationship and adjust
their weights. Our multi-modal Transformer can fuse image
features and clinical information (sub-scores) and further ad-
just the weights of the central and periocular features. Our
proposed knowledge distillation is able to utilize uncertain
samples without hard labels, and at the same time maintains
effective performance in the absence of sub-scores. Extensive
experiments on a unified cataract image dataset validated the
superiority of our new method over state-of-the-art methods.
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