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FoPro-KD: Fourier Prompted Effective
Knowledge Distillation for Long-Tailed Medical

Image Recognition
Marawan Elbatel, Robert Martı́ and Xiaomeng Li

Abstract— Representational transfer from publicly avail-
able models is a promising technique for improving med-
ical image classification, especially in long-tailed datasets
with rare diseases. However, existing methods often over-
look the frequency-dependent behavior of these models,
thereby limiting their effectiveness in transferring represen-
tations and generalizations to rare diseases. In this paper,
we propose FoPro-KD, a novel framework that leverages
the power of frequency patterns learned from frozen pre-
trained models to enhance their transferability and com-
pression, presenting a few unique insights: 1) We demon-
strate that leveraging representations from publicly avail-
able pre-trained models can substantially improve perfor-
mance, specifically for rare classes, even when utilizing
representations from a smaller pre-trained model. 2) We
observe that pre-trained models exhibit frequency pref-
erences, which we explore using our proposed Fourier
Prompt Generator (FPG), allowing us to manipulate specific
frequencies in the input image, enhancing the discrimina-
tive representational transfer. 3) By amplifying or diminish-
ing these frequencies in the input image, we enable Effec-
tive Knowledge Distillation (EKD). EKD facilitates the trans-
fer of knowledge from pre-trained models to smaller mod-
els. Through extensive experiments in long-tailed gastroin-
testinal image recognition and skin lesion classification,
where rare diseases are prevalent, our FoPro-KD framework
outperforms existing methods, enabling more accessible
medical models for rare disease classification. Code is
available at https://github.com/xmed-lab/FoPro-KD.

Index Terms— Visual Prompting, Knowledge Distillation,
Long Tailed Learning.
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Fig. 1. (a) The pre-trained model “free lunch” assumes specific
frequency patterns in input data. (b) Our FoPro-KD approach explicitly
queries the model to identify meaningful frequency patterns for distilla-
tion.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have shown
remarkable performance in medical image classification.

However, the scarcity of labeled medical image datasets can
limit their applicability, particularly in datasets with long-
tailed distributions where rare classes are present. Transfer
learning has emerged as a promising approach to tackle
this challenge by fine-tuning pre-trained models on natural
images to medical image datasets. Nevertheless, a crucial
issue in transfer learning is to devise an efficient technique
that preserves the generalization capabilities of large pre-
trained models while remaining compact enough for practical
deployment in a clinical environment.

Publicly available pre-trained models, such as CLIP [1],
MoCo [2], and BYOL [3], have attracted considerable atten-
tion in the medical imaging community due to their promising
generalization capabilities. However, the extensive model com-
plexity and significant computational resource requirements
associated with these pre-trained models can limit their ap-
plicability in clinical settings in low infrastructure, point-of-
care testing, and edge devices. Moreover, fine-tuning (FT)
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these models on smaller, long-tailed medical image datasets
offers reduced performance on the tail classes / rare dis-
eases compared to linear probing (LP); see comparisons in
Table VII. Therefore, it is highly demanded to develop an
effective transfer learning approach to leverage the generaliza-
tion capabilities of large pre-trained models while maintaining
performance for tail classes in the target datasets. In this paper,
we use the term “free lunch models” to describe publicly
accessible models pre-trained on natural images.

“Free lunch models” possess inherent traits associated with
their preferred input frequencies and semantics, which might
not harmonize effectively with the characteristics of the tar-
get datasets, leading to suboptimal performance when these
preferences are not met. Recently, Yu et al. [4], quantified
the frequency bias in neural networks and proposed a method
for guiding the network to tune its frequency by utilizing a
Sobolev norm that expands the L2 norm. However, the specific
frequency patterns captured by “free lunch models” during the
pre-training stage remained unexplored.

In this paper, we aim to explore the frequency-dependent
behavior of “free lunch models” to manipulate the input
data to enhance or diminish them, optimizing the transfer
of representations from a “free lunch model”, f , on natural
images to a smaller target model, g, as illustrated in Figure 1.
This allows us to enhance the performance of the target model
in downstream long-tailed medical applications, such as gas-
trointestinal image recognition and skin lesion classification.

To this end, we propose a novel method called FoPro-
KD (Fourier Prompted Effective Knowledge Distillation) to
enhance the transferability of “free lunch models” from nat-
ural images to long-tailed medical image classification tasks.
FoPro-KD consists of two stages: exploration and exploitation,
which aims to find the frequency patterns that best suit the
“free lunch models” and exploit this information to down-
stream tasks. In the exploration stage, we introduce a Fourier
prompt generator (FPG) to unleash the frequency patterns
based on the frozen pre-trained model, conditional on the
target medical domain, for effective representational transfer.
In the exploitation stage, the FPG generates targeted pertur-
bations as Fourier amplitude spectral prompts for effective
knowledge distillation (EKD). EKD compresses the general-
ization capabilities of “free lunch models” into smaller medical
imaging models more efficiently, enhancing tail classes /
rare diseases recognition. To promote diverse patterns, we
utilize adversarial knowledge distillation (AKD) to facilitate
the exploration and exploitation process by iteratively learning
the FPG.

Our proposed method represents a novel approach in the
field of medical imaging in generating targeted perturbation
to “free lunch models”. Rather than synthesizing worst-case
images as in the literature of adversarial domain adaptation,
we utilize a source-free frozen pre-trained model trained on
natural images to learn Fourier spectrum amplitudes that are
necessary for exploring these free lunch models. By explor-
ing the frequency patterns learned by the pre-trained model,
which we find to be efficient in exploiting its generalization
capabilities, we can leverage free lunch models’ generalization
capabilities for a target medical imaging dataset without fine-

tuning these models on the target dataset.
The main contributions of this work can be summarized as

the following:
• We demonstrate that effective knowledge distillation

(EKD) from frozen pre-trained models on natural images
to a target smaller medical imaging model can be just
as effective as traditional long-tailed methods, thanks to
their generalization capabilities.

• We show that our generated Fourier prompts are highly
effective in generating targeted perturbations that can
further improve the generalization capabilities of our
proposed EKD, particularly in long-tailed medical image
classification tasks.

• We introduce a novel framework called FoPro-KD, which
achieves state-of-the-art performance on two long-tailed
medical image classification benchmarks, demonstrating
the effectiveness of our method in improving the trans-
ferability of pre-trained models to medical imaging tasks.

II. RELATED WORK

In this section, we review the literature related to transfer
learning with prompt tuning, adversarial domain adaptation,
and long-tailed learning methods. We highlight the relevant
works in these areas and discuss their contributions.

A. Transfer Learning
In recent years, transfer learning and fine-tuning have been

extensively studied in the literature, focusing on adapting
the feature extractor to fit the target task. However, such
approaches can deviate from pre-trained features, resulting in
a trade-off between the performance of the majority class (in-
distribution or IID) and the rare class (out-of-distribution or
OOD). To mitigate similar tradeoffs on IID and OOD datasets,
Kumar et al. [5] proposed a simple variant of initializing
the head with a linear probed version followed by full fine-
tuning. Nevertheless, these methods can suffer from deviating
semantics and extreme overfitting on long-tailed problems
when fully fine-tuning “free lunch models”. Prompt tuning
arises in vision to address these issues for efficiently fine-
tuning large models in vision tasks, similar to natural language
processing (NLP). Jia et al. [6] proposed Vision Prompt
Tuning (VPT), which adds prompts to vision transformers
and exploits the transformer’s location-invariant features for
effective fine-tuning. Similar to NLP prompt tuning, Dong et
al. [7] explored the use of prompt learning for the effective
transfer of pre-trained vision transformers for long-tail natural
image classification.

These methods are specially tailored to vision transforms
similar to NLP, failing to find an efficient prompt for trans-
forming the knowledge of CNN vision-pre-trained models,
which are important for medical imaging classification. Re-
cently, Bai et al. [8] found that a CNN teacher can ben-
efit vision transformers to fit high-frequency components
and proposed high-frequency adversarial training for vision
transformers, to augment images’ high-frequency components
towards improving vision transformers generalization capabil-
ities. Prompt tuning for CNN models can be related to the
literature on adversarial learning and domain adaptation.
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Fig. 2. Our proposed FoPro-KD framework has two phases: exploration and exploitation. In the exploration phase, the FPG generates Fourier
prompts to capture frequency patterns of the frozen pre-trained model f . In the exploitation phase, the proposed effective knowledge distillation
(EKD) module distills the knowledge from f into the target model g, guided by the Fourier prompt generator (FPG). Our framework can iteratively
alternate between the exploration and exploitation phases using adversarial knowledge distillation (AKD) to enhance representation distillation and
learning efficiency of g.

B. Adversarial learning

Adversarial learning has emerged as a popular approach for
domain adaptation (DA) and domain generalization (DG). To
achieve DA, Huang et al. [9] proposed a method that generates
adversarial examples from the source dataset and fine-tunes
the model on the target dataset using both adversarial and
clean examples. Similarly, Kim et al. [10] modeled DG as
DA to adversarially generate worst-case targets from the
source dataset. Chen et al. [11] proposed MaxStyle as an
adversarial realistic data augmentation utilizing an auxiliary
image decoder for robust medical image segmentation. For
source-free unsupervised domain adaptation (SFUDA), Hu et
al. [12] proposed to learn a domain-aware prompt adversarially
for a UNet-based model. More recently, Wang et al. [13],
inspired by Fourier style mining [14], proposed to learn a
low-frequency Fourier visual prompt for SFUDA that excelled
in segmentation performance. However, all these methods are
restricted to source and target datasets trained for the same
closed-set task and often rely on increasing noise to synthesize
adversarial examples in DG or on bridging the gap between
datasets in DA. Their approaches do not explicitly leverage
the frequency patterns captured by “free lunch models” on
natural images during their pre-training stage, which could aid
in representational learning, especially for long-tailed datasets

C. Long-Tail Learning

Long-tailed distributions, characterized by severe class im-
balance where minority classes are significantly outnumbered
by majority classes, are common in many medical imaging
tasks, such as skin-lesion classification and gastrointestinal

image recognition [15]–[17]. Such class imbalance poses chal-
lenges for training accurate models, and various approaches
have been proposed to address this issue, including data aug-
mentation techniques, re-sampling and re-weighting schemes,
and curriculum-based methods. Data augmentation techniques
aim to regularize the model by incorporating regularization
techniques to enhance the model’s representations. For ex-
ample, Zhang et al. [18] proposed MixUp offering infor-
mation augmentation to regularize training. However, such
regularization needs to be coupled with a balancing scheme
to account for the huge class imbalance. Galdran et al. [19]
proposed Balanced-Mixup, a simple variant of MixUp using
class conditional sampling that has compelling capabilities
for highly imbalanced medical image classification. Moreover,
data augmentation methods usually need to be coupled with
different loss re-weighting strategies to account for the label
distribution shift that can arise over the test set. Class balanc-
ing loss (CB) [20], Label distribution margin (LDAM) [21],
and balanced-softmax (BSM) [22] was proposed as modified
re-weighting strategies for training models for long-tailed
learning. However, these methods often have limitations, such
as not effectively addressing the extreme bias from the major-
ity classes. To address such bias, Kang et al. [23] found that
the classifier is the major bottleneck for the majority classes
bias in long-tail learning and proposed a two-stage learning
approach that decouples the feature extractor representations
from the classifier through a plug-in classifier re-training
(cRT). Although cRT increased the performance of multiple
long-tailed methods, it did not solve the intra-class imbalance
that can restrict the representation extraction [24]. To address
the intra-class imbalance, Tang et al. [25] proposed invariant
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feature learning (IFL) through dual environment learning and
re-sampling techniques. On the other hand, methods based
on curriculum learning, requiring a pre-training stage on the
target dataset to extract meaningful representation followed
by utilizing these representations, have achieved state-of-the-
art performance for long-tailed learning. Curriculum-based
methods [26], [27] rely on increasing the complexity of the
task gradually, adopting a progressive approach. Typically,
these methods employ a two-stage training framework, where
a representation is extracted over the target dataset in an initial
step, followed by utilizing this representation in another step.
For instance, Ju et al. [26] trains a self-supervised teacher
model over the target dataset in the initial stage, followed
by utilizing the teacher’s representations for difficulty-aware
sampling for each class. Zhang et al. [27] achieved SOTA
in multiple long-tailed datasets by a two-stage framework.
First, by pre-training a teacher model on the target dataset
to capture the target dataset representations, followed by a
balanced knowledge distillation (BKD) to guide a student
model. The motivation behind [27] stems from the role played
by the target dataset in acquiring representations that exhibit
generalizability. Additionally, Zhang et al. [27] incorporates
class priors during training of the student model, facilitating
the learning of tail classes. Despite the impressive performance
of “free lunch models” known for their generalizable rep-
resentations on natural images, the aforementioned methods
have not leveraged these capabilities. Instead, they primarily
focus on a narrow knowledge extraction basis from the target
dataset, without fully harnessing the benefits of pre-training
and the rich knowledge derived from natural images. Notably,
pre-training on natural images has demonstrated compelling
performance in medical imaging [28].

In our work, we re-visit long-tailed learning in medical
imaging from a free lunch perspective. We demonstrate that
the generalizable features from publicly available pre-trained
models on natural images can be comparable to different long-
tail methods without additional pre-training or fine-tuning of
these free lunch models. In addition, we find that these free
lunch models have a preferred frequency basis (i.e. styles) for
their input that can restrict their distillation in many tasks.
To address such preferred styles, we propose to explore these
preferred styles through effective prompting on a frequency
basis. By exploring the “free lunch models” frequency patterns
and iteratively distilling such knowledge, we can recycle and
compress these “free lunch models” with no additional training
to the target medical task, our approach can be easily utilized
with different long-tailed learning schemes as a free lunch
distillation, achieving SOTA on multiple long-tailed medical
imaging datasets.

III. METHOD

Figure 2 shows the framework for our proposed FoPro-
KD. The training of FoPro-KD consists of two stages: an
exploration stage and an exploitation stage. In the exploration
stage, we train one linear layer as a Fourier Prompt Gener-
ator (FPG) to generate Fourier amplitude spectral prompts,
δ, conditional on our target medical data, allowing us to

explore the representations of the free lunch model, f , by
explicitly asking what frequency patterns on the input lead
to meaningful representations. This is done while freezing
f , pre-trained on a natural imaging dataset (ex: MoCov2 on
ImageNet [2]). In the exploitation stage, we effectively distill
these generalizable representations to a smaller target medical
imaging model, g through our proposed Effective Knowledge
Distillation (EKD). To make the Fourier prompts more diverse
while being representative of f , we perform multiple iterations
of the exploration and exploitation stages by an Adversarial
Knowledge Distillation (AKD). This allows us to effectively
exploit the generalization capabilities of “free lunch models”
and compress them into smaller student networks that are
useful for practical medical imaging deployment in a clini-
cal setting. Our framework provides a scalable and efficient
approach to distilling knowledge from “free lunch models”,
with potential applications in various medical imaging tasks.

A. Fourier Prompt Generation

To attain optimal representational transfer, “free lunch
models” necessitate input data that closely align with their
preferences. In this regard, training a conditional generative
adversarial network (CGAN) [29] to guide the target dataset
towards these preferences can substantially modify the seman-
tics of the dataset. As shown in Figure 3, training a CGAN
with deep inversion causes modification in the semantics of
the target dataset in the highly informative regions conditional
on the semantics of the pre-training dataset, ImageNet [30].

Recent research by Yu et al. [4] has shown theoretically that
neural networks can be sensitive to certain frequencies without
explicitly considering the frequency patterns captured during
pre-training deep neural networks (DNNs). Therefore, we aim
to explore this frequency-dependent behavior of CNNs and
enable “free lunch models” to output representations through
prompting on a frequency basis, which is facilitated by our
proposed Fourier Prompt Generator (FPG).

FPG employs a random noise vector, z, to generate a
three-dimensional Fourier amplitude prompts, δ = FPG(z),
one for each channel respectively, enabling the modification
of the target dataset by emphasizing or suppressing specific
frequency patterns preferred and captured by “free lunch
models” on the source natural images dataset. Although these
preferred patterns relied on the deep learning dynamics of the
“free lunch models”, the FPG can be trained to unleash such
patterns and generate Fourier prompts that are the preference
of the “free lunch model” conditioned on our target medical
dataset. This feature plays a critical role in effective knowledge
distillation.

Let the Fourier decomposition of an image x be F(x), which
consists of the amplitude A and phase ϕ components:

F (x) = A⊙ eiϕ (1)

To interpolate the Fourier amplitude between the input
image and the generated Fourier prompt, we use a mixing
coefficient, denoted by α and sampled uniformly from 0 to 1,
resulting in a new Fourier amplitude spectrum Â:
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Fig. 3. Using a conditional GAN (CGAN) to manipulate the input dataset
changes the image semantics in highly informative regions compared
to surpassing or amplifying certain frequencies in these regions with
Fourier Prompt Generator (FPG).

Âij = αAij + (1− α)δij (2)

where Aij represents the Fourier amplitude of the input image,
δij represents the the generated Fourier prompt, and ij are the
indices of the Fourier coefficients.

The modified Fourier coefficients are then transformed back
using the inverse Fourier transform to generate the modified
image, denoted by x̂,

x̂ = F−1(Â⊙ eiϕ) (3)

where F−1 denotes the inverse Fourier transform.
We train the Fourier prompt generator in the exploration

phase while freezing all other modules. Specifically, we feed
x̂ to the “free lunch model”, f , and utilize the batch reg-
ularization technique that was first introduced in [31]. This
technique minimizes the divergence between the feature statis-
tics, which include the mean and variance of the features, and
the corresponding batch normalization statistics by assuming
a Gaussian distribution:

LBN(x) =
∑
l∈f

D
(
N
(
µl(x̂), σ

2
l (x̂)

)∣∣∣N(
µl, σ

2
l

))
, (4)

where D is the L2 divergence loss, N(µl(x̂), σ
2
l (x̂)) is the

feature statistics of the modified input batch x̂, N(µl, σ
2
l ) is

the batch normalization statistics of the frozen model, f , and
l indexes the layers of f .

To better capture the “free lunch model” learned frequency
patterns and avoid skewing in the learning of the Fourier
Prompt Generator (FPG), we propose a regularization ap-
proach that encourages the synthesis of Fourier prompts with
a more balanced distribution of activations across the final
pre-classification features. This is achieved by maximizing the
entropy of the free lunch model output towards a uniform
distribution where each feature has an equal probability of
being activated as

Lbal =

C∑
i=1

pi log pi (5)

where C is the dimension of the final pre-classification fea-
tures, and pi is the i-th element of the softmax output p
of the “free lunch model” on the target modified data x̂.

This approach avoids bias towards any particular feature and
promotes the generalization ability of the learned Fourier
prompts.

The final inversion loss Linv to train the FPG module is
defined as the combination of the batch normalization loss,
LBN ), and the balancing loss, Lbal, as

Linv = LBN + µ Lbal (6)

where µ is the weighting factor for the balancing regulariza-
tion.

By combining this balanced regularization term with the
batch statistics losses, the generated Fourier prompts can
exhibit higher entropy while being specific to the “free lunch
model” desired frequencies to better benefit the knowledge
distillation. To ensure that the FPG-generated Fourier prompts
produce valid Fourier amplitudes, we apply a Hermitian con-
straint.

The exploration phase ensures that the Fourier generator
produces styles that are consistent with the preferred frequency
patterns of the free lunch model while also avoiding overfitting
specific styles.

Our training approach for the FPG can be seen as a deep
inversion method in the literature of data-free knowledge dis-
tillation [32]. However, our method is unique in the learnable
and target objectives, in addition, conditioned on a cross-task
target dataset, which makes it more challenging.

B. Exploitation with Effective Knowledge Distillation

“Free lunch models” available to the public possess remark-
able generalization capabilities that can assist in the classifi-
cation of rare diseases. It has been observed that performing
linear probing on these models yields high-accuracy results on
out-of-distribution (OOD) datasets. However, complete fine-
tuning of these models may lead to distortion of these highly
generalizable representations [5]. To this end, we propose
Effective Knowledge Distillation (EKD), which aims to com-
press the generalization capabilities of the free lunch models
while maintaining generalizable performance on the target data
using a smaller model.

To achieve this, we utilize a small target model with a
feature extractor g(·) to be trained on the target medical
dataset, along with a “free lunch model”, f(·). To compare
the latent features of the target model with those of the free
lunch model, we add a 2-layer MLP on top of the smaller
target feature extractor, g(·).

To generate the necessary encodings for distillation, we
sample an image x uniformly from the target dataset D and
use prompt mixing following Equation (3) to obtain x̂, while
freezing FPG. This allows us to navigate the representation of
f based on the styles and frequencies it was trained on.

From here, we generate two encodings: a projection y =
MLP (g(x)) and a target representation t = f(x̂) from our
target network and the “free lunch model”, respectively. We
then L2-normalize both encodings and distill the information
from the “free lunch model” to the smaller target model using
a mean squared error loss as our distillation loss between both
encodings, as
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Lf = 2− 2 · ⟨y, t⟩· (7)

While previous approaches [33] aim to reduce the per-
formance gap between the teacher and student models on
the same task, our proposed distillation loss is designed to
narrow the generalization capabilities of free lunch models to
a different task, which our student model is being trained on.
This approach can act as an implicit regularization technique,
leveraging the discriminative generalization capabilities of
“free lunch models” features for the tail classes. Specifically,
our approach encourages the g(·) to generalize well to the tail
classes of the target task, which may be rare and difficult to
identify without additional guidance. We denote the exploita-
tion loss, Lexploit, to minimize at each training step as:

Lexploit = Lt + λf Lf , (8)

where Lt is a target loss for long-tail learning [22].

C. Exploration with Adversarial Distillation

To ensure that the learned Fourier amplitudes become more
diverse while being representative of the natural image styles,
thus alleviating any representational mode collapse issue in
distillation, we propose to further enhance the Fourier prompt
generation by navigating the latent space of the free lunch
model with an iterative adversarial loss.

To achieve this, we propose maximizing the proposed
effective knowledge distillation (EKD) loss between the free
lunch model and the target model for iterative exploration. The
final exploration loss, Lexplore, to be optimized is given by:

Lexplore = −γλfLf + Linv (9)

Here we maximize the similarity between the free-lunch
model and the target model, as described in Equation (7). This
adversarial loss is weighted by a hyperparameter γ, which
determines the strength of the adversarial training. Unlike
standard adversarial training, we aim to explore the free-lunch
model, so we set γ between 0 and 1, with an upper bound
of the exploitation distillation factor λf . This is similar to
the training of generative adversarial networks (GANs) [34].
To this end, we choose a value of γ = 0.3 and provide an
ablation study to validate our choice. Linv ensures that the
prompts generated by the Fourier prompt generator accurately
represent the “free lunch model”.

IV. EXPERIMENTS

A. Datasets

ISIC-LT is a challenging long-tailed skin lesion classification
dermatology dataset from ISIC [16]. The dataset consists
of eight classes and we create a long-tailed version of it
following [26] using a Pareto distribution sampling approach.
To ensure class imbalance and rare disease diagnosis, we set
the class imbalance ratio to be 100, 200, 500 and select 50
and 100 images from each class for the validation and test
sets respectively, from the remaining samples. The relevant
statistics for the training dataset split are presented in Table I.

We assess the model performance on the held-out test set.
Results for each method are averaged over 5 runs, each with
a different sampled train, validation, and held-out test set. To
assess the model performance on the balanced test set, we
follow previous guides [35] to report the Mathew-correlation
coefficient (“MCC”), accuracy (“Acc”), and f1-score.
Hyperkvasir is a long-tailed dataset of 10,662 gastrointestinal
tract images, consisting of 23 classes representing differ-
ent anatomical and pathological landmarks and findings. To
analyze the long-tailed distribution, we categorize the 23
classes into three groups: Head (with over 700 images per
class), Medium (with 70 to 700 images per class), and Tail
(with fewer than 70 images per class) based on their class
counts as shown in Figure 4. Notably, the Tail class includes
a distinct class for Barrett’s esophagus, which presents as
short segments and is considered a premalignant condition
that may progress to cancer. Additionally, the Tail classes
encompass two transitional grades of ulcerative colitis, an
inflammatory bowel disease, and the terminal ileum, which
confirms a complete colonoscopy but cannot be differentiated
endoscopically from parts of the small bowel. Since the official
test set only contains 12 classes, we follow the evaluation
approach of BalMixUp [19] and assess our model’s perfor-
mance using a stratified 5-fold cross-validation method. To
assess the performance with a high imbalance test set as most
exisiting works [36], [37], we report the balanced accuracy “B-
Acc” that considers the average per class accuracy and denote
the performance of the few-shot division (“Head”, “Medium”,
“Tail”) and their average results denoted as “All”.

TABLE I
ISIC-LT TRAINING SPLIT. FOR ALL SPLITS, THE VALIDATION AND TEST

ARE 50 AND 100 IMAGES FROM EACH CLASS FROM THE REMAINING

SAMPLES. FULL REFERS TO THE FULL DATASET. EXPERIMENTS ARE

AVERAGED OVER 5 RUNS, EACH WITH A DIFFERENT SAMPLED TRAIN,
VALIDATION, AND HELD-OUT TEST SET.

Split Class
NV MEL BCC BKL AK SCC VASC DF

Full 12,875 4,522 3,323 2,624 867 628 253 239
1:100 12,725 4,372 3,173 1,788 717 478 103 89
1:200 12,725 4,372 2,833 1,329 623 292 103 64
1:500 12,725 4,372 2,180 897 369 152 62 25
1:1000 12,725 4,372 1,788 666 248 92 34 12
1:2000 12,725 4,346 1,467 495 167 56 19 6

B. Implementation Details

For both datasets, we use checkpoints pre-trained on MoCo-
RN50 [2] available online as the free lunch models trained
on ImageNet for compressing its generalization capabilities
unless otherwise stated. We use Adam optimizer with a
learning rate of 3e−4 for all methods on the ISIC-LT dataset.
On the other hand, we follow [19] for the HyperKvasir dataset
and use SGD with a cosine annealing scheduler [38] with
a maximum learning rate of 0.01. For both datasets and all
methods, we use a ResNet-18 as the target model with a batch
size of 32 and apply augmentation techniques such as random
crop and flipping. Images are resized to 224x224, and we train
all methods until there is no further increase in the validation
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TABLE II
EXPERIMENTAL RESULTS ON LONG-TAILED SKIN LESION CLASSIFICATION (ISIC-LT) CONSIDERING DIFFERENT CLASS IMBALANCE RATIOS. THE

METHODS USED INCLUDE NAIVE CROSS-ENTROPY (CE), CLASS SAMPLING (RS), AND LOSS RE-WEIGHTING (RW). THE REPORTED RESULTS ARE

AVERAGED OVER 5 RUNS ON A BALANCED HELD-OUT TEST SET.

Method
Class Imbalance Ratio

1:100 1:200 1:500
MCC Acc F1-Score MCC Acc F1-Score MCC Acc F1-Score

CE 57.64 (±1.6) 62.15 (±1.4) 65.52 (±1.4) 53.71 (±1.7) 58.33 (±1.5) 62.72 (±1.2) 44.9 (±2.2) 50.22 (±1.9) 55.83 (±2.0)
RS 59.46 (±1.0) 63.9 (±0.9) 67.04 (±0.6) 55.53 (±1.6) 60.35 (±1.5) 63.71 (±1.4) 48.54 (±1.4) 53.73 (±1.2) 59.15 (±1.1)
RW 56.03 (±2.3) 61.2 (±1.9) 63.17 (±2.2) 52.22 (±1.6) 57.95 (±1.4) 59.48 (±1.5) 46.77 (±0.4) 52.8 (±0.4) 55.36 (±0.7)
EKD (ours) 61.37 (±1.8) 65.42 (±1.6) 68.49 (±1.5) 57.57 (±1.1) 61.9 (±0.9) 65.41 (±1.2) 49.16 (±1.9) 54.2 (±1.8) 59.24 (±1.4)
CB [20] 57.28 (±2.3) 62.23 (±2.1) 64.36 (±1.6) 53.58 (±2.1) 58.9 (±2.1) 61.27 (±1.6) 47.16 (±1.2) 53.17 (±1.1) 55.9 (±1.6)
LDAM-DRW [21] 60.27 (±0.7) 64.88 (±0.6) 66.17 (±0.7) 55.85 (±1.6) 60.98 (±1.5) 62.25 (±1.3) 50.34 (±1.1) 55.98 (±0.8) 57.95 (±1.3)
BSM [22] 63.88 (±1.9) 68.15 (±1.7) 69.25 (±1.6) 60.47 (±1.6) 65.12 (±1.4) 66.2 (±1.2) 53.61 (±1.1) 59.02 (±1.0) 60.27 (±0.9)
MixUp [18] 55.53 (±1.8) 59.91 (±1.9) 64.33 (±1.0) 48.96 (±2.1) 53.59 (±2.2) 59.68 (±1.5) 43.03 (±1.6) 48.12 (±1.5) 54.36 (±1.1)
BalMixup [19] 61.35 (±1.8) 65.5 (±1.5) 68.46 (±1.5) 56.36 (±3.9) 61.0 (±3.5) 64.37 (±3.5) 50.26 (±1.1) 55.3 (±1.1) 60.29 (±0.7)
BKD [27] 62.24 (±1.6) 66.55 (±1.6) 68.35 (±0.9) 63.06 (±1.4) 67.42 (±1.2) 68.32 (±1.3) 54.25 (±1.3) 59.59 (±1.1) 60.5 (±1.2)
FoPro-KD (ours) 68.33 (±2.3) 71.8 (±2.0) 73.88 (±1.9) 66.08 (±1.5) 69.8 (±1.3) 71.91 (±1.2) 57.33 (±1.5) 61.9 (±1.5) 64.43 (±1.3)

Fig. 4. The class distribution statistics of the gastrointestinal dataset for
one training fold, spanning 23 classes. The classes are categorized into
“Head”, “Medium”, and “Tail” for analysis purposes.

TABLE III
EXPERIMENTAL RESULTS ON LONG-TAILED GASTROINTESTINAL IMAGE

RECOGNITION. THE TOP-1 ACCURACY IS REPORTED USING A

SHOT-BASED DIVISION (“HEAD”, “MEDIUM”, “TAIL”) TO ADDRESS TEST

SET IMBALANCE, AND THEIR AVERAGE “ALL”, ALONG WITH THE

RESILIENT METRIC “B-ACC” FOR CLASS IMBALANCE.

Method Metrics
Head Medium Tail All B-Acc

CE 93.14 (±0.7) 74.7 (±1.2) 4.05 (±4.8) 57.3 (±1.3) 58.81 (±1.1)
RS 88.89 (±3.9) 72.37 (±3.2) 11.38 (±10.4) 57.55 (±1.8) 58.84 (±1.6)
RW 87.43 (±1.8) 70.04 (±2.5) 20.28 (±7.6) 59.25 (±2.0) 60.19 (±1.8)
CB [20] 88.22 (±1.5) 70.36 (±1.7) 18.04 (±9.8) 58.88 (±2.7) 59.88 (±2.5)
LDAM-DRW [21] 92.53 (±0.6) 69.4 (±1.5) 24.55 (±9.1) 62.16 (±2.5) 62.79 (±2.2)
BSM [22] 91.4 (±0.7) 65.96 (±3.0) 26.54 (±7.7) 61.3 (±1.9) 61.7 (±1.6)
MixUp [18] 94.23 (±0.6) 75.08 (±1.2) 3.93 (±3.3) 57.75 (±1.0) 59.25 (±0.9)
BalMixUp [19] 92.16 (±1.1) 74.57 (±1.7) 8.44 (±3.8) 58.39 (±1.1) 59.8 (±0.9)
BKD [27] 92.53 (±0.9) 69.88 (±5.0) 17.43 (±12.6) 59.95 (±2.7) 60.81 (±2.3)
FoPro-KD (ours) 92.78 (±2.0) 68.08 (±6.5) 31.9 (±8.5) 64.25 (±0.8) 64.59 (±0.9)

set accuracy for 20 epochs with a total of 100 epochs. To
ensure a fair comparison between different methods, we keep
all hyperparameters the same. We set λf to 3, µ to 10, and γ
to 0.3 on both datasets. For every 5 training epochs exploited,
we explore the “free lunch model” for one epoch to balance
the training process.

C. Baselines
Our experimental evaluation compares the performance of

our proposed FoPro-KD method against several state-of-the-
art long-tailed learning approaches. Specifically, we evaluate

(1) re-sampling (RS) and re-weighting (RW) techniques, (2)
various data augmentation techniques including MixUp [18],
and its balanced version (BalMixUp) [19], specifically de-
signed for medical image classification (3) Modified Loss re-
weighting schemes including Class balancing (CB) loss [20],
and label-distribution-aware margin (LDAM) loss with cur-
riculum delayed reweighting (DRW) [21], and the balanced
softmax (BSM) [22] (4) A recent curriculum-based method,
balanced Knowledge Distillation (BKD) [27].

D. Performance on ISIC-LT
We present the performance of our proposed FoPro-KD

approach for long-tailed skin lesion classification on the
ISIC-LT dataset in Table II. Our approach outperforms all
baselines across all class imbalance ratios and evaluation
metrics, demonstrating its effectiveness. FoPro-KD improves
the performance of the naive cross entropy by 10.7%, 12.4%,
and 12.4% on the “MCC” over the balanced test set for
class imbalance ratios of 1:100, 1:200, and 1:500, respectively.
Compared to the baseline, BSM [22], FoPro-KD improves
the “MCC” being sensitive for class imbalance by 4.5%,
5.6%, and 3.7% for imbalance ratios of 1:100, 1:200, and
1:500, respectively. Furthermore, it increases the performance
of the baseline, BSM [22], by 3.7%, 4.7%, and 2.9% on
the “Acc” metric for class imbalance ratios of 1:100, 1:200,
and 1:500, respectively. Compared to the best-performing
baseline on imbalance ratios 1:200 and 1:500, BKD [27],
our method outperforms it by 6.0%, 3.0%, and 3.0% on the
“MCC” for the three imbalance ratios, respectively. Notably,
our approach outperforms BKD on the f1-score with 3.6% and
3.9% performance gains over the imbalance ratios 1:200 and
1:500 without additional pre-training on the target dataset.

It is worth mentioning that our proposed EKD used with
the naive cross-entropy loss already improves performance
by 3.7%, 3.9%, and 4.3% on the “MCC” metric for class
imbalance ratios of 1:100, 1:200, and 1:500, respectively,
without using FPG or special loss re-weighting or re-sampling,
demonstrating the need to leverage the free lunch models for
the long-tail problems in an effective way.

E. Performance on HyperKvasir
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We present the experimental results of our long-tailed
approach to gastrointestinal image recognition in Table III. It
is worth noting that, unlike the skin-lesion dataset, the test set
of the gastrointestinal dataset exhibits a significant class imbal-
ance. Consequently, balanced accuracy (“B-Acc”) is reported
as a robust metric for assessing performance adhered to the
guidelines [35]. Our method excels in this regard, outperform-
ing all other methods by a considerable margin. Specifically,
our approach, FoPro-KD, outperforms the naive cross-entropy
(CE) method and the baseline, BSM [22], by 5.8% and 2.9%
respectively on the “B-Acc” metric. Furthermore, our FoPro-
KD outperforms the state-of-the-art curriculum-based method
BKD [27] on the HyperKvasir dataset by 3.8% on the “B-
Acc”. BKD [27] relies on distilling a pre-trained teacher model
over the target dataset, which can amplify bias over the head
classes if the teacher model fails to capture the tail classes
in the pre-training stage. In contrast, our approach presents
a novel perspective by leveraging the discriminative gener-
alizable features of free lunch models, achieving remarkable
improvements.

Similar to existing work [36], [37], we denote the average
results of the three categories (“Head”, “Medium”, “Tail”) as
“All” to demonstrate the performance of a model that consis-
tently performs well across the three categories regardless of
differences in sample sizes or class distributions within each
group. It is crucial to understand that evaluating the results of
the “Head”, “Medium”, and “Tail” classes independently in an
imbalanced test set can lead to unreliable conclusions, being
significantly influenced by the majority classes samples. On
the “All” metric, our approach, FoPro-KD, outperforms the
naive cross-entropy (CE) method, BSM [22], and BKD [27]
by 7.0%, 2.9%, and 4.3% respectively, achieving the highest
sensitivity for the tail classes (31.9%) and highlighting its
ability to capture rare diseases.

F. Ablation Studies
Effectiveness of EKD and FPG In Table IV, we present
an ablation study of our proposed components over the ISIC-
LT. Our approach combines a Fourier prompt generator (FPG)
with effective knowledge distillation (EKD) to exploit the
“free lunch model”. Our experimental results on the ISIC-2019
dataset demonstrate that EKD alone improves performance by
1.5%, 3.6%, and 2.2% on the “MCC” for the three imbalance
ratios, respectively. By adding FPG, we achieve even higher
performance gains of 4.5%, 5.6%, and 3.7% on the “MCC” for
class imbalance ratios of 1:100, 1:200, and 1:500 compared
to the baseline, BSM [22].

Our proposed EKD and FPG methods provide complemen-
tary benefits for improving the performance of the target model
in the long-tailed setting. While FPG helps to explore the “free
lunch model” latent space by explicitly asking what frequency
patterns it wants in the input, EKD helps to exploit the “free
lunch model” generalizable representation. By leveraging “free
lunch model” frequency patterns, our approach achieves the
best performance on the ISIC-LT dataset and HyperKvasir
dataset, highlighting the importance of utilizing “free lunch
models” for medical image classification with long-tailed class
distributions.

TABLE IV
ABLATION OF FLKD AND FPG ON THREE IMBALANCE RATIOS ON

ISIC-LT

EKD FPG Metric
MCC Acc F1-Score

ISIC-LT (1:100)
BSM [22] × × 63.88 (±1.9) 68.15 (±1.7) 69.25 (±1.6)
w/ EKD (ours) ✓ × 65.36 (±3.3) 69.47 (±2.9) 70.42 (±2.9)
FoPro-KD (Ours) ✓ ✓ 68.33 (±2.3) 71.8 (±2.0) 73.88 (±1.9)

ISIC-LT (1:200)
BSM [22] × × 60.47 (±1.6) 65.12 (±1.4) 66.2 (±1.2)
w/ EKD (ours) ✓ × 64.08 (±1.4) 68.35 (±1.2) 69.19 (±1.3)
FoPro-KD (Ours) ✓ ✓ 66.08 (±1.5) 69.8 (±1.3) 71.91 (±1.2)

ISIC-LT (1:500)
BSM [22] × × 53.61 (±1.1) 59.02 (±1.0) 60.27 (±0.9)
w/ EKD (ours) ✓ × 55.81 (±1.6) 60.92 (±1.4) 62.02 (±1.3)
FoPro-KD (Ours) ✓ ✓ 57.33 (±1.5) 61.9 (±1.5) 64.43 (±1.3)

Ablation of Free Factor We present an ablation study
of the weighting factor, λf , for the exploitation proposed
in Equation (8), with experiments conducted on the ISIC-LT
imbalance factor 1:500 without our proposed FPG. The results
are summarized in Table V.

TABLE V
EXPLOITATION λf ABLATION WITHOUT FPG ON THE ISIC-LT (ACC)

Method ISIC-LT (1:500)
λf = 0 λf = 1 λf = 3 λf = 5

EKD 59.02 (±1.0) 59.52 (±2.4) 60.92 (±1.4) 60.47 (±1.6)

We find that using effective knowledge distillation (EKD)
with a factor of λf = 3 improves the performance on the ISIC-
LT dataset compared to the baseline (λf = 0), [22], achieving
an “Acc” gain of 1.9%. However, a higher value of λf can
deviate from the learning objective.

TABLE VI
ABLATION OF EXPLORATION ON THE ISIC-LT 1:500 DATASET. VPT

REFERS TO SPATIAL VISUAL PROMPT TUNING.

Linv Ladv
Metric

MCC Acc F1
EKD (ours) × × 55.81 (±1.6) 60.92 (±1.4) 62.02 (±1.3)
EKD + VPT × × 54.71 (±2.3) 59.59 (±2.0) 62.16 (±2.0)
EKD + FPG ✓ × 56.80 (±1.4) 61.59 (±1.2) 63.73 (±1.8)
FoPro-KD ✓ ✓ 57.33 (±1.5) 61.9 (±1.5) 64.43 (±1.3)

Effectiveness of FPG To evaluate the importance of explo-
ration with our proposed FPG, we perform an ablation study
and report our results in Table VI. First, we compare the results
of our baseline, EKD, when employing conventional spatial
visual prompting tuning (VPT) first introduced in [6] and
adapted in closed-set source-free unsupervised domain adap-
tation [12] through minimization of the batch normalization
regularization technique detailed in Equation (4). Our findings
indicate that using VPT with EKD decreases the performance
compared to utilizing our proposed EKD alone. It is worth
noting that establishing a meaningful open-set spatial domain
mapping between the target medical dataset and the pre-
training dataset, ImageNet, is a complex task. Furthermore,
using a single prompt to learn this mapping leads to substantial
alterations in the target dataset semantics and introduces
training instability. On the other hand, learning the FPG and
exploring the “free lunch model” with only Linv leads to an
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improvement over our proposed EKD with an increase of 1.0
% and 1.7% on “MCC” and f1-score, respectively. Moreover,
when using iterative adversarial knowledge distillation (AKD)
along with Linv , we achieve the best performance with a
notable gain of 1.5%, 1.0%, 2.4% on the “MCC”, “Acc”, and
F1 score respectively, compared to our proposed EKD. While
Linv ensures that the synthesizable Fourier amplitudes are
representative of what the free lunch model wants, capturing
the frequency patterns in the frequency bands it was trained
on, Ladv is responsible for further exploring the latent space
of the frozen model and making the frequency prompts more
diverse than the ones previously distilled to the target model.

(a) (b)

Fig. 5. Sensitivity to µ and γ on the ISIC-LT Imbalance Ratio 1:500

Sensitivity of Balancing Regularization Batch normalization
(BN) statistics are necessary for learning the Fourier prompts
(FPG) in our proposed method. Similar to deep inversion and
data-free knowledge distillation approaches [32], without BN,
the FPG can be limited to balancing regularization. we perform
ablation experiments on the balancing regularization weighting
factor µ for the exploration phase proposed in Equation (6)
over the extremest ISIC-LT setting (1:500). As shown in Fig-
ure 5 (a), we observe that a value of µ = 10 increases the
performance by 2.6%, 2.4%, and 2.5% on the “MCC”, “Acc”,
and F1, respectively. Without using µ, the exploration phase
is limited to the BN statistics without activation of the free-
lunch model latent space, which can limit the representation
transfer. A high value of µ, however, can negatively impact
performance by encouraging the network to output a uniform
distribution that is not discriminative nor informative.

Sensitivity of AKD Next, we investigate the effect of the ad-
versarial factor γ proposed in Equation (9) on the performance
of the extremest ISIC-LT setting (1:500). We found that a low
value of γ (e.g., γ = 0.3) can enhance performance by making
the Fourier prompts more diverse with iterative adversarial
training, increasing the performance by 1.0% 2.0% on the F1-
score and “MCC”, as shown in Figure 5 (b). On the other
side, a high value of γ (e.g., γ = 1) results in a 2.0% drop in
the F1-score. It is worth noting that, unlike other adversarial
training approaches in domain adaptation, our focus is not
on adversarial training but on synthesizing images based on
the “free lunch model” by our proposed FPG. A lower value
of γ ensures the diversity of generated prompts, whereas a
higher value may result in FPG generating worst-case images
with random amplitudes that the “free lunch model” cannot
comprehend, leading to a decrease in overall performance.

Effectiveness of Addressing Extreme Class Imbalance We

assess the impact of severe class imbalance on the perfor-
mance of our method, FoPro-KD. Specifically, we evaluate
the accuracy (“Acc”) for extreme imbalance factors of 1:1000
and 1:2000 using the ISIC-LT balanced test-set and present
the results in Figure 6. Notably, as the severity of class im-
balance increases, our method, FoPro-KD, consistently outper-
forms the state-of-the-art curriculum-based method, BKD [27],
demonstrating remarkable improvements of 4.7% and 5.9% on
the “Acc” metric for imbalance factors of 1:1000 and 1:2000,
respectively.

Furthermore, we observe in Figure 6 that the baseline,
BSM [22], outperforms BKD [27], by 2.7% and 1.9% over
the imbalance factors of 1:1000 and 1:2000 respectively. In
extremely imbalanced scenarios, BKD [27] as a curriculum-
based method encounters challenges stemming from the inher-
ent bias in representation learning. In such cases, the features
learned in the initial stages tend to be heavily influenced by
the majority class, exacerbating the imbalance issue for the
minority classes [39]. In contrast, our approach introduces a
novel perspective on cross-task knowledge compression from a
publicly available pre-trained model on natural images, which
does not suffer from this inherent bias. Moreover, it is worth
noting that BKD [27] operates in the logit space instead of the
feature space, which introduces additional challenges related
to classifier bias towards the majority class [23]. By operating
in the feature space with a cross-task pre-trained network, our
method mitigates these bias-related challenges, enabling more
effective handling of extreme class imbalance.

Fig. 6. Effectiveness of FoPro-KD across Imbalance Factors, including
1:1000 and 1:2000, on the accuracy “Acc” metric for ISIC-LT dataset.

EKD benefits LT even with smaller models The learning of
the target model can be limited with an upper bound to the
capacity of the free lunch model, f , and the MLP projector,
and the information gained from f to the target task. However,
we demonstrate in Table VII that such limitations do not
adversely affect the performance of the minority class on ISIC-
19 LT (“Tail”), with linear probed (LP) supervised ImageNet
weights achieving 41.89% and EKD achieving 55.93% on the
“Tail” accuracy.

Our experiments presented in Table VII demonstrate that
our proposed EKD method can improve the performance of
the target task even with smaller models. Specifically, we show
that when given a target model g and its pre-trained version
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TABLE VII
EFFECTIVE KNOWLEDGE DISTILLATION (EKD) WITH VARYING FREE

LUNCH MODELS. RESULTS ARE AVERAGED ACROSS 5 RUNS AND

ACROSS THE THREE IMBALANCE RATIOS (1:100, 1:200, 1:500) ON

THE ISIC-LT DATASET. LP+FPG DENOTES LINEAR PROBING ON THE

OPTIMIZED FPG+f .

Setting Metric (%)
Method Target Target Init Free Lunch Free Lunch Init Tail MCC
LP None None RN-50 Sup-ImageNet 41.89 48.77
LP None None RN-50 MoCov2 48.72 49.85
LP+FPG None None RN-50 MoCov2 48.46 51.34
FT None None RN-50 MoCov2 27.6 56.0
FT None None RN-50 Sup-ImageNet 35.93 62.51
BSM RN-18 None None None 46.6 59.32
EKD RN-18 None RN-50 Sup-ImageNet 51.47 61.13
BSM RN-18 ImageNet None None 52.07 66.24
EKD RN-18 ImageNet RN-18 Sup ImageNet 55.87 67.18
EKD RN-18 ImageNet RN-50 Sup ImageNet 55.93 68.09

as the free lunch model f , EKD can benefit the tail classes
using the frozen features from f despite f having the same
capacity as g and being pre-trained on ImageNet. We observed
a performance gain of 3.8% on tail class accuracy and 1.0% on
“MCC” compared to the best-performing baseline initialized
with ImageNet weights. It is worth mentioning that these
results are averaged over 5 runs over the 3 class imbalance
ratios (15 experiments). This phenomenon arises because fine-
tuning can distort the pre-trained features, leading to a drop
in generalization performance. However, the target model can
further enhance its performance by using free discriminative
distribution during training. While EKD can improve the
performance of the target task even with smaller models, the
best performance is achieved when using ResNet50 (RN50) as
the free lunch model (f ), with a performance gain of 1.85%
and 1.81% on “MCC” compared to the baseline, BSM [22],
when the target model is initialized randomly (None) or
with ImageNet weights respectively. While most empirical
evaluations ignore pre-trained initialization to provide fair
and better convergence analysis, initialization unsurprisingly
increases the averaged performance by 6.92% and 6.96% on
“MCC” for the baseline and our proposed EKD, respectively.

Furthermore, we present the classification performance re-
sults achieved through linear probing of the pre-trained model
using our proposed Fourier Prompt Generator (FPG). The
FPG demonstrates a significant enhancement of 1.49% in the
Matthews Correlation Coefficient (MCC), which is particularly
sensitive to class imbalance when compared to the baseline
model (LP-MoCoV2). This improvement underscores the ef-
fectiveness of the FPG in enhancing the overall feature repre-
sentation of the free lunch model. However, we do observe a
slight performance decline of 0.26% specifically in the tail
class. This decrease can be attributed to the modifications
in the styles present within the tail class, dermatofibroma
(DF). DF benefits from color information, exhibiting a range
from pink to light brown in lighter skin tones and from dark
brown to black in darker skin tones. Importantly, this style
alteration does not affect the knowledge distillation process,
as irrelevant styles and biases are exclusively imposed on
the projector component (MLP) of the target network in the
projected feature space of the free lunch model within the
knowledge distillation framework, thereby not impacting the
classifier (FC) of the target network.

FPG is conditional on both the input and the pre-trained
model In Figure 7, we demonstrate the behavior of our FPG
with only Lexplore Equation (6). In (a), we trained the frozen
pre-trained model, f , on only the low-frequency components
of the ISIC-LT dataset. We observed that the FPG converged
to a similar average amplitude as the input dataset but with
different enhancement in the low-frequency parts that are
conditional on f . (b) shows the FPG’s behavior when f was
trained on only the high-frequency components of the ISIC-
LT dataset. We found that the FPG attends to the different
frequencies in their higher frequencies that f has captured.
Finally, in (c), we trained f on all frequency components
of the input dataset. Interestingly, we found that the average
amplitude generated by the FPG does not fully reduce to the
amplitude of the source dataset, although it is conditional
on the input dataset. This is because we do not have any
prior knowledge of what frequency patterns in what frequency
bands the “free lunch model” extracts from the dataset in
the pre-training stage. Nonetheless, FPG was able to amplify
or suppress certain frequencies to provide understanding and
interpretation of the behavior of pre-training models.

Input dataset Pre-trained on FPG outputEpoch 1

(a)

Average
 Manipulation

High-Frequency
Manipulation

Low-Frequency
Manipulation

Epoch 10

(b)

(c)

Fig. 7. Average FPG generated prompts in three scenarios of pre-
training f on different frequency components of the ISIC-LT dataset. (a)
Pre-training f on only the low-frequency components. (b) Pre-training
f on only the high-frequency components. (c) Pre-training f on all-
frequency components.

Our proposed Fourier Prompts Generator (FPG) is designed
for understanding and interpreting the behavior of “free lunch
models”. Unlike prior methods that rely on adding noise to
synthesize worst-case images, the FPG is conditional on both
the input dataset and the “free lunch model”. Our method
leverages the different frequency patterns captured in the pre-
training stage of the network to amplify or suppress certain
frequencies. By exploring these patterns with the FPG, we can
gain insights into the specific input preferences of the “free
lunch model” that enable better representational transfer and
interoperability.

V. DISCUSSION

Rare disease classification is a crucial aspect of medical
imaging, and leveraging publicly available pre-trained models
can potentially improve the diagnosis and representations of
these diseases. Existing work in this area often regularizes
training on synthesizing worst-case scenarios and extracting
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the knowledge using closed-set datasets, without fully ex-
ploiting the generalization capabilities of widely known pre-
trained models. Although some studies have explored effective
prompting techniques for these models, their approaches are
often limited to high-level features and prompt engineering
without a deep understanding of how these “free lunch”
encoders work, or how their representations can be further
enhanced through a fundamental understanding of DNNs. In
this work, we address this gap by investigating an intuitive
phenomenon that has been widely neglected in the community:
explicitly asking the pre-trained model what it wants, condi-
tional on a cross-task medical input data, in order to gain in-
sights into the learning dynamics of these models for effective
representation learning. Through our method, we successfully
demonstrate and leverage this phenomenon, shedding light on
the inner workings of these models’ frequency patterns and
their behavior toward representation learning.

In our work, we have discovered that learning frequency
prompts facilitate knowledge distillation. This motivates future
work on prompting large vision models on a frequency basis
for several downstream tasks. Furthermore, we find that ramp-
ing up significantly adversarial training can have a negative
impact on the training process rather than enhancing it. Our
primary goal is to enhance the frequency of image inputs by
prompting on a frequency basis. Thus challenging the network
with adversarial training impacts the performance. Addition-
ally, we find that EKD benefits the medical imaging long-
tailed problem even when using smaller “free lunch models”.
This can be attributed to the fact that fine-tuning can distort
pre-trained features, leading to a decrease in generalization
performance [5].

Our FoPro-KD demonstrates a higher percentage increase
compared to all other methods when decreasing the imbalance
ratio. For instance, even with a significant class imbalance of
1:2000, the performance of the model remains considerably
higher than random accuracy. It is important to note that if
the imbalance factor is pushed to values smaller than 1:12725,
it indicates the network’s inability to recognize samples it
has not encountered before, reducing the problem to out-of-
distribution detection.

Our proposed approach has certain limitations. One such
limitation is the need for a better understanding of the learning
dynamics of deep neural networks (DNNs) and the conditions
required for capturing these frequency patterns on more so-
phisticated models [40]. Additionally, while skin lesions and
gastrointestinal images can be considered out-of-distribution
data for the free lunch model, there are extreme cases in
medical imaging, such as X-rays and MRIs, which may require
further exploration. Future research should aim to bridge the
gap between natural image and medical imaging domains
to enhance our understanding of the billions of parameters
utilized in pre-trained models released every year.

VI. CONCLUSION

In conclusion, our proposed FoPro-KD method provides an
effective and efficient approach for compressing knowledge
from publicly available pre-trained models to medical image

classification tasks. We believe that future research should
continue to explore the generalization capabilities of these
largely available pre-trained models and develop methods to
compress their knowledge for medical imaging tasks while
preserving their generalization capabilities. Our method’s abil-
ity to utilize the pre-trained model’s knowledge to smaller
target models for medical tasks can be particularly useful
in clinical settings where affordable AI is needed. Overall,
we believe that our FoPro-KD method represents a promising
direction for addressing long-tailed classification problems and
transfer learning in medical imaging.

REFERENCES

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” in ICML, 2021.

[2] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast
for unsupervised visual representation learning,” CVPR, pp. 9726–9735,
2020.

[3] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent
a new approach to self-supervised learning,” in NeurIPS, (Red Hook,
NY, USA), Curran Associates Inc., 2020.

[4] A. Yu, Y. Yang, and A. Townsend, “Tuning frequency bias in neural
network training with nonuniform data,” in ICLR, 2023.

[5] A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang,
“Fine-tuning can distort pretrained features and underperform out-of-
distribution,” in ICLR, 2022.

[6] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan,
and S.-N. Lim, “Visual prompt tuning,” in European Conference on
Computer Vision (ECCV), 2022.

[7] B. Dong, P. Zhou, S. Yan, and W. Zuo, “LPT: Long-tailed prompt tuning
for image classification,” in ICLR, 2023.

[8] J. Bai, L. Yuan, S.-T. Xia, S. Yan, Z. Li, and W. Liu, “Improving vision
transformers by revisiting high-frequency components,” in ECCV, 2022.

[9] J. Huang, D. Guan, A. Xiao, and S. Lu, “Rda: Robust domain adaptation
via fourier adversarial attacking,” ICCV, pp. 8968–8979, 2021.

[10] M. Kim, D. Li, and T. Hospedales, “Domain generalisation via domain
adaptation: An adversarial fourier amplitude approach,” in ICLR, 2023.

[11] C. Chen, Z. Li, C. Ouyang, M. Sinclair, W. Bai, and D. Rueckert,
“MaxStyle: Adversarial style composition for robust medical image
segmentation,” in MICCAI, 2022.

[12] S. Hu, Z. Liao, and Y. Xia, “Prosfda: Prompt learning based source-
free domain adaptation for medical image segmentation,” arXiv preprint
arXiv:2211.11514, 2022.

[13] Y. Wang, J. Cheng, Y. Chen, S. Shao, L. Zhu, Z. Wu, T. Liu, and H. Zhu,
“Fvp: Fourier visual prompting for source-free unsupervised domain
adaptation of medical image segmentation,” ArXiv, vol. abs/2304.13672,
2023.

[14] C. Yang, X. Guo, Z. Chen, and Y. Yuan, “Source free domain adaptation
for medical image segmentation with fourier style mining,” Medical
Image Analysis, vol. 79, p. 102457, 2022.

[15] H. Borgli, V. L. Thambawita, P. H. Smedsrud, S. Hicks, D. Jha, S. L.
Eskeland, K. R. Randel, K. Pogorelov, M. Lux, D. T. D. Nguyen,
D. Johansen, C. Griwodz, H. K. Stensland, E. Garcia-Ceja, P. T. Schmidt,
H. L. Hammer, M. Riegler, P. Halvorsen, and T. de Lange, “Hyperkvasir,
a comprehensive multi-class image and video dataset for gastrointestinal
endoscopy,” Scientific Data, vol. 7, 2019.

[16] M. Combalia, N. C. F. Codella, V. M. Rotemberg, B. Helba, V. Vila-
plana, O. Reiter, A. C. Halpern, S. Puig, and J. Malvehy, “Bcn20000:
Dermoscopic lesions in the wild,” ArXiv, vol. abs/1908.02288, 2019.

[17] P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset,
a large collection of multi-source dermatoscopic images of common
pigmented skin lesions,” Scientific Data, vol. 5, 2018.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in ICLR, 2018.

[19] A. Galdran, G. Carneiro, and M. A. González Ballester, “Balanced-
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