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Enhancing and Adapting in the Clinic: Source-free
Unsupervised Domain Adaptation for Medical

Image Enhancement
Heng Li, Ziqin Lin, Zhongxi Qiu, Zinan Li, Ke Niu, Na Guo, Huazhu Fu, Yan Hu, Jiang Liu

Abstract—Medical imaging provides many valuable clues in-
volving anatomical structure and pathological characteristics.
However, image degradation is a common issue in clinical prac-
tice, which can adversely impact the observation and diagnosis
by physicians and algorithms. Although extensive enhancement
models have been developed, these models require a well pre-
training before deployment, while failing to take advantage
of the potential value of inference data after deployment. In
this paper, we raise an algorithm for source-free unsupervised
domain adaptive medical image enhancement (SAME), which
adapts and optimizes enhancement models using test data in the
inference phase. A structure-preserving enhancement network is
first constructed to learn a robust source model from synthesized
training data. Then a teacher-student model is initialized with
the source model and conducts source-free unsupervised domain
adaptation (SFUDA) by knowledge distillation with the test
data. Additionally, a pseudo-label picker is developed to boost
the knowledge distillation of enhancement tasks. Experiments
were implemented on ten datasets from three medical image
modalities to validate the advantage of the proposed algorithm,
and setting analysis and ablation studies were also carried
out to interpret the effectiveness of SAME. The remarkable
enhancement performance and benefits for downstream tasks
demonstrate the potential and generalizability of SAME. The
code is available at https://github.com/liamheng/Annotation-free-
Medical-Image-Enhancement.

Index Terms—Medical image enhancement, source-free unsu-
pervised domain adaptation, knowledge distillation, pseudo-label
selection.

I. INTRODUCTION

The advancement of modern medical imaging technology
has provided a wealth of valuable clues regarding anatomical
structures and pathological characteristics for disease diag-
nosis. Based on high-quality medical images, emerging deep
learning algorithms have demonstrated significant potential in
medical image analysis and disease diagnosis, achieving a
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Fig. 1. Examples of medical image enhancement. (a) Low-quality samples
of fundus photography, OCT, and ultrasound. (b) Samples enhanced by
the source model and (c) further improved by SFUDA. (d) High-quality
references.

diagnostic performance comparable to that of human medical
professionals [1]. Regrettably, medical imaging in clinical
settings is vulnerable to quality degradation (Fig. 1 (a))
caused by environmental factors, inappropriate operation, and
patient status [2], leading to uncertainties in observations and
diagnoses [3]. For instance, an investigation of 135,867 fundus
images in the UK Biobank revealed that only 71.5% of the
samples were of sufficient quality to conduct vessel morphom-
etry [4]. In such cases, patients may need to be re-examined
to obtain qualified imaging data, causing unnecessary costs,
secondary radiation exposure, and time delays.

Enhancing the legibility of low-quality medical imaging
holds great potential in improving clinical observation and
diagnosis, avoiding the shortcomings of re-examination. Con-
sequently, significant efforts have been devoted to enhancing
medical images over the years. Historically, researchers have
mined statistical prior knowledge to develop hand-crafted
methods for medical image enhancement [5]. With recent
advances in deep learning, powerful image embedding capabil-
ities have enabled more convenient and efficient enhancement
of medical images. Despite the advantages of deep learning,
abundant training data are necessary to optimize deep net-
works. Furthermore, enhancement algorithms typically rely on
high-low quality paired data, which creates a major challenge
in data collection [6]. To address this issue, more recent
studies have introduced enhancement algorithms based on
unpaired [7], [8] and synthetic data [9], [10]. However, these
methods have their own respective limitations, such as com-
promised image structure preservation with unpaired data or
performance drops in real-world scenarios with synthesized
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data. As a result, existing enhancement methods either suffer
from data collection issues or fail to guarantee consistent
performance in clinical settings [11]. Moreover, these methods
rely on well pre-training before deployment and lack the flexi-
bility to learn and adapt from inference data after deployment.

While current methods have successfully improved the
quality of medical images, clinical scenarios still pose several
challenges that need further exploration. i) Unpaired data-
based algorithms overcome the need for repeatedly acquiring
high-low quality image pairs. However, the distribution homo-
geneity of training data and clinical data cannot be guaranteed,
and unpaired training data may not be conducive to preserving
fine structures in enhancement models. ii) Visiting target
test data during model training is a crucial technique for
bridging the domain shifts between synthetic data and real
data. However, obtaining target data in advance for centralized
training may raise concerns about data collection and privacy
in clinical scenarios. iii) Existing enhancement algorithms rely
on well-pre-trained models to promote clinical observation
and diagnosis, due to privacy concerns and implementation
feasibility. However, this strategy may not fully overcome the
clinical data distribution shifts caused by various scanners,
protocols, and patient demographics. iv) Even when enhance-
ment models are exposed to target data in clinical applications,
the models often lack the ability to leverage the data for further
learning and performance optimization.

To alleviate the above challenges, this paper introduces
Source-free unsupervised domain Adaptive Medical image
Enhancement (SAME), which adapts and optimizes enhance-
ment models using test data in the inference phase. Specifi-
cally, to initialize a robust enhancement model with structure
preservation (Fig. 1 (b)), the source model is trained with a
source domain synthesized from public datasets along with
segmentation masks. Subsequently, in the target domain of
test data, a teacher-student model is employed to perform
knowledge distillation to further optime the enhancement
model in the inference phase (Fig. 1 (c)). In addition, a
comprehensive picker has been developed, which includes
an image quality assessor and an irregular structure detector,
to select appropriate pseudo-labels for knowledge distillation.
Experiments on three medical image modalities (i.e., fundus
photography, OCT, and ultrasound) have been conducted to
demonstrate the enhancement performance of SAME. Our
main contributions are as follows:

1) A medical image enhancement algorithm termed SAME
is developed, which introduces an SFUDA paradigm to
optimize enhancement models in the inference phase
without concerns about data collection and privacy.

2) Initialized by the source model from synthetic training
data, a teacher-student model is designed to achieve
SFUDA through knowledge distillation.

3) Based on image quality and structural regularity, a cus-
tomized picker that selects pseudo-labels for knowledge
distillation is designed to boost the SFUDA in enhance-
ment tasks.

4) Various experiments and comparisons with diverse state-
of-the-art (SOTA) enhancement algorithms are presented
on three medical image modalities, and the benefits of

SAME are demonstrated by the superior performance.

II. RELATED WORK

A. Medical image enhancement
Owing to the ability to enhance the quality of clinical

imaging examinations in a cost-effective and efficient man-
ner, image enhancement has been a longstanding area of
research in the medical imaging community. In pioneering
studies, statistical analysis has been extensively used to dis-
cover prior knowledge and develop hand-crafted enhancement
algorithms. To improve image readability, contrast limited
adaptive histogram equalization (CLAHE) [12] was designed
to expand the dynamic ranges of images. And then CLAHE
has been applied to enhance fundus images [5]. Inspired by
guided image filtering (GIF) [13], Cheng et al. [14] developed
structure-preserving guided retinal image filtering (SGRIF) to
restore cataract-affected fundus images as well as preserve fine
structures. However, traditional prior-based methods may not
be suitable for solving multiple low-quality cases, as they are
aimed at specific degradation types.

With the advances in deep learning, its powerful image
embedding capability enables more convenient and efficient
enhancement of medical images. However, new challenges in
data collection [6] are also introduced in data requirements for
supervised training deep learning neural networks. Therefore,
unpaired data and synthetic data are recently explored to
optimize enhancement deep networks.

1) Unpaired data-based medical image enhancement:
Compared with paired medical images, unpaired ones can
be obtained more efficiently in clinical settings. Based on
the unpaired image translation via CycleGAN [15], HDcycle-
GAN [16] and StillGAN [7] were developed to enhance medi-
cal images by bridging the gap between low-quality and high-
quality domains. Another unpaired image translation network,
known as contrastive unpaired translation (CUT) [17], has
been proposed using contrastive learning, which has inspired
the development of medical image enhancement methods like
I-SECRET [8]. However, learning with unpaired data may not
effectively preserve fine structures and may overlook distribu-
tion shifts, leading to suboptimal enhancement performance.

2) Synthetic data-based medical image enhancement:
Alternatively, synthesizing high-low quality paired data has
been frequently introduced to conduct supervised learning for
medical image enhancement. CofeNet [10] and ArcNet [9]
constructed several degradation models of fundus photographs
by analyzing the imaging interference and imaging optical path
of cataract patients, and subsequently proposed algorithms for
fundus image enhancement. Through fusing the surrounding
b-scans, ODDM [18] synthesizes high-quality references to
train a diffusion model for OCT denoising. Notably, the
performance of models trained on synthetic data may be
impacted by shifts between synthetic and real-world domains.
Consequently, domain adaptation has been introduced in Ar-
cNet [9] and MAGE-Net [19], which incorporate test data in
the training phase to generalize models from synthetic to real-
world data. However, visiting test data for model training is
often impractical, as it poses challenges in terms of data collec-
tion and privacy protection. Moreover, to further alleviate data
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dependency, SCR-Net [20] and PCE-Net [21] constrain the
representation consistency across various degradation views
from identical images to impose the generalizability of en-
hancement models across synthetic domains.

Despite the advantages of current algorithms, they typically
adopt a pipeline that involves well-pre-trained models to
enhance medical images. Due to the high costs and privacy
concerns associated with data collection, most of the clinical
data cannot be used by this pipeline, resulting in a scarcity
of available training data. Moreover, once deployed in clinics,
models that rely on this pipeline may not be able to adapt to
new data and optimize their performance accordingly.

B. Source-free unsupervised domain adaptation
In deep learning, a common cause of performance degrada-

tion is domain shifts, which refer to a variance in distribution
between the source and target domains [22], [23]. Aiming to
this issue, domain adaptation [24] has been proposed to per-
form knowledge transfer by reducing inter-domain distribution
discrepancy. However, as typical domain adaptation highly
depends on the accessibility of both source and target data,
practical limitations are inevitable, such as privacy concerns,
data storage and transmission costs, and computation burden.

To overcome these limitations, source-free unsupervised do-
main adaptation (SFUDA) [25] transfers a pre-trained source
model to the unlabeled target domain without requiring any
source data. The goal of SFUDA is to improve target inference
by learning a target model based on the pre-trained source
model and unlabeled target data [26]. Prominent SFUDA
paradigms, such as entropy minimization [27] and knowledge
distillation [28], have been developed in emerging studies to
achieve adaptation solely using target data. These paradigms
have primarily focused on tasks like semantic segmenta-
tion [29], image classification [30], and object detection [31],
demonstrating promising progress. Furthermore, recent devel-
opments in SFUDA have given rise to test-time adaptation
(TTA) algorithms like TENT [32] and MEMO [33], which
exhibit the potential to generalize well across diverse target
domains without relying on target training data. However,
challenges arise when applying the above paradigms to image
enhancement, since they typically rely on the category labels
in the above tasks. Therefore, additional exploration is neces-
sary to implement SFUDA for image enhancement purposes.
While a recent study has introduced domain representation
normalization (DRN) [34] to apply SFUDA for natural image
dehazing, there is a scarcity of reporting on the SFUDA
paradigm for enhancing medical images. As a result, further
efforts and investigations are required in this particular area.

Consequently, we attempt to develop an SFUDA paradigm
in medical image enhancement to mitigate the challenges in
data collection and privacy protection when implementing
domain adaptation in clinics. Additionally, SFUDA endows to
further optimize the enhancement model during the inference
phase, mining the full potential of clinical data.

III. METHOD

Given the clinical challenges involved in enhancing med-
ical images, SAME has been developed to overcome data

bottlenecks and privacy concerns that arise when leveraging
target data to optimize enhancement models. As demonstrated
in Fig. 2, SAME achieves this by introducing SFUDA into
medical image enhancement, where model training is only
based on source data while target data are used to fine-tune
the model during the inference phase.

A. Preliminary and problem definition

As a result of the difficulties in data collection, training
data are frequently synthesized to develop medical image
enhancement algorithms. Denote high-quality medical image
samples as Y S , the source domain DS =

{
XS , Y S

}
is

composed of synthesized training data, where XS refers to
the low-quality samples generated from Y S with degradation
models. Then a source model ΦS is well-trained based on
the source domain to estimate the joint distribution PS

XY on
XS ×Y S . On the other hand, the target domain DT =

{
XT

}
only contains clinical low-quality samples XT to be enhanced.
Unfortunately, due to the domain shifts between DS and DT ,
the joint distribution PT

XY ̸= PS
XY , where PT

XY is the joint
distribution on XT × Y T , Y T denotes the corresponding
ideal high-quality samples. Thus ΦS barely presents desirable
performance on DT .

Though simultaneously visiting
{
XS , Y S

}
and

{
XT

}
al-

lows DA to generalize ΦS from DS to DT , the raised feasi-
bility and privacy concerns prevent implementing DA in the
clinic. SAME resorts to SFUDA to address the above limita-
tions, where

{
XS , Y S

}
is inaccessible but ΦS is available to

conduct domain adaptation.
To train a structure-preserving enhancement model ΦS ,

public high-quality image samples along with segmentation
masks are employed in SAME to synthesize the source domain{
XS , Y S ,MS

}
, where MS denotes the segmentation masks.

Then in the target domain, SAME initializes a teacher model
ΦT

α using the parameters of ΦS . This teacher model performs
inference on the unannotated target data XT , and the resulting
outcomes

{
Y T
α ,MT

α

}
are leveraged to pick pseudo-labels for

fine-tuning a student model ΦT
β . Accordingly, SAME employs

knowledge distillation by using the teacher-student model to
achieve SFUDA.

B. Structure-preserving source model

The organ structures in medical images often contain im-
portant diagnosis clues related to diseases. Therefore, authen-
tically preserving organ structures in raw images is a funda-
mental prerequisite for effective medical image enhancement.

Inspired by the degradation models in [10], [9], we syn-
thesize low-quality images from public high-quality samples
to construct training data for medical image enhancement.
Moreover, to preserve the organ structures of medical images,
public datasets along with segmentation masks are selected
for training data synthesis. As shown in Fig. 2 (a),

{
yS ,mS

}
are a sample of the public dataset

{
Y S ,MS

}
, and xS ∈ XS

is a low-quality image synthesized from yS using degradation
models. Such that in the training data, xS is companied by an
enhancement reference yS and structure guidance mS .
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Fig. 2. SAME introduces SFUDA to optimize medical image enhancement models in clinical inference. (a) A source enhancement model ΦS is learned in
the source domain of synthetic training data. The backbone of ΦS consists of a skip-connected encoder E and decoder D, which enhance xS as yS . And
a segmenter S is connected to D to constrain the structural components mS of yS . (b) SFUDA is accomplished in the target domain through knowledge
distillation, using the teacher-student model (ΦT

α and ΦT
β ) initialized by ΦS . Specifically, an enhancement pseudo-label picker (more details in Fig. 3) is

customized to boost the process of knowledge distillation, and ΦT
α is updated using the exponential moving average (EMA) from the weights of ΦT

β .

Accordingly, we compose an enhancement network ΦS with
structure constraints, where ΦS consists of an enhancement
branch built by a U-Net [35] architecture and an extra decoder
for structure preservation. In detail, xS is embedded by an
encoder E , and the enhanced image is reconstructed by a
decoder D, whose layers are skip-connected with E . The extra
decoder S is layer-level attached to D to impost structure
preservation by predicting the segmentation mask mS .

The enhancement loss of ΦS is formulated as

LS
1 (E ,D) = E

∥∥ŷS − yS
∥∥
1
, (1)

where ŷS = D(E(xS)) denotes the enhanced sample.
And the structure-preserving loss of ΦS is calculated by

LS
CE(E ,D,S) = E

[
−
∑C

c=1 m
S
c log (m̂S

c )
]
, (2)

where m̂S = S(D(E(xS))) represents the predicted segmenta-
tion masks. C denotes the number of segmentation categories,
and c represents the category.

The total optimization objective of ΦS is given by

LS(E ,D,S) = LS
1 (E ,D) + λSLS

CE(E ,D,S), (3)

where λS is the weight to balance the enhancement loss and
structure-preserving loss, and is set to 0.3 here.

Leveraging public datasets and degradation models, training
data are synthesized for enhancement networks. To ensure
structure preservation in the enhancement, segmentation pre-
diction is joined with the enhancement. Once the source model
ΦS is well-trained based on the source domain of training data,
the source data is no longer available in the subsequent steps.

C. Source-free unsupervised domain adaptive medical image
enhancement

SFUDA fine-tunes pre-trained models with unannotated
target data exclusively, which not only enables further model

optimization using clinical data, but also eliminates concerns
related to privacy and cost associated with data collection
and centralization. Despite this potential, the application of
SFUDA to medical image enhancement remains unexplored.
SAME bridges this gap by adopting knowledge distillation,
which involves a teacher-student model to adapt the source
model to the target domain, as exhibited in Fig. 2 (b).

The pseudocode of the distillation process is showcased in
Algorithm 1. Both the teacher model ΦT

α and the student model
ΦT

β are initialized by the pre-trained source model ΦS . The
teacher model ΦT

α is fed with low-quality samples XT from
the target domain to acquire enhancement results Y T

α and seg-
mentation results MT

α . A picker (Sec. III-D) is then introduced
to select the desired enhanced and segmented outcomes as
pseudo-labels to construct a proxy dataset {XT

Ω , Y
T
Ω ,MT

Ω },
which are used to further optimize the enhancement model.

Then to facilitate the distillation, random variances of
brightness, contrast, and color have been slightly applied to
perturb the input space for the student model ΦT

β . The selected
test sample xT

Ω ∈ XT
Ω is subjected to variations to acquire

the perturbed sample x̃T . The student model ΦT
β loads x̃T as

the input and the corresponding {yTΩ ,mT
Ω} ∈ {Y T

Ω ,MT
Ω } as

the enhancement and segmentation supervision to calculate
optimization gradient. The optimization objective of ΦT

β is
defined as

LT
β (Eβ ,Dβ ,Sβ) = LT

1 + λCELT
CE , (4)

where λCE is set to 0.3.
The enhancement loss LT

1 is given by

LT
1 (Eβ ,Dβ) = E

∥∥yTβ − yTα
∥∥
1
, (5)

where yTα and yTβ are the images enhanced by ΦT
α and ΦT

β .
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Algorithm 1 Knowledge distillation process for SAME on
target domains
Require: Source model ΦS , Enhancement pseudo-label

picker, Target data XT .
Ensure: Teacher model ΦT

α , Student model ΦT
β

1: Initialize a teacher model ΦT
α and a student model ΦT

β

with ΦS .
2: while not converged do
3: From target sample xT ∈ XT , ΦT

α produces enhanced
sample yTα ∈ Y T

α and segmentation mask mT
α ∈ MT

α .
4: From {Y T

α ,MT
α }, the picker selects enhancement

pseudo-labels to construct proxy dataset {XT
Ω , Y

T
Ω ,MT

Ω }.
5: Update ΦT

β based on {XT
Ω , Y

T
Ω ,MT

Ω } using LT
β .

Specifically, The input x̃T for ΦT
β is obtained by applying

a random perturbation to xT
Ω ∈ XT

Ω .
6: Update ΦT

α using the EMA of the weights from ΦT
β .

7: end while

While the structure-preserving loss LT
CE is formulated as

LT
CE(Eβ ,Dβ ,Sβ) = E

[
−
∑C

c=1 m
T
αc log (m

T
βc)

]
, (6)

where mT
α and mT

β are the masks predicted by ΦT
α and ΦT

β .
The parameters of ΦT

α are updated by the exponential
moving average (EMA) of student model weights in each
training iteration, and the pseudo-labels are also updated
following ΦT

α . Repeat the above steps, until the optimization
gradient converges. By doing so, the teacher-student model
is adapted to the target domain, enabling the generation of
desired enhanced images for the target sample XT .

D. Enhancement pseudo-label picker

Efficient selection of appropriate pseudo-labels is essential
for implementing the aforementioned knowledge distillation
process. Unlike explicit category labels in classification and
segmentation tasks, evaluating the quality of enhancement
inference is more challenging. Enlighten by the medical image
quality assessment and shape priors for segmentation [36],
an image quality assessor (IQA) and an irregular structure
detector (ISD) are constructed to cooperatively pick suitable
pseudo-labels for ΦT

β .
As demonstrated in Fig. 3 (a), the IQA is implemented

using a classifier trained to identify the high- and low-quality
medical image samples. The assessment network reported
in [37] can be employed as the IQA, where the optimization
objective is defined as

LIQA = E [φ(IQA(xq)− q)] . (7)

where {xq, q} is the images sample and quality label. φ(·)
refers to cross-entropy loss.

On the other hand, the ISD is developed in the adversarial
training of a variational autoencoder generative adversarial
network (VAE-GAN). The adversarial loss is given by

LV AE−GAN = D(m) + log(1−D(m̂)). (8)

where m is a ground truth mask of segmentation, m̂ is a
mask generated by the VAE-GAN based on vectors randomly

Fig. 3. Pseudo-label picker construction. (a) An image quality assessor is
developed using high- and low-quality samples. (b) An irregular structure
detector is built by discriminating the ground truth masks of segmentation
and masks reconstructed by a VAE. (c) The quality assessor and irregularity
detector cooperate to pick enhancement pseudo-labels for SFUDA, where a
sample enhanced by the target teacher model will only be picked as a pseudo-
label if it is determined to have high-quality and regular structures.

sampled from latent space. As shown in Fig. 3 (b), a minimax
game is played between the VAE and a discriminator D,
whose responsibility is to distinguish between m and m̂ in
the adversarial training. Thus D can be used as the ISD to
detect irregular structures.

In order to ensure the picker’s generalizability across differ-
ent domains and facilitate the SFUDA process, public datasets
have been collected to train both the IAQ and the ISD. The
IAQ is trained using a publicly available large dataset EyeQ1,
which consists of 28,792 samples. The large volume and
discrepancy of EyeQ enable the IQA to robustly perform in
unfamiliar domains. Similarly, the ISD has been trained utiliz-
ing public segmentation datasets, namely DRIVE2, AVRDB3,
and DR HAGIS4. The ISD is optimized by identifying the
generated structure masks from the ground truth ones of these
datasets. Since the structures present in medical images tend
to remain consistent across domains, the ISD is considered
to be domain-agnostic. As a result, the picker can be directly
applied to target domains without the need for further tuning
using target-specific data.

During the adaptation phase, the IQA and the ISD are frozen
and collaborate to pick appropriate pseudo-labels for ΦT

β from
the outcomes of ΦT

α . A pseudo-label is picked only if yTα is
determined to be of high-quality and mT

α is identified as a
regular structure. Accordingly, appropriate pseudo-labels are
selected for achieving SFUDA.

IV. EXPERIMENTS

To demonstrate the performance of the proposed SAME,
extensive experiments were carried out. Comparisons with
SOTA medical image enhancement algorithms were presented
on data dependency, enhancement performance, and computa-
tional complexity. Segmentation and diagnosis tasks were also

1https://github.com/HzFu/EyeQ/
2http://www.isi.uu.nl/Research/Databases/DRIVE/
3https://data.mendeley.com/datasets/3csr652p9y/
4https://pubmed.ncbi.nlm.nih.gov/28217714/
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conducted to validate the benefits of the enhancement. Setting
analysis of source model training and ablation studies were
then implemented to verify the effectiveness.

A. Experimental Settings

Ten SOTA enhancement algorithms and ten datasets from
three medical image modalities were collected to verify the
performance of the proposed SAME. The evaluation was
conducted on three tasks to comprehensively interpret the
advantages of SAME.

1) Baselines: Comparisons with the SOTA medical image
enhancement algorithms are presented to demonstrate the
advantages of SAME.

For fundus photography, eight algorithms designed to en-
hance fundus images were introduced as baselines. The model
of RFormer [6] was trained on paired clinical samples using
Transformer and is publicly available from the authors’ home-
page. Based on unpaired data, StillGAN [7] and I-SECRET [8]
were developed to improve fundus image quality. ArcNet [9]
and MAGE-Net [19] access test data during training to adapt
the enhancement model to target data. CofeNet [10] utilizes
segmentation to boost structure preservation in the enhance-
ment. PCE-Net [21] and SCR-Net [20] attempt to learn robust
enhancement models respective to imaging interference and
cataracts by constraining feature consistency.

For OCT and ultrasound images, three algorithms for
medical or OCT image enhancement were implemented. As
HDcycleGAN [16] and StillGAN [7] were developed for any
medical images, they were selected to enhance OCT and
ultrasound images. The diffusion-based denoising algorithm
for OCT, ODDM [18] has also been resorted as the baseline.

TABLE I
EXPERIMENT TASKS, DATASETS, AND EVALUATION METRICS

Modality Training data Test data Tasks(Metrics)
Fundus pho-
tography

DRIVE, AVR-
DB, DR HAGIS RF, FIQ, RCF Enhancement

(SSIM, PSNR)
/ Segmentation
(DICE, IOU)

OCT Clear samples in
EHFU

Paired data in
EHFU, A2A

Ultrasound Clear samples in
SUStecH

Paired data in
SUStecH

Fundus pho-
tography

Clear samples in
Fundus-iSee

Low-quality ones
in Fundus-iSee

Diagnosis (F1-
score, Ckappa)

2) Datasets: As summarized in Table I, three medical
image modalities were leveraged in the experiments:
▷ Fundus photography
DRIVE: 40 clear fundus images annotated by vessel masks.
AVRDB: 100 clear fundus images for vessel segmentation.
DR HAGIS: 39 clear fundus images for vessel segmentation.
RF5: 120 high-low quality paired fundus image samples.
FIQ: a fundus dataset containing 196 low-high quality image
pairs collected from Shenzhen Kangning Hospital.
RCF: a fundus dataset collected from Peking University Third
Hospital, consisting of 26 fundus images after cataract surgery
corresponding to the ones before surgery.

5https://github.com/dengzhuo-AI/Real-Fundus/releases/download/v.1.0.0/
Real Fundus.zip

Fundus-iSee: a fundus dataset including 10,000 images (2,669
low-quality samples primarily affected by cataracts and 7,331
high-quality ones), sorted into five categories according to
fundus status.
▷ OCT
EHFU OCT: an OCT dataset for retinal layer segmentation
composed of 157 high-quality samples and 86 high-low quality
pairs collected from the Eye and ENT Hospital of Fudan
University.
A2A SD-OCT6: 17 high-low quality SD-OCT image pairs.
▷ Ultrasound
SUStecH: an ultrasound dataset containing 5740 images for
articular cartilage segmentation provided by Southern Univer-
sity of Science and Technology Hospital, from which 1000
high-quality samples and 862 high-low quality pairs were used
in the experiment.

3) Implementation and evaluation metrics: The tasks of
enhancement, segmentation, and diagnosis were performed to
understand the benefits of SAME.

For synthetic data-based algorithms, paired training data
were generated by applying degradations modeled in [10],
[9]. Multiple degraded samples were synthesized from each
high-quality sample by randomly varying the degradation
parameters. For instance, 16 degraded samples were synthe-
sized from each high-quality sample in DRIVE. On the other
hand, unpaired data-based algorithms were trained using clear
samples from the public training data and low-quality test data.
To ensure a fair experiment, data augmentation techniques
such as flipping, cropping, and rotation were employed on
the unpaired training data to match the training data size of
synthetic data-based algorithms. Test data were also accessed
by I-SECRET [8], ArcNet [9], and MAGE-Net [19] to execute
DA. SAME is initialized by the source model from synthetic
training data, and optimized with the test data using SFUDA.
Public code was utilized to implement comparative algorithms.
SAME is reformed from a U-Net architecture.

The input image size for training was 256 × 256 and the
batch size was 8. The training data were loaded with a random
scale among {286, 306, 326, 346}, and then cropped to the
size of 256. The model was trained by the Adam optimizer
for 150 epochs with an initial learning rate of 0.001 and 50
epochs with the learning rate gradually decaying to 0.

The enhancement performance was quantified by structural
similarity (SSIM) and the peak signal-to-noise ratio (PSNR).
U-Net and ResNet-50 were respectively employed to construct
a segmentation and a diagnosis model based on DRIVE and
Fundus-iSee to fulfill the downstream tasks. The segmentation
improvement achieved by the enhancement was quantified
by calculating the intersection over union (IoU) and the
Dice coefficient between the segmentation results of the low-
quality images and their corresponding enhanced versions. On
the other hand, F1-score and Cohen’s kappa (Ckappa) were
computed to compare the diagnosis performance on the low-
quality, clear, and enhanced images.

6https://people.duke.edu/ sf59/Fang BOE 2012.htm
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TABLE II
COMPARISONS WITH SOTA FUNDUS IMAGE ENHANCEMENT ALGORITHMS ON DATA DEPENDENCY, ENHANCEMENT PERFORMANCE, AND

COMPUTATIONAL COMPLEXITY

Algorithms Dependency* SSIM** PSNR** Costs Training Inference
PD UD VT RF FIQ RCF Avg. RF FIQ RCF Avg. (GMac) (Hours) (Seconds)

RFormer [6] ⋆
0.873 0.788 0.728 0.796 28.32 16.61 17.14 20.69 45.46 – 0.16
(0.050) (0.070) (0.064) (0.059) (2.70) (2.44) (2.26) (5.40)

StillGAN [7] ⋆
0.760 0.871 0.748 0.793 24.17 21.44 18.24 21.28 67.12 51.71 0.20
(0.082) (0.071) (0.054) (0.055) (3.72) (5.98) (6.27) (2.42)

I-SECRET [8] ⋆ ⋆
0.756 0.868 0.750 0.791 22.90 21.32 18.49 20.90 56.88 16.88 0.18
(0.062) (0.051) (0.074) (0.054) (5.55) (7.43) (5.08) (1.82)

ArcNet [9] ⋆
0.758 0.868 0.760 0.795 23.11 21.51 18.36 20.99 18.16 6.84 0.10
(0.053) (0.053) (0.064) (0.051) (6.99) (12.38) (3.43) (1.97)

MAGE-Net [19] ⋆
0.760 0.861 0.762 0.794 23.14 21.64 18.12 20.96 854.32 16.23 0.27
(0.046) (0.035) (0.061) (0.471) (2.19) (2.09) (2.17) (2.10)

CofeNet [10] 0.717 0.838 0.744 0.766 19.10 20.64 17.83 19.19 67.50 19.76 0.19
(0.042) (0.041) (0.043) (0.052) (3.25) (5.14) (4.45) (1.15)

PCE-Net [21] 0.745 0.872 0.736 0.784 18.86 23.09 17.30 19.75 85.29 12.90 0.25
(0.032) (0.031) (0.035) (0.062) (3.32) (7.03) (5.64) (2.45)

SCR-Net [20] 0.752 0.871 0.773 0.799 18.08 21.56 18.39 19.34 34.80 3.43 0.14
(0.033) (0.051) (0.069) (0.052) (3.77) (6.44) (5.99) (1.57)

SAME-source 0.750 0.862 0.761 0.791 22.18 21.67 18.19 20.68 34.02 3.19 0.13
(0.047) (0.028) (0.061) (0.050) (3.78) (4.46) (5.11) (1.77)

SAME (ours) 0.770 0.873 0.771 0.805 23.95 23.06 18.88 21.96 68.04 2.67*** 0.13
(0.044) (0.023) (0.051) (0.048) (3.55) (4.22) (4.98) (2.21)

* Dependency on high-low quality paired clinical data (PD ), unpaired clinical data (UD ), and visiting test data during training (VT ) are indicated by ⋆. ** Besides
RFormer, the second top result on RF is also highlighted. *** This training time refers to the time taken for the SFUDA process.

B. Comparisons with SOTA algorithms

A comparison is conducted against SOTA algorithms in
medical image enhancement and SFUDA paradigms, to assess
the advantages of SAME in fundus image enhancement, as
well as its impact on downstream tasks such as segmentation
and diagnosis.

1) Comparisons with fundus image enhancement algo-
rithms: Table II summarizes the comparison with SOAT
fundus image enhancement algorithms in qualitative data de-
pendency, quantitative enhancement, and computational com-
plexity. The mean and standard deviation of the enhancement
metrics for SSIM and PSNR are presented, and the perfor-
mance results of both the source initialized SAME (SAME-
source) and the source-free unsupervised domain adapted
SAME (ours) are provided. Figure 4 provides visualized
comparisons with the algorithms. Notably, only DRIVE is used
to synthesize the paired training data in this comparison.

Data dependency. Developing an efficient enhancement
model depends on redundant training data. As shown in
Table II, different solutions have been designed to achieve the
training requirement.

RFormer [6] is trained with the RF dataset, which was
built in clinics by collecting plenty of high-low quality image
pairs. Unfortunately, collecting paired data is extremely costly
and troublesome, and causes privacy concerns. To alleviate
the challenges in data collection, unpaired training algorithms
have been developed. StillGAN [7] and I-SECRET [8] are
enabled to learn enhancement models based on unpaired train-
ing data. However, unpaired training still requires sufficient
clinical data and has privacy risks. Synthetic training data
were thus leveraged to learn enhancement models. Considering
the domain shifts between synthetic and real-world data,
ArcNet [9] and MAGE-Net [19] access the to-be-enhanced
test data during the training phase to conduct domain adap-
tation. On the other hand, CofeNet [10] directly applied the

model learned from synthetic to enhance clinical images. To
compress the privacy risks of test data access during training,
PCE-Net [21] and SCR-Net [20] impose model generalizabil-
ity by constraining feature consistency. While PCE-Net [21]
and SCR-Net [20] circumvent the privacy issue and achieve
remarkable performance, they are incapable of optimizing the
models further with test data.

The training on source data promises SAME a reasonable
initialization. And SFUDA endows SAME to further optimize
the enhancement model only based on test data. Therefore,
SAME not only makes full use of the data to further optimize
the model, but also avoids the privacy issue of accessing
training and testing data simultaneously.

Enhancement performance. Table II summarizes the
enhancement performance on the datasets of RF, FIQ, and
RCF, and the average value of the three datasets. Fig. 4 shows
the enhanced images by various algorithms, as well as the raw
and reference samples in the three datasets.

As RFormer [6] was designed for and trained with specif-
ically RF dataset, it is no surprise that RFormer [6] behaves
dominantly on RF data. But when it comes to FIQ and RCF,
the mediocre performance of RFormer [6] is observed from
Table II. Using unpaired training data, StillGAN [7] and I-
SECRET [8] provide decent enhancement performance in the
metrics of SSIM and PSNR. But the images enhanced by
StillGAN [7] and I-SECRET [8] suffer from uneven color
according to Fig. 4. Test data were visited by ArcNet [9]
and MAGE-Net [19] to carry out domain adaptation, which
generalizes the model from synthetic to real-world data. Due
to the GAN-based framework, the training of ArcNet [9] is a
delicate procedure and may result in fluctuating performance
as shown in Fig. 4. CofeNet [10] ignores the domain shifts be-
tween synthetic and real-world data, such that inferior results
are obtained. Through the constraint of feature consistency,
PCE-Net [21] and SCR-Net [20] are equipped with gener-
alizability, which allows them to outperform CofeNet [10]
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Fig. 4. Visualized comparison of enhancement and segmentation with SOTA algorithms. (a) and (d) showcase the enhancement results of RF and FIQ, while
both enhancement and segmentation results of RCF are presented in (c). SAME improves the source model in contrast, structural clarity, and color authenticity
of the enhanced images, and outperforms the comparative algorithms in the consistency with the reference images.

under the same data dependency. Additionally, PCE-Net [21]
and SCR-Net [20] exhibit exceptional performance on FIQ
and RCF, respectively, as they are tailored to address imaging
interference and cataracts in fundus photography. However,
Fig. 4 reveals that images enhanced by PCE-Net and SCR-
Net inherit specific color styles that are independent of the
raw images, leading to a less favorable evaluation in terms of
PSNR in Table II.

In the source domain of synthetic training data, structure
consistency is leveraged to facilitate SAME to learn a robust
source model, which achieves decent initialization on all
datasets. Additionally, SAME further optimizes the enhance-
ment model with only the test data, leading to an exceptional
average performance on various datasets. As shown in Fig. 4,
SAME improves the source model in image contrast, structural
clarity, and color fidelity of enhanced images, which are more
consistent with reference images.

Computational complexity analysis. Computational costs
and time consumption are respectively quantified by multiply-
accumulate operation (GMac) as well as training (Hours)
and inference time (Seconds) to analyze the computational
complexity of enhancement algorithms.

Please take note that the training time of RFormer [6] is not
provided, since it was performed with the publicly available
pre-trained model. In the case of SAME, the enhancement

model is initialized with the source model learned from the
training data and then optimized with the test data. Since
these two steps are performed independently, the computa-
tional complexity can be analyzed separately. The training
time (2.67 hours) for SAME in Table II refers to the time
taken for the SFUDA process. And the training time for the
pseudo-label picker has not been included, as the picker is
constructed independently using public datasets and remains
frozen throughout the SFUDA process. Despite the moderate
computational costs, the training and inference of SAME are
efficient compared to the SOTA algorithms.

2) Benefits for downstream tasks: Boosting downstream
clinical analysis and diagnosis is a key motivation for med-
ical image enhancement. Therefore, vessel segmentation and
fundus disease diagnosis were carried out following the en-
hancement to demonstrate the benefits of the proposed SAME.
Fig. 4 (c) exhibits visualized results, and quantitative analysis
is summarized in Table III.

Vessel segmentation. Vessel segmentation is executed by a
U-Net learned from DRIVE to validate the effect of enhance-
ment on medical image analysis. The segmentation results
of the reference images are used as ground truth to quantify
the segmentation performance. DICE and IoU are computed
as metrics, and those of raw low-quality images are also
presented in Table III as a benchmark. Fig. 4 expresses
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TABLE III
COMPARISONS ON DOWN-STREAM TASKS OF FUNDUS ANALYSIS

Algorithms
Segmentation Diagnosis

DICE IoU F1-score Ckappa
RF FIQ RCF Avg. RF FIQ RCF Avg. Fundus-iSee

Low-quality 0.469 0.304 0.518 0.430 0.306 0.179 0.350 0.278 0.730 0.310
(0.031) (0.021) (0.042) (0.092) (0.025) (0.019) (0.036) (0.072)

RFormer [6] 0.577 0.580 0.344 0.500 0.406 0.410 0.194 0.336 0.732 0.370
(0.042) (0.039) (0.028) (0.111) (0.032) (0.052) (0.047) (0.101)

StillGAN [7] 0.559 0.620 0.544 0.574 0.388 0.450 0.373 0.403 0.739 0.348
(0.048) (0.051) (0.049) (0.033) (0.027) (0.038) (0.029) (0.033)

I-SECRET [8] 0.563 0.623 0.541 0.576 0.392 0.453 0.371 0.405 0.734 0.382
(0.049) (0.052) (0.045) (0.034) (0.028) (0.039) (0.030) (0.035)

ArcNet [9] 0.569 0.627 0.572 0.589 0.397 0.456 0.401 0.418 0.761 0.428
(0.050) (0.057) (0.051) (0.027) (0.035) (0.042) (0.036) (0.027)

MAGE-Net [19] 0.588 0.646 0.585 0.606 0.417 0.472 0.414 0.434 0.753 0.390
(0.055) (0.059) (0.061) (0.028) (0.038) (0.062) (0.039) (0.027)

CofeNet [10] 0.551 0.607 0.529 0.562 0.381 0.436 0.360 0.392 0.754 0.416
(0.041) (0.043) (0.039) (0.033) (0.027) (0.028) (0.029) (0.032)

PCE-Net [21] 0.594 0.634 0.569 0.598 0.422 0.464 0.397 0.427 0.752 0.410
(0.054) (0.064) (0.059) (0.027) (0.039) (0.045) (0.038) (0.028)

SCR-Net [20] 0.595 0.613 0.589 0.599 0.424 0.442 0.417 0.428 0.770 0.445
(0.055) (0.063) (0.057) (0.010) (0.045) (0.048) (0.043) (0.011)

SAME-source 0.592 0.619 0.573 0.595 0.421 0.448 0.402 0.424 0.759 0.423
(0.049) (0.051) (0.055) (0.019) (0.037) (0.039) (0.037) (0.019)

SAME (ours) 0.610 0.638 0.578 0.609 0.451 0.468 0.406 0.441 0.769 0.456
(0.048) (0.053) (0.044) (0.025) (0.036) (0.048) (0.041) (0.026)

visualized segmentation results.
Medical image enhancement highlights the distinctiveness

of fundus vessels in Fig. 4, leading to improved segmenta-
tion results. Specifically, by incorporating explicit structure
constraints, MAGE-Net [19], SCR-Net [20], and SAME have
enjoyed advantages in improving vessel segmentation. Consis-
tently, these three algorithms respectively achieve the superior
quantitative segmentation results in the three datasets accord-
ing to Table III. Additionally, by leveraging a robust source
model and SFUDA, SAME outperforms other comparative
algorithms in terms of average segmentation results.

Fundus disease diagnosis. Fundus-iSee was employed to
investigate the diagnosis improvement achieved by SAME.
Fundus-iSee includes five subsets, i.e. normal fundus (5868
clear VS 1902 low-quality images), age-related macular de-
generation (AMD) (492 VS 228), diabetic retinopathy (DR)
(181 VS 89), glaucoma (312 VS 138), and high myopia (478
VS 312). Five thousand clear images were randomly split to
learn a diagnosis model with ResNet-50, and the rest clear
and low-quality images are diagnosed by the model to draw
the diagnosis benchmark. Then the low-quality images are
enhanced and diagnosed again.

The diagnosis performance is quantified by F1-score and
Ckappa as provided in Table III. As the low quality in Fundus-
iSee mainly results from cataracts [9], SCR-Net [20] achieves
remarkable performance. Meanwhile, SAME achieves superior
results in Ckappa, which is a more appropriate metric for
evaluating multi-class classification tasks than F1-score. Class-
wise evaluation illustrates that SAME exhibits competitive
performance in each class and is further improved by SFUDA.

3) Comparisons with SFUDA benchmarks: SOTA algo-
rithms for SFUDA are also compared to demonstrate the
advantages of SAME. While there have been extensive efforts
to develop SFUDA paradigms for segmentation and classifi-
cation tasks, the availability of algorithms available for image

enhancement is still limited. Based on the source model of
SAME, two SOTA algorithms were employed as SFUDA
benchmarks: DRN [34], an SFUDA algorithm focused on
image dehazing, and MEMO [33], a TTA paradigm designed
for robustifying against distribution shifts during test time.
The quantitative comparison of enhancement and segmentation
results is summarized in Table IV, while the visual comparison
is presented in Fig. 5.

DRN [34] and MEMO [33] have been implemented based
on the source model of SAME. DRN [34] leverages the
frequency property and physical priors of hazy images to
match the representation of real hazy domain features with
that of the synthetic domain, thereby achieving SFUDA.
However, since the frequency property and physical priors
are primarily tailored for image dehazing, DRN [34] exhibits
mediocre adaptation performance when applied to medical
image enhancement. MEMO [33] utilizes various data aug-
mentations on individual data points and adapts the model
by minimizing the entropy across these augmentations. In

Fig. 5. Visualized comparisons with SFUDA algorithms in FIQ.
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TABLE IV
COMPARISONS WITH SFUDA BENCHMARKS ON MEDICAL IMAGE

ENHANCEMENT AND DOWNSTREAM SEGMENTATION

Algorithms Metrics RF FIQ RCF Avg.

SAME-source
SSIM 0.750 0.862 0.761 0.791

(0.047) (0.028) (0.061) (0.050)

DICE 0.592 0.619 0.573 0.595
(0.049) (0.051) (0.055) (0.019)

DRN [34]+
SSIM 0.725 0.837 0.734 0.765

(0.048) (0.037) (0.067) (0.051)

DICE 0.570 0.613 0.562 0.582
(0.053) (0.055) (0.059) (0.022)

MEMO [33]+
SSIM 0.737 0.851 0.748 0.779

(0.046) (0.027) (0.062) (0.051)

DICE 0.590 0.621 0.570 0.594
(0.051) (0.052) (0.057) (0.021)

SAME (ours)
SSIM 0.770 0.873 0.771 0.805

(0.044) (0.023) (0.051) (0.048)

DICE 0.610 0.638 0.578 0.609
(0.048) (0.053) (0.044) (0.025)

this comparison, MEMO [33] was introduced by augmenting
the inference data, and the structure output from the source
model of SAME was also utilized to incorporate the entropy
minimization of MEMO [33]. Despite the reasonable results in
the segmentation metric of DICE, MEMO [33] lacks effective
enhancement adaptation modules, which limits its ability to
effectively address medical image enhancement tasks.

In contrast to the negative adaptation observed in the
benchmarks, SAME offers a robust SFUDA paradigm for
medical image enhancement, enabling improvements to the
source model in target sites.

C. Ablation studies

Comprehensive ablation studies are conducted on the setting
of the source model and the adaptation process, as well as the
designed modules, to thoroughly interpret the effectiveness of
SAME.

1) Effects from source models: To interpret the impact
of the source models on SAME, the enhancement model is
initialized with source models trained under various settings
and then adapted using SAME. The default setting for the
source model of SAME involves training with synthetic data
generated from DRIVE with simulated degradations, including
imaging interference and cataracts, for a total of 200 epochs.
The setting analysis comprises: 1) Degradation models of
imaging interference and cataracts are independently employed
to synthesize the training data for the source model. 2) The
training data from DRIVE are replaced by AVRDB and DR
HAGIS to train the source models. 3) Two different epoch
numbers, 100 and 150, are used to train the source models.
Fig. 6 summarizes the enhancement and segmentation perfor-
mance of the various source models and the corresponding
adapted models by SAME.

Training degradations. Degradations in fundus images can
be categorized as imaging interference and cataracts, based
on their underlying triggers. Furthermore, imaging interfer-
ence encompasses image blur, light disturbance, and retinal
artifacts. RF mainly involves blur and light disturbance [6].
FIQ suffers from all three types of imaging interference [21].

Fig. 6. Enhancement (SSIM) and segmentation (DICE) performance of vari-
ous source models and their corresponding adapted models. The enhancement
metric SSIM is present on the left and the segmentation metric DICE is on
the right.

RCF primarily encounters cataracts [20]. As a result, the
performance on the three datasets is influenced by the specific
degradations used for synthesizing training data.

Fig. 6 (a) illustrates that the degradation types have a
substantial impact on the performance in FIQ, while relatively
stable performance is observed in RF and RCF. Compared to
imaging interference, only synthesizing cataracts significantly
limits the performance of the source model significantly in
FIQ. The similarity between image blur and cataracts con-
tributes to the relatively stable enhancement results in RF
and RCF. Moreover, image blur and cataracts exert a more
pronounced impact on the segmentation performance com-
pared to other types of imaging interference. Consequently, the
training data for cataract elimination demonstrates advantages
in segmentation performance.

SAME demonstrates robust improvements in both enhance-
ment and segmentation across all three datasets, indicating its
stable progress in performance.

Training datasets. To assess the influence of dataset se-
lection in the source domain on performance, DRIVE is
substituted with AVRDB and DR HAGIS. To ensure a fair
comparison, we synthesized 16 degraded samples randomly
from each high-quality sample of DR HAGIS, while 8 samples
were from that of AVRDB, taking into consideration the
dataset volume.

As depicted in Fig. 6 (b), AVRDB and DR HAGIS demon-
strate comparable overall performance, albeit with some fluc-
tuations on individual datasets. These performance fluctuations
could be attributed to the homogeneity of the training and
test data, which may lead to performance spikes on specific
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TABLE V
ABLATION STUDY OF THE PROPOSED MODULES IN SAME.

Source model Target Adaptation Enhancement (SSIM) Segmentation (DICE)
LS
1 LS

CE LT
1 LT

CE
IQA ISD RF FIQ RCF Avg. RF FIQ RCF Avg.

√ 0.745 0.858 0.755 0.786 0.579 0.612 0.565 0.585
(0.049) (0.030) (0.068) (0.051) (0.061) (0.055) (0.060) (0.020)

√ √ 0.746 0.860 0.760 0.789 0.582 0.615 0.569 0.589
(0.053) (0.029) (0.066) (0.051) (0.062) (0.053) (0.059) (0.019)

√ √ √ 0.751 0.866 0.764 0.794 0.592 0.622 0.572 0.595
(0.050) (0.027) (0.060) (0.051) (0.058) (0.051) (0.058) (0.021)

√ √ 0.750 0.862 0.761 0.791 0.592 0.619 0.573 0.595
(0.047) (0.028) (0.061) (0.050) (0.049) (0.051) (0.055) (0.019)

√ √ √ 0.746 0.865 0.765 0.792 0.586 0.620 0.573 0.593
(0.049) (0.029) (0.058) (0.052) (0.048) (0.053) (0.055) (0.020)

√ √ √ √ 0.754 0.870 0.766 0.797 0.595 0.625 0.574 0.598
(0.051) (0.027) (0.055) (0.052) (0.045) (0.051) (0.055) (0.021)

√ √ √ √ 0.753 0.867 0.766 0.795 0.595 0.626 0.575 0.599
(0.051) (0.033) (0.057) (0.056) (0.046) (0.052) (0.056) (0.025)

√ √ √ √ √ 0.767 0.871 0.769 0.802 0.596 0.630 0.575 0.600
(0.046) (0.025) (0.053) (0.049) (0.047) (0.048) (0.051) (0.023)

√ √ √ √ √ 0.755 0.872 0.767 0.798 0.605 0.635 0.576 0.605
(0.055) (0.024) (0.055) (0.053) (0.049) (0.056) (0.047) (0.024)

√ √ √ √ √ √ 0.770 0.873 0.771 0.805 0.610 0.638 0.578 0.609
(0.044) (0.023) (0.051) (0.048) (0.048) (0.053) (0.044) (0.025)

datasets. SAME demonstrates robustness to the datasets used
for training the source model, resulting in consistent adaptive
capabilities across various datasets. This robustness mitigates
the inferior performance of source models observed in certain
datasets to a certain extent.

Training epochs. We present a comparison of the adap-
tation process between the source model trained for 100
and 150 epochs, respectively. Fig. 6 (c) clearly demonstrates
that the source model is insufficiently trained at the 100
epoch compared to the model at the 150 epoch, resulting in
inferior performance, particularly in terms of segmentation.
On the other hand, the source model trained for 150 epochs
is reaching convergence as it exhibits similar performance to
the default setting of 200 epochs.

A noteworthy observation in this scenario is that the
progress achieved by SAME is affected by the training epochs
of the source model, which differs from the observation made
regarding training degradations and datasets. The difference
in these observations may stem from the fact that degradation
and datasets alter the nature of the source training data without
affecting the capacity of SAME. However, the undertrained
source model in the current case impacts the initialization of
SAME, leading to a hindrance in the adaptation process.

Moreover, it is observed that the segmentation progress
is relatively less affected by the undertrained source model
compared to enhancement, demonstrating a greater potential
for improvement. This observation leads us to speculate that
the inherent difficulty of SFUDA for enhancement surpasses
that of segmentation.

In summary, the training data plays a significant role in
shaping the performance of the source model. Fortunately,
despite training degradation and datasets impacting the adap-
tation of SAME for specific datasets, the overall performance
remains robust across various datasets. In contrast, the extent
of training substantially affects both the initialization and the
subsequent adaptation, emphasizing the importance of using a
fully trained source model for the initialization of SAME.

2) Adaptation epochs and samples: To gain insights into

Fig. 7. The training history of the adaptation process, and the performance
of enhancement with adaptation sample size.

the adaptation process, we investigate the performance affected
by adaptation epochs and samples. The training history of
the adaptation process and the performance variance with the
adaptation samples are visualized in Fig. 7.

Adaptation epochs. The adaptation process is performed
by referencing the configuration of the source model training.
This involves utilizing the Adam optimizer without early
stopping. The learning rate is 0.001 in the first 150 epochs,
and gradually decreases to 0 during the final 50 epochs.

Fig. 7 (a) exhibits the history of the adaptation process.
SAME achieves convergence within 200 adaptation epochs
across all datasets. Convergence is reached earlier in RF and
FIQ compared to RCF, likely due to the difference in sample
sizes.

Adaptation samples. Fig. 7 (b) provides a visual rep-
resentation of the enhancement performance and variance
influenced by the adaptation sample size. It is observed that
as the sample size increases, the performance exhibits positive
progress. Optimal performance is achieved when utilizing all
available samples for adaptation.

Furthermore, performance convergence is observed at the
sample size of 160 in FIQ, which can be attributed to its
larger data volume compared to the other two datasets. This
insight highlights the importance of using a representative
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Fig. 8. Visualized comparison of enhancement results of OCT and ultrasound images. The top two rows exhibit the enhanced images of OCT from EHFU and
A2A, while the bottom row displays the enhancement results of ultrasound images from SUStecH. The enhancement progress achieved by SAME indicates
its versatility across diverse medical imaging modalities.

sample size during the adaptation process, as it facilitates the
generalization of adapted models.

3) Module Ablation: Ablation studies against the modules
in SAME are summarized in Table V to verify their effec-
tiveness. The source model with and without the segmentation
decoder are respectively employed as the initialization. Subse-
quently, the adaptation modules are individually implemented
to validate their effectiveness.

The source model without the segmentation decoder is
exclusively trained using LS

1 on the source domain. For adap-
tation, distillation with LT

1 is performed on target domains, and
pseudo-labels can be selected using the IQA. The absence of
the segmentation decoder hinders the source model from effec-
tively preserving structures, impacting both the enhancement
and segmentation. The utilization of the IQA for pseudo-label
selection further boosts the adaptation performance.

By considering both image enhancement and structure
preservation using LS

1 and LS
CE , the capacity of the source

model is promoted. However, ignoring structure preservation
during adaptation (e.g., solely utilizing LT

1 ) may lead to
negative adaptation, as observed in RF. The collaborative use
of LT

1 and LT
CE ensures positive adaptation on target domains.

Furthermore, the selection of pseudo-labels with the IQA
and the ISD contributes to advancements in adaptation. The
IQA demonstrates advantages in boosting image enhancement,
while the ISD reasonably promotes structure preservation.

D. Versatility for various modalities

The versatility of SAME is demonstrated through the en-
hancement of various medical imaging modalities, and quan-
titative and visualized comparisons with the enhancement
algorithms for the modalities are provided in Table VI and
Fig. 8.

Considering that both OCT and ultrasound images are
affected by speckle noise [38], we compare the same enhance-
ment algorithms for both modalities. As indicated in Table I,
the clear samples from EHFU and SUStecH are collected and
collaborated with the degradation model described in [38] to
synthesize paired training data. As a result, the unpaired data-
based algorithms are free from domain shifts on EHFU and
SUStecH, since their training and test data are all from these

TABLE VI
COMPARISONS ON OCT AND ULTRASOUND ENHANCEMENT

Algorithms Enhancement (SSIM)
EHFU A2A SUStecH Avg.

HDcycleGAN [16] 0.435 0.308 0.505 0.416
(0.057) (0.062) (0.033) (0.082)

StillGAN [7] 0.507 0.388 0.484 0.460
(0.050) (0.055) (0.038) (0.052)

ODDM [18] 0.476 0.406 0.461 0.448
(0.055) (0.049) (0.037) (0.030)

SAME-source 0.491 0.378 0.479 0.449
(0.053) (0.052) (0.039) (0.051)

SAME (ours) 0.495 0.408 0.490 0.464
(0.056) (0.051) (0.038) (0.040)

two datasets. And the synthetic data-based algorithms also
suffer fewer domain shifts on EHFU and SUStecH compared
to A2A.

Therefore, it is no surprise that the enhancement perfor-
mance on EHFU and SUStecH would generally surpass that
on A2A, given the effect of domain shifts. Furthermore, the
absence of domain shifts enables HDcycleGAN [16] and Still-
GAN [7] to deliver impressive results on EHFU and SUStecH,
as summarized in Table VI. The source model provides a
reasonable initialization for SAME across all datasets, and
further progress is achieved by SAME (visualized in Fig. 8),
particularly on A2A, through the additional adaptation of the
model to each specific dataset using SFUDA. These findings
indicate that SAME exhibits versatility across various medical
imaging modalities.

V. DISCUSSIONS

Enhancement algorithms based on unpaired and synthetic
training data have been developed to boost clinical observation
and diagnosis. However, deploying these algorithms in the
clinic poses a challenge due to domain shifts. Independent
identically distributed training and test data without domain
shifts are impractical in the clinical setting, and incorporating
clinical test data to compress domain shifts leads to the high
costs and privacy concerns associated with data collection. To
alleviate these challenges, we propose an SFUDA paradigm for
medical image enhancement, named SAME. SAME leverages
a source model trained on synthetic data to initialize a teacher-
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student model, which implements SFUDA on target sites
through knowledge distillation. By avoiding the centralized
storage and training of clinical data, SAME reduces the need
for data storage and transmission, thereby mitigating privacy
risks. Although some privacy issues remain, such as the risk
associated with the release of source models, addressing risks
related to clinical data usage is still significant. In our future
studies, we will strive to further minimize the risk from source
models.

To implement SAME, a decent source model is first learned
from synthetic training data for initialization, and then the
designed knowledge distillation framework and pseudo-label
picker collaborate to conduct SFUDA for medical image
enhancement. In the experiment, comparisons with SOTA
algorithms were executed not only on the enhancement task
but also on the downstream segmentation and diagnosis tasks
to validate the benefits of SAME. The results confirm that
SAME significantly improved the enhancement model at the
targeted sites during the inference phase, without compromis-
ing data collection and privacy protection. Moreover, SAME
also provided a notable boost to segmentation and diagnosis
tasks.

Despite the superior performance of SAME, existing algo-
rithms also achieved remarkable outstanding results on certain
datasets due to their specifically designed modules. However,
these specific modules may not be easily transferable across
various image datasets and modalities. In contrast, SAME
offers a versatile paradigm for enhancing medical images,
optimizing the enhancement model during the inference phase.
Its versatility was validated by applying SAME to three dis-
tinct medical image modalities: fundus photography, OCT, and
ultrasound images. Remarkably, SAME showcased superior
enhancement performance across all three modalities.

Comprehensive ablation studies were also conducted on
the configuration of the source model and the adaptation
process, as well as the designed modules, to thoroughly
investigate the effectiveness and potential of SAME. Training
data has proved to have notable effects on the source model
and the initialization of SAME. In spite of the adaptation
variations on specific datasets caused by training degradation
and datasets, the overall performance of SAME remains ro-
bust across various datasets. Notably, the extent of training
substantially affects both the initialization and the subsequent
adaptation of SAME, highlighting the necessity of utilizing a
fully trained source model for the initialization. During the
adaptation phase, the sample size has been verified to have
effects on the convergence speed and the performance of the
model after adaptation. Regarding the designed modules, it
has been confirmed that the segmentation decoder imposes
structure-preserving in the source model. Then the proposed
knowledge distillation paradigm effectively adapts the teacher-
student model to the target sites. Additionally, the pseudo-
labels selected by the IQA and the ISD ensure a positive
adaptation by SAME across datasets.

On the other hand, Fig. 9 illustrates the sample-wise
adaptation effects, where the purple portion of the pie chart
summarizes the number of failure cases. As exhibited by the
cases in Fig. 9, the adaptation is ineffective for excessively

blurred vessels in RF. Furthermore, some negative adaptation
is observed in the contrast of FIQ samples and the brightness
of RCF ones. These negative adapted cases are believed to be
attributed to intra-dataset inconsistency among samples, such
as variations in contrast and exposure. Thus the inconsistency
can potentially mislead the knowledge distillation process to
negative adaptation. For the three datasets, the number, rate,
and SSIM decline boundary of negative adapted samples are as
follows: (3, 2.5%, -0.001), (16, 8.2%, -0.019), and (4, 15.4%,
-0.035) respectively.

Fig. 9. Sample-wise adaptation effects and failure cases. The pie chart counts
the number of adapted samples based on their SSIM increase. The purple
portion represents the failure cases and the representation ones are displayed.

Additionally, while SAME introduces an SFUDA paradigm
for medical image enhancement, allowing for adaptive en-
hancement models during the inference phase, the adaptive
model training with target data remains essential. In future
work, we will delve into test-time adaptation paradigms to
enable the generalization of models across various target
domains without explicit training with target data.

VI. CONCLUSIONS

Medical images are often subject to quality degrada-
tion, negatively impacting clinical observation and diagnosis.
Though enhancement algorithms have been proposed, they
always require well pre-training before deployment, while
failing to capitalize on inference data and promise performance
on unseen data. To address these challenges, we proposed
SAME, which utilizes SFUDA to adapt and optimize enhance-
ment models using test data in the inference phase. Extensive
experiments were executed to interpret the advantages and
effectiveness of SAME. By implementing SFUDA, SAME
achieved superior performance on both the enhancement task
and downstream tasks, without the additional burden of data
collection and privacy protections.
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