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Abstract— Interpretability is highly desired for deep neu-
ral network-based classifiers, especially when addressing
high-stake decisions in medical imaging. Commonly used
post-hoc interpretability methods have the limitation that
they can produce plausible but different interpretations
of a given model, leading to ambiguity about which one
to choose. To address this problem, a novel decision-
theory-inspired approach is investigated to establish a self-
interpretable model, given a pre-trained deep binary black-
box medical image classifier. This approach involves utiliz-
ing a self-interpretable encoder-decoder model in conjunc-
tion with a single-layer fully connected network with unity
weights. The model is trained to estimate the test statistic
of the given trained black-box deep binary classifier to
maintain a similar accuracy. The decoder output image,
referred to as an equivalency map, is an image that repre-
sents a transformed version of the to-be-classified image
that, when processed by the fixed fully connected layer,
produces the same test statistic value as the original clas-
sifier. The equivalency map provides a visualization of the
transformed image features that directly contribute to the
test statistic value and, moreover, permits quantification
of their relative contributions. Unlike the traditional post-
hoc interpretability methods, the proposed method is self-
interpretable, quantitative. Detailed quantitative and qual-
itative analyses have been performed with three different
medical image binary classification tasks.

Index Terms— Decision theory, interpretability, deep
learning, medical imaging, classification

I. INTRODUCTION

Despite showing excellent potential for performing impor-
tant tasks such as image classification and object detection,
deep learning models are often criticized as being black-boxes
that cannot be interpreted [1], [2]. However, such methods
may not provide a unique interpretation of how the black-
box models arrived at their decisions. This is because many
convincing but different explanations or interpretations can be

This work was supported in part by NIH Awards EB031772 (subpro-
ject 6366), EB031585 and CA238191. Research reported in this publica-
tion was supported by the National Institute Of Biomedical Imaging And
Bioengineering of the National Institutes of Health under Award Number
T32EB019944. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health.

Sourya Sengupta is with the Department of Electrical and Computer
Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801
USA (e-mail: souryas2@illinois.edu).

Mark A. Anastasio is with the Department of Bioengineering, Uni-
versity of Illinois Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
maa@illinois.edu).

produced [3] and it is not always clear which interpretation
is “correct” among them. This can clearly confound the
goal of interpreting a black box model. There exist self-
interpretable deep learning models, but many of them suffer
from an interpretability-performance trade-off [3]–[5]. Hence,
there is an urgent need for the development of alternative
methods for achieving self-interpretability that can maintain
the performance of a black-box classifier.

In this work, the following problem is addressed: Given
a trained deep binary black-box medical image classifier
and the training images, find an alternative self-interpretable
network that can deliver comparable classification accuracy.
To accomplish this, the original network is re-expressed in the
form of an encoder-decoder model coupled with a single-layer
fully connected network with unity weights. This model is
trained in such a way that the output of the decoder, referred to
as an equivalency map, represents a transformed version of the
to-be-classified image whose element-wise sum approximates
the same test statistic value as the original classifier. As
such, the equivalency map provides a quantitative and novel
means of understanding how the transformed image features
contribute to the test statistic value.

Unlike traditional post-hoc interpretability methods, our
approach is inspired from decision theory and it aims to estab-
lish a self-interpretable binary classifier. In decision theory, a
classifier computes a scalar-valued test statistic from the input
image, which is subsequently thresholded to make a decision.
In our self-interpretable model, the equivalency map captures
the transformation of the input image features to an image
whose elementwise sum approximates the same test statistic
value yielded by the original classifier. The proposed method
has been rigorously evaluated through detailed quantitative and
qualitative analyses of three different medical image binary
classification tasks. Some distinctive characteristics of the
proposed method are:

• It is based on a novel decision theory-inspired framework
for developing self-interpretable models for medical im-
age classification tasks.

• The proposed self-interpretable classifier achieved a clas-
sification accuracy that is on par with the original black-
box classifier. This demonstrates the effectiveness of our
self-interpretable model in achieving high-performance
results while providing interpretability.
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Fig. 1: The black-box classification network (left) and self-interpretable model involving an encoder-decoder network (right)

II. BACKGROUND

A. Post-hoc Interpretability Methods

Traditional post-hoc interpretability methods for black-
box deep learning classifiers typically involve analyzing the
model’s output and its relationship to the input data. Popular
such methods include gradient-based class activation maps
(CAMs) [1]. These involve computing the gradient of the
output with respect to the input features to identify which
parts of the input are most important for a given prediction,
which is typically visualized as a heatmap that highlights
the important regions of the input. Some examples of these
methods include the Saliency map [6], Guided Backprop [7],
Gradient-weighted Class Activation Mapping (Grad-CAM)
[8], Integrated Gradients [9], LIME [10] and the Layer-wise
Relevance Propagation (LRP) [11]. However, these methods
can produce different visualizations for the same black-box
classifier [3]. Additionally, the interpretation of the heatmaps
may not always be straightforward, and it may be difficult
to determine which features or regions of the input are truly
important for a given prediction.

B. Self-interpretable Methods

Self-interpretable deep learning-based classifiers possess
built-in interpretability components in the network architecture
or training scheme, eliminating the need for traditional post-
hoc methods [3]–[5]. Several models, including FRESH [12],
SENN [13], Concept Bottleneck Models [14], ProtoPNet [15],
and NAM [16], provide interpretations in different ways. For
instance, FRESH focuses on interpretability for natural lan-
guage processing tasks, while SENN and Concept Bottleneck
Models generate interpretations in high-level spaces instead
of raw pixel space. ProtoPNet provides interpretations in the
pixel space, but with a focus on local patches that correspond
to local areas of an image rather than global interpretation.
NAM provides the same type of interpretations as SITE, but
it combines neural networks with additive models to facilitate
self-interpretation via component function. However, a draw-
back of many available self-interpretable models is that they
may sacrifice classification performance [4], [17]. Chidester et
al. [18] proposed a rotation equivariant CNN-based classifier
that was found to learn more interpretable feature maps than
those produced by a traditional CNN. However, this work

only addressed the rotation-equivariance of feature maps of
particular convolutional layers of the classifier.

III. METHODOLOGY

From the perspective of decision theory, a binary classifi-
cation of an image f ∈ RN involves computation of a scalar-
valued test statistic t = h(f), where h(f) is referred to as the
discriminant function. For a linear classifier, the test statistic
can be formulated as t = h(f) = w†f + b, where w ∈ RN is
called the decision template. Without loss of generality, we
assume b = 0 in the discussion below. This mapping can
alternatively be expressed as

t = w†f = e†[w ⊙ f ], (1)

where e ∈ RN is a vector of all 1s and ⊙ denotes the
Hadamard product. This model is self-interpretable because
w ⊙ f can be readily visualized to understand the features
employed to form the test statistic.

For a non-linear classifier, the test statistic t can similarly be
expressed as t = hnl(f), where the subscript nl denotes that
the discriminant function is non-linear. Inspired by Eq. (1), the
test statistic for the non-linear classifier can be re-expressed
as

t = hnl(f) = e†T (f), (2)

where T : RN → RN is a non-linear mapping that maps the
input image f into a transformed image T (f). The test statistic
value is computed by taking an element-wise summation of
T (f).

Consider that a deep neural network is employed to rep-
resent the discriminant function hnl(f). In this case, directly
interpreting hnl(f) is known to be problematic. However, a
key observation is that Eq. (2) provides a potentially inter-
pretable alternative form of the black-box non-linear classifier.
For a non-linear classifier, T (f) can be thought of as a
generalization of the quantity w ⊙ f in Eq. (1). According
to Eq. (2), T (f) represents a transformed, or equivalent,
version of the to-be-classified image that, when subject to
an elementwise summation by a linear single layer neural
network (SLNN) with unity weights, produces the test statistic
value prescribed by the original discriminant function hnl(f).
We therefore refer to T (f) as an equivalency map (E-map).
Because the formation of the test statistic via the SLNN is
fully interpretable, the E-map provides a visualization of the
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Fig. 2: Example image of all datasets. Top row: Normal images, bottom row: Abnormal images. The red bounding boxes
indicate the regions of abnormality.

transformed image features that contribute to the test statistic
value and, moreover, permits quantification of their relative
contributions. Below, the means by which the E-map can be
computed is described.
Equivalency Map Computation Consider that a non-linear
discriminant function hnl(f) is represented as a composition
of a feature-extracting encoder network (henc) and a fully
connected network (hfc):

t = hnl(f) ≡ hfc(henc(f)). (3)

This configuration is referred to as the ‘original’ classifier,
which is assumed to be trained and provided. As depicted
in Fig. 1, the key contribution of this work is to establish
an alternative configuration of the original classifier, hence-
forth termed as the self-interpretable network or interpretable
encoder-decoder network, which can be interpreted via an E-
map according to Eq. (2). To accomplish this, we approximate
T (f) in Eq. (2) by use of an encoder-decoder network, where
the encoder is non-trainable and corresponds to henc employed
by the original classifier. Hence, only the decoder network is
trainable, and the decoder output, the E-map (T (f)), can be
approximated as

T (f) ≈ hθ∗

dec(henc(f)), (4)

where hθ∗

dec(·) represents the decoder network parameterized
with weights θ∗. The decoder parameters are estimated in a
way so that the self-interpretable network learns to estimate
the test statistic t of the original classifier. Specifically,
the decoder parameters are estimated in such a way that
e†hθ∗

dec(henc(f)) ≈ hnl(f) = t.

Hence, the decoder network is trained by (approximately)
solving the following optimization problem:

θ∗ = argmin
θ

E
f∼D

{
L(hnl(f), e

†hθ
dec(henc(f)))

}
. (5)

Here, D denotes the distribution of the training images f
and L denotes the loss function, which corresponds to mean
squared error (MSE) in the studies below. The equivalency
map computation steps are shown in the summary below.

Summary: Procedure for Computing Equivalency Maps
Input: Non-linear black-box classifier hnl(f), training data f
Let henc be the encoder network in the original classifier
Let hfc be the fully connected network in the original classifier
Compute: t← hnl(f) ≡ hfc(henc(f)) ▷ Original classifier
Initialize trainable decoder network parameters θ
Train the decoder network hθ

dec by solving:
θ∗ ← argmin

θ
E

f∼D

{
L(hnl(f), e

†hθ
dec(henc(f)))

}
Compute the self-interpretable network’s E-map as:
T (f) ≈ hθ∗

dec(henc(f))
Output: Self-interpretable network and its E-map T (f)

IV. EXPERIMENTS

Three different binary classification tasks were considered
to evaluate and investigate the classification performance of the
self-interpretable networks in terms of accuracy. Quantitative
analyses were also performed to understand the pixel intensity
distribution of the E-maps and the overlap between the disease
area and contributing pixel locations. This allowed for a deeper
understanding of the network’s decision-making process and
which features of the E-map were most relevant in determining
the output class.

A. Classification Tasks

Three different binary classification tasks were considered
in our studies.

Drusen detection task using retinal OCT images: A
drusen detection task was performed using optical coherence
tomography (OCT) images of the human retina of size 256
x 256 [19]. Drusen is characterized as an accumulation of
extra-cellular materials between the retinal pigment epithelium
(RPE) layer and the Bruch’s membrane layer of the human
retina and can be well observed using retinal OCT images.

Tumor detection task using simulated mammogra-
phy images: A stylized tumor detection task was ex-
plored using a simulated digital mammography dataset.
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Fig. 3: The simulated tumor and
different locations where it was
inserted in the simulated CLB im-
ages.

The doubiso clustered
lumpy backgrounds
(CLB) were used as
background images
[20]. The to-be-detected
tumor was generated
as a 2D symmetric
Gaussian function and
was inserted [21] into
the background in
one of the 9 discrete
locations shown in
Fig. 3. The images
were of size 128 X
128.
Cardiomegaly detection task using chest X-ray images: A
cardiomegaly detection task was performed using chest X-ray
images of size 1024 X 1024 images. Cardiomegaly refers to
the enlargement of the heart, which is a biomarker for heart
diseases. The images were taken from a publicly available
NIH database [22]. The image labels were created using text
mining from radiological reports generated by clinicians.

Sample images from all the datasets are shown in Fig. 2,
where the red bounding boxes are annotations that indicate the
specific region where the abnormality is present.

B. Training Details
1) Black-box classifiers: For the black-box classifier, two

different CNN configurations were used in our experiments
for all three tasks. The first classifier (baseline) consisted of
4 convolutional blocks (convolution + non-linear activation)
followed by a max-pool layer and a fully connected dense
layer. The VGG16 network [23] was used as another black-
box deep network.

2) Self-interpretable networks: The proposed self-
interpretable network has an encoder-decoder style
architecture. The feature extraction component of the
corresponding black-box network is employed as the pre-
trained encoder of the self-interpretable network. The decoder
comprises several components, including convolutional layers,
transpose convolutional layer, and skip connection, grouped
together as a unit referred to as a ‘Deconv block’. The
Decoder can have single or multiple such Deconv blocks
depending upon the design. The number of Deconv blocks is
the same as the number of maxpool layers in the encoder to
keep the spatial dimension of the decoder output similar to
the input image. The details of the decoder architecture of the
network are summarized here and also shown in the Table I

Deconv block:
1) The Deconv block starts with a deconvolutional or

transpose convolutional layer that has 128 filters and a
kernel size of (2, 2). It employs strides of 2 to up-sample
the input.

2) The output of the previous layer is then concatenated
with the corresponding similar-size output from the
encoder layer with a skip connection.

3) Next, a sequence of multiple consecutive convolutional
layers is applied. Each layer has 128 filters and a 5x5

kernel size. The ReLU activation function is used for
each layer.

Penultimate layer: After the deconv block(s), a final convo-
lutional layer is applied. This layer has 1 filter and a 5x5 kernel
size. The activation function used is the non-linear activation
function ReLU.

Finally, a dense layer is used to take the element-wise
summation of the output of the decoder or E-map.

TABLE I: Decoder architecture details

Type

Number
of

Feature
Maps

Kernel
Size Stride Activation

Deconv Block

Transposed
Convolution 128 (2,2) 2 ReLU

Skip
Connection - - - -

Convolutional
Layer

128, 128,
128 (5,5) 1 ReLU

Penultimate
Layer

Convolutional
Layer 1 (5,5) ReLU

3) Training: For the tumor detection and drusen detection
tasks, the training, validation, and testing sets comprised
19000, 1000, and 1000 images in each class, respectively. For
the drusen detection task, the training, validation and testing
sets comprised 6000, 1000, and 1000 images in each class
respectively. For the cardiomegaly detection task, 2000, 200
and 200 images were used for the training, validation, and
testing respectively. Binary cross-entropy was used as the loss
function for the black-box classifiers and mean squared error
(MSE) was used as the loss function for the self-interpretable
network. The Adam optimizer [24] with a learning rate of 3e-5
was used to train all the models. A stopping rule was designed
to stop the training if the validation loss did not decrease for
consecutive five epochs.

C. Performance of the self-interpretable network

For all the tasks, the classification accuracy of the black-
box classifier and the self-interpretable classifier, along with
test statistic estimation errors were computed. The baseline
CNN achieved test statistic estimation errors of 0.001, 0.0003,
and 0.003 for the mammography, OCT, and chest X-ray
datasets, respectively. The VGG16 model had estimation errors
of 0.003, 0.0005, and 0.003 for the mammography, OCT,
and chest X-ray datasets, respectively. It was observed that
the accuracy achieved by the self-interpretable network was
similar to the original classifier for all the cases. Table II and
III contain the classification accuracies for all three tasks for
both baseline CNN (4-layer) and VGG16. The ROC curves
for the tumor detection and cardiomegaly detection tasks are
shown in Fig. 4 and Fig. 5. The AUC value for the drusen
detection task was nearly 1. The near-ideal ROC curves for
that task are not displayed here. It was observed that the
self-interpretable classifiers yielded ROC curves that closely
approximated those yielded by the black-box classifiers. The
AUC values were also comparable between black-box and self-
interpretable classifiers.
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TABLE II: Classification accuracy (%) of the baseline CNN
classifier and the corresponding self-interpretable network for
3 different tasks. Both networks achieved similar classification
accuracy.

Dataset

Classification
Accuracy of the

Baseline
Black-box
Classifier

Classification
Accuracy of the

Associated Self-interpretable
Network

Mammography 77.8 77.8
Retinal
OCT 99.1 99.1

Chest
X-ray 83.33 83.0

TABLE III: Classification accuracy (%) of the VGG16 clas-
sifier and the corresponding self-interpretable network. Both
networks achieved similar classification accuracy.

Dataset

Classification
Accuracy, Sen, Spec of the

VGG16
Black-box
Classifier

Classification
Accuracy, Sen, Spec of the

Associated Self-interpretable
Network

Mammography 79.8 79.8
Retinal
OCT 99.5 99.5

Chest
X-ray 81.2 81.0

Fig. 4: ROC curves corresponding to the baseline CNN
classifier (blue) and the corresponding self-interpretable clas-
sifier (red) for different tasks. For both tasks, the ROC curves
corresponding to the self-interpretable classifier closely ap-
proximated those corresponding to the black-box classifier.

Fig. 5: ROC curves corresponding to the VGG16 classifier
(blue) and the corresponding self-interpretable classifier (red)
for different tasks. For both tasks, the ROC curves correspond-
ing to the self-interpretable classifier closely approximated
those corresponding to the black-box classifier.

D. Visualizing Equivalency Maps
Figure 6 shows an abnormal mammography image and

examples of corresponding heatmaps generated by differ-
ent state-of-the-art post-hoc interpretability methods for the
trained baseline CNN classifier for the normal vs tumor
mammography classification task.

Fig. 6: Heatmap interpretations generated by different post-
hoc interpretability methods for the baseline CNN classifier.
The results show how different methods can yield multiple
plausible but different visualizations.

The Saliency map [6], Integrated Gradients (IG) [9], Guided
Backprop [7], Grad-CAM [8], LRP [11], Smoothgrad [25]
were used to interpret the classifier. It was observed that
different methods could yield multiple plausible but different
visualizations when an abnormal mammography image was
considered, which can confound model interpretation.

Figure 5 shows E-maps generated by the self-interpretable
network, whose encoder was fixed and specified by the feature
extraction layer weights of the baseline CNN classifier. The
E-maps were overlayed with the original images for abnormal
classes for all the datasets. The E-maps tend to reveal relevant
regions where the abnormality is present in the abnormal
images. It was also observed that, for the abnormal images,
the E-map tended to have positive values (bright pixels) at
the locations of abnormal features. These pixels contributed
significantly to the test statistic, yielding relatively large test
statistic values that resulted in the classification of the images
as abnormal. On the other hand, the images from normal class
did not show specific patterns and yielded lower test statistics
values, as shown in the Appendix A. E-maps for the VGG16
network are shown in the Appendix B.

E. Performance with Different Number of Layers in
Baseline Black-box Classifier

In this study, the performances of both the baseline black-
box classifier and the corresponding self-interpretable clas-
sifier were explored with consideration of various number
of convolutional layers in the black-box classifier when the
decoder of the self-interpretable classifier was fixed. The base-
line black-box classifier utilized multiple convolutional layers,
followed by a max-pooling layer, and concluded with a final
dense layer. For the experiments, performances with a total of
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Fig. 7: Top row: Sample images for abnormal classes from the datasets. Bottom row: The corresponding E-maps overlayed
on the original image. The E-maps tend to show regions where an abnormality is present. The red bounding boxes show the
region of the abnormality. The pixel intensity value range of the E-map is shown below for each E-map. The colorbar is shown
on the right and applies to all E-maps.

1, 3, 4, and 6 convolutional layers were analyzed. In the corre-
sponding self-interpretable classifier, the encoder corresponded
to the black-box model’s feature extraction network, excluding
the final dense layer. The decoder consisted of a single Deconv
block, which consisted of one transpose convolutional layer, a
skip connection with a corresponding convolutional layer from
the encoder and multiple subsequent convolutional layers. The
Deconv block was followed by a penultimate convolutional
layer, and a final dense layer to sum the decoder output or E-
map. Table IV presents the classification accuracy results for
different number of convolutional layers in the baseline CNN
classifier. Notably, the self-interpretable classifier consistently
achieved the same accuracy for different baseline black-box
classifiers with different number of layers.

TABLE IV: Classification accuracy (%) of the baseline CNN
classifier and self-interpretable network with consideration of
different numbers of convolutional layers in the baseline CNN.

Mammography OCT X-ray

Black-box Self-
interpretable Black-box Self-

interpretable Black-box Self-
interpretable

1 Conv
Layer 70 70 91 91 71.8 71.7

3 Conv
Layers 76.2 76.2 94.6 94.6 81.6 81.6

4 Conv
Layers 77.8 77.8 99.1 99.1 83.33 83

6 Conv
Layers 77.9 77.9 99.5 99.5 79.1 79

F. Performance for Different Number of Decoder Layers
in Self-interpretable Classifier

In this study, the influence of the decoder architecture was
investigated when the corresponding black-box classifier and
the encoder of the self-interpretable classifier were fixed. The
decoder architecture in the self-interpretable classifier was
investigated for both the baseline black-box classifier and the
VGG16 classifiers. The cardiomegaly detection task involving
the chest X-ray dataset was employed in this study. The
primary focus was to analyze the performance with different

number of convolutional layers within each Deconv block of
the decoder in the self-interpretable classifier. Experiments
were conducted with varying configurations that included 0,
2, 3, 5, and 7 convolutional layers within each Deconv block
of the decoder. The baseline black-box classifier contained 4
convolutional layers, followed by a max-pooling layer, and
concluded with a final dense layer. In the corresponding self-
interpretable classifier, the encoder consisted of the architec-
ture employed by the black-box model’s feature extraction
network, excluding the final dense layer. The decoder, on
the other hand, consisted of Deconv blocks, with each block
containing one transpose convolutional layer, a skip connec-
tion that paired with a corresponding convolutional layer from
the encoder, and multiple additional convolutional layers. The
Deconv block was followed by a penultimate convolutional
layer and a final dense layer.

TABLE V: Classification performance (%) with different num-
ber of convolutional layers in the Deconv block of the self-
interpretable classifier’s decoder

Task:
Cardiomegaly

Detection
0 2 3 5 7

Accuracy 61 64.2 79.3 83.0 83.1

The total number of Deconv blocks (or total transpose
convolutions in the decoder) was determined by the total
number of max-pool layers in the encoder to match the
spatial dimension of the E-map with the original input image.
Table V shows that the performance of the self-interpretable
classifier did not improve significantly after 5 convolutional
layers in the Deconv block. For this task, the corresponding
baseline black-box classifier achieved an accuracy of 83.33%.
Similar experiments were also performed when the black-
box classifier was VGG16 and the results are provided in
Appendix C.2 In that case, a similar result was observed in
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which the classification performance of the corresponding self-
interpretable classifier was improved with an increasing num-
ber of convolutional layers. However, beyond 5 convolutional
layers in each Deconv block, the performance did not exhibit
significant improvement.

G. Examination of False Positive (FP) and False
Negative (FN) Cases

In the context of medical imaging, false positive (FP) and
false negative (FN) cases hold considerable significance. As
depicted in Figure 8, images and corresponding E-maps from
the mammography and chest X-ray dataset are provided to
illustrate FP and FN cases. Upon examination of the E-maps,
it becomes evident that FN cases fail to accurately locate
abnormal regions within the images. In contrast, FP cases
exhibit E-maps that bear a closer resemblance to E-maps of the
true positive class. Similar experiments were also performed
for the case where the black-box classifier was VGG16. The
results are shown in Appendix C.3 and the findings were
qualitatively similar to those described above.

Fig. 8: False Positive (FP) and False Negative (FN) Analysis.
FP cases look similar to positive class E-map, FN cases look
similar to negative class E-map

H. Stability Analysis of Equivalency Maps
In this study, the stability of the E-map was assessed for a

given architecture of the self-interpretable network across dif-
ferent random weight initializations, considering both normal
and uniform distributions. The stability of deep learning model
interpretation is a critical factor in ensuring the trustworthiness
and reproducibility of the results. We defined stability as
the degree to which the same interpretation can be obtained
from multiple runs with different random weight initializa-
tions for a given self-interpretable architecture. When a self-
interpretable model produces similar interpretations across
different runs, it is considered to be stable. To assess this,
3 binary classification tasks were considered with 3 different
random weight initializations: ‘glorot uniform’ [26], ‘random
normal’ and ‘random uniform’. The self-interpretable models
were trained for each of these conditions and E-maps were
computed. While evaluating quantitatively, for all the tasks, the
structural similarity index (SSIM) [27] values were computed.
For the mammography and OCT cases, all 3 restarts showed
high similarity with an SSIM score of 0.98 in both cases,

indicating a high degree of stability in the interpretation of the
model. For the cardiomegaly detection task that involved the
chest X-ray dataset, the glorot uniform and random uniform
weight initializations produced E-maps with a high similarity
of 0.98 SSIM. The studies that employed initializations based
on the random normal and glorot uniform distributions also
achieved fairly good similarity of 0.85 between the two E-
maps. Figure 9 shows some visualizations of the results.
Qualitatively similar results were found when the pre-trained
feature extraction network of the VGG16 classifier was used
as the encoder of the self-interpretable network. Those results
are presented in Appendix C.4.

Fig. 9: From left in each row: input image and E-maps for
3 different random weight initializations of the network. Dif-
ferent random weight initializations produced similar-looking
E-maps. This study shows the stability of the E-maps for
different random restarts of the network.

I. Pixel Intensity Distribution Analysis

In this study, an in-depth analysis of pixel intensity dis-
tributions in the E-maps was conducted to reveal variations
between the E-maps of normal and abnormal class images.
This analysis offers insights into the distinct contributions of
different elements towards positive or negative decisions. The
test statistic values for true positive cases were larger than true
negative cases. As an elementwise sum of an E-map yields the
test statistic, any positive element of an E-map contributes to
classifying the image as abnormal. The negative elements act
in a reverse way by minimizing the test statistic to predict
the image as a normal case. In this study, this pixel intensity
distribution analysis can reveal insights about how the pixel
intensity distribution varies between the E-maps of normal and
abnormal images and how the different elements contribute
towards a decision in a positive or negative manner. In Fig.
10, the histogram is plotted for positively contributing pixels of
the E-maps of normal and abnormal images of different tasks.
It can be seen that there is a significant difference in positively
contributing element values for abnormal cases compared to
the normal images. Results corresponding to VGG16 can be
found in Appendix C.5.
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Fig. 10: The histograms of normal vs abnormal cases for each
task. It can be seen there is a significant difference in positively
contributing elements for abnormal compared to normal cases.

J. Quantitatively Evaluating Interpretability : E-map
Contributions from Abnormality Regions

In this study, interpretability was quantitatively evaluated
by examining the contributions of E-map pixels to the test
statistic value. The overlap between the regions of the top con-
tributing E-map pixels and the actual abnormality regions was
computed to assess the spatial correspondence of localization
with relevant regions in the abnormal images. This quantitative
approach allowed us to precisely measure the relation between
contributing pixels and the test statistic value.

Fig. 11: Examples of overlap between the most contributing
1% elements of an E-map (in red) and the abnormal region.
The percentage overlap is written above each image. In most
cases, the E-map achieved a high overlap percentage.

The mammography dataset was simulated and hence the
specific tumor regions were known. The NIH chest X-ray
dataset had bounding box annotations for the cardiomegaly
class. For these two datasets, the percentage overlap between
the abnormal region and contributing pixels in each test set
image was computed. This quantitative study shows how
many top contributing pixels of an E-map overlap with the

actual abnormality region. As our method is quantitative, the
overlap between the disease region and contributing pixel
toward test statistics can be quantitatively determined. Figure
11 reveals how the top 1% contributing pixels (red) overlap
with the abnormal locations for mammography and chest X-
ray datasets respectively for the baseline CNN network. The
percentage overlap is written above each image. Results corre-
sponding to the VGG16 network can be found in the Appendix
C.6. The results for that also showed high percentages of
overlap, similar to the results shown here.

A similar analysis was performed to compare our method
with some commonly used post-hoc interpretability methods
(Saliency map [6], Integrated Gradients (IG) [9], Guided
Backprop [7], Grad-CAM [8], LRP [11]) of the corresponding
black-box network in terms of quantitative performance of
percentage overlap with abnormal regions. It is important to
note here that these post-hoc methods are designed to explain
an existing black-box classifier, whereas our method aims
to establish a self-interpretable model that can also achieve
similar classification accuracy with a black-box classifier. As
the chest X-ray dataset (associated with the cardiomegaly
detection task) has radiologists’ annotations, this dataset was
used to compare the methods in a quantitative manner. Figure
12 shows some examples of percentage overlap between the
top 1% contributing pixels of the post-hoc interpretability
heatmaps for the black-box classifier and the abnormal re-
gion of the original image. A similar analysis was done for
the E-maps. It was observed that in most cases percentage
overlap was higher in the E-map than in most of the post-
hoc interpretability methods. It should also be noted how
interpretations can vary for a single black-box classifier, which
can be a potential issue in deciding which method to rely
upon. Table IV shows a population level analysis of average
percentage overlap between the top 1% pixels of the E-
maps of our encoder-decoder based models and the post-hoc
interpretability methods for corresponding black-box classifier
with clinically annotated regions in the original abnormal
images over all 100 test images. The superiority of our method
can be shown from the values in the Table VI

TABLE VI: Average percentage overlap with the top 1% pixels
of interpretation maps and clinically annotated regions in the
original abnormal images- population-level analysis over all
test images

E-map Guided
Backprop IG LRP Saliency

Maps
Grad
Cam

Percentage
Overlap 89% 71% 84% 83% 30% 12%

K. Effect of Direct Training of self-interpretable network
In our training framework, the self-interpretable network

employed a pre-trained encoder and it was trained with
the objective of closely estimating the test statistic values
produced by the original black-box classifier. An alternative
training approach is to directly train the proposed encoder-
decoder based network from scratch by the use of the original
image labels 0,1 and a classification loss. In this case, the
model involves random initialization of both the encoder and
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Fig. 12: Top row: E-map and heatmaps from different post-hoc interpretability methods. Bottom row: Percentage overlap with
the top 1% pixels in the E-map(shown in red) and clinically annotated regions in the original abnormal image. The numbers
signify the percentage overlap. It can be seen how different post-hoc interpretability methods can produce different-looking
heatmaps. The percentage overlap with the top 1% pixels (red) and clinically annotated regions in the original abnormal image
is higher than other post-hoc methods for the black-box network.

decoder, as a fixed pre-trained encoder is not utilized. While
direct training of the proposed model may yield a similar level
of interpretability, a scenario was identified where it degrades
classification accuracy. For the cardiomegaly detection task,
Table V shows how direct training of the network with
a classification loss and 0,1 labels can result in degraded
performance compared to the original black-box model. On the
other hand, the proposed training scheme achieved a similar
level of classification accuracy compared to the traditional
black-box network. A possible reason for this behavior is that
the effect of pre-training provides a better initialization of the
self-interpretable network.

TABLE VII: Accuracy (%) of direct training of the self-
interpretable network. This study shows how directly training
the self-interpretable network with 0-1 labels and without pre-
training can affect the classification performance.

Task

Classification
Accuracy of the

VGG16
Black-box
Classifier

Classification
Accuracy of the

Associated
Self-interpretable

Network

Classification
Accuracy of

Direct
Training of the

Associated
Self-interpretable

Network
Cardiomegaly

Detection 83.33 83 73.2

L. Comparative Analysis with Competing
Self-interpretable Methods

Several self-interpretable methods, each employing novel
self-interpretability strategies, were selected for comparison
with our proposed method. Li et al. [28] introduced the
self-interpretability method PrototypeDL. This method incor-
porates an autoencoder and a specialized prototype layer,
enabling the network to provide explanations for its predic-
tions. Through a multi-objective training approach, it learns
prototypes that offer insights into the reasoning behind each
prediction. ProtoPNet [15] is another state-of-the-art self-
interpretable model in image classification, developed in a

subsequent study. In that approach, the network comes to
a decision by finding prototypical parts of an image, which
is the key interpretability component. Recently, the Self-
Interpretable Model with Transformation Equivariant Inter-
pretation (SITE) [4] was introduced as a self-interpretable
model that employs transformation equivariant regularization
to learn robust interpretations. The model captures valid in-
terpretations that are invariant to geometric transformations.
As the interpretability formulations of these different methods
differ fundamentally from our approaches, a direct comparison
of interpretability between our method and these methods is
challenging. However, as all the methods address classification
problems, the classification performances can be compared.
Table VIII shows that the alternate self-interpretable methods
achieved lower classification performance compared to our
model for the cardiomegaly detection task. This is consistent
with the previously reported accuracy-interpretability trade-off
with self-interpretable methods [17]. Notably, here, our self-
interpretable model used a feature extraction component of
the pre-trained VGG16 classifier as the encoder of the self-
interpretable network.

TABLE VIII: Classification accuracy (%) and training time
(in hours) of the black-box classifier, corresponding self-
interpretable network, PrototypeDL, ProtoPNet and SITE.
The results show that the performance of the other self-
interpretable methods is lower than the proposed method
which maintains the same level of accuracy as the original
black-box classifier.

Task:
Cardiomegaly

Detection

Classification
Accuracy of the

Black-box
Classifier

Classification
Accuracy of the
Self-interpretable

Network

PrototypeDL ProtoPNet SITE

Accuracy 81.23 81.0 73.5 75.3 71
Training Time - 5 3.5 6 4.1

It is to be noted that the learning rates of the competing
methods were fine-tuned, but other parameters and hyper-
parameters for all of those methods were adopted as specified
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in their respective research papers. All the models were trained
using 2 GeForce GTX 1080 Ti GPUs with 12GB RAM. A
stopping rule was designed to stop the training if the validation
loss did not decrease for five consecutive epochs. The training
times for the different approaches are also listed in Table VIII.

V. DISCUSSION

A novel decision-theory-inspired method was established to
provide an alternative means of self-interpretability for binary
medical image classification. The proposed method involves
training an encoder-decoder-based model followed by a non-
trainable fully connected layer with fixed unity weights. This
network employed a pre-trained encoder from a black-box
classifier and the model was trained using an estimation task
to estimate the test statistic to maintain the performance of
a given trained black-box deep binary classifier. By construc-
tion, the element-wise summation of the decoder output of
the interpretable network (E-map) represents the test statistic
value.

Self-interpretability of our method is derived from the direct
interpretation of the test statistic formation from the E-map.
This means that each element in the E-map contributes directly
to the test statistic, thereby providing valuable insights into the
underlying decision making of the network. The E-map is an
image and may look qualitatively similar to CAMs visual-
izations in some situations. However, our method possesses
significant differences from post-hoc interpretability methods
in terms of formulation. It is important to note that the pro-
posed method does not seek to interpret a black-box network.
Rather, it seeks to establish an alternative self-interpretable
network that closely mimics the classification performance of
a given black-box model. This is a fundamental hallmark of
the method.

It should also be noted that there is no available theoret-
ical guarantee that the E-map T (f) will always provide an
interpretable visualization of the spatial signatures (features)
in the original image f that are utilized by the classifier. It is
possible that there could be some applications in which the
E-map does not accurately localize features in the original
image. Though, in our studies conducted to-date, we have
not observed this. Instead, it was found that the E-map T (f)
generally reveals regions in f where the abnormality is present,
offering a deeper understanding of the decision-making of the
network.

One possible way to extend the proposed approach for
use with multi-class problems may be to train multiple self-
interpretable networks. If we have a total of N+1 classes in a
task, a total of N self-interpretable networks could be trained.
In this way, each self-interpretable classifier would estimate
the test statistic for class n where n = 1, ..., N . The predicted
class for a particular sample can be determined by finding the
maximum value among these estimated test statistics.

APPENDIX

A. Normal Class E-maps for Network with baseline CNN
Encoder

In this subsection, the E-maps of the normal class are shown
when the encoder of the self-interpretable network used the

feature extraction component of the pre-trained baseline black-
box classifier. The E-maps for the normal class are shown in
Fig. 13. Here the pre-trained baseline CNN was used as the
encoder of the self-interpretable network. It can be seen that
the E-maps for normal class images, do not show specific
patterns, unlike the disease class.

Fig. 13: Top row: Sample images for normal classes from the
datasets. Bottom row: The corresponding E-maps overlayed
on the original image. The pixel intensity value range and
colorbar are shown similarly like Fig. 4.

B. Presence of Multiple Anomalies

Previous results showed cases where a single anomaly
was present in one abnormal image. In this study, a more
complicated dataset was chosen with two abnormal regions
present in a single image. The new dataset had the task of
identifying tumors, the doubiso clustered lumpy backgrounds
(CLB) were used as background images [20]. The to-be-
detected tumor was generated as a 2D symmetric Gaussian
function and was inserted [21] into the background.

Fig. 14: Top row: Sample images for abnormal classes from
the mammography dataset. Middle row: The corresponding E-
maps overlayed on the original image. Bottom row: The tumor
locations.

Notably, each abnormal class image now comprises two
distinct tumors: one that varied in position (located at any of
the nine predefined positions, similar to the previous tumor
detection task dataset), and another, that was consistently
positioned in the center. First, the baseline black-box classifier
was trained to classify between tumor and normal classes.
Subsequently, the corresponding self-interpretable classifier
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was trained to estimate the test statistics given by the original
black-box classifier. The self-interpretable classifier was able
to achieve comparable accuracy as the baseline black-box
classifier. Figure 14 shows that the E-map mainly focused on
the location of the middle fixed tumor in most of the cases.
This is an intuitive result because that tumor location remained
fixed, the model found it useful to exploit that information as
opposed to trying to detect the randomly located tumor.

C. Results of VGG16 Network
Results of the self-interpretable network associated with

baseline CNN are shown in Sec. IV. Similarly, the results
of the self-interpretable network corresponding to the VGG16
classifier are shown in this section. The black-box classifier
was VGG16 and the pre-trained VGG16 feature extraction
network was employed as the encoder of the self-interpretable
network.

1) Visualizing Equivalency Maps: Figures 15, 16, and 17
present the E-maps for the mammography, OCT, and chest
X-ray datasets, respectively, with each figure showcasing two
images from the normal and abnormal classes. The feature
extraction component of the trained VGG16 was used as the
encoder. Consistent with the findings of the CNN architecture,
the E-maps of the abnormal class highlight relevant regions
where the abnormality is present. This finding is similar to
the results discussed in Sec. IV.D. However, the normal class
E-maps do not show any specific pattern.

Fig. 15: Mammography E-maps (Two abnormal and two nor-
mals) of the self-interpretable network. Top row: the original
images, Bottom row: E-maps. The abnormal class E-maps tend
to show regions where an abnormality is present.

Fig. 16: OCT E-maps (Two abnormal and two normals) of
the self-interpretable network. Top row: The original images;
Bottom row: E-maps. The abnormal class E-maps tend to show
regions where an abnormality is present.

Fig. 17: Chest X-ray E-maps (Two abnormal and two nor-
mals) of the self-interpretable network. Top row: The original
images, Bottom row: E-maps. The abnormal class E-maps tend
to show regions where an abnormality is present.

2) Performance for Different Number of Decoder Layers in
Self-interpretable Classifier: In this study, the influence of
the decoder architecture on the performance of our self-
interpretable classifier was investigated for the case where the
black-box classifier was fixed as VGG16. Here, the task of
cardiomegaly detection was considered. The primary objective
of this study was to explore whether varying the number of
layers in the decoder network has a significant impact on the
model’s classification performance. To achieve this, different
decoder architectures were employed with varying number of
convolutional layers in the Deconv block. The experiments
were performed with 0, 2, 3, 5, and 7 layers in each Deconv
block. Table IX shows the performance did not improve after
5 layers for this task.

TABLE IX: Performance (%) with different number of con-
volutional layers in the Deconv block of the self-interpretable
classifier’s decoder

Task:
Cardiomegaly

Detection
0 2 3 5 7

Accuracy 60.1 63.2 78.1 81.0 81.0

3) Examination of False positive (FP) and false negative (FN)
Cases: As depicted in Figure 18, examples are provided from
the mammography dataset and the chest X-ray dataset to
illustrate FP and FN cases when the VGG16 feature extraction
network was used as the encoder of the self-interpretable
classifier. Similar to the finding in Sec. IV-G, it was observed
that FN cases fail to accurately locate abnormal regions within
the images. In contrast, FP cases exhibited E-maps that beared
a closer resemblance to E-maps of the true positive class.
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Fig. 18: False positive (FP) and false negative (FN) Analysis.
FP cases look similar to Positive class E-map, FN cases look
similar to negative class E-map

4) Stability Analysis of Equivalency Maps: Similar to the
analysis in Sec. IV-H, Fig. 19 shows the stability of the E-
maps with different random weight initializations of the self-
interpretable network. The E-maps look similar for different
random restarts.

Fig. 19: From the left of each row: input image and E-
maps for 3 different random weight initializations of the
self-interpretable network. The feature extraction component
of the trained VGG16 was used as the encoder. This study
demonstrates the stability of the E-maps for different random
restarts of the network.

5) Pixel Intensity Distribution Analysis: In Fig. 20, the his-
togram is plotted for positively contributing pixels of the E-
maps of normal and abnormal images of different tasks by the
self-interpretable network with pre-trained VGG16 encoder.
Similar to the findings in Sec. IV-I, it can be seen that there
is a significant difference in positively contributing element
values for abnormal cases compared to the normal images.

Fig. 20: The histograms of normal vs abnormal cases for each
task by the self-interpretable network are shown here. The
feature extraction component of the trained VGG16 was used
as the encoder. The results show the difference in positively
contributing elements for abnormal compared to normal cases.

6) Quantitatively Evaluating Interpretability: E-map Contribu-
tion from Abnormality Regions: Similar to the baseline CNN
results shown in Sec. IV-J, Fig. 21 reveals how the top 1%
contributing pixels (red) overlap with the abnormal locations
for mammography and chest X-ray dataset respectively. The
percentage overlap is written above each image.

Fig. 21: Examples of overlap between most contributing 1%
elements of an E-map and the abnormal region. The feature
extraction component of the trained VGG16 was used as the
encoder. The top row presents tumor mammography images,
and the bottom row presents cardiomegaly chest X-ray images.
The red pixels are from the E-map. In most cases, the E-map
achieved a high overlap percentage.

D. Results with ResNet, InceptionV3 and DenseNet

In this study, the outcomes were obtained with the self-
interpretable network when the black-box classifiers were
ResNet, InceptionV3, and DenseNet. The results of the self-
interpretable network corresponding to the ResNet, Incep-
tionV3 and Densenet classifiers are in Table X. It was found
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that the self-interpretable model achieved very similar accu-
racy for all three cases. Here, the task of tumor detection using
mammography images was considered. Figure 22 shows the
abnormal class mammography image and the corresponding
E-maps for different networks.

TABLE X: Classification accuracy (%) when different black-
box classifiers were considered.

ResNet InceptionV3 DenseNet

Black-box
Classifier

Self-
interpretable

Classifier

Black-box
Classifier

Self-
interpretable

Classifier

Black-box
Classifier

Self-
interpretable

Classifier
77.9 77.8 80.1 79.8 79.95 79.5

Fig. 22: From left: the tumor class mammography image,
E-maps for three different self-interpretable networks cor-
responding to three different black-box classifiers. the red
bounding box shows the location of the tumor.

E. Existence of Zero-padded Trivial Solution

It is to be noted that to achieve the same performance as
the black-box classification network, the decoder of the self-
interpretable network can be a simple function that pads zeros
to the latent representation yielded by the encoder. In this zero-
padding scenario, the E-map would not provide any useful
information regarding model interpretability.

To address this concern, we conducted experiments specif-
ically designed to investigate the zero-padding scenario. For
these experiments, we selected the task of tumor detection
using mammography data. There were two main goals of the
studies. The first goal was to demonstrate that the zero-padded
solution can indeed be approximated in a contrived setting.
The second goal was to demonstrate that the zero-padded
solution was not obtained as soon as the contrived settings
were removed.

In the first study, we considered an encoder-decoder ar-
chitecture that closely resembles our interpretable model.
The encoder corresponded to a given black-box classifier’s
feature extraction network. However, the final dense layer
responsible for summing the elements of the decoder’s output
was removed. The purpose of this model was only to predict
the zero-padded output of the latent representation of the
encoder in a fully supervised way. It should be noted that
this experiment is contrived and only seeks to investigate the
feasibility of the encoder-decoder model to produce a solution
that approximates the zero-padded solution’s latent represen-
tation. To produce targets for the model training, the latent
representations of the input images yielded by the encoder
were generated. Next, the latent representations were zero-
padded to obtain the target output. Here, the decoder weights

were initialized randomly. Finally, the model was trained
in a supervised manner to predict that zero-padded latent
embedding from the corresponding individual input image. We
found that the model was able to accurately estimate the zero-
padded solution.

Next, we revisited the complete self-interpretable encoder-
decoder model, including the final dense layer, and trained
the model to predict the test statistic value of the black box
classifier as described in the manuscript. Here, the decoder
weights were initialized using the decoder weights previously
trained in the contrived experiment above. It was observed that
under these conditions, the decoder’s output or E-map closely
resembled a zero-padded version of the latent representation
from the encoder.

Subsequently, we perturbed the decoder weights by adding
Gaussian noise of 0 mean and varying standard deviation
levels of 0.01, 0.03, 0.07, 0.09, 0.1, 0.2, and 0.3. In this case,
we observed that the network did not produce a zero-padded
solution after a standard deviation level of 0.1.

Together, these experiments corroborated our claim that our
method is unlikely to produce the zero-padded solution, in gen-
eral, except in specific cases of decoder weight initialization.
Our empirical investigation suggests that such an extremely
specific weight initialization is unlikely to occur during the
training of our interpretable model when the pre-training is
based on commonly used random initialization methods, such
as the uniform or normal distribution.
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