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Model-Based Segmentation and Tracking
of Head-and-Shoulder Video Objects for
Real Time Multimedia Services

Huitao Lug Member, IEEEand Alexandros Eleftheriadidember, IEEE

Abstract—A statistical model-based video segmentation al- while Gu [18], Fu [19], and Luo [20] proposed to track object
gorithm is presented for head-and-shoulder type video. This poundaries based on neighboring color and motion information.

algorithm uses domain knowledge by abstracting the head-and- ot : : : :
shoulder object with a blob-based statistical region model and a From an application point of view, the available segmentation

shape model. The object segmentation problem is then converted 2/90rithms can also be classified into those for online applica-
into a model detection and tracking problem. At the system level, a tions and those for offline applications, as proposed by Correia
hierarchical structure is designed and spatial and temporal filters and Pereira [21]. Though many multimedia applications are
are used to improve segmentation quality. This algorithm runs in - gnjine and real-time (to name a few of them: video surveillance,

real time over a QCIF size video, and segments it into background, | ; ;
head and shoulder three video objects on average Pentium PC videophone, web chat, human computer interface, etc.), most

platforms. Due to its real time feature, this algorithm is appro- ePorted algorithms are useful only for offline applications.
priate for real time multimedia services such as videophone and Among the algorithms we reviewed so far, most of the semi-au-
web chat. Simulation results are offered to compare MPEG-4 tomatic algorithms and motion segmentation algorithms are
performance with H.263 on segmented video objects with respects not good for offline applications because of slow speed and/or
to compression efficiency, bit rate adaptation and functionality. requirements on user interaction. Motion detection based algo-
Index Terms—tow bit rate coding, MPEG-4, statistical mod-  rithms are more appropriate for online applications because of

eling, video object segmentation. their “moving foreground” and “static background” assumption,
which lead to less intensive computation requirements. How-
|. INTRODUCTION ever, at the same time, this assumption limits the generality of

the algorithms, i.e., when the tracked object stops moving, these

BJECT segmentation fro.m image and video is a reCeyorithms fail. In otherwords, these algorithms are valid only if
popular topic in multimedia research because of commﬂqg

. . . ) .. e assumption or the domain knowledge is valid.
interests in better object-based functionalities. MPEG-4 offers P . . 9
: e propose a real-time algorithm to segment head-and-
general framework for object-based system but leaves the seg- . 9
. ; . . sHoulder type video sequences. The motivation stems from
mentation design as an open issue. In the literature, large NUM- lar oresence of head-and-shoulder tvpe video sianal
bers of segmentation algorithms, both fully automatic and semhiP P yp 9

automatic, have been published. Among them, activities on In real-time services such as videophone and web chatting,

ay- . L X
tomatic segmentation have mainly focused on motion detg?:{—c" which form the application domain of our work. By

tion [1]-[6], motion segmentation [7]-[10], or joint motion an ocusing to this specific gppllcatlon domaln, the_segmentatlon
; . . ; algorithm could be designed to exploit domain knowledge
(_Chrqmatlc) region segmentation [1.1]' [12]. T_he basic assUMBd realize real-time performance with less computation
tlon_ Is that theobj_ect can be descnt_)ed as either theving complexity. In our work, statistical models are used to model
region or the region that moves wittonsistent parameters ; ; )
i . : ) . the domain knowledge. We assume that in a typical setup of a
In contrast, typical semi-automatic algorithms utilize Certa!ﬁead—and-shoulder video, the foreground object is one person

user interactions to specify object on one or several anchormga head-and-shoulder pattern and the background is relatively
frames, and tracking algorithms are then designed to track the

objectin the temporal direction. For example, Chalom and Boseatlc' Our algorithm aims to segments the input video into

. . . “1hree video objects (VO)s: a background, a head/face and a
[13] used multiple features to model pixels and to track Oblecsﬁﬁoulder. The domain knowledge is modeled from two aspects.

%pe is a blob modeling of each VO region’s color and spatial

segment the initial object into regions and then track each Istribution, and the other is shape modeling. With the concept

them across frames; Malassiotis and Strintzis [16], and Tok

and Tekalp [17] used active mesh to represent and track Obje%s_statlstlcal model, the segmentation and tracking problem is

rhed into model parameter fitting and updating. In addition,
fast spatial and temporal filters are designed to generate video
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In principle, this work is related to the widely used “chroma:
key” technique and human body tracking work of “Pfinder’
[22]. It is different from chroma-key in its modeling of fore-
ground and background. Because of its statistical mode
our system has more stable performance than chroma-k
over inexpensive consumer CCD cameras. In addition, t
model updating and tracking mechanism enables our syst(
to tolerate moderate background changes that generally fail a
typical chroma-key system. Our system is similar to ”PfindelEig' 1. (Left) Blob representation; (middle) support map with containing

. e _ rectangles; (right) foreground map.
in the utilization of blob model as a means to track a region

with respgct t.o Its chromaﬂc and'spanal d|str|bl'1t|ons.. Howevq\rl,ote the blob labeling as defined in (1) is exclusive, i.e., each
our contributions are in anchoring blob tracking with results.

. . . |l?lxel belongs to only one blob. In addition, we define the entire
from shape tracking. This way, more stable tracking resufts

. . set of the support maps of foreground blobs as the foreground
can be realized over longer time. Moreover, our system 1Is

- : Hap f (. y):

more concentrated on generating accurate object support, while
“Pfinder'" emph:?\sizes more on trgcking and understanding the fa,y) = 1, s(z,y) #0, 3)
semantic meaning of human motions. Y= 0, s(z,y)=0.

The structure of this paper is as follows. First in Section I, . . ]
we discuss blob-based region modeling and Kalman filters fope relation between these concepts can be better illustrated in
blob tracking. Section Ill covers shape modeling. Section 1%7/9- 1, where the left image Il!ustrates_ two blobs, the middle
discusses a hierarchical system structure. Segmentation expgBHige shows a support map with containing rectangles, and the
ments are presented in Section V. In Section VI, we discuss fight image is a foreground map.

application of segmentation to real time videophone services.The rationale behind blob modeling is that it represents
The paper is concluded in Section VII. an image region that has chromatic and spatial similarity.

By the definition of a blob and its associated support map,

low-level, pixel oriented segmentation problem are associated

with a high-level, semantically meaningful blob tracking. This
The basic nature of the algorithm is an online one. First, weay, high-level a priori knowledge can be used to guide pixel

assume a background scene that contains no foreground, wkiegmentation.

enables the creation of a background model. When the fore-

ground enters, another model is then created for the foregrouBd.Background Model

The background is modeled as a texture map varying over
A. Foreground Model time. In videophone applications, we assume the cameraiis static
In our work, the foreground is considered a “head-an@nd there are no fast background changes. In this context, there

shoulder,” which is modeled with two connected “blob”s. Heré'€ still several sources that may introduce temporal color varia-
the definition of blob is similar to that in [22], i.e., each blob had0ns in background pixels and thus influence an accurate mod-
a spatial(z, y) and chromatiqY, U, V') Gaussian distribution, eling. Thgse mclude the thermal noise of the sensor, th(_a AGC
and a support map that indicates whether a pixel is a memikaytomatic gain control) fgnc'uon of the camera, the shading ef-
of the blob. In this model, each pixel is represented by f§Ct .from foreground motions, etc. o
feature vectofz, y, Y, U, V). The feature vectors of the pixels Given all these factors, each background pixel is modeled as
belonging to blobk have a Gaussian distribution with mear® Gaussian distribution in a normalized chromatic vector space
vectormy, and covariance matri',. Because of their different (U*» V*), whereU* = U/(Y +c¢) andV* = V/(Y +¢) (¢ .
semantics, the spatial and chromatic distributions are assuri®e@ Small constant). We denote the mean vector and covariance
independent, i.e., the matr®, is assumed block-diagonal. ~Matrix asm, andC, respectively. In the segmentation loop, the
For convenience of discussion, some definitions related fPdel parametamn, is created and updated in two steps. First,
blob modeling are defined as follows. First, the support m&pirame level global shifting factor is estimated as

si(z,y) forblobk,k = 1,2,3,..., is defined as Ef(T y)zl(S’t(Ly) — Y1) (®,9))

Il. BLOB BASED REGION MODELING AND TRACKING

diff,;

(i) = {1, ifpixel (z,) isinblob k, ), (e yer [(2:9)

" 0, otherwise. After that, the mean vector for each pixel is then updated by
considering both local and global factors:

(4)

Based onsi(x,y), blob k’'s containing rectangleect,, is de-
fined as th_e minimal rectangle that_covers the b!ob pixels. For  mg (=, y) = diff; + mg;_1(z,y), (v,y) € Z, (5)
segmentation purposes we also define a cumulative support map mo(2,y) = o+ §i(z,y) + (1 — @) * mﬁ,t(ﬂ?; y). (6)
s(z,y) for each image as
Note in (4)- (6).y:(x,y) andmy ;(x,y) are the observed fea-
) k0 sp(z,y)=1, k=1,2,3,..., @ ture vector and model parameters for the current background
s(z,y) = 0, otherwise. pixel at the spatial positiofi, y) and temporal position (in
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succeeding referenceg,, my, or y, my may be used when
(z,y) and/ort information are not important is a weighting
factor with (0 < « < 1). diff; defined in (4) is mainly used

to model chromatic changes introduced by camera AGC, which
generally influences every pixels in the frame. Accordingly, (5)
and (6) carry out global and local updating for each pixel model
respectively. According to our experiments, covariance matrix
Cy isrelatively stable in tracking. Therefo€g, is only updated
when large shift occurs in (5).

Unlike the foreground model, each background pixel is mod-
eled individually. To express in a uniform way, the feature vec-
tors of the background model can also be put into the vector
space(z,y, U*, V*) by implicitly including the spatial coordi-
nate of each pixe(lx./ y). This approach can accommodate avadJg- 2. Blob region growing illustration. Each blob’s support magpz, y) is
riety of complex backgrounds without limiting them to a struc?oWn out from their blob centers on top of the foreground mép ).
ture. At the same time, this model is better than chroma-ke )
because it accommodates temporal changes. ner | create

. tracking
background [l (SCENS || SO Y8 | foremound |27
. . ) model foreground the shape regro
C. Region Classification

Given the foreground and background modetgximum a Fig. 3. Flowchart of the initialization loop.
posteriori probability(MAP) principle is used to classify pixels
into different regions. We have two foreground classésq(lder
andhead k£ = 1,2) and one background clagé = 0). TO  1pu Pixel
compensate the shading effect, we choose to use feature vec | “
y = (x,y,U*,V*) instead of(x,y,Y,U, V) for foreground
blobs as well (the major modeling principle remains the same e updue
So the log likelihood is expressed as

In(p(¥ | ) = —(y — my) "CL (¥ — my) — In (det(Cy))

() size, speed and shape of the possible foreground and judge the
||ikeIihood of being a head-and-shoulder foreground. When a

No To

Go to initialization loop

|| Morphological | .| Blob region Output

filter grow

Fig. 4. Flowchart of the basic tracking loop procedure.

where(k = 0,1, 2), and(Q; represents the event that the pixe

belongs to clasé. Based on Bayes principle, each pixel is Ia\_/alid foreground is detected, a foreground model is created and

. the system enters the tracking loop.
beled in the support map as 2) Tracking Loop: The flowchart of tracking loop is shown

s(z,y) = arg max(In(p(Q4 | ¥))) iq Fig._4. The major steps of regio_n segme_ntation are pixel glas—
k . sification, foreground morphological filtering and blob region
= arg m,?x[ln(p(y | Q%) + In(p(2r))] (8)  growing. Unlike low-level pixel classification, blob tracking is

) ) ) ) __carried out at the model-level with semantic meanings. Though
whereln(p({))) is estimated from typical videophone PICin this work, the concern of segmentation is to get an accurate
tures. o _ _ support map for each blob rather than to track the semantic in-

To convert the clz_;\ssmed pixels into m_eanlngful regions, twfbrmation of blob motion, good modeling and tracking of blobs
steps come next. First the foreground pixels are processed Wil o1 important because the tracked blobs carry the statis-

morphological filters (close operation with 8 3 structuring tical model parameters, which are important for support map
element) to create a simple connected foreground fifapy ). segmentation.

Second the support magiz, y) is obtained by blob growing, Each blob is tracked independently using Kalman filter. The

i.e.Z each blob is grown out _Within the foreground map froerservation vector for blobincludes the blob’s centé., )
their blob center to create a simple connected support map. Tg‘#ﬁj blob’s statistical width and heighby, hy,):
is illustrated in Fig. 2. T

_ Y. = (vk, Yk, wi, h) 9)
D. Blob Tracking Procedure

We discuss the basic tracking procedure in two loops: mod¥perews. andh, are defined asv, = 20, andhi = 20y,
initialization loop and tracking loop. and obtained from the feature vector covariance m&fjixThe
1) Initialization Loop: Initialization loop is to detect dynamic model is a discrete Newtonian physical model of rigid

head-and-shoulder type foreground and to create the fopé’—dy motion, which has the form

ground and background models. Its logic steps are illustrated in X(t +AL) = \Il(At)X(t) +E() (10)
Fig. 3. At the beginning, the background only scene is captured

and a background model is created. When a foreground entevbereX is the state vectof is the state transition matrix and
the system detects model deviation and tries to analyze this the noise term. The state vecirand noise vectof each
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contain four variables for the position of observation vedfor
four for the velocity and four for the acceleration, i.e.,

v &y
Xt)y={Vv ], and em=[& |. @
A £,

In other words, botfX and¢ contain 12 variables. From New-
tonian physics, we have

I IAt 0 . ) - : )
\Il(At) —lo I %I(At)Q (12) Fig. 5. Comparison of the limits of shape analysis for blob tracking.
0 0 1

discussed in Section Il. This way, we can get the most out of the

wherel is a 12x 12 unit matrix. domain knowledge to stabilize the tracking algorithm.
In practice, the Kalman filter is used to predict the model pa-

rameters of each blob in the next frame, which is the start poiit Shape Modeling

of region classification discussed in Section II-C. In return, the Though a quantitative definition of canonical or noncanonical
result of region classification in current frame is used to Updat‘i%tegory is hard to give and may depend on specific algorithm
the blob model parameters;., Cy, (k = 1,2), and background of shape analysis, inclusiveness is not the requirement of this
model parameters, Co. It also serves the observation inpufyork. Rather, because the purpose of shape analysis is to stabi-
that drives the Kalman filter for the next predlc_t|on. Sometimgge the region-based blob tracking, we can define the canonical
when the foreground moves too fast for the filter to follow 0gpane category as a limited size. That is, only those with strong
just moves out of the scene, the system cannot find approprigigpe features are included such that if a shape is accepted as a
support maps at the predicted positions of the current framey,gnical one, then the segmentation output based on the shape
In these cases, as indicated in Fig. 4, the system automaticglia|ysis is highly reliable. In this sense, we model the canonical

changes its status back to the initialization loop. shape category as a high dimensional Gaussian distribution and
create the model by statistical learning.
l1l. SHAPE MODELING AND RECOGNITION 1) Fast Vectorization:First, a vectorization algorithm is

In the previous sections, a blob based region modeling af#§€d to convert a shape into a feature vector. A fast algorithm
tracking approach were discussed. Blobs incorporate domiifiesigned to fit in with real time applications. Itis illustrated
knowledge quite naturally into the segmentation problem. Holft Fi9- 6(a): the foreground region is divided uniformly inmo
ever, this approach is mainly based on the chromatic cues,whﬁ’iﬂpes in the vertical direction and the horizontal center and

is dependent on the camera’s quality and the color contrast E@Q width of each stripe are measured to foranadimension

tween the foreground and background. For real time tracki Stﬁ:)(\)/ggtt?\“ginput of the algorithm is a segmented foreground
it is also likely th I ing th . .
purposes, it is also likely that errors get accumulated during t eturef with each background pixef(z,y) = 0 and fore-

course. In order to stabilize the blob tracking process, the syst Mund pixelf(z,y) = 1. The origin of the image coordinates

should be adjusted from tlme o time. In our work, shape Cu|gssat the lower left corner of the image. Then the detailed algo-
are used to meet the requirement.

A basic intuition to support this idea is that people can somgt—hm can be expressed with the following pseudocode.

times identify the head region and the shoulder region only
based on the object silhouette. However, because the foregrojirid
is always in motion and its silhouette keeps changing, itis n
in every case that we can analyze the silhouette successf
]tor segmentation purpose. For example, in F|g. 5 we have t start(k) = inf ;o o)1 (2);
oreground shapes to be analyzed. In the left image, the sh end(k) = sup _,(z);
feature is strong and the head region and shoulder region gan ., . flerow)=
be easily separated based on the foreground shape informat(gyl,
while in the right image, the shape feature is not so obviou@) center0 = 0
Therefore, shape analysis only works as an adjustment or aghe) for(; = 0;i < N;i++){
iliary approach to previous region based approach. (11)  width(i) = end(i) — start(i);
To solve this problem, ahape recognitiomnodule is added (12)  center(i) = (end(i) + start(i))/2;
into the shape analysis procedure. We define those shapes \uitf)  center0+ = center(i);
strong shape features aanonical head-and-shoulder shape(14) }
Those shapes outside this category are nam@ttanonical (15) center0 / = N;
shape If a foreground shape belongs to the canonical catego(ys) k = 0;
we are sure that we can locate the head region and shouldef(1&) for(i = 0;i < N;i++){
gion with a high reliability only based on shape information(18) v(k++) = width(i)/unit;
then the head blob and shoulder blob are located with shgp®) v(k++) = (center(z) — center0)/unit;
cues. Otherwise the blobs are tracked with chromatic cues(ae) }.

topRow = sup s, ,y_1(y);

unit = (topRow)/N;

k=0

for(row = unit/2;row < topRow;row+ = unit){
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Y mean vector and a covariance matriX. The likelihood of a
shape vectov = v + v is given by
v 1oTy—1g
topRow - exp (—§V b V)
unit P(v|Q) = . (13)
[ )| unit2 (2m)N det(X)1/2
------- >\ --o--- /< N ShRhh A sufficient statistic for characterizing the likelihood is the Ma-
\ { 1 halanobis distance:
S D =vIs"1y. (14)
In practice, the meam and covarianc& are obtained through
N a set of training shapes.
@ B. Eigen-Analysis and Classification
In (13) and (14), the covariance mat®Xis 2N by 2N. In
Y order to reduce the computation complexity, the matrix is de-
composed via an eigenvector transform:

Y =3TA® (15)
where® is the eigenvector matrix andl is the corresponding
diagonal matrix of eigenvalues. With eigenvector transform, the

_ likelihood equation becomes:
b2
€xp (_% Z?ivl )TZ)
P(v|Q) = < (16)
(27)" det(X)1/2
X whereb = ®7v is the new vector under the orthogonal trans-
®) form. Similarly, the Mahalanobis distance is converted to
2
Fig. 6. (a) Stripe based shape vectorization illustration. (b) lllustration of D = Z i (17)
shape-assisted blob region location. ] Ai

In principle, eigenvectors correspond to the principal axes of
In above pseudocode, (1)—(2) find the width (unit) of sanjihe subvector space and the eigenvalues are the corresponding

pling stripes, (3)~(8) actually do the sampling, (9)—(14) conve‘?fi”dpal variance. Although in above orthogonal transfor_m, gll
the sampled position datatrt (i) andend(4)) into width and qf the2N eigenvectors are necessary to represent the distribu-
center data, and, finally in (15)—(20), the sampled data is furtHign exactly, only a small numbek™ (K < 2) of them are
normalized with respect to size (dividing by unit) and positiof€nerally needed to encode the samples within the subspace
(center(i) being measured with respect to center0, which is owjth tolerable errors. ThesE vectors are pft(_an called principle
tained by averaging the sampled data), producing the featGRENPONents and the approach called principle component anal-
vectoru(i), which represents only the shape information. ~ YSIS (PCA). With PCA, for each vectar, only the first pro-

This algorithm is actually a controlled polygon approximaj—eCtionS ofb; are necessary for Fhe computation of Iike_liho_od i_n
tion of the original shape. The Euclidean distance of veetisr (16) 0r Mahalanobis distance in (17). The computation is sig-

a good indication of the shape difference because of the polygdficantly reduced.

approximation nature. Though the shape vector is not rotational” Practice, the thresholding of the Mahalanobis distance (17)
invariant, for most real time videophone applications it is ndt US€d in ourwork and itis approximated with two thresholding

necessary to recognize rotational invariant shap&ke accu- inequalities:
racy of the approximation depends on the choic&odind the K
complexity of foreground shape. According to our observation, Dy = Z b7 /N < Ty (18)
N = 15 is big enough for most videophone applications in i=1
QCIF size. K
2) Gaussian Modeling:With above vectorization algo- Dy = ||v|* - be < 1. (19)
=1

rithm, the canonical shape categdyis modeled as &N
dimension unimodal Gaussian distribution characterized byfashape is determined as in the canonical shape category
only if its feature vector meets above two inequalities. Here
1By not rotational invariant we mean that canonical shapes are only modelBYy is the Mahalanobis distance arig, is the energy of the

at the upright position as compared with positions such as upside down, becg¢sgtre vector's projection on the Complementary space of the
we assume people generally sit upright before camera. However, common shap dbvth fisei | h d
changes at this position, i.e., slightly rotated head, are to be accommodate&H;BSpace spanned by these ifiseigenvectors. In other words,

our model. we require that the projection inside the subspace is close to the
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Fig. 8. Flowchart of the hierarchical tracking system.

Is foreground
shape
canonical ?

Pixel [ ~| Morphological
classify filter

Successful?

containing rectangle at the thresholdiay then the final seg-
mentation thresholdingd is chosen as

2
td = arg min {Z[S(rectk(td)) - S(sk(td))]} . (22

k=1

Fig. 7. Canonical shape category’s eigen-shape illustration.

center, and the projection energy outside the subspace is smgliS algorithm is illustrated in Fig. 6(b). Note the coordinate

This thresholding by projection may incur some error in thystem and_ the horizontal thresholding line that segments th_e

mathematical sense, but is justified by computation benefits.foreground into head and shoulder regions. The purpose of this
In the training process, about 200 pictures of canonical sha"ﬂ_gthm is to approximate the foreground map using t"YO_C‘?”'

category were used. The result of eigen-analysis shows thigining rect.angl.es and choose the segmentation that minimizes

the first six eigenvectors cover 92% of total energy. This is tHB€ aPProximation error.

thresholdingK” we used for our experiment. The shapes corre-

sponding to the first four eigenvectors that obtained from our IV. HIERARCHICAL SYSTEM DESIGN

training set are shown in Fig. 7. They are ordered from left to Though the region and shape statistical models reduce much
right, top to bottom. In each figure, three shapes are overlajglalysis complexity, in practice, we find that to update the
corresponding to three vectors; v + a¢;, v — a¢p;, wherea  plop model parameters frame by frame still involves expensive
is a weighting factor ang is the:-th eigenvector. Readers cancomputation. In addition, to make segmentation quality stable
observe the distribution of shape changing along the first sevesghinst noise, further filtering is necessary. A hierarchical struc-
principal eigenvectors and have a general sense of the canonigal is designed at the system level to solve these problems.
shape category’s shape distribution discussed in this work.

A. Hierarchical Architecture

C. Shape Assisted Blob Tracking In the new hierarchical design, the tracking loop of Fig. 4

If a foreground shape is a canonical shape, by definition i ypdated with Fig. 8, i.e., an input image is first subsampled
shape features is used to segment the foreground into headyea in both horizontal and vertical directions. Model analysis
gion and shoulder regions, or in other words, to segment t{igsth region based blob model and shape model) and tracking
foreground magf(z, y) into a support map(z, y) of head blob  are carried out in the obtained lower resolution image. The pro-
and shoulder blob. Aontaining rectanglébased algorithm is cessing result is then up-sampled and further refined in the orig-
designed to segment a foreground nydp, y) into two blobs  jna] resolution to produce the final output.

by setting a vertical threshold: The benefits of this structure come from two aspects. First,
) because the statistical models are tracked and updated in
s1(z,y) = {(J;(“U?y)? gtﬁeiv&iié (20) the lower resolution image, the computation complex.ity is
’ reduced byM?2. Second, when the segmentation result in the
and . lower resolution image is mapped back to the full resolution
sa(z,y) = { flzy), ify< t_d: (21) image, only the boundary blocksire further processed by the
0, otherwise. spatial and temporal filters that are designed to suppress noise

) and improve the boundary quality. All the interior blocks are
If we use opergtoé‘(sk(td)) andS(rect.k(td)). respectively 0 skipped. One drawback, however, is that two versions of the
represent the size of support maand size of its corresponding a4 ckground model are to be maintained, one in the lower and

2Training samples are chosen by human observation, but their statistiUA? other in the full resolution (for foreground model we can
model is created by computer. This is the process of machine learning. In é0Aintain just one set of model parameters and convert them
experiment, training samples were obtained from several persons. For wider
application domain, more training samples should be obtained or users majyOne pixel in lower resolution image is mapped into ddeby M block in
train the machine with each person’s own training samples. full resolution image.
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between different image resolutions). But compared with thehereZ is a normalizing factor and the energy tefhis defined
benefits, this is not a big problem. as

B. Processing on Subsampled Image E(Q) = (ns(k)B + nc(k)0). (25)

In Fig. 8, most function modules for lower resolution imag (25),n3(k) andnc (k) are the homogeneity measure of the
processing were discussed in previous sections. The shape mrgghborhood if current boundary pixel is labeledkasThey
ules work as anchors for the region based tracking modul@ge obtained as follows. Each current boundary pixel constitutes
They runin loop to find canonical shapes and locate the positiefghtpixel-pairs with its eight neighboring pixels. If both pixels
of each blob. If the shape-based approach fails, the region-baised pixel-pair have the same label, this pixel-pair ibano-
blob analysis maintains its tracking with blob region growingeneous pairotherwise it is arheterogeneous pain g is the
module and information from the Kalman filter. At this stage, ihumber of those heterogeneous pairs that are in vertical or hori-
system still can not find the expected blobs at the predicted pmntal positions and¢ is the number of those in diagonal posi-
sitions, it changes its status back to the initialization loop. Utions. B andC are two weighting factors that represent the dis-
like previous system defined by Fig. 4, the new system is mot@nce factor of those pixel-pairs in different positions in relation
resistant to noise because of the shape analysis modules intéH&e boundary pixel under consideration. We have: V2C.
tracking loop. After spatial boundary refining, a seven-point three-dimen-

sional (3-D) spatial-temporal median filter is used on the fore-

C. Refining Processing on Full Resolution Image ground map:

In the full resolution layer, a boundary-refining module anged:(z,y) = medz[I;_1(z,y), Liy1(z,y), i (z — 1,y),
ajpint spatial and temporal (S/T) filtering module are designed L(z,y), L(z + 1,9), L(z,y — 1), I;(z,y + 1)]. (26)
to improve the boundary quality. In the three VOs we are going
to get: background, head, and shoulder, head plus shouldbe purpose of this median filter is to suppress the temporal high
together is the foreground, only the boundary between tfi@guency noise on the boundary, which will be quite annoying
foreground and background are considered. If a head VO owhen the segmented VOs are played back with an MPEG-4
shoulder VO is required individually, the boundary betweeplayer. Notice that this filter introduces delaying time of one
them is approximated with their containing rectangles. frame. For real time applications, higher order median filter is
In the hierarchical structure, each low-resolution-image pixePt desirable.
maps to a\/ x M block in the full resolution image. Both
boundary-refining module and S/T filtering module process V. SEGMENTATION EXPERIMENTS

only the boundary block pixels. The algorithm is implemented on PC platforms with a variety
Boundary refining module processes image in one frame ¢@video capture hardware, including Intel's Proshare videocon-
improve the spatial smoothness of final boundary. It includ@grence Kit, Intel's Create & Share Camera Pack and Sony’s
three steps. First, pixels in the boundary blocks are classifie€D SSC-S20 camera with Intel’s Brooktree capture card. The
based on the foreground model and background model in &ymentation performance is 15 fps (frames per second) on a
full resolution layer. Second, morphological filters are used {9entium-200 for QCIF (176 144) size input videos.
connect the segmentation results in each boundary block withpe to the online feature of the algorithm, we could not use
interior block regions, so as to produce a simple connected fokgandard sequences in the test (because standard sequences such
ground map. After that, a relaxation procedure is carried out#@ Akiyo do not have the online information we are using to ini-
improve the smoothness of the foreground boundary, which cglize the system). Instead, several testing sequences are cap-
be formulated as a statistical decision problem as follows. tyred for testing purpose. One of them, in QCIF size, YUV

Let 2, (k = 0,1) represents the evenfgx, y) = &, (k = format, 800 frames in length and 10 fps is available on the web-
0,1). For each boundary pixel, its MAP classification equatiositet for this paper. This video sequence contains one person
IS in his head-and-shoulder pattern as foreground with moderate

motion.

In(p(Q: | ¥)) = In(p(y | Q%)) + In(p(Q)). (23) Fig. 9 shows the segmentation result on one frame (the 500th
frame) of the testing video sequence. Fig. 9(a) is the original
The first term in the right side can be obtained from (7). Thiaput frame, (b) is the segmented foreground VO and (c) is the
second termn(p(Q2.)) works as amoothness measyrehich segmented head VO. Note that the boundary between the head
represents a priori knowledge. Because smoothness is a spafaland shoulder VO is approximated with their containing rec-
feature, we define themoothness measuet a boundary lo- tangle boundaries. In addition, though our segmentation algo-
cally for each of its boundary pixel as [2] does. A priori densityithm is able to segment the input frame into three regions: back-
p(§2x) is modeled by a Markov random field consideringa 3  ground, head and shoulder; some time it is also possible to com-
neighborhood: bine the foreground part (head and shoulder) as one VO, which
is also semantically meaningful.

1
() = 7 exp{—E(Q)}, (k=0,1) (24) 4http://www.ctr.colulmbia.edu/~luoht/research/rvSeg
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Fig. 10. Comparison of boundary relaxation and 3-D filter effects.
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Fig. 11. lllustration of the function of the shape-based adjustment module.

(©

Fig. 9. Segmentation result example on one frame (frame 530) of the testilgistrates the result of this experiment (only the results for 100

sequence. (a) Original input frame. (b) Segmented foreground VO. (c) qugames, from frame 500 to 599 are included). In Fig. 11, the

mented head VO. . . . ..
horizontal axis is the frame number and the vertical axis is the

) ) head region tracking error rate. The “0” curve represents the
To quantify the role of the shape-based adjustment modigor rate of the tracking algorithm without shape-based ad-

in the overall tracking system, a group of experimental dajgstments and the£” curve represents that of the algorithm

is used to compare the tracking performance with and withofiy shape-based adjustments. For better observation, we also
shape-based adjustment. The video data used is the mentio(g\g\éhay a bar graph on the bottom of the figure that represents
800-frame sequence. The accuracy of head region trackingHg detection of canonical shapes. On this bar graph, each bar
measured by comparing the tracked support map with a grouigsng the horizontal axis means a detected canonical shape at
truth support map, which is generated with a semi-automagige frame position. It can be seen that canonical shapes are de-
video segmentation tool [20] that we developed in our laborgscted on about 25% of the 100 frames. Due to this detection re-
tory. The error rate is defined as sult, the tracking result using shape information is better than the
result of the algorithm without it. This relation is especially ob-
vious on frames from 550 to 600, where blob tracking errors get
whereSmisclassified; Sground-truth €present the size of the mis-accumulated because of the large motion of head-and-shoulder
classified and the ground-truth head region, respectively. Fig. foiteground and the similar color of head and shoulder regions.

€rror = Smisclassiﬁed/Sgrnund-truth
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However, with canonical shape based adjustments, the trackii Background| |

. . Input (B) MPEG4 R Output

is much more reliabke Tmage(D) [ / encoder o ] Image(0)
In Fig. 10, we compare the effect of boundary relaxatior | """ Nee e womes| |

and 3-D spatial/temporal median filter. The first row from left vo® ) 7

to right are three consecutive original frames. The second row

are their segmented results without relaxation and filtering. The ~ Fig. 12. lllustration of MPEG-4 encoder and decoder setup.

third row are the final results with both relaxing and filtering. We

can see that in the second row, some noise on the boundary is

produced because parts of the background color are very similar

to that of the foreground model. However, with boundary relax- MPEG 4 [ H.263

ation and 3-D filter, the boundaries in the third row are much— 353\1 e  Eints Szlg.lébh 82];.1;;

smoother, both spatially and temporally. 30.01 | 32.66 35.25 30.99 30.92 | 29.98 | 32.39 35.63 30.58 3042
39.99 | 34.10 36.50 32.45 3243 | 40.04 | 33.81 36.77 32.08 31.95

50.02 | 35.08 37.36 33.52 33.51 | 49.99 | 34.93 37.72 33.21 33.14

VI. APPLICATION DISCUSSION 60.03 | 36.10 38.46 34.54 3452 [ 59.99 | 35.68 38.10 34.08 34.03

TABLE |
COMPARISON OFCOMPRESSIONEFFICIENCY OF MPEG-4AND H.263

With a real time object segmentation algorithm, real time _ o _
multimedia services such as videophone and web-based vi@iéglity, region-based peak SNR is introduced as quality mea-
chatting can be improved in a number of ways by introducir@g!re. For blokk’s support region, its SNR is defined as
MPEG-4 framework [23], [24]. In this section, we attempt to
make comparison better MPEG-4 and H.263 using experimental _ ] 25528 (s,
data. For simulation purpose, we used MoMuSys MPEG-4 im- e y):l[f(l’v y) — I(z,9)]?
plementation version 7 [25] and Telenor's H.263 implementa- 7

tion version 2.0 [26], both are freely available on the web.  \yhere 7(z, ) and i(x,y) are original and decoded pixel’s
First, we study the compression gain from VO segmgntatlglgmar values;, is the blob support map defined in (1), and
results. Because of the online feature of our segmentation alg,%k) is the size of blobk’s support map.
rithm, no standard video sequence could be used. Instead, Wggp)e | compares the coding performance of MPEG-4 and
use the testing sequence described in Section V. Among the 80963 Rate is in kilo bit per second. SNR, SNR-b, SNR-h and
frames, the 100 frames from 600 to 699 are chosen for this Sig\NR-s refer to thad” component peak SNR of the entire frame,
ulation. background region, head region and shoulder region, respec-
The setup of MPEG-4 encoding and decoding is illustrated ifyely. We can see that in the baseline setup and at the same
Fig. 12. The input vided is first segmented and the foregroundit rate, MPEG-4 achieves 0.16—0.42 dB gain in the frame level
map f is obtained. With the segmented foreground nfapwo  SNR compared with H.263. This is mainly because in an object-
VOs: one background and one foreground’ are further cre- pased coding approach, an encoder processes the foreground
ated. Among them, each background frame is obtained as and background separately. It does not have to spend extra bits
on coding the uncovered background while only spends mod-
By(z.y) = Bi_i(z,y), if ft(m,_y) £0, @) erate bitsgrtl)sh:pe co?jing. However, in aframe—bas.ed approacrj,
4 Ii(z,y), otherwise. uncovered background can not be handled by motion compen
sation and is expensive to encode.

) o ] _ Table I also shows different SNR distributions over different
That is, a background pixel in the current frame is repeated WW—S'gions. In H.263, the background region always gets the best
?ts value in the previous frame if it is occluded, or else it takegnR result while the foreground region quality is not as good,
its current value. Both VOs are encoded and decoded separaigdhayse the foreground is always in motion and more difficult to
and then composed to create the final outpufor both VOs, compress. In MPEG-4, we reduce the background quality a little
MPEG-4 encoder uses the baseline mbdéyi4 rate control. pyt the foreground quality is improved significantly. In Table |
The inter-VO rate control is realized by controlling the averaggNR-h and SNR-s for MPEG-4 are generally 0.5 dB better than
quantizer of background VO to make it approximately equ@hose for H.263. Because the background is the biggest region in
to that of H.263 encoder. H.263 encoder also uses its baseline testing frame, this measure penalizes MPEG-4 in the frame
mode. Frame by frame average peak SNR of all the 100 framegel SNR comparison. However, as the foreground is the focus
are used as quality measure (when some frames are skippeditention, the subjective result is better. That is, MPEG-4's
by the encoder, the previous reconstructed frame is repeateding efficiency is more than 0.16-0.4 dB better as indicated
to compute SNR at the decoder side). In the experiment, bathTable I.

MPEG-4 and H.263 used 10 fps output frame rate, neither ofSecond, we study the scalability gain from VO segmentation

them skipped frames. In order to better evaluate the decodimgults. In traditional encoder like H.263, quantization adapta-
tion is the only means to control the bit rate. With MPEGdi-

5In order to give the readers better sense of the accuracy and reliability pesnt-based scalabilitgan be added to quantization-based scala-

formance of our algorithm, we put frame-by-frame segmentation results of alj,. . . . .
the 800 frames on our web as well. B‘Ilty. That is, we can choose to transmit part of the information

6H.263 quantization table, no alpha threshold, no advanced prediction moHeat i Semami_ca"y more important. In the case of Vid.e()phone
and no shape effects mode. and web chatting, we can transmit only the head region (head
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Comparison of RD curves of H.263 and MPEG4 encoder 3
22 . e : : ‘ ‘ ; Web-chat
24
__-26F
)
o
o
=z
f’ﬂ _og| AN control
c
£ [ ideo
o
3 [~ Audo
=30+
Configure |
_3ol Message:
_34 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 -
rate:kbps Exit |

Fig. 13. Comparison of MPEG-4 and H.263 encoder behavior at low
bandwidth. %”: SNR for MPEG-4 encoder that encodes only the segmented (a)
head VO; “x": frame level SNR for H.263 encoder that encodes the same

video without segmentation+” head region SNR for H.263 encoderp™ il
shoulder region SNR for H.263 encoder.
i | E i

- |

VO) in order to reach lower bit rate. According to our observe
tion, as long as the segmentation quality is good, this type
scalability is acceptable to the end users.

Quantitative experiments are carried out on our 800-fran
testing video. Frames 500 to 599 are used to compare the |
bit rate behavior of MPEG-4 and H.263. In the comparison, w AV control-
use MPEG-4 to encode the head VO only (obtained by segme ™ Video
tation with previous discussed online algorithm) and compa  Audo
the SNR performance with H.263 that worked on full frame pic
tures. Both encoders use baseline mode with target frame rate Configure
at 10 fps. The result is illustrated in Fig. 13. The figure is setL Message: =
in a rate-distortion pattern, with -SNR used as distortion me Sona
sure. For each encoder, different combinations of coding para
eters are used to get sampling points. The sampling points . =
used to approximate the R—D behavior of each encoder (Sa
pling points are chosen that represent the best performance for
both encoders in the experiment. Curves are not strict convex
because different coding parameters and/or rate control opti§
are chosen for different points in order to reach low bit rates).
In the figure, it can be seen that using content-based scalability . . . . .

. In addition, this segmentation and tracking approach is a
MPEG-4 encoder reaches much lower bit rate. If we set 26 dB . . : :
for the head region as thceptable quality boundayghen for possible solution to very-low-bit-rate coding. Though model-

H.263 the lower bandwidth boundary is about 15 kbps, Whi%ased—codmg techniques like [27] can reach a bit rate of several

for MPEG-4, the lower boundary is about 5 kbps. This is e\/Ehnundred bits per second, it is too difficult to fit the model to
. : uman faces. Instead, our work suggests that the segmented
lower than a good quality audio channel.

fsgfead regions can be transmitted efficiently with MPEG-4.

dil.

(b)

14. User interface of a web-chat software that makes use of content-based
ability.

This experiment indicates that this technique will be use ecause the bit rate is close to that of one channel audio, it is

in applications such as Internet video chatting, where no Qo . . . X . )
guaranteed, and friendly bandwidth adaptation is critical forarillg'o likely to apply this technique odeo emailin which head

large scale fair sharing of available bandwidth resources. Fig. "Flon 1S segmented and sent at several kbits per second.
illustrates the user interface of a web-based chatting software.
In Fig. 14(a), a full resolution QCIF size video is sent when the

network bandwidth is sufficient, while in Fig. 14(b), the video In this paper, a model based video analysis algorithm is pro-
is automatically downscaled to only the head object to fit fposed for videophone applications. Unlike other approaches,
a narrow bandwidth. Though the transmitted video is smallehjs algorithm emphasizes a real time performance. Application
the motion of face region is well conveyed with audio, whickdomain is limited and domain knowledge is abstracted and mod-
maintains a good user feeling. eled with both blob based statistical region model and shape

VIl. CONCLUSION
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model. With the assistance of model knowledge and a hiei19]
archical processing structure, a QCIF size head-and-shoulder
video can be segmented into background, head and shoulq%]
three regions. Experiments show that this algorithm runs in real
time on average PC platforms. We believe that this algorithm i?Zl]
a useful tool for applying the new object based MPEG-4 stan*
dard to popular real time video service. Our simulation resultg?2]
presented in the last part of this paper also support this opinion.

(23]
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