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(ABSTRACT) 

 

Wireless video systems have applications in cellular videophones, surveillance 

systems, and mobile patrols. The design of a wireless video system must consider two 

important constraints: low bit rate and low power dissipation. The ITU-T H.263 video 

codec standard is suitable for low bit rate wireless video systems, however it is 

computationally intensive. Some of the most computationally intensive operations in 

H.263 are the Discrete Cosine Transform (DCT) and the Inverse Discrete Cosine 

Transform (IDCT), which perform spatial compression and decompression of the data. 

In an ASIC implementation of H.263, the high computational complexity of the DCT 

and IDCT leads to high power dissipation of the blocks. Low power design of the DCT 

and IDCT is essential in a portable wireless video system.  

 

This paper examines low power design techniques for DCT and IDCT circuits 

applicable for low bit rate wireless video systems. Five low power techniques are 

applied to baseline reference DCT and IDCT circuits. The techniques include skipping 

low energy DCT input, skipping all-zero IDCT input, low precision constant 

multipliers, clock gating, and a low transition data path. Gate-level simulations 

characterize the effectiveness of each technique. The combination of all techniques 

reduces average power dissipation by 95% over the baseline reference DCT and IDCT 

blocks.
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Chapter 1: Introduction 
 

For the increasing number of portable wireless devices, a key design constraint 

is power dissipation. Limited battery life constrains portable devices to low power 

dissipation; advances in battery life do not grow as fast as the density and the operating 

frequency of ASICs [1]. The ever-growing circuit densities and operating frequencies 

of ASICs only result in greater power dissipation. Moreover, low power designs are 

more environmentally friendly. Furthermore, since technology sizes continue to shrink, 

area and speed constraints become less important.  

One such portable device that must meet low power design constraints is a 

wireless video system. For wireless video systems, the relatively small capacity of the 

wireless channel constrains the system to a low bit rate. The low bit rate makes speed 

constraints less important, and shrinking technology sizes make area constraints less 

important; so we focus on low power design of a wireless video system in this thesis. 

Low bit rate, wireless video systems have applications in cellular videophones, 

surveillance systems, and mobile patrols. 

With a suitable codec, we can provide enough compression to achieve 

satisfactory video quality at low bit rates. For our video system, the codec must also 

define important parameters such as frame size, frame rate, input format, and output 

format. The ITU-T H.263 [2] video codec standard is suitable for low bit rate, wireless 

video systems. It provides acceptable picture quality and frame rate for video streams 

at N x 64 kbps and less. Because the codec must heavily compress the video, an H.263 

system is computationally intensive. The computational complexity of H.263 is 

increasing, since recent revisions include new features that enhance the capabilities of 

H.263. The enhanced features attempt to provide higher quality video at the expense of 

higher computational complexity. Since higher computational complexity translates to 

increased power dissipation, an implementation of H.263 for portable, wireless systems 

must focus on low power design. 

An essential component of the H.263 codec is the compression of video frames 

in space. This compression is performed with the discrete cosine transform (DCT). The 

inverse discrete cosine transform (IDCT) is essential in the decompression process. The 
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DCT and the IDCT are some of the most computationally intensive blocks in H.263. 

The combined computational complexity of the DCT and IDCT in the coder surpasses 

that of any other unit, consuming 21% of the total computations [3]. The IDCT in the 

decoder also incurs the largest computational cost in the decoder. In an H.263 system 

running at resolution of 144 x 176 pixels at 10 frames per second, DCT and IDCT 

related calculations require over 45 million multiplication and addition operations per 

second. The high computational complexity of the DCT and the IDCT leads to high 

power dissipation in hardware, so low power design of DCT and IDCT units are 

essential for portable wireless video systems based on H.263. In fact, most leading 

DCT and IDCT designs now stress battery life in addition to performance [4].  

The remainder of this thesis explores the development of low power hardware 

designs for the DCT and the IDCT. The organization is as follows. In Chapter 2, we 

provide the background information necessary to understand the H.263 codec; we 

emphasize the background information relative to the DCT and IDCT operations. We 

also review previous architectures and low power design techniques for DCT and IDCT 

units. Next, in Chapter 3, we describe the baseline architecture for our DCT and IDCT. 

The baseline architecture provides us with a platform to test our low power techniques. 

Chapter 4 details each of the low power design techniques that we apply to the baseline 

architecture. The resulting improvement in power dissipation for each of these low 

power techniques appears in Chapter 5. We also give the total improvement in power 

dissipation for the combined effect of all the low power techniques. Finally, in Chapter 

6, we draw conclusions about our work on low power DCT and IDCT circuits. 
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Chapter 2: Preliminaries 
 

In this chapter, we first explain the concepts and terms necessary to understand 

the H.263 codec. We review the major computational blocks in an H.263 system, as 

well as the format of the transmitted data. Additionally, we give more detail about the 

DCT and IDCT transforms and give an example of a DCT operation in the context of 

H.263. Finally, we review previous work done in algorithms, architectures, and low 

power techniques for the DCT and IDCT.  

 

2.1 H.263 

 

 

Figure 2.1: H.263 Coder Block Diagram 

 

Figure 2.1 shows a block diagram of the major operations performed in an 

H.263 coder. The arrows represent the flow of data. Starting at the encoder, the motion 

estimation (ME) and motion compensation (MC) blocks perform temporal compression 

by computing the difference between the current frame and the previous frame. The 

temporally compressed data is sent to the DCT, which is a key component in the spatial 

compression of the data. The DCT block transforms the data into spatial frequency 

coefficients. The quantization (Quant) block divides each DCT coefficient by a 

quantization parameter, setting insignificant DCT coefficients to zero. The variable 
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length coder (VLC) performs run length coding on the quantized coefficients, 

compressing long runs of DCT coefficients.  

 

 

Figure 2.2: H.263 Decoder Block Diagram 

 

 

The compressed data is sent to the decoder, where the inverse process is applied 

to reconstruct a frame. Figure 2.2 shows the operation of an H.263 decoder. The 

variable length decoder (VLC-1) reconstructs the quantized data, and the inverse 

quantization (Quant-1) block multiplies by the quantization parameter to reconstruct the 

DCT coefficients. Then, the IDCT block transforms the DCT coefficients back into the 

spatial domain. Finally, the inverse motion estimation (ME-1) and compensation (MC-1) 

blocks reconstruct the original frame by adding the transmitted difference to the 

previous frame. These reconstruction steps also occur in the encoder, so both the 

encoder and the decoder have identical reference copies of the previous frame.  

The following sections give more detail about the data structure of H.263 and 

the above H.263 operations. 
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2.1.1 Data Structure 

 

 The H.263 video format is described in terms of the size of each frame and the 

transmission rate of the frames. The size is measured in terms of the number of pixels 

per line and the number of lines per frame. In this paper, we use a fixed size frame of 

QCIF size, which consists of 176 pixels per line and 144 lines. Since H.263 allows 

custom frame rates, we must choose a suitable frame rate for the 20 kbps bandwidth 

that is allocated for video data in our target 60 kbps wireless channel. We choose a 

constant frame rate of 10 fps, which provides a good compromise between frame rate 

and frame quality. The remaining 40 kbps of our wireless channel is reserved for turbo 

coding overhead.  

 Figure 2.3 shows the data partitions within an H.263 QCIF picture frame. 

Sixteen lines make up a group of blocks (GOB). The nine GOBs in QCIF are further 

divided into macroblocks, which are basic units of data in H.263. Quantization and 

motion estimation, and bit rate control are performed at the macroblock level. With 

QCIF resolution, one video frame requires 9 rows and 11 columns of macroblocks for a 

total of 99 macroblocks. Each macroblock contains six 8x8 blocks; the six blocks 

represent a 16x16 pixel area of a video frame. A block contains an 8x8 matrix of data 

samples for a total of 64 samples. The DCT, IDCT, and VLC operations are performed 

on these 8x8 blocks of data. 

 

 

Figure 2.3: H.263 Data Structures 
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The six blocks in a macroblock conveniently represent data in YCbCr format, 

which contains a luminance component (Y), a blue chrominance component (Cb), and a 

red chrominance component (Cr). Within a macroblock, four blocks contain luminance 

values, one block contains blue chrominance values, and one block contains red 

chrominance values. Luminance blocks describe the intensity or brightness of pixels, 

while chrominance blocks contain information about the coloration of pixels. Since the 

human eye is less sensitive to color than to intensity, each chrominance block is 

downsampled by a factor of two in both the x and y directions. Figure 2.4 shows where 

the luminance and chrominance samples are taken. Each luminance value corresponds 

to one pixel, while each chrominance value is shared by four pixels. 

 

X X
X X X X

X X
X X
X X

X X
X X X X

X X
X X
X X

X X
X X X X

X X
X X
X X

X Luminance Sample

Chrominance Sample

Macroblock Edge  
Figure 2.4: Sampling of Luminance and Chrominance in H.263  

 

 

2.1.2 Temporal Compression 

 

 Temporal compression is the compression of video in time. In a temporally 

compressed frame – known as an INTER frame – only the difference between the 

current frame and the next frame is transmitted. A frame that is not temporally 

compressed is known as an INTRA frame. In our H.263 coder, the first frame is an 
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INTRA frame and all subsequent frames are INTER frames. Temporal compression 

occurs in two steps: motion estimation and motion compensation.  

 The goal of motion estimation is to find the macroblock in the previous frame 

that is the best match for a macroblock in the current frame. To compare the 

macroblocks, a copy of the previous frame is kept in memory. The displacement 

between the current macroblock and the best match is then encoded as motion vector. A 

common metric for finding the best matching block in the previous frame is the sum of 

absolute differences (SAD). The SAD is a measure of how well a macroblock in one 

frame matches a nearby macroblock in the next frame. Sequences with large amounts 

of motion tend to produce larger magnitude SAD values, while sequences with less 

motion tend to produces smaller magnitude SAD values. SAD values are obtained by 

the following equation:  

 

( ) ( )∑ ∑
= =

−−−=
16

1

16

1
,, ,,

k l
viuiji lkYlkYSAD                                                                     (2.1) 

 

In Eq. (2.1), the magnitudes of luminance pixels, Yi,-u,j-v(k,l), in macroblocks that are 

offset by (u,v) in the previous frame are subtracted from the corresponding magnitudes 

of each luminance pixel, Yi,j(k,l), of the macroblock that is at position (i,j) in the current 

frame. In motion estimation, the candidate macroblock with the lowest SAD is usually 

chosen as the most likely match for the current macroblock. The final result of the 

motion estimation process is a motion vector that describes the offset of the chosen 

macroblock from the current macroblock.  
After motion estimation, the motion compensation unit computes the difference 

between the chosen macroblock and the current macroblock. In video with small 

amounts of motion, this difference usually has small magnitude or zero magnitude. 

This aids the compression process, since a large amount of highly correlated data is 

sent to the DCT unit, which has the ability to represent correlated data with a small 

number of uncorrelated coefficients. 

The decoder applies the reverse process to reconstruct the picture. The decoder 

also keeps a copy of the previous frame in memory. The best match from the previous 
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frame is located from the information provided in the motion vector. The difference 

computed by the motion compensation unit is added to this best matching macroblock. 

In this process, the new picture is reconstructed from the motion vectors, the motion 

compensated data, and the previous frame. 

 

2.1.3 Spatial Compression 

 

After undergoing the motion estimation and motion prediction processes, H.263 

data undergoes a three-step spatial compression process. The first step is the DCT, 

which transforms spatial data into spatial frequency coefficients. Next, the quantization 

unit attempts to force visually insignificant DCT coefficients to zero, thus producing 

long runs of ‘0’ in the output matrix. Finally, the VLC unit compresses these long runs 

of ‘0’. 

The DCT operates on 8x8 blocks of data. A detailed description of the DCT 

operation is given in section 2.2. The DCT transforms the spatial input data into an 8x8 

matrix of spatial frequency coefficients.  Typical picture data results in an output matrix 

that has larger magnitude low frequency coefficients and smaller magnitude high 

frequency coefficients. The human eye is more sensitive to the low frequency 

coefficients than to the high frequency coefficients. 

Because of the characteristics of the DCT coefficients, the quantization block 

divides the DCT coefficients by a parameter called QUANT. The quantization block 

aids the compression process by forcing the small magnitude, high frequency 

coefficients to zero. The QUANT parameter varies depending upon the available 

bandwidth. QUANT will increase if less bandwidth is available, thereby forcing more 

coefficients to zero. Likewise, QUANT will decrease if more bandwidth is available, 

thereby forcing fewer coefficients to zero. Higher values of QUANT also introduce 

more distortion into the decoded video, while lower values of QUANT produce higher 

quality pictures. For our low bit rate system, the quantization process introduces a large 

amount of error. Since the quantization operation forces high frequency coefficients to 

‘0’, the output matrix is re-ordered into a vector with the low frequency coefficients at 

the beginning and the high frequency coefficients at the end. Since the high frequency 
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coefficients are clustered at the end of the input vector, large runs of ‘0’ should occur at 

the end of the vector.  

The large runs of ‘0’ are further compressed in the VLC block. The output data 

of the quantizer block is treated as a series of events. An event is a combination of three 

parameters: LAST, RUN, and LEVEL. The LAST bit indicates whether there are any 

remaining non-zero coefficients in the block. When LAST is set to ‘1’, the rest of block 

will contain all zeroes, which do not have to be transmitted. RUN indicates how many 

successive zeroes preceded the current non-zero coefficient. Finally, LEVEL is the 

value of the current non-zero coefficient. In the VLC coder the most commonly 

occurring events are assigned short, variable length codes from a table. The variable 

length codes require three to thirteen bits. Other events are represented with a seven bit 

escape code followed by an explicit declaration of LAST with one bit, RUN with seven 

bits, and LEVEL with eight bits. 

The decoder applies these processes in reverse order to reconstruct the blocks. 

First, the VLC decoder recovers the vector of IDCT coefficients. Next, the inverse 

quantizer multiplies these coefficients by the QUANT parameter to approximately 

reconstruct the DCT coefficients. Finally, the IDCT transforms the coefficients back 

into the spatial domain.  

The inverse quantization, IDCT, and inverse motion compensation processes 

also occur in the coder. This is so that the decoder and the encoder have similar 

reference copies of the previous frame to use in motion estimation and compensation. 

Since the compression process changes the original image, the reference frame in the 

encoder must undergo the same operations as the reference frame in the decoder. If the 

encoder and the decoder use exactly the same process for performing the IDCT, then 

the copies of the reference frame will be identical and the decoded video will remain 

stable. With differing IDCT algorithms that do not have sufficient accuracy, the copies 

of the reference frame can become unsynchronized between the coder and the decoder. 

In this case, small differences in the IDCT calculations propagate to future frames and 

can grow large enough to make the system unstable. 
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2.1.4 Bit Rate Control 

 

 Because of the limited capacity of our wireless channel, we must keep the data 

transfer rate under 20 kbps. No rate control algorithm is specified in the H.263 

recommendation. However, the ITU test model describes the rate control algorithm that 

is used in our prototype [5][6]. The data rate is controlled at the picture level and at the 

macroblock level.  

At the picture level, rate control occurs by skipping entire pictures when the 

target frame rate is less than the frame rate of the original video sequence. Higher frame 

rates increase the bit rate and improve the temporal quality of a sequence, while lower 

frame rates decrease the bit rate and degrade the temporal quality of a sequence.  

At the macroblock level, rate control is achieved by modifying the quantizer 

value, depending on the amount of data previously sent. The quantizer value can be 

incremented or decremented for each macroblock, depending on the rate the output 

buffer is filled. Pictures with high motion and high detail will have larger quantizer 

values than pictures with little motion and little detail. Higher quantizer values reduce 

the number of bits required to encode a picture and degrade the quality of the picture. 

Lower quantizer values increase the number of bits required to encode a picture and 

improve the quality of the picture. To optimize the tradeoff between bit rate and picture 

quality, the rate control attempts to use the highest quantizer values that do not cause 

the target bit rate to be exceeded.  

 

2.1.5 Bit Stream 

 

The bit stream is divided into layers that follow the hierarchical division of 

H.263 data: the picture layer, the GOB layer, the macroblock layer, and the block layer.  

The picture layer includes information relative to an entire frame of data. The 

picture layer begins with a start code that is byte aligned and uniquely identifies the 

start of a frame. A field tracks the total number of frames in the current video sequence, 

including skipped frames. Also included is information about the type of screen, the 

picture size, the frame rate and the type of picture: INTER or INTRA. The frame layer 
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also specifies which, if any, of several optional H.263 extensions are present in the 

current frame. Another critical piece of information included in the picture layer is the 

initial quantizer value. This value is important since it can only be incremented and 

decremented at the macroblock layer. Optional stuffing can be inserted to obtain a byte-

aligned bit stream. The picture layer is also responsible for sending an end-of-sequence 

code that identifies the end of a video. 

The GOB layer contains information pertinent to each row of macroblocks. An 

advantage to having the GOB layer is that it provides synchronization between the 

coder and the decoder for each row of macroblocks. When the decoder synchronizes 

with the beginning of each GOB layer, errors will not propagate from the previous row 

of macroblocks. The GOB layer begins with a start code unique to the GOB layer. The 

GOB layer includes the frame number containing the current GOB and the ID number 

of the current GOB within that frame. Finally, the GOB layer provides a final 

opportunity to change the QUANT parameter to any value, since the QUANT 

parameter can only change by increments at the macroblock level.  

The macroblock layer contains information related to macroblocks. The motion 

vector data is represented by VLC code words for both the horizontal and vertical 

components. Since predicted macroblocks can potentially remain exactly the same as in 

a previous frame, they may contain no new information. In this case, a single bit, the 

coded macroblock indication (COD) bit, signals whether to treat the entire 

macroblock as all zero data with zero motion. An INTER macroblock will produce all 

zero input to the IDCT if its COD field is zero. The macroblock layer also includes 

information about its luminance and chrominance blocks. The coded block pattern 

(CBP) describes the values of DCT coefficients for each luminance and chrominance 

block. The CBP of a block is set to ‘1’ if the block contains at least one non-zero DCT 

coefficient that is not the DC coefficient at position (0,0). Otherwise, the CBP of a 

block is set to 0. An INTER block produces all zero input to the IDCT if its DC 

coefficient is zero and its CBP is zero. Additionally, the macroblock layer provides an 

opportunity to adjust the QUANT parameter by +/- 1 or +/- 2.  

The block layer is at the lowest level of the hierarchy and contains information 

relevant to each 8x8 luminance and chrominance block. The information transmitted at 
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the block level includes the VLC codes that describe the events in a spatially 

compressed block. The only other information included at the block level is the DC 

coefficient for INTRA blocks. The DC coefficient is important for video quality in 

INTRA blocks, so it is treated differently from other coefficients; the quality of an 

INTRA block affects all subsequent INTER blocks. 

 

2.1.6 Peak Signal to Noise Ratio  

 

The average peak signal to noise ratio (PSNR) of a frame in a video sequence 

is measured as  

 

∑ ∑ −⋅
=

rows cols YYyx
PSNR

21

22551
log10 ,                                                                            (2.2) 

 

where x is the number of rows, y is the number of columns, and Y1 and Y2 are the 

luminance values in the original and the reconstructed pictures. We use the average 

PSNR over all frames as a quantitative measure of the quality of a video sequence. 

 

2.2 DCT/IDCT 

2.2.1 Background 

 

In signal processing applications, the DCT is the most widely used transform 

after the discrete Fourier transform [7]. The DCT and IDCT are important components 

in many picture compression and decompression standards, including H.263, MPEG, 

HDTV, and JPEG. The applications for these standards range from still pictures on the 

Internet to low quality videophones to high definition television. The DCT and IDCT 

also have applications in such wide-ranging areas as filtering, transmultiplexers, speech 

coding, and pattern recognition [7]. 

The DCT transforms data from the spatial domain to the spatial frequency 

domain. The DCT attempts to decorrelate image data, which is typically highly 
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correlated for small areas of an image. Heavily correlated data samples provide much 

redundant information, whereas just a few pieces of uncorrelated information can 

represent the same data much more efficiently. For example, just five pieces of 

uncorrelated information completely describe a sinusoid: the phase, the frequency, the 

starting time, the amplitude, and the fact that it is a sinusoid. It is far less efficient to 

transmit samples for the duration of the sinusoid.  Through the DCT transform, the 

energy of typical image data is packed efficiently into a few uncorrelated spatial 

frequency coefficients. The spatial frequency coefficients represent a small area of 

image much more efficiently than the sampled data.  

 

2.2.1.1 Formulation 

 

In most video compression applications, DCT and IDCT operations operate on 

8x8 blocks of data. For an 8x8 block of samples x(m,n), the two dimensional (2-D) 

DCT and IDCT are formulated in (2.3) for 0 ≤ k,l ≤ 7 and in (2.4) for 0 ≤ m,n ≤ 7 
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where α(0) = 1/ 2  and α(j) = 1 for j ≠ 0. A measure of the efficiency of a DCT/IDCT 

algorithm is the number of multiplications. The straightforward implementations of the 

DCT and IDCT require N4 multiplications for an NxN block, so they are rarely 

implemented. Most implementations use fast algorithms that reduce the number of 

multiplications to O(N3). Fast algorithms not only improve the speed of the DCT but 

also reduce the number of computations.  

The 2-D DCT transforms an 8x8 block of spatial data samples into an 8x8 block 

of spatial frequency components. The IDCT performs the inverse of DCT, transforming 

spatial frequency components back into the spatial domain. Figure 2.5 shows the 
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frequency components represented by each coefficient in the output matrix. The low 

frequency coefficients occur in the top left side of the output matrix, while higher 

frequency coefficients occur in the bottom right side. The DC coefficient at position 

(0,0) gives an idea of the average intensity (for luminance blocks) or hue (for 

chrominance blocks) of an entire block. Moving horizontally from position (0,1) to 

position (0,7), the coefficients give the contributions of increasing vertical frequency 

components to the overall 8x8 block. The coefficients from position (1,0) to position 

(7,0) have similar meaning for horizontal frequency components. Moving diagonally 

through the matrix gives the combined contribution of horizontal and vertical frequency 

components. The original block is rebuilt by the IDCT with these discrete frequency 

components. 

 

 

0,0

0,7

7,0 7,7

1,0

2,0

0,20,1

1,1

 
 

Figure 2.5: DCT Coefficients 

 
 

High frequency coefficients have small magnitude for typical video data, which 

usually does not change dramatically between neighboring pixels. Additionally, the 

human eye is not as sensitive to high frequencies as to low frequencies. It is difficult for 

the human eye to discern changes in intensity or color that occur between successive 
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pixels. The human eye tends to blur these rapid changes into an average hue and 

intensity. However, gradual changes over the 8 pixels in a block are much more 

discernable than rapid changes. When the DCT is used for compression purposes, the 

quantizer unit attempts to force the insignificant high frequency coefficients to zero 

while retaining the important low frequency coefficients.  

 

2.2.1.2 H.263 Example DCT and IDCT used for Spatial Compression 

 

 This section gives an example of spatial compression on an 8x8 block of video 

data taken from a luminance block in a video sequence. We show the process of 

extracting the data, performing the DCT, performing quantization, and performing 

VLC encoding. The example shows the efficient compression enabled by the DCT 

transform. 

  

 

6 2 2 -1 -1 -1 -12 -13
8 2 1 1 -2 -3 -12 -7
7 3 1 1 0 0 -14 -10
5 0 1 1 1 -1 -12 -11
2 0 1 0 -1 0 -12 -12
1 -1 0 -1 -3 -2 -15 -12
2 0 2 -1 -4 -5 -12 -13
2 2 3 1 -3 -3 -11 -9

DCT

-22 34 -16 10 2 -2 11 -5
3 2 0 2 2 -2 0 -2
0 0 1 -3 -1 1 -1 0

-2 0 -1 2 0 2 0 2
1 -2 -2 -1 -2 0 0 0

-2 0 -2 1 -2 0 0 0
0 1 -2 1 -1 -2 2 0
1 1 -1 0 -1 0 0 0

(A) (B) (C) (D)
 

Figure 2.6: Example DCT 

 

Figure 2.6 shows the process of taking an input block from a picture and 

applying a DCT transform. An 8x8 block of samples (B) is taken from the original 

picture (A) and sent to the DCT block (C). The output (D) of the DCT is representative 

of typical video data. The larger magnitude coefficients are concentrated in the low 

frequency area of the output matrix, while smaller magnitude coefficients occupy the 

rest of the output matrix. These coefficients are then sent to the quantizer block. 
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Figure 2.7: Example Quantization Process and Zigzag Scan 

 

 

Figure 2.7 shows the quantization process followed by a zigzag scan of the 

results. After the quantization operation (E) divides each coefficient by three, the 

quantized matrix (F) contains a few non-zero coefficients concentrated in its upper left 

corner. Note that many of the insignificant high frequency coefficients are now set to 

zero. Because of this distribution of data, the quantized DCT coefficients are then 

scanned into a vector according to the scanning scheme in (G). The arrow shows the 

progression of the scan for the first six values in the matrix. This scanning scheme 

attempts to force the coefficients into a vector that contains long runs of zeroes.  

 
 

-7, 11, 0, 0, 0, -5, 3, 0, 0, ..., 0 0 0

VLC

0001001001 000000001100 0000011000001111111011 0101010 0000011101010000000011

(H)

(I)

(J)  
 

Figure 2.8: Example VLC Encoding 
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Figure 2.8 shows the operation of the VLC encoder. The vector with long runs 

of zeroes (H) is sent through the VLC block (I), where the long runs are compressed 

into efficient variable length codes (J). Note the length of the entire code needed to 

represent a block of 64 samples is only 73 bits long. To represent the block as an 8x8 

matrix containing 64 discrete samples of spatial data would take 64x8 = 512 bits. The 

compression enabled by the DCT saves over 85% of the bits that would have been 

required by sending each sample. 

 In the decompression scheme, the opposite process is performed to reconstruct 

the original block. This section gives an example of spatial decompression on the 8x8 

block of video data. The decoding process involves VLC decoding, inverse 

quantization, and an IDCT operation. The resulting data approximates the original data, 

because the DCT and the quantization processes introduce error into the transmitted 

data. 

 

-7, 11, 0, 0, 0, -5, 3, 0, 0, ..., 0 0 0

VLC

0001001001 000000001100 0000011000001111111011 0101010 0000011101010000000011 (K)

(L)

(M)

-1

 
 

Figure 2.9: Example VLC Decoding 

 

 

Figure 2.9 shows the operation of the VLC decoder. The decoder (L) 

reconstructs the variable length codes (K) into a vector of quantized coefficients (M).  
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Figure 2.10: Example Inverse Quantization 

 

Figure 2.10 shows the de-scanning process (N), which places the coefficients 

back into an 8x8 matrix (O). The matrix is then de-quantized in the inverse 

quantization unit (P), which multiplies each coefficient by three to approximate the 

original DCT coefficients. Note that the small values of the insignificant high 

frequency coefficients are not recovered.  

 

 

2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12
2 -1 1 -1 -2 -3 -10 -12

IDCT
-21 33 -15 9 0 0 9 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(Q) (R) (S) (T)  
 

Figure 2.11: Example IDCT 

 

Figure 2.11 shows the results of the IDCT process. The IDCT unit (R) 

transforms the reconstructed coefficients (Q) back into the spatial domain data (S). The 

resulting block of data is then added back into the transmitted picture (T). Note that the 

reconstructed samples (S) are not equivalent to the input samples (B) from the original 
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picture. The quantization process and the finite precision arithmetic of the DCT and the 

IDCT contribute to the error in the transmitted block. However, the transmitted block 

approximates the original pattern; samples with small positive values occur at the left 

hand side of the block, and samples with larger negative values occur at the right hand 

side of the block. 

 

2.2.2 DCT/IDCT Architectures 

 

Since the straightforward implementations of equations (2.3) and (2.4) are 

computationally expensive, most implementations employ fast algorithms that reduce 

the computational cost. Fast algorithms can be broken down into two broad categories: 

row/column approaches and direct, fast 2-D approaches. Both use 1-D DCTs as their 

basic building blocks. For the row/column approach, the 1-D DCT/IDCT of each row 

of the 8x8 input data is taken, and these intermediate values are transposed. Then, the 

1-D DCT/IDCT of each row of the transposed values results in the 2-D DCT/IDCT. 

The row/column approach results in simple and regular implementations, but it is less 

computationally efficient than the direct fast 2-D approach. The direct approach is 

faster and requires about half the multiplications of the row/column approach, but it has 

a more complicated controller and data path.  

 

2.2.2.1 Row/Column Approaches 

 

Since the 2-D DCT is an orthogonal transform, decomposing the operation into 

two sets of 1-D DCTs reduces the number of multiplications to O(N3) for an NxN block 

of data. First, the 1-D DCT of each row of the NxN input data is taken, and the 

intermediate values are stored in a transposition memory. Then, the 1-D DCT of each 

column of the intermediate values results in the 2-D DCT. Row/column approaches are 

the most popular approach for computing the 2-D DCT/IDCT. They result in simple, 

regular implementations that are less computationally efficient than direct 2-D 

implementations. However, row/column approaches also suffer from increased latency 

because of the transposition operation. The straightforward equations for computing the 
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8-point 1-D DCT and 1-D IDCT required for the row/column approach are written in 

(2.5) for 0 ≤ k ≤ 7 and in (2.6) for 0 ≤ n ≤ 7 

 

( ) ( ) ( )∑
=







 +⋅=

7

0 16
12cos)(

n

knnxkkY πα                                                                    (2.5) 

( ) ( ) ( )∑
=







 +

⋅=
7

0 16
12

cos)(
k

kn
kYknx

π
α                                                                    (2.6) 

 

where α(0) = 1/ 2  and α(j) = 1 for j ≠ 0. Many row/column implementations further 

reduce computation by using fast 1-D DCT/IDCT algorithms.  

The Chen algorithm and similar algorithms [8], [9], and [10] improve on the 

direct implementation of the 1-D DCT/IDCT. The Chen algorithm requires only 16 

multiplications for an eight point 1-D DCT/IDCT, so an 8x8 row/column 

implementation requires just 256 multiplications for a 2-D DCT/IDCT. Using the 

straightforward formulations of the 1-D DCT/IDCT, the row/column approach would 

require 1024 multiplications for a 2-D DCT/IDCT. Architectures based on the Chen 

algorithm are a popular choice for implementing the 2-D DCT/IDCT and are also 

employed for our DCT/IDCT unit [11]-[19]. 

 

2.2.2.2 Direct Approaches 

 

The direct, fast 2-D DCT/IDCT approach requires about half of the calculations 

of the row/column approach at the expense of irregularity in the data paths and more 

complex control logic. Additionally, the elimination of the transposition memory 

reduces latency. However, the register space saved by the elimination of the 

transposition memory is usually offset by the additional registers necessary to re-order 

inputs and store intermediate values. Three different methods are often used to 

implement a direct, fast 2-D approach: the matrix method, the vector-radix method, and 

the time-recursive method.  

Matrix approaches are among the most efficient of any approaches to the 2-D 

DCT [20][21]. Feig and Winograd’s algorithm requires just 94 multiplications to 
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compute the 2-D DCT. The number of multiplications is further reduced to 54 by 

computing a scaled version of the DCT. These algorithms require complex matrix 

operations, which make most approaches difficult to implement in hardware.  

Popular for hardware implementations, the vector-radix approach results in a 

fast 2-D DCT/IDCT algorithm that is more easily realized in hardware [22]-[27]. The 

vector-radix, 2-D DCT/IDCT operates similarly to a radix-2 fast Fourier transform. 

Based on the indices of the pixels, the 8x8 input matrix is divided into four blocks of 

data: odd/odd indices, odd/even indices, even/odd indices, and even/even indices. The 

decomposition results in a form that can be realized with just eight 1-D DCT/IDCT 

operations and some post processing. This is half the number of 1-D DCT/IDCTs 

required for the row/column approach. Additionally, Lee, Chen, Chen, Chen, and Ku 

find that the direct 2-D method leads to lower internal bit-width requirements than the 

row/column method [23]. This is because the data path from any input to the output 

travels through just one fixed-point multiplier. In the row/column approach, the data 

must travel through a fixed-point multiplier in both the row operation and in the 

column operation. However, the vector-radix approach suffers from irregularity and a 

large amount of preprocessing and postprocessing. 

For time recursive DCT/IDCT algorithms, the IIR filter-like architecture results 

in simple I/O behavior, parallel implementation, modular design, regular layout, ease of 

pipelining the input data, and highly localized connections [28][29]. Implementations 

of the time recursive algorithm require just eight 1-D DCT operations. Architectures 

have been proposed that trade off between area, speed, and power [28]-[31], (23), (24). 

The time recursive algorithm for the 2-D DCT computes both the DCT and discrete 

sine transform (DST) coefficients; DST coefficients can be used to perform motion 

estimation in the DCT domain [30][31]. The advantage of motion estimation in the 

DCT domain is a reduction in chip area, since the motion estimation unit and the 2-D 

DCT unit are now combined. Motion estimation in the DCT domain also eliminates the 

need for an IDCT unit in the encoder. One disadvantage of time recursive algorithms is 

the heavy use of the arithmetic units, which are active on nearly every clock cycle. 
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2.2.2.3 Approximate Algorithms 

 

Approximate algorithms reduce the complexity of the DCT/IDCT at the 

expense of introducing error in addition to the error introduced by quantization and 

finite precision arithmetic. Approximate algorithms reduce the number of 

multiplications, simplify the data path, and perform the DCT/IDCT operations much 

more quickly than in the other algorithms described above.  

The variable complexity approximations of [32] reduce the DCT complexity. 

The authors use the SAD and QUANT parameters to determine how the DCT should 

be performed. For blocks with small SAD values, the 1-D DCT is computed with an 

approximation that requires just 24 adds and 2 shifts. For sequences with high QUANT 

parameters, the authors find that the approximations have little effect on the distortion 

and decrease computations by 22%-27%. Girod and Stuhlmuller calculate the 2-D DCT 

with just the DC coefficient and the first two non-DC coefficients [33]. They 

approximate these coefficients with the following expressions.  
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X -  DCT coefficient 
k – Scaling Factor 
cx – Sum of Column x 
rx – Sum of Row x 
 

This method requires just 33 additions and 3 multiplications to compute the 

approximate 2-D DCT of an 8x8 block. The approximation is performed on blocks that 

have a SAD rating of less than 20 x QUANT. For this threshold, the authors report that 

the approximation results in overall computational savings of about 50% with no 

degradation in quality. 
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2.2.2.4 Multipliers 

 

Because of the large number of multiplication operations, a major concern in 

DCT/IDCT architectures is the method of implementing the multipliers. Most 

approaches use fixed-point arithmetic, since floating-point units are needlessly too 

complex. The two most popular forms of implementing the fixed-point multipliers are a 

distributed arithmetic architecture (bit-serial) and a straightforward architecture (bit-

parallel).  

Operating on one to five bits concurrently, the distributed arithmetic (DA) 

architecture processes data in a bit-wise order. The DA architecture uses a ROM look-

up table in conjunction with a shift-and-add approach to iteratively compute results, 

which gives it the advantage of taking up minimal area with a high-speed capability. 

Another advantage of DA architectures is the ease of implementing variable precision 

arithmetic. If the DA starts processing the most significant bits first, each iteration 

comes closer to the final result. By controlling the number of iterations, a fine grain, 

variable precision arithmetic can be implemented. Implementations of the DA 

architecture are area efficient and have a regular VLSI realization [14]. A disadvantage 

of the DA architecture is the frequent ROM accesses, which result in larger power 

dissipation. An analysis finds that the DA architecture provides higher speed than a 

hardwired multiplier but also dissipates more power [34]. The advantages of the DA 

make it a popular choice for high-speed, low area implementations 

[12][14][16][21][26][28][34]-[36]. 

Several designs of bit-parallel multipliers, which compromise speed, area, and 

power dissipation, have been proposed. An array multiplier is a straightforward 

implementation of the bit-parallel architecture, and it is easily implemented from design 

libraries such as Synopsys DesignWare. [19]. The direct implementation of an array 

multiplier requires far more area than the bit-serial approach of a DA implementation. 

Most architectures attempt to improve the speed and area of bit-parallel approaches 

with more efficient architectures. Some choices that improve speed include ROM-

based multipliers [11] and PLA-based multipliers [34]. The fact that one multiplicand is 

known a priori in the DCT/IDCT can be exploited for optimization of constant 
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multipliers that use a shift-and-add approach [13][17][18][37]. A constant multiplier 

can multiply one input by a constant coefficient, so DCT/IDCT designs require a 

different constant multiplier for each coefficient. However, these multipliers are faster 

and more area efficient than array multipliers. Constant multipliers perform with 

accuracy close to that of a look-up table but with far smaller area. Additional area is 

saved with common subexpression sharing between the adder rows of a constant 

multiplier. One interesting multiplier design uses rotation-based arithmetic, which 

reduces shift-and-add operations by 28% [30][31]. Another alternative to an array 

multiplier is a look-up table. The look-up table provides better accuracy than other 

implementations at the cost of area. To save area, some low-speed implementations 

consider a version of the Booth algorithm [17][38].  

Some bit-parallel implementations use constant multipliers to reduce the 

complexity of the multiplier circuit. Since architectures for constant multipliers can 

vary widely, we describe the operation of a constant multiplier that is suitable for use in 

a DCT/IDCT application. 

 The constant multiplier computes a product based on a shift-and-add approach.  

Consider the product of a number N and the nine-bit constant DCT coefficient a (181 = 

010110101b)  

 

( ) ( ) ( ) ( ) ( )NNNNNN ×+×+×+×+×=× 02457 22222010110101                      (2.8)     

 

To compute this product, we need to multiply N by powers of two, which is 

accomplished by shifting N to the left. The shift operation is simple to implement in 

hardware; it requires re-routing the bits of the input and the intermediate results to the 

appropriate inputs of subsequent adders. To obtain the final product, we simply add 

together the five shifted versions of N.  

Figure 2.12 shows the area efficient hardware configuration of the constant 

multiplier. An array multiplier would need eight adder rows for each significant bit in 

the constant a; the basic shift-add multiplier only needs an adder row for each ‘1’ in the 

constant a. Additional area is saved by sharing common sums among the adders and 

shifting them appropriately. For example, in the constant a, the pattern “101” occurs 
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twice: in bit positions two through four and in bit positions five through seven (a = 

010110101). In Figure 2.12, the two occurrences of “101” are handled as follows. First, 

the sum X = (20 x N) + (22 x N) is computed; then the sum Y = (22 x X) + (25 x X) is 

computed. Computing Y requires just two add operations to handle the ‘1’s that occur 

in bit positions two, four, five, and seven.  Had we not shared the “101” subexpression, 

the sum (22 x N) + (24 x N) + (25 x N) + (27 x N) would have required three add 

operations. To compute the final product, we need only add the sum from the ‘1’ in bit 

position zero to Y. The overall multiplier requires only three adder rows to compute the 

product, while an array multiplier would have required eight adder rows.  
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Figure 2.12: Shift-Add Multiplier 
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2.2.3 Review of Low Power DCT/IDCT Designs 

 

Several previous proposals for DCT/IDCT architectures attempt to reduce 

power dissipation. The architectures use some common power reduction techniques and 

some power reduction techniques specific to DCT/IDCT architectures. Because of the 

wide-ranging applications of the DCT and IDCT, the input data pattern is widely varied 

for DCT/IDCT architectures in different applications. So various techniques have been 

proposed for data-dependant power reduction techniques. Some architectures reduce 

calculations for visually irrelevant DCT coefficients. Other architectures ignore 

redundant sign bits to save power in the arithmetic units. To save power, some designs 

disable arithmetic units for the many zero-valued operands in the IDCT. Many other 

implementations focus on power reduction in the multiplier units  

 

2.2.3.1 Commonly Used Techniques 

 

Some common power reduction techniques, which can be applied to most 

digital circuits, have been applied to low power implementations of the 2-D DCT. 

Some of these common low power techniques include clock gating, pipelining, and 

voltage scaling [39]. In one low power design, a parallel, distributed architecture 

permits a reduction in supply voltage [23]. Chen and Liu employ parallel processing 

units that enable power savings from a reduction in clock speed [30], [31]. Other 

architectures save power by disabling units that are not in use [11][21]. When the units 

are in a standby mode, they consume a minimum amount of power. Low power, 

standard cell libraries also reduce power in a few designs [18][23]. Some designs use 

custom low power units such as a low power SRAM, TSPC flip-flops, Manchester 

adders [23], or CORDIC processors [30][31]. Another common low power design 

technique is to reorder the input data so that a minimum number of transitions occur on 

the input data lines [18].  
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2.2.3.2 Reduced Calculations for Visually Irrelevant Coefficients 

 

To save power, many architectures reduce calculations for the visually 

irrelevant high frequency DCT coefficients by adaptively changing the precision in the 

arithmetic units. The reduced precision saves power at expense of some degradation in 

picture quality. Xanthopoulos and Chandrakasan employ arithmetic units in which the 

precision changes adaptively depending on the visual significance of the data [16]. 

Another architecture allows fine (1-bit increments) resolution in a precision control 

scheme that successively approximates towards the final value [34]. The upper limit in 

the number of iterations is determined from the peak-to-peak pixel difference. The 

quantization parameter can also control the precision: the multiplier units will use fewer 

bits for quantization parameters with large magnitude and more bits for quantization 

parameters with small magnitude [21].  

Another method for reducing computations is to skip the computation of 

visually insignificant DCT coefficients altogether [18][40]-[42]. This method, known 

as pruning, removes the circuit elements that compute high frequency coefficients and 

sets these coefficients to zero. Pruning techniques attempt to calculate the minimum 

number of DCT/IDCT coefficients without seriously degrading video quality. The 

amount of pruning can be based on the SAD of the incoming block. Blocks with a large 

SAD will have a higher pruning level than blocks with a small SAD [41]. One pruning 

design has been found to reduce the number of multiplications in a 2-D DCT/IDCT 

from 256 to 82 [40]. In another design, pruning saves about 33% of arithmetic 

operations [42]. An additional benefit of pruning is an increased compression ratio, 

since there is guaranteed to be a long run of trailing zeroes at the end of the DCT 

coefficient vector.  

 

2.2.3.3 Ignoring Redundant Sign Bits 

 

When they ignore redundant sign bits, arithmetic units save power in the DCT 

and IDCT circuits because of the large amount of small valued data. Small values occur 

frequently because only the small difference between the previous and current frame is 
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transmitted. Ignoring redundant sign bits has no effect on video quality. One 

architecture reduces power for small coefficients through the use of 4 partitions on its 

adders. The adder partitions are deactivated to avoid work on redundant sign bits [34]. 

Another architecture ignores the most significant bits of the inputs if they are common 

to both inputs, thereby reducing addition operations and ROM accesses [16].  

 

2.2.3.4 Disabling Arithmetic Units 

 

Since the majority of input data for the IDCT is comprised of zero-valued 

coefficients, significant power reduction can come from disabling adders and 

multipliers for zero-valued operands. Some architectures use a zero-detect signal that 

skips addition and multiplication operations for zero-valued data [16][21][34]. The 

arithmetic units benefit from a standby mode, where they consume a minimum amount 

of power while not in use. Power reduction can also come from including a blocking 

latch on adders and multipliers for zero-valued operands. The blocking latch prevents 

transitions in the arithmetic units and the output registers. 

 

2.2.3.5 Multipliers 

 

Another popular target for power reduction in DCT/IDCT blocks is the method 

of implementing multipliers. The two most popular implementations for multipliers are 

bit-serial (distributed architecture) and bit-parallel. A comparison between a bit-serial 

architecture and a bit-parallel architecture reveals that the bit-parallel architecture 

dissipates less power in a 2-D DCT circuit [43].  

Bit-serial architectures dissipate power due to their high frequency, serialized 

operation, and high capacitance of the ROM address and bit lines. Because of its bit-

serial approach, the DA architecture must operate at a higher internal frequency, 

resulting in higher power dissipation. Additionally, the ROMs in the DA have a path 

from VDD to GND during reset, resulting in extra power dissipation. However, the DA 

architecture can be modified for use in a low power design. Bit-serial architectures have 

the advantage of easily and finely partitioning data for use in architectures that rely on 
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variable precision arithmetic to save power [16][34][21]. Taking advantage of the DA’s 

ability to perform variable precision arithmetic, these architectures exploit the high 

amount of correlation and the small dynamic range of typical video data. Power can 

also be saved for memory accesses by partitioning the ROM [21]. Another possible 

advantage of the DA architecture is the reduced area, since the arithmetic units need 

only be wide enough to operate on a few bits concurrently. 

Many low power designs use a power efficient implementation of a bit-parallel 

format. For a bit-parallel implementation, power consumption is proportional to the 

number of multiply-and-add operations [34]. For the bit-parallel implementation, a 

reduction in the number of operations results in lower power dissipation. A common 

bit-parallel implementation in low power designs is the constant multiplier. A constant 

multiplier reduces power dissipation with no loss in accuracy over the DA architecture 

or the array multiplier. These multipliers are faster and more area efficient than array 

multipliers. Additional operations internal to a constant multiplier are saved with 

common subexpression sharing. Another approach, rotation-based arithmetic, further 

reduces shift-and-add operations by 28% [30], [31]. A similar multiplier design 

employs low-power, low-area CORDIC (coordinate rotation) processors to avoid the 

costly multiplication operations.   
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Chapter 3: Baseline DCT/IDCT Design 
 

This chapter details the design process of our baseline DCT and IDCT units. 

We start with a software prototype system that implements the H.263 codec. Next, we 

describe the Synopsys environment for VHDL simulation and synthesis of the DCT 

and IDCT units. Next, we describe our DCT and IDCT algorithms and the baseline 

hardware architecture of these algorithms.  

 
 

3.1 Design Flow 

 
For our low power, low bit rate implementation of the DCT and the IDCT, we 

target our final design for an ASIC implementation. Before we implement the ASIC 

design, we start with a software prototype of the H.263 system that includes our DCT 

and IDCT blocks. Next, we implement the DCT and IDCT blocks at the RTL level in 

VHDL. Then, we synthesize the RTL code into gate-level descriptions of the circuits. 

The circuits are synthesized onto our VTVT 0.35µ standard cell library. In the future, 

we plan to implement the DCT and IDCT units in an FPGA and to fabricate the units as 

an ASIC. An ASIC implementation is necessary to achieve low power design. FPGAs, 

general-purpose processors, or DSP processors can handle the speed requirements of 

the DCT and the IDCT, but each dissipates too much power for portable devices. One 

study finds that an ASIC implementation of the DCT will result in at least 1/100th the 

power dissipation of a general –purpose processor implementation of the DCT [26]. 

This section describes the baseline DCT and IDCT implemented in the software 

prototype, the baseline RTL VHDL models, and the baseline gate-level VHDL models.  

Figure 3.1 shows the overall design flow of our implementations of the DCT 

and IDCT. We start with a software prototype of an entire H.263 system that uses the 

same DCT and IDCT algorithms we plan to use in hardware. At the software level, we 

start with the baseline designs and add low power techniques for the DCT and the 

IDCT. We can test the effect of our low power techniques on such parameters as the 

number of multiplications or the change in PSNR. Additionally, from the software 
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prototype, we extract data for VHDL simulation. Next, we code the DCT and the IDCT 

unit in VHDL at the RTL level. If we alter the RTL code, we mirror these alterations in 

the software prototype and obtain new simulation data and PSNR measurements. Using 

the test data extracted from the prototype, the RTL VHDL code is analyzed and 

simulated with Synopsys tools. We check the results for correctness. If the results are 

incorrect, we debug and fix the RTL model; otherwise we create a synthesized gate 

level circuit with Synopsys Design Analyzer. The gate-level model provides simulation 

results, power dissipation measurements, area measurements, and speed measurements 

with reasonable accuracy. If the results are unsatisfactory, we try other low power 

techniques in the RTL model and in the software prototype. Otherwise, we have a final 

gate-level model. 
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Figure 3.1: Design Flow 
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3.1.1 Software Prototype 

 

Figure 3.2 shows a block diagram of the software prototype for our H.263 

system. The main components of the system are a web camera, two PC’s, a wireless 

transmitter, and a wireless receiver. The web camera takes video at 30 fps in the 

common red, blue, and green (RGB) format. The RGB format represents a pixel with 

one byte of data for each of the red, blue and green components. It is then sent through 

a universal serial bus (USB) interface to the coder program, which is running on PC 1. 

Optionally, the coder can take a pre-recorded video sequence in RGB format as input. 

The coder program displays the input video on its monitor. After encoding the input 

video in H.263 format, the coder sends an output bit stream through its serial port to a 

wireless transmitter. The wireless receiver collects the input bit stream and sends it to 

PC 2 through its serial port. The decoder program running on PC 2 decodes the H.263 

bit stream and displays it to the monitor on PC 2 in YCbCr format. As an alternative to 

the wireless channel, the prototype is also capable of operating over an Ethernet 

channel using transmission control protocol (TCP) and Internet protocol (IP). The 

TCP/IP protocol ensures reliable transmission of the video to any computer with a valid 

IP address. The user can configure the coder for variable frame rates and bit rates.   

 

Web Cam
USB

PC 1 Transmitter PC 2Receiver
 

 

Figure 3.2: Data Flow in H.263 Software Prototype 

 
The software prototype is implemented in the C and C++ languages and based 

upon an implementation by the multimedia compression (MC) team from Korea 

University. The core H.263 codec described in Chapter 2 is implemented in C, while 

the external interfaces to the camera, the video display, and the wireless channel are 

implemented in C++. 

The prototype supplies us with ability to capture input and output data streams 

at any point in the coding or decoding process. For the DCT and the IDCT VHDL 

models, we use this data to verify the correct operation of the models. The prototype 
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also provides a convenient method of implementing new designs and seeing the effect 

in an actual video sequence. Additionally, we measure the effect of our low power 

techniques on the number of calculations and on the PSNR. To obtain consistent 

results, we use data from pre-recorded video sequences (as opposed to live video) for 

our simulations.   

We use three test sequences to extract measurements from the prototype: 

“Claire”, “Foreman”, and “Miss America”. All three video sequences are in the 

Quarter–Common Interchange Format (QCIF), which contains 176 x 144 pixels.  

“Claire” and “Miss America” are low motion video sequences that are typical for 

videophone applications. They use a stationary camera to record head-and-shoulders 

shots of a person talking, so the majority of movements are small movements occurring 

around the head area. The “Foreman” sequence is a high motion video sequence that 

would be typical for mobile patrol applications. There is a large amount of camera 

motion, including a large pan. Additionally, the subject exhibits a large amount of head 

motion as well as hand and arm motion.  

 

3.1.2 VHDL models 

3.1.2.1 Synopsys Simulation Environment 

 

From the software prototype, we code an equivalent DCT unit in the VHDL 

hardware description language. To analyze, simulate, and synthesize the VHDL models 

of the DCT and IDCT, we use Synopsys version 1999.10. The simulation for both the 

RTL models and the synthesized models of the DCT and IDCT use input data taken 

from the software prototype system. We require enough data to draw a correlation 

between typical H.263 data and power reduction. For simulation, we choose one 

INTER frame of data selected at random from each of the three video sequences. An 

INTER frame is appropriate for test data, since only the first frame of a sequence is 

encoded in INTRA format; the remaining frames are encoded in INTER format. QCIF 

resolution requires the calculation of 594 DCTs and IDCTs for each frame in the video 

sequence. In our architecture, one frame requires over 230,000 clock cycles for DCT or 

IDCT computation. Because of the large number of calculations, it is inefficient to run 
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simulations at low levels in the design hierarchy such as the transistor level or the 

layout level. Even the gate level simulation can require up to three days of simulation 

time for the three sequences, depending on the load of the workstations. Previous 

simulation of top-level DCT architectures has also been performed at a high level [26]. 

 

3.1.2.2 RTL Model 

 The first step in the VHDL design of the DCT and IDCT circuits is an RTL 

model in VHDL. The VHDL is written in a style that can be synthesized with Synopsys 

Design Analyzer. The RTL version is used primarily for verification of the design with 

the software prototype. Simulation at the RTL level is much faster than simulation at 

the gate level, and modifications are much easier to make in the RTL level than at the 

gate level. Any modifications to the RTL description of the circuit are also 

implemented in the software prototype, and new simulation data and PSNR 

measurements are taken. The RTL code is analyzed and simulated with Synopsys tools. 

A test bench, written in VHDL, reads the input data from a file and applies it to the 

inputs of the DCT or IDCT circuit along with clock, reset, and enable signals. The test 

bench stores the results in a file, which is compared to a file containing results from the 

prototype. If the results are inconsistent, we correct the RTL model. Otherwise, we are 

ready to synthesize a gate level model of the circuit.  

 Figure 3.3 shows the VHDL file hierarchy of our RTL models. The changes in 

file names for the IDCT are shown in parenthesis, where different from the DCT file 

names. The top level file “tbdct2” is the test bench for the design that includes a clock 

generator and applies all input signals to the top level hardware design. The remaining 

files contain components of the DCT or IDCT system.  



 

   36

tb(i)dct2

(i)dct2d

SAD(CBP)
Reg

idct_types

controlle
r (i)dct1d

converte
r

mux

quanttransmem

mult

zigzag

 
 

Figure 3.3: 2-D DCT/IDCT File Hierarchy 

 

 

3.1.2.3 Synthesized Model 

 

From the RTL description, we use Synopsys Design Analyzer to synthesize the 

design onto our CMOS standard cell library. The synthesized design is verified for 

correct output as well as power dissipation characteristics. Although less accurate than 

power estimation at the switch level, a gate level power estimation provides sufficient 

accuracy to experiment with several low power design techniques. The gate level 

simulation completes in a reasonable amount of time (3 days or less), and it provides a 

relative comparison of power dissipation between architectures. With relative 

comparisons, we identify low power design techniques that will save power over the 

baseline model. 

Figure 3.4 shows the design flow for synthesizing and analyzing the gate level 

description of the DCT and IDCT circuits. Starting with the RTL description, we use 

design analyzer to produce a gate level design. Synopsys generates a single VHDL file 
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to describe all levels in the hierarchy of the gate level design. Simulation of the gate 

level circuit provides information on the toggle count of each node in the circuit. The 

toggle information must be converted to a script file so that Synopsys can produce a 

power report. Since Synopsys simulates the gate level VHDL model, we change the pin 

names in the synthesized circuit to comply with VHDL naming conventions. Synopsys 

design Power reads the script file and produces a power report based on the 

characteristics of our library cells, the gate-level VHDL model, and the script file with 

toggle information.  

 

Read switching
activity

Gate Level
Simulation

Gate Level
Design

Design Analyzer

RTL
Design

Change names
for VHDL rules

Design Power

Power
Report

Toggle
Information

Covert toggle file
to script file

 

 

Figure 3.4: Methodology for Gate Level Power Estimation [Synopsys Manual] 
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Two separate components contribute to power dissipation in a CMOS circuit. 

The first is static power dissipation, which occurs when there is no switching activity. 

Static power dissipation results mainly from leakage current and subthreshold 

conduction current. Static power typically accounts for a small proportion of the overall 

power dissipation in a CMOS circuit. The second component, dynamic power 

dissipation, accounts for the majority of power dissipation in a circuit. Dynamic power 

dissipation results from switching activity in a circuit. For power estimation purposes, 

dynamic power includes two components: switching power and internal power. 

Switching power results from charging and discharging the external capacitive loads 

driven by a cell. Internal power results from short circuit conditions that occur during 

switching and from the charging and discharging of the internal capacitances within a 

cell [44].  

Synopsys estimates dynamic power based on the following formula  

 

fVCP L
2α=                                                                                                                (3.1) 

 

where α is the switching activity, CL is the capacitive load, V is the supply voltage, and 

f is the clock frequency. Synopsys Design Power computes the power at each node 

from the characteristics of the library cells, the toggle information, and knowledge of 

the supply voltage. The process of measuring power is as follows.  

 

1. Run a simulation with the desired test data on the gate level model. For our 

simulation, the data is an entire frame in a video sequence.  

2. Record the toggle count at each net. 

3. Compute the average dynamic power dissipation of each node using Equation 

(3.1), the cell library characteristics, and the supply voltage. 

4. Sum up the power dissipation at each node to obtain the overall power 

dissipation. 

 

During synthesis, Synopsys maps our RTL code onto a standard cell library. We 

use a library developed by the Virginia Tech VLSI for Telecommunications (VTVT) 
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group that is targeted for 0.35µ technology from the chip foundry TSMC. The standard 

cell library contains the elements described in Table 3.1 The column labeled “Cell” 

gives the name of the cell, the column labeled “Strength” gives the available relative 

drive strengths of the cell, and the column labeled “I/O Options” gives the options 

available for the input and output pins. 

 

Table 3.1 Standard Cell Library Elements 

 

Cell Strength  I/O Options 

AND gate 1 2,3 inputs 

Buffer 1,2,4 1 input 

D Flip-Flop 2,4 Synchronous and asynchronous reset, Synchronous 

 and asynchronous set, positive and negative outputs, 

 rising edge 

Inverter 1,2,4 1 input 

Latch 2,4 Synchronous and asynchronous reset, Synchronous 

and asynchronous set, positive and negative outputs, 

positive enable 

Multiplexer 2,4 2 inputs 

NAND gate 1 2,3,4 inputs 

NOR gate 1 2,3,4 inputs 

OR gate 1 2,3,4 inputs 

XOR gate 2 2 inputs 

 

 

The cells are developed on three levels: the layout level, the netlist level, and 

the Synopsys library level. The layout of the cell provides the necessary 

characterization of a cell’s parasitic capacitances. From a netlist description of the cell, 

HSpice simulation extracts both timing and power characteristics. These characteristics 

are ported to a format suitable for Synopsys libraries. The Synopsys library contains 

information on the timing and power dissipation characteristics of each cell. 
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3.2 Chosen Algorithm 
 

From the algorithms described in Chapter 2, we have a choice between a 

row/column approach and a direct 2-D approach. Each contains about the same number 

of registers and arithmetic units. The direct 2-D approach suffers from an irregular 

structure, a more complex control unit, and a more complex data path. Additionally, the 

lower latency of the direct 2-D approach is not beneficial for a target system with a low 

bit rate. Because of its regularity and simplicity, we choose a row/column approach in 

our baseline designs. The row/column approach requires three steps: eight 1-D DCTs 

along the rows of the input, a memory transposition of the results, and another eight 1-

D DCTs along the rows of the transposed memory.  

For fast operation with a minimum number of multiplications, we base the 1-D 

DCT and IDCT in our baseline designs on Chen's algorithm [8]. The matrix vector 

products in Equations 3.2 and 3.3 implement a fast version of the 1-D DCT and IDCT 

functions. The symbol Y(N) represents a DCT coefficient and the symbol x(n) 

represents a sample from the spatial domain. 
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Equation (3.4) gives the values of the coefficients in Equations (3.2) and (3.3). 
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We implement the matrix vector products in Equations (3.2) and (3.3) in 

flowgraph form as shown in Fig 3.5 for the DCT and Fig 3.6 for the IDCT. The data 

paths are drawn so that there is no more than one multiplication along any path. This 

increases the accuracy of the computations, since each fixed-point multiplication 

potentially adds truncation error. The circles represent addition or subtraction 
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operations, while a coefficient appearing next to a path represents a multiplication by 

that coefficient. The symbol Y(N) represents a DCT coefficient and the symbol x(n) 

represents a sample from the spatial domain. 
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Figure 3.5: DCT flow graph. 
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Figure 3.6: IDCT flow graph. 
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3.3 Architecture 
 

A block diagram of our top-level architecture for the 2-D DCT/IDCT block is 

shown in Fig 3.7. The main components are a controller, a 1-D DCT/IDCT unit, a 

transposition memory, a parallel to serial converter (ser2par) unit, and a parallel to 

serial converter (par2ser) unit. These blocks are described in detail in the sections 

below. 
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Figure 3.7: 2-D DCT/IDCT Architecture 

 
 Table 3.2 gives a description of each I/O pin in the top level architectures of the 

baseline DCT and IDCT units. Note that the I/O pins are the same for both the baseline 

DCT and IDCT units. 

. 

Table 3.2: I/O Signals in the DCT or IDCT unit 

 

Signal Name I/O Function 
CLK I Clock  

RB I Active low reset 

DIN I Serial input coefficients 

DOUT O Serial output coefficients 
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3.3.1 Controller 

3.3.1.1 Control Signals 

 

Table 3.3 shows the name and function of each I/O signal in the controller. The 

controller starts the 2-D DCT/IDCT process by enabling input of the first row of data 

(DIN) through the ser2par unit under the SEN signal. It then activates the 1-D 

DCT/IDCT unit with the SEL and REN signals determining the data path. The results 

are stored in the first row of the transposition memory under ROWACK enabled. This 

process repeats for the remaining seven rows of the input block. Next, the ISEL and 

COLACK signals enable the 1-D DCT/IDCT unit to receive input data from the 

columns of the transposition memory. Eight 1-D DCT/IDCTs along the columns of the 

transposition memory result in a 2-D DCT/DCT operation. The results (DOUT) for the 

2-D DCT/IDCT are available through the par2ser unit under PEN enabled.  

 

 

Table 3.3: I/O Signals in the Controller Unit 

Signal Name I/O Function 
RST I Active low reset 

CLK I Clock 

ROWACK I/O Enables transposition memory for row input 

INT_COUNT I/O Counts total number of 1-D DCTs or IDCTs performed 

SEN I/O Enables serial input through ser2par 

PEN I/O Enables serial output through pa2ser 

ISEL I/O Selects between input from ser2par or from transposition 

memory 

SEL O Selects inputs for multiplexers on registers and arithmetic 

unit inputs in the 1-D DCT or IDCT unit 

REN O Enables registers in the 1-D DCT or IDCT unit 
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 Internal counters generate the above control signals. One counter controls the 

flow of a 1-D DCT or IDCT operation. This counter counts from zero to twenty-four, 

since the 1-D DCT and IDCT each consume a total of twenty-five cycles. The 1-D 

DCT and IDCT row operations include the following stages: 

  

- Shift input data through the ser2par unit. (8 cycles). 

- Latch the input data into the internal registers. (1 cycle) 

- Perform the 1-D DCT or IDCT operation. (15 cycles) 

- Latch the 1-D DCT or IDCT results into the transposition memory. (1 cycle) 

 

Similarly, the 1-D DCT and IDCT column operations include the following stages: 

 

- Latch data from the transposition memory into internal registers. (1 cycle) 

- Perform the 1-D DCT or IDCT operation. (15 cycles) 

- Latch data into the ser2par unit. (1 cycle). 

- Shift the 1-D DCT or IDCT results through the par2ser unit. (8 cycles) 

 

The other counter tracks the number of 1-D DCTs or IDCTs performed and outputs the 

results on the INT_COUNT signal. This counter increments when the first internal 

counter rolls over from twenty-four to zero. The 2-D DCT/IDCT operation requires a 

total of sixteen 1-D DCT//IDCT operations. 

 

3.3.1.2 Timing of 1-D Operations 

 

From the flow graphs in Figure 3.5 and Figure 3.6, we schedule the operations 

necessary to perform the 1-D DCT/IDCT operations. The timing of row operations 

differs slightly from that of column operations, so we include a description of each.  
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3.3.1.2.1 Row Operation 
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ST

 

Figure 3.8: Timing of 1-D DCT/IDCT Row Operation 

 

 Figure 3.8 shows the timing for the first 1-D DCT/IDCT row operation and for 

the beginning of the second 1-D DCT/IDCT row operation. The overall process of a 1-

D DCT/IDCT on an input row takes twenty-five cycles. With RESET activated (low), 

the controller deactivates its output signals. Additionally, the internal counters, 

COUNT and INT_COUNT, maintain a value of zero. COUNT tracks the cycle number 

within a 1-D DCT/IDCT operation, while INT_COUNT tracks the total number of 1-D 

DCT/IDCTs performed. The first 1-D DCT/IDCT starts when RESET is deactivated, 

allowing the internal counters COUNT and INT_COUNT to start counting up from 

zero. The first eight cycles (COUNT = 0-7) permit the input of data through the ser2par 

unit under SEN enabled. The input data is ready one cycle later (COUNT = 8), and the 

1-D DCT/DCT unit computes the 1-D DCT/IDCT for the next 15 cycles (COUNT = 9-

23). The DCT/IDCT coefficients are then clocked into the transposition memory with 

the ROWACK signal on the last cycle of COUNT (COUNT = 24). For the second 1-D 

DCT/IDCT, the INT_COUNT counter increments to indicate the occurrence of the 

second 1-D DCT/IDCT row operation, while COUNT rolls over to zero. The same 1-D 

DCT/IDCT operations are performed on the second row as the first row. This process 

continues for six more 1-D DCT/IDCTs. At this point, INT_COUNT reaches eight and 

signals the start of the column operations.  
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3.3.1.2.2 Column Operation 
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Figure 3.9: Timing of 1-D DCT/IDCT Column Operation 

 

 Figure 3.9 shows the timing of the last 1-D DCT/IDCT row operation and the 

first 1-D DCT/IDCT column operation. The column 1-D DCT/IDCT operation also 

takes 25 cycles to complete. At the end of the last 1-D DCT/IDCT on the input rows, 

the ISEL signal goes low, indicating the switch to column operations. When ISEL is 

low, the 1-D DCT/IDCT unit receives input from the transposition memory, instead of 

the ser2par unit. Additionally, the internal counter, COUNT, signals a different 

sequence of operations. First, the data from the transposition memory is latched into the 

internal registers on the first cycle (COUNT = 0). The next fifteen cycles (COUNT = 1-

15) are dedicated to performing the column 1-D DCT/IDCT operation. The next cycle 

(COUNT = 16) latches the results of the column operations into the par2ser unit. The 

final eight cycles (COUNT = 17-24) clock the results through the par2ser unit under 

PEN enabled. The same process applies for the remaining seven columns in the 

transposition memory. At this point, INT_COUNT reaches fifteen and signals the end 

of the 2-D DCT/IDCT process.  
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3.3.1.3 Timing of 2-D Operation 
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Figure 3.10: Timing of 2-D DCT/IDCT Operation 

 

 Figure 3.10 shows the timing for the overall 2-D DCT/IDCT operation. The 2-

D DCT/IDCT starts when the reset signal is deactivated (high). The 2-D DCT/IDCT 

completes 392 cycles later. When reset is deactivated, the data for the first 1-D 

DCT/IDCT row operation is shifted in through the ser2par unit. Then, a 1-D 

DCT/IDCT is performed, and the results are stored in the transposition memory. The 

row operations continue for the remaining seven rows of input data. At this point, the 

eight column DCT/IDCTs operate on the columns of the transposition memory. Both 

the row and column operations require 25 cycles (A). Ten clocks are used for input and 

output operations, while fifteen clocks (B) are used for the computation of the 1-D 

DCT/IDCT. Table 3.4 shows the times at which each column of output data appears on 

the DOUT pin in Figure 3.7. 
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Table 3.4: Clock Cycles when 2-D DCT/IDCT Output is Available 

 

Output Column Clock Cycles 
1 210-217 

2 235-242 

3 260-267 

4 285-292 

5 310-317 

6 335-342 

7 360-367 

8 385-392 

 

 

3.3.2 1-D DCT/IDCT Unit 

 

Since video coding for low bit rates does not require a high-speed architecture, 

we save area by using a small number of arithmetic units in our baseline 1-D DCT and 

IDCT designs. This is a different approach than most of the DCT and IDCT 

implementations in Chapter 2, which are designed with the goal of high throughput to 

meet the demands of MPEG or HDTV video encoding. HDTV requires a throughput of 

75 mega-samples per second, and MPEG requires a throughput of 14 mega-samples per 

second. In contrast, H.263 QCIF video encoding at 10 frames/sec requires a throughput 

of only 380 kilo-samples per second. Therefore, our implementation need not be 

concerned with a parallel architecture, a pipelined architecture, strict timing constraints, 

or high clock rates.  
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Figure 3.11: Architecture of 1-D DCT/IDCT Unit 

 

Figure 3.11 shows a block diagram of the architecture of the 1-D DCT/IDCT 

unit. It is composed of six arithmetic units, sixteen registers (fifteen for the IDCT), and 

twenty-four multiplexers. The arithmetic units perform addition, subtraction, and 

multiplication operations. The registers store the input data, the intermediate values, 

and the final results. The multiplexers select the source data for the arithmetic units and 

the registers. Input data is first latched into the register bank through eight of the 

multiplexers in the first multiplexer bank. The second multiplexer bank selects the 

inputs for each of the six arithmetic units, if necessary. The second multiplexer bank 

can also select inputs from the constants in Equation 3.4. It is important to note that not 

every arithmetic unit nor every register receives input data on every cycle. Each 

arithmetic unit has two inputs and one output that are each the width of the internal data 

path (14 bits). 
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 Table 3.5 shows each I/O pin in the top level architectures of the baseline 1-D 

DCT and IDCT units. Note that the I/O pins are the same for both the baseline 1-D 

DCT and IDCT units. 

 

 

Table 3.5: I/O Signals 1-D DCT or IDCT unit 

 

Signal Name I/O Function 
CLK I Clock 

RB I Active low reset 

IN87-80 I Eight parallel inputs for the 1-D DCT or IDCT operation 

RE I Enables for internal registers 

SELM I Selects inputs for multiplexers on internal registers 

SELR I Selects inputs for multiplexers on the arithmetic units 

OUT87-80 O Eight parallel outputs of the 1-D DCT or IDCT operation 

 

 

3.3.2.1 Arithmetic Units 

 

We allocate two multipliers, two adders, and two subtractors for the 1-D 

DCT/IDCT unit. With these resources, a 1-D DCT/IDCT operation requires fifteen 

clock cycles. With the additional ten clock cycles required for I/O operations, the 1-D 

DCT/IDCT process takes twenty-five cycles, and the overall 2-D DCT/IDCT process 

takes 392 clock cycles. With 594 DCT/IDCT operations per frame, our targeted 

bandwidth of ten frames per second requires a clock frequency of 2.5 MHz. Our VTVT 

0.35µ library easily reaches this frequency. For faster operation, experiments reveal 

that the frequency can increase by an order of magnitude or possibly more. 

The adders and subtractors are implemented from library components in the 

Design Ware library. We make no effort to design low power adders or subtractors, 

since some preliminary experiments indicate that they account for an insignificant 

portion (less than 1%) of the total power in the baseline unit. The adders and 
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subtractors have a 14-bit width for the input operands and for the output results. The 

14-bit internal width is necessary to avoid overflow in the DCT and IDCT operations.  

We chose to implement the multipliers as fixed-point, array multipliers, which 

are fast and readily available from the Design Ware library. We make no special effort 

to implement low power multipliers, since preliminary experiments reveal that the array 

multipliers consume less than 10% of the total power dissipation in the baseline design.  

A major concern for implementing the multipliers is accuracy. A significant 

factor in the accuracy of the multipliers is the precision of the coefficients. The DCT 

has no accuracy requirements imposed by H.263 because of the high distortion 

introduced by the quantization process. Previous DCT implementations have set the 

coefficient precision equal to the internal data width, which must be at least fourteen 

bits to avoid overflow [19]. For the IDCT to adhere to H.263 standards, it must follow 

the strict accuracy requirements set forth by the IEEE 1180-1990 standard. A brief 

description of the IEEE 1180-1990 standard for IDCT accuracy is given below.  

 

1. Generate 10,000 8x8 blocks of random data for each range (-256, 256), (-5, 5), 

and (-300, 300). 

2. For each of the above blocks, perform DCTs using the straightforward approach 

(Equation (2.2)) with 64-bit floating-point accuracy. 

3. Round each of the resulting coefficients to the nearest integer and clip to the 

range (-2048, 2047) to get 12-bit input data for the IDCT. 

4. Perform an IDCT on the input from step (3) using the straightforward approach 

(Equation (2.3)) with 64-bit floating-point accuracy. Round the results to the 

nearest integer and clip to the range (-256, 255). This is the reference result. 

5. Perform an IDCT on the input from step (3) with the IDCT under test and clip 

the results to the range (-256, 255). This is the test result. 

6. For each pixel in each set of 10,000 blocks, measure the peak, mean, and mean 

square error of the test results with respect to the reference results. 

7. The error between the test and reference results should be less than the 

maximum errors in table 3.6. 
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Table 3.6 Maximum IDCT error to comply with IEEE 1180-1990 

 

Measurement Maximum 

Peak error 1 

Mean Square Error (one pixel) 0.06 

Mean Square Error (overall) 0.02 

Mean Error (one pixel) 0.015 

Mean Error (overall) 0.0015 

 

 

8. All zero input should produce all-zero output. 

9. Repeat steps 1-7 with the sign of each pixel changed. 

 

Most IDCT implementations [14][38][39] use enough coefficient precision to 

comply with the IEEE standard for IDCT accuracy. For low-power, low bit-rate video 

coding, the IEEE standard seems too strict a guideline to adhere to, since it is meant to 

ensure stability for systems with different IDCT architectures in the coder and the 

decoder. If we restrict our system to use matching IDCT architectures in both the coder 

and the decoder, the video will not suffer any noticeable degradation.  

In the baseline DCT and IDCT units, we set the coefficient precision equal to 

the internal data width (14 bits), since the array multipliers from the library require both 

multiplicands to be the same width. Additionally, this precision has been previously 

chosen to balance accuracy and area [43] in a DCT architecture. In the prototype, we 

implemented our IDCT architecture in the coder and the decoder without regard to the 

IEEE accuracy standards. Since both the IDCT in the coder and the IDCT in decoder 

share the same architecture, the video remains stable. This results from the fact that 

both the coder and the decoder use exactly the same reference frame to reconstruct 

images. 

A multiplier always multiplies one of the constants (a, b, c, d, e, f, and g) by one 

intermediate value from a register. The constants are implemented as the binary 

representations of the constants in Equation 3.4. These binary constants are shifted left 



 

   54

fourteen places to provide an integer input for the array multiplier. The resulting 

constants are represented in 14 bits. The other input comes from one of the 14-bit 

intermediate values stored in an internal register. Since the array multiplier operates on 

two 14-bit input multiplicands, the result will be a 28-bit number. The 28-bit result is 

then shifted right by fourteen places to compensate for the initial shift left by fourteen 

places in the constants. The final result is a 14-bit number that is the floor of pre-shifted 

result. Because of the right shift operation, each multiplication can potentially result in 

a truncation error of less than one. Since multiplications potentially result in truncation 

error, we attempt to perform as few multiplications as possible. Note that the flow 

graphs in Figures 3.4 and 3.5 have no more than one multiplication along any path, thus 

resulting in less accumulation of error along a path. 

 

3.3.2.2 Data Path 

 

The SEL and EN signals determine the data path. Each register receives input 

from the arithmetic units through the first bank of multiplexers in Figure 3.11. The 

multiplexers select the inputs to the registers thought the SELM signal from the 

controller. A register is updated only when its EN signal is active. Each register 

provides output to an arithmetic unit through the second bank of multiplexers in Figure 

3.11. Each arithmetic unit receives input from two multiplexers in the second bank of 

multiplexers. The multiplexers select the inputs to the arithmetic units with the SELR 

signal from the controller. The DCT uses 16 internal registers to store intermediate 

values, while the IDCT requires 15 internal registers to store the inputs, the 

intermediate values, and the final results.  

 
  

3.3.3 Transposition Memory 

 

The transposition memory is an 8x8 array of registers that receive input in a 

row-wise fashion and provide outputs in a column-wise fashion, thus performing a 

matrix transposition. The results of the first eight 1-D DCT/IDCTs are stored in the 
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rows of the transposition memory. For final eight 1-D DCT/IDCTs, the columns of the 

transposition memory provide data to the 1-D DCT/IDCT unit. Table 3.7 shows the I/O 

signals for the transposition memory 

 

 

Table 3.7: I/O Signals for the Transposition Memory 

 

Signal Name I/O Function 
CLK I Clock 

RB I Active low reset 

IN87-80 I Eight parallel results from the 1-D DCT or IDCT operation 

RACK I Enables row input 

CACK I Enables column output 

INT_COUNT I Determines which row to place the output of the 1-D 

DCT/IDCT operations 

OUT87-80 O Eight parallel input to the 1-D DCT or IDCT operation 
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Figure 3.12: Architecture of Transposition Memory 

 

 

Figure 3.12 shows the architecture of the transposition memory. Each row of 

eight registers receives input from the eight outputs of the 1-D DCT/IDCT unit. The 

first row receives input from the first 1-D DCT/IDCT, the second row receives input 
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from the second 1-D DCT/IDCT, and the pattern continues until the eighth row. At the 

completion of the 1-D DCT/DCT operation number X, row number X of the registers 

in the transposition memory is enabled for input by the ENX signal. X corresponds to 

the number of elapsed 1-D DCT/IDCT row operations. ENX is generated with the 

INT_COUNT signal and the ROWACK signal. The ROWACK signal is high during 

the last clock cycle of each of the first eight 1-D DCT/IDCTs. The registers receive no 

input for the last eight 1-D DCT/IDCT operations; they provide input to the last eight 

1-D DCT/IDCT operations. The output multiplexers select one element from each row, 

depending on the value of the SEL signal. The SEL signal takes on the value of the 

three least significant bits of INT_COUNT when the most significant bit of 

INT_COUNT is ‘1’.  

 

3.3.4 I/O Units 

3.3.4.1 Serial to Parallel Converter 

 

To reduce the number of input pins, we choose to implement the DCT/IDCT 

with serial input. Unfortunately, the 1-D DCT and IDCT units require eight parallel 

inputs. The ser2par unit in Figure 3.13 converts serial input data to parallel input data. 

Prior to the start of each of the first eight 1-D DCT/IDCTs, the ser2par shifts in eight 

values (SIN) through its eight serially connected registers. The data is shifted in under 

SEN enabled for eight clocks, after which the eight outputs (DIN[8:0]) are available for 

parallel input to the 1-D DCT/IDCT unit. To accommodate maximum input values, the 

ser2par registers must be 9 bits wide for the DCT and 12 bits wide for the IDCT.  
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Figure 3.13: Architecture of Serial to Parallel Converter 

 

 Table 3.8 shows each I/O pin in the ser2par unit. The I/O pins are the same for 

both the baseline DCT and IDCT units. 

 

Table 3.8: I/O Signals in the Ser2par Unit 

Signal Name I/O Function 
CLK I Clock 

RB I Active low reset 

EN I Enables serial input through the resisters 

INPS I Serial input data 

OUTP7-0 O Eight parallel outputs for the 1-D DCT or IDCT operation 

 

 

3.3.4.2 Parallel to Serial Converter 

 

To reduce the number of output pins, we choose to implement the DCT/IDCT 

with serial output. However the 1-D DCT/IDCT produces its eight outputs in parallel. 

The par2ser unit in Figure 3.14 converts parallel output data to serial output data. The 

par2ser unit is active for the last nine cycles in each of the last eight 1-D DCT/IDCT 

operations. It latches in the results (DOUT[8:0]) of each 1-D DCT/IDCT to its eight 

registers under PEN disabled. For the next eight cycles, it shifts the results out serially 

under PEN enabled. With PEN enabled, each register’s input will be the output of the 
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previous register. Thus, the data is shifted through the par2ser unit until each output 

appears and appears on SOUT. To accommodate maximum output values, the par2ser 

unit is 12 bits wide for the DCT and 9 bits wide for the IDCT.  
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Figure 3.14: Architecture of Parallel to Serial Converter 

 

Table 3.9 shows each I/O pin in the par2ser unit. The I/O pins are the same for 

both the baseline DCT and IDCT units. 

 

Table 3.9: I/O Signals in the Par2ser Unit 

Signal Name I/O Function 
CLK I Clock 

RB I Active low reset 

EN I Enables input through the resisters 

INP7-0 I Eight parallel inputs from the 1-D DCT or IDC unit 

OUTS O Serial output 
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Chapter 4: Proposed Low Power DCT/IDCT Design 

 
In this chapter, we explain our proposed methods to save power for DCT and 

IDCT blocks in low bit rate H.263 video systems. We try five different methods. The 

first involves testing the input to the DCT to see of it has low enough energy to skip the 

DCT operation. The next method is to test for all-zero input blocks to the IDCT, which 

can also be skipped. Additionally, we explore the effects of clock gating in each unit 

that contains registers: the transposition memory, the 1-D DCT/IDCT unit, the ser2par 

unit, and the par2ser unit. The fourth method is to implement power efficient shift-and-

add multipliers that use lower precision coefficients. Finally, we attempt to reduce 

transitions in the data paths of the 1-D DCT and IDCT units. 

We also characterize the efficiency and the side effects, if any, of each proposed 

low power method. Since some methods (skipping the DC operation and lower 

precision coefficients) change the output of the coder, we measure the change of the 

PSNR under the employment of these methods. A method is employed only if the 

degradation of the picture quality is unnoticeable to human eyes, and the degradation of 

the PSNR is small. For the PSNR measurements and the visual examination, we use the 

software prototype H.263 system that was explained in Chapter 3. The prototype was 

also used to collect statistical data for the three common benchmarking video clips: 

Claire, Miss America, and Foreman. To review these clips, Claire and Miss America 

have little motion with a stable camera, while Foreman has frequent motion and camera 

movement. The remainder of this chapter details our investigation of low power design 

techniques for the DCT and IDCT blocks. 

 

4.1 Skipping Input Macroblocks for the DCT 

4.1.1 DCT Input Macroblock Characteristics 

 

Typical video data changes very little from the previous frame, since the motion 

compensation unit sends only the difference from the previous frame. Many input 
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macroblocks to the DCT contain little new information. The result is small magnitude 

DCT coefficients that are likely to be quantized to zero. Experimental results show that 

the three test sequences have up to 80% of macroblocks that are quantized to zero. If 

we can find an efficient method of predicting these macroblocks, the DCT (and the 

quantization operation) can be skipped; all DCT coefficients are simply set to zero. The 

prediction technique need not be perfect, since there is a large amount of allowable 

distortion in the DCT of a low bit rate system. This results from the fact that low bit 

rates result in larger QUANT parameters, so the DCT coefficients will have a large 

quantization error in comparison with any DCT error. 

Because of the characteristics of video data in low bit rate systems, we can 

approximate many DCT macroblocks as all zero. This approximation of the DCT will 

avoid many computations and improve power dissipation if we disable the DCT unit 

for these macroblocks. In fact, this method was suggested to speed up DCT operations 

[30][31], and we propose employment of this method to save power by disabling the 

DCT unit for these macroblocks. To disable the top level DCT unit, we gate the clock 

signal, deactivate the enable signal, and activate the reset signal. In the disabled state, 

the DCT produces the desired all-zero output. Note that this method is only applicable 

to the DCT circuit.  

 

4.1.2 Methods of Predicting Skipped Macroblocks 

 

For efficient power savings, the method of predicting all-zero macroblocks 

must be simple and fast. Additionally, the method must not consume significant 

hardware overhead, and it must dissipate significantly less power than a DCT 

computation. The method must also predict blocks accurately enough to avoid a 

noticeable degradation in video quality and PSNR. If too few macroblocks are 

predicted to be all-zero, then we will not save sufficient power. If too many 

macroblocks are erroneously predicted as all-zero, then noticeable degradation in video 

quality and PSNR may result. 

Several methods, based on the energy of the incoming data, have been proposed 

to eliminate the DCT operation in a video system. An accurate method of predicting 
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all-zero macroblocks is to calculate the variance of the incoming data, which is very 

computationally intensive [45]. A better method in [46] bases its prediction on the 

value of the DC coefficient, which also requires some energy consuming calculations. 

Calculating the DC coefficient requires 64 additions and a shift operation. A more 

efficient method proposes to examine the SAD value of incoming macroblocks [45]. 

The SAD value provides a good measure of the energy of the incoming pixels and is 

readily available from the motion estimation unit. Recall, from Chapter 2, the SAD is a 

measure of how well the current macroblock matches a macroblock from the previous 

frame; a low SAD value indicates a good match. Macroblocks with low SAD values 

tend to produce little new information and are more likely to be quantized to zero. 

Since a higher quantization parameter results in more coefficients being set to 

zero, a good prediction scheme should also consider the quantization parameter along 

with the SAD value. A macroblock is likely to be set to zero if the block has a low 

SAD value and a high QUANT parameter. Therefore, we propose skipping a 

macroblock if  

 

SAD < THRESHOLD × QUANT                                                                                (4.1) 

 

With this criterion for skipping macroblocks, a macroblock with a low SAD and a high 

QUANT is more likely to be skipped. Additionally, this method provides a simple, 

quick, and efficient technique of predicting an all-zero macroblock. The SAD and 

QUANT signals are readily available from other blocks in the system, and the 

calculation is straightforward and requires little hardware overhead. To simplify the 

computational complexity of our method, we restrict THRESHOLD to be a power of 

two. With this restriction, we need only shift the bits in the QUANT signal. Shifting is 

a trivial hardware operation, and it eliminates the need for a costly multiplier that 

consumes area and power. The only additional hardware we require is a comparator. 
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4.1.3 Effect on H.263 System  

 

Using the software prototype system, we examine the effect of different values 

of THRESHOLD on the PSNR and the number of skipped macroblocks.  Table 4.1 

shows the experimental results from the prototype system. The percentage of skipped 

blocks is expressed as the number skipped by our prediction method as compared to the 

total number of macroblocks in the sequence. This is an estimate of the power savings, 

as the DCT unit will be inactive for these blocks.  

 

Table 4.1: Percentage Of Skipped Macroblocks Versus PSNR Degradation 

 

Claire Foreman Miss Am. Configuration 

PSNR Skipped 

Blocks 

PSNR Skipped 

Blocks 

PSNR Skipped 

Blocks 

Baseline 40.53  29.64  40.52  

THRESHOLD=16 40.53 0.70% 29.64 0.50% 40.51 3.30% 

THRESHOLD=32 40.51 8.30% 29.65 2.60% 40.44 23.8% 

THRESHOLD=64 40.39 53.9% 29.56 15.5% 40.20 51.4% 

THRESHOLD=128 39.41 79.8% 29.41 57.8% 40.08 76.4% 

THRESHOLD=256 38.12 91.4% 29.40 85.7% 38.13 91.7% 

THRESHOLD=512 36.72 96.1% 29.40 91.2% 37.77 95.9% 

 

 

As expected, more blocks are skipped for higher thresholds at the expense of 

increased PSNR degradation. Fewer macroblocks are skipped for “Foreman,” since it 

contains more motion and, hence, higher SAD values. From Table 4.1, we see that a 

significant number of macroblocks can be skipped using our prediction method, 

depending on the value of THRESHOLD. Additionally, the PSNR does not decrease 

significantly (more than 3dB) for most values of THRESHOLD. These results indicate 

that this method is a good candidate for a low power design.  
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However, aside from the effect on PSNR, we would like to know the accuracy 

of our prediction method. Table 4.2 shows experimental results on the percentage of 

correctly predicted macroblocks for different values of THRESHOLD. The first 

column for each video clip shows the percentage of macroblocks that we correctly 

predicted to be zero as compared to total number of macroblocks that we predicted to 

be zero. This gives an idea of accuracy of the technique. Setting too many macroblocks 

to zero (that would not otherwise be zero) can seriously degrade picture quality. The 

second column shows the number of macroblocks that we predicted to be zero as 

compared to the number of macroblocks that should be zero. This is measure of the 

wasted computation in the DCT unit that results from a THRESHOLD parameter that is 

too low. In this case, the DCT unit will be active for a macroblock, where it could be 

disabled. It is desirable for both parameters to be close to 100%.  

 

Table 4.2: Accuracy of All-Zero Macroblock Prediction 

 

Claire Foreman Miss Am. Configuration 

Correctly 

Predicted  

MB’s 

Total 

MB’s 

Predicted 

Correctly 

Predicted  

MB’s 

Total 

MB’s 

Predicted 

Correctly 

Predicted  

MB’s 

Total 

MB’s 

Predicted 

THRESHOLD=16 99.7% 1.31% 100% 0.91% 100% 5.8% 

THRESHOLD=32 99.3% 9.72% 99.9% 4.36% 99.9% 41.2% 

THRESHOLD=64 97.4% 74.6% 98.5% 23.6% 97.8% 69.9% 

THRESHOLD=128 92.6% 95.9% 86.6% 81.8% 90.6% 93.5% 

THRESHOLD=256 84.6% 99.8% 73.6% 99.9% 79.9% 99.9% 

THRESHOLD=512 80.8% 100% 72.6% 100% 76.9% 100% 

 

 

 As expected, the number of correctly predicted macroblocks decreases with 

increasing THRESHOLD. However, increasing the THRESHOLD also means we 

predict a larger proportion of the macroblocks that should be zero. For both parameters 

to be as large as possible, the THRESHOLD value should be 128. From Table 4.1, note 
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that this THRESHOLD value also results in a small decrease in PSNR and a large 

percentage of skipped macroblocks. Additionally, with THRESHOLD = 128 we 

observe no noticeable degradation in video quality for all three video clips. Hence, we 

set THRESHOLD to 128 in our low power DCT design. Also note that the prediction 

method is not nearly as accurate for the high motion “Foreman” video sequence. 

However, we still skip a significant number of macroblocks with little effect on video 

quality. 

 

4.1.4 Description of Additional Logic 
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RESET ^
^

X > Y
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CLK
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Figure 4.1: Additional Hardware for Skipping All-Zero Macroblocks in the DCT 
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 To implement this prediction method in our baseline DCT architecture, we add 

the hardware block shown in Figure 4.1. The QUANT and SAD parameters are clocked 

into their respective registers on the rising edge of RESET, which occurs at the start of 

every 2-D DCT cycle, and, hence, at the beginning of every block. Since the SAD and 

QUANT parameters are fixed for an entire macroblock, we clock in redundant values 

for the last five blocks in a macroblock. To avoid these redundant inputs, we would 

need an additional counter to track the six blocks in each macroblock. To avoid this 

additional counter, we allow the input of the SAD and QUANT parameters on every 

block, and no harm is done. The SAD parameter is then shifted left by seven bits to 

perform the multiplication by 128. To perform the shift, the six least significant bits of 

the X input to the comparator are set to zero, and the five most significant bits receive 

the QUANT value. The comparator processes the scaled QUANT value and the SAD 

value. An output of  ‘1’ indicates that our test condition  (SAD < THRESHOLD × 

QUANT) is false. This suggests the input data contains a significant amount of energy, 

and it should undergo the DCT operation. However, if our test condition is true, SKIP 

is set to ‘0’, and it gates the system CLK, RB, and EN signals. With SKIP = ‘0’, no 

register receives a CLK input, and all registers produce zero as output, which is the 

desired output for a predicted block. 

 

4.2 Skipping Input Blocks for the IDCT 

4.2.1 IDCT Input Block Characteristics 

 

In low bit rate video coding, the large quantization parameters result in a large 

number DCT output coefficients that are quantized to zero. After reconstruction, these 

coefficients remain zero, resulting in a large number of zero-valued inputs to the IDCT. 

In fact, many entire blocks of IDCT input data are zero. Since an IDCT results in all-

zero output for such an input block, the IDCT unit can be disabled for all-zero input 

data blocks. To disable the IDCT unit, we gate the clock signal, deactivate the enable 

signal, and activate the reset signal. In the disabled state, the IDCT unit produces all-

zero output. Note that this method is only applicable to the IDCT unit. 
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4.2.2 Method of Detecting Skipped Blocks 

 

Detection of all-zero IDCT input blocks is performed in a simple and efficient 

manner; no prediction is necessary, and the method is 100% accurate. The decoder 

simply parses the H.263 bitstream to detect an all-zero input block. When COD = ‘1’, 

the current macroblock contains only all-zero blocks. Additionally, an input block will 

be all-zero if both the CBP field and the DC coefficient of the block are zero. These 

parameters are easily extracted from the H.263 bit stream. For the IDCT in the encoder, 

the VLC unit can simply signal the occurrence an all-zero output block (the VLC 

already tests for this condition during normal operation). Since this method will not 

change any data in the encoder or the decoder, no degradation of PSNR or perceived 

quality results. Detection of all-zero blocks is applied at the block level; a non-zero 

coefficient in a block causes an IDCT operation on one block only, not the entire 

macroblock. 

 

4.2.3 Number of Blocks Skipped 

 

We use the software prototype system to measure the percentage of all-zero 

input blocks to the IDCT.  The results in Table 4.3 show that a significant number of 

input blocks are all-zero. Note that we can skip a larger percentage of IDCT operations 

than DCT operations, since the decision is made at the block level for the IDCT 

(instead of the macroblock level for the DCT). Also, note that this method has no effect 

on PSNR or perceived picture quality. Because of the large number of skipped blocks 

and the simplicity of detecting these blocks, we expect this technique to result in 

significant power savings. 

 

Table 4.3: Percentage of All-Zero IDCT Input Blocks 

 Claire Foreman Miss Am. 

Percentage All-Zero Input Bocks 97.0% 93.8% 96.3% 

 



 

   68

4.2.4 Description of Additional Logic 

 

 

 

 

 

 

Figure 4.2: Additional Hardware for Skipping All Zero Blocks in the IDCT 
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Figure 4.2 shows the additional hardware necessary to skip all-zero input blocks 

for the IDCT in the decoder. The IDCT in the encoder simply receives a SKIP signal 

from the VLC unit. Prior to the start of each macroblock in the decoder, the mod 6 

counter is reset to zero. At the start of each macroblock, the START signal latches the 

CBP for the macroblock into the six flip-flops. Since the mod 6 counter contains a 

value of zero, the flip-flops receive the CBP as input. As each successive block is 

available to the IDCT, the controller enables the IDCT unit by de-asserting the RESET 

signal, which also causes the mod 6 counter to increment. When it increments past its 

initial state, the mod 6 counter forces each flip-flop to receive input from the previous 

flip-flop. For the next five cycles, the CBP for each block ripples through the six flip-

flops. In turn, each CBP serves an input to the NAND gate that determines the value of 

the SKIP signal. The current block is skipped if its CBP is zero, the DC coefficient is 

zero, and the current block is an INTER block. Alternatively, if the COD signal is ‘0’, 

then the SKIP signal is active for the entire macroblock. As in the DCT, the SKIP 

signal gates the CLK, EN, and RB signals in the top level architecture, thus disabling 

the IDCT unit and forcing all outputs to zero. 

 

4.3 Gated Registers 
 

Four units (the two I/O units, the 1-D DCT/IDCT unit, and the transposition 

memory) of the baseline DCT/IDCT block in Figure 3.7 contain over 99% of the flip-

flops of the block. Since these registers comprise the majority of power dissipation in 

the circuit, their clocks can be disabled to save power during periods of inactivity. To 

disable these registers, the clock signal is gated and the enable signal is deactivated. 

The values in these registers should be preserved, so the reset signal remains 

deactivated. Clock gating should save power in both the registers and in the clock 

distribution tree for the DCT and the IDCT units. Note that clock gating will not 

degrade video quality, as there is no change in the output. 
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4.3.1 Characteristics of Registers 

 

Table 4.4 shows the percentage of the total power dissipation contributed by the 

registers in each unit, as measured by Synopsys Design Power. The results are similar 

for both the DCT and the IDCT. The transposition memory contributes the most power 

dissipation, since it contains the most registers. The I/O units and the 1-D DCT/IDCT 

unit both contain about the same number of registers. However, the registers in the 1-D 

DCT/IDCT unit undergo more transitions, and, hence, dissipate more power. 

 

Table 4.4: Percentage Of Power Contributed by Registers in Different Units 

 

Claire Foreman Miss Am. Unit 

DCT IDCT DCT IDCT DCT IDCT 

Transposition Memory 56.9% 57.2% 56.6% 56.9% 56.9% 57.0% 

1-D Unit 20.1% 19.1% 19.5% 18.8% 20.1% 19.1% 

I/O Registers 10.8% 11.0% 10.7% 10.9% 10.8% 10.9% 

 

 

Experimental results indicate that the above units only need to receive clocks 

for a small proportion of the entire 2-D DCT/IDCT cycle. If we can gate the clock 

signal for the remaining time, then we expect to reduce both switching and internal 

power dissipation in the registers.  

 

4.3.1.1 Transposition Memory  

 

In the transposition memory, the registers need to be updated only at the end of 

each of the first eight 1-D DCT/IDCT operations. This means the transposition memory 

registers require a clock in less than 3% of the clock cycles. For the remaining time, 

these registers can be disabled, since they only need to store values. Figure 4.3 shows 

the logic we use to gate the transposition memory registers. 
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Figure 4.3: Clock Gating Hardware for the Transposition Memory 

 

To provide a gated clock to the registers in the transposition memory, we use 

the existing signal ROWACK, which enables the transposition memory in the baseline 

unit. ROWACK is active for one cycle at the end of each of the first eight 1-D 

DCT/IDCTs. We use ROWACK as the input to a latch that is active for CLK = ‘0’. 

The gated clock, GCLK, is the output of the latch. We make the latch active for CLK = 

‘0’ to delay it by half a clock cycle. This delay ensures that there will be no race 

between the enable input to the transposition memory (ROWACK) and the GCLK 

signal. In the baseline circuit without clock gating, the input data is available just after 

the rising clock edge before ROWACK rises. Since CLK triggers ROWACK, the 

ROWACK signal will always arrive after CLK. Therefore, in the baseline unit, the 

input data has one clock period to settle before it is clocked in. However, the gating 

circuitry may delay GCLK until shortly after ROWACK enables the transposition 

memory; at this point, the input data is still unstable. To allow time for the input data to 

settle, we must ensure the gated clock GCLK arrives much later than the ROWACK 

signal. Enabling the latch with CLK ‘0’ has the effect of delaying the gated clock by a 

half cycle, thus ensuring the input data is stable. 
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4.3.1.2 1-D DCT and IDCT Units 

 

The registers in the baseline DCT and IDCT blocks are active for only about 

35% of the entire 2-D DCT/IDCT operation, since many registers spend significant 

time storing values for future arithmetic operations. When they store values for longer 

than one clock cycle, the registers in the 1-D DCT and IDCT units can be disabled. 

Figure 4.4 illustrates the logic we use to gate the registers in the 1-D DCT and IDCT 

units. 
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Figure 4.4: Clock Gating Hardware for the 1-D DCT and IDCT Units 

 

For the 1-D DCT and IDCT units, the clock gating is done slightly differently 

than in the transposition memory, since the registers sometimes need to receive several 

clocks in succession. Additionally, each register requires a different gated clock signal, 

since each register requires input data at different times. As in the transposition 

memory, each enable signal is sent through a latch that is active for CLK = ‘0’. The 

output of the latch, GEN, follows the EN signal by half a cycle and enables the 

registers. GEN also gates the original clock signal, CLK. This ensures that the gated 
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clock, GCLK, arrives well after the enable signal, GEN, thus giving the input data 

sufficient time to settle.  

 

4.3.1.3 I/O Units 

 

Finally, the input registers in the ser2par unit need one clock for each of the 64 

input values. In the par2ser unit, the output registers require one clock for each of the 

64 output values and one clock at the end of each of the first eight 1-D DCT/IDCT 

operations. Overall, these I/O registers need clocks for less than 20% of the total 2-D 

DCT or IDCT operation. For the remaining time, the registers in the ser2par and 

par2ser units can be disabled, since they perform no useful function. Figure 4.5 shows 

the logic we use to gate the registers in the ser2par and par2ser units. 
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Figure 4.5: Clock Gating Hardware for the I/O Units 

 

 The clock gating scheme is similar to the 1-D DCT/IDCT units, except that 

only one gated clock signal, GCLK, is necessary in each unit. We use the existing 

enable signals, SEN and PEN, as inputs to a latch that is active for CLK = ‘0’. The 
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output of the latch, GEN, enables the registers in each unit and gates the original clock 

signal.  

 

4.4 Constant Shift-and-Add Multipliers with Reduced Precision 
 

Array multipliers are currently employed for the baseline unit, since they 

contribute less than 10% of total power dissipation. However, if a large power 

reduction is achieved through the above proposed methods, the proportion of power 

dissipated by multipliers may be significant for the circuit. Hence, it is desirable to 

employ a more power efficient multiplier design at the cost of higher design 

complexity. Instead of using an array multiplier from a library, we implement our own 

design of shift-and-add multipliers for each coefficient. 

 

4.4.1 Characteristics of Shift-and-Add Multipliers 

 

Several low power DCT and IDCT designs have reported that shift-and-add 

multipliers are more efficient in power dissipation than array multipliers [13][18][34]. 

The reduced number of adder rows over the array design saves at least half of the 

hardware overhead and operations as an array multiplier. In addition, the shift-and-add 

multipliers require the least modification to the baseline design. The power dissipation 

of the shift-and-add multipliers is further reduced with common subexpression sharing. 

In common subexpression sharing, common multiples of a number are shared among 

the various adders. The type of shift-and-add multiplier we implement is discussed in 

Chapter 2. 

 

4.4.2 Accuracy of Multiplier 

 

In the baseline DCT and IDCT units, we set the coefficient precision equal to 

the internal data width, since the array multipliers from the library require both 

multiplicands to be the same width. Our custom shift-and-add multiplier design lifts 



 

   75

this restriction of the library array multiplier. The coefficient precision no longer must 

match the internal data width, which is fourteen bits. We now desire to use the 

minimum coefficient width that does not significantly degrade video quality. Since our 

system uses matching IDCT architectures in both the coder and the decoder, the video 

will remain stable for reduced precision coefficients. This holds true for IDCT 

implementations such as ours that do not meet the IEEE accuracy standards.  

In a system with an identical IDCT architecture in the encoder and the decoder, 

extra coefficient precision only contributes to extra power dissipation. Increased 

precision brings no noticeable improvement in video quality. This results from the fact 

that the quantization parameter - and hence the quantization noise - is usually large for 

low bit rates. The quantization noise dominates any error introduced by the DCT and 

IDCT units. Since the DCT and IDCT may require less than 14 bits of precision, we 

propose reduction of coefficient precision to reduce power dissipation. If we reduce the 

precision of our coefficients, then less complex shift-and-add multipliers will result. 

The DCT and IDCT coefficients should be represented with the minimum 

amount of precision that does not noticeably degrade perceived video quality or PSNR. 

Table 4.6 shows the effects of applying reduced precision to the DCT and IDCT units 

in the software prototype. 

 

Table 4.6: PSNR Degradation for Different Coefficient Precisions 

 

Claire Foreman Miss Am. Unit 

DCT 

PSNR 

(dB) 

IDCT 

PSNR 

(dB) 

DCT 

PSNR 

(dB) 

IDCT 

PSNR 

(dB) 

DCT 

PSNR 

(dB) 

IDCT 

PSNR 

(dB) 

Baseline 40.53 40.53 29.64 29.64 40.52 40.52 

12 bit 40.54 40.58 29.64 29.64 40.52 40.54 

10 bit 40.52 40.51 29.61 29.62 40.52 40.49 

8 bit 40.12 40.17 28.97 29.14 40.26 40.26 

6 bit 29.72 30.57 27.53 27.62 31.72 32.29 
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Table 4.6 shows that coefficient precisions over eight bits improve the PSNR 

only fractionally with our DCT and IDCT architectures. Therefore, we decide to use 8 

bit coefficients for both the DCT and IDCT units. Table 4.7 shows the values we use 

for each coefficient. Note that we shift the binary representations left eight places for 

fixed-point multiplication. This left shift is corrected by discarding the eight least 

significant bits of the multiplication result. 

 

Table 4.7: Coefficient Values 

 

Coefficient Decimal Value Binary Value  

A 0.35355 0101 1010 

B 0.49039 0111 1101 

C 0.46194 0111 0110 

D 0.41573 0110 1010 

E 0.27779 0100 0111 

F 0.19134 0011 0000 

G 0.09755 0001 1000 

 

 

4.5 Low Transition Data Paths 
 

As described in Chapter 3, the registers and the arithmetic units in the 1-D 

DCT/IDCT unit select inputs from multiple sources through a bank of multiplexers. 

The controller generates the select inputs (SELR and SELM in Figure 3.7) for these 

multiplexers. Each multiplier receives input from two multiplexers, and each register 

receives input from one multiplexer. In the baseline design, the SELR and SELM 

signals receive a “don’t care” value when their register or arithmetic unit is inactive. 

When a register or arithmetic unit is inactive, it is desirable that the select inputs on its 

multiplexer(s) remain unchanged. To save power, we propose to hold the SELR and 

SELM signals at the last known value (‘0’ or ‘1’) for all “don’t care” values in the 
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baseline design. When the SELR or SELM signal remains unchanged during these 

“don’t care” states, fewer transitions will occur on the inputs of the registers and 

arithmetic units. Additionally fewer transitions occur on the select inputs of the 

multiplexers. These new data paths should reduce power dissipation in the registers and 

arithmetic units. Note that this method produces no reduction in PSNR, and it increases 

the complexity of the control unit slightly.  

 As an example of the changes made to the control unit, we show the SEL 

outputs of the controller as coded in the baseline VHDL RTL model. The MSEL vector 

represents the outputs on the select signals (SELR and SELM) during three successive 

clock cycles. These are the desired outputs from the first three cycles of the baseline 1-

D IDCT. The “don’t care” conditions are represented by the “-“. 

 

MSEL <= "000000000--0----------------------------------";  

MSEL <= "01-------00--000-----00000000000-----000000000"; 

MSEL <= "------------00-----01---001-----00---000001000"; 

 

To save power, we change the code at the expense of a more complex synthesized 

controller circuit by eliminating the “don’t care” conditions. We replace each “don’t 

care” condition with the last value that is not a “don’t care” condition. If there is no 

previous value, the “don’t care” condition is changed to the next value. The modified 

code is as follows. 

 

MSEL <= "0000000000000000000010000000000000000000000000"; 

MSEL <= "0100000000000000000010000000000000000000000000"; 

MSEL <= "0100000000000000000010000010000000000000001000"; 
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Chapter 5: Experimental Results 
 

 In this chapter, we present the results of gate-level simulations on the low 

power techniques described in Chapter 4: skipping the DCT, skipping the IDCT, gating 

registers, using low-precision shift-and-add multipliers, and implementing a low-power 

data path. We start with a review of the test video sequences and the power estimation 

method. Then, we measure the power savings of applying each method to the baseline 

unit independently of the other methods. We use these results to find the most effective 

method. Next, we measure the effect of applying each method to the baseline unit in the 

order from most effective to least effective. We take these two different measurements 

to ensure that the best techniques are included in the final design. If we add a new 

method to a circuit that includes other low-power methods, the new method may not 

save additional power. If this new method saves significant power in the baseline unit, 

we want to include it before other, less efficient methods. Finally, we end with a 

comparison of our architecture to other implementations in terms of area, speed, and 

power.  

 

5.1 Description of Test Video Sequences 
 

Using Synopsys Design Power, we estimate power dissipation at the gate level 

for three test video clips: “Claire”, “Miss America”, and “Foreman”. The three video 

clips are in QCIF format, which contains 176x144 pixels per frame. For our test data, 

we use an entire INTER frame of each sequence, which requires 594 DCT or IDCT 

operations per frame. An INTER frame is a good choice for observing the effects of our 

low power techniques, since only the first frame in a video sequence is an INTRA 

frame. All remaining frames are encoded in INTER mode. 

To review the video sequences, “Claire” and “Miss America” are both low 

motion sequences. These two clips contain a small amount of motion in the subject’s 

head and face area, and the camera remains stable for the duration of the video. 

“Claire” and “Miss America” represent typical data streams from videoconferencing 
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applications. The “Foreman” sequence provides a contrast to the other two sequences, 

as it contains a large amount of motion in the subject and an unstable camera. 

“Foreman” is more representative of data from a mobile patrol application.  

The relative amounts of motion are important for the low power techniques that 

depend on input data (skipping of DCT macroblocks and skipping of IDCT blocks). 

Sequences with a large amount of motion contain a large amount of non-zero data, 

which requires the DCT and IDCT operations. Less motion results in more zero-valued 

data, and, hence, we can skip more DCT and IDCT operations. For the data dependant 

low power techniques, we expect less power savings for the high motion “Foreman” 

sequence. For all other low power techniques, we expect approximately the same 

amount of power savings for all three video sequences. 

Figure 5.1 shows an INTER frame of each video sequence before and after 

decoding by our software prototype. The software prototype includes the low power 

techniques that affect the data: skipping DCT macroblocks and lower precision 

multiplier coefficients. The screen capture on the left shows the original frame, while 

the screen capture on the right shows the decoded frame. These sequences are encoded 

at a frame rate of 8 fps and a bit rate of 20 kbps. The “Foreman” capture shows some 

degradation in quality, whereas the other two sequences show very little difference 

between the original and reconstructed frames. The degradation in “Foreman” results 

from the high motion of the sequence.  
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(A) Claire 

 

 
(B) Foreman 

 

 
(C) Miss America 

 
Figure 5.1: Test Video Sequences 
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5.2 Power Estimation Method 

 
We measure power dissipation from simulation of the test data from each of the 

above images. We verify the output data of the simulation against the output data 

produced by the software prototype. Synopsys calculates power with an estimation of 

the dynamic power based on the formula  

 

fVCP L
2α=                                                                                                                (4.1) 

 

where α is the switching activity, CL is the capacitive load, V is the supply voltage, and 

f is the clock frequency. Synopsys Design Power computes the power at each node 

from the VTVT 0.35µ library cell characteristics and from toggle information at each 

node in the gate-level model. Summing the power dissipations at each node results in 

the total power for the circuit. 

 

5.3 Individual Low Power Methods 

 
We first apply each low power technique to the DCT/IDCT circuits 

independently. This shows the effectiveness of each technique without interference 

from the other techniques. After we know the effectiveness of each method 

individually, we can apply each technique to the baseline unit one at a time, starting 

with the most effective method. Tables 5.1 and 5.2 show the effects of each method 

when added to the baseline DCT and IDCT units for each video sequence. The column 

heading “Power” denotes the power dissipation of a method when applied to the 

baseline unit. The column heading “Percent Reduction” denotes the percentage of the 

power savings of the method over the baseline unit.  
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Table 5.1: Efficiency of Low Power DCT Methods When Applied Individually 

Claire Foreman Miss Am. Configuration 

Power  
(mW) 

Percent 
Reduction 

Power 
(mW) 

Percent 
Reduction 

Power  
(mW) 

Percent 
Reduction 

Baseline 9.25  9.39  9.32  

Skip Low SAD 

Blocks 

2.24 75.8% 4.73 49.6% 2.66 71.5% 

Gated Registers       

   Transposition    

   Memory 

3.96 57.2% 4.13 56.0% 4.07 56.3% 

   1-D DCT 7.91 14.5% 8.18 12.9% 8.11 13.0% 

   I/O Registers 8.23 11.0% 8.48 9.69% 8.43 9.55% 

Constant Multipliers 8.18 11.6% 8.46 9.90% 8.41 9.76% 

Low Transition Path 8.38 9.4% 8.63 8.09% 8.57 8.05% 

 

 

Table 5.2: Efficiency of Low Power IDCT Methods When Applied Individually 

Claire Foreman Miss Am. Configuration 

Power  
(mW) 

Percent 
Reduction 

Power 
(mW) 

Percent 
Reduction 

Power  
(mW) 

Percent 
Reduction 

Baseline 8.53  8.49  8.50  

Skip All-Zero 

Blocks 

1.23 85.6% 1.41 83.4% 1.40 83.5% 

Gated Registers       

   Transposition 

Memory 

3.55 58.4% 3.29 61.2% 3.53 58.5% 

   1-D DCT 7.41 13.1% 7.37 13.2% 7.38 13.2% 

   I/O Registers 7.55 11.5% 7.56 11.0% 7.54 11.3% 

Constant Multipliers 7.64 10.4% 7.64 10.0% 7.59 10.7% 

Low Transition Path 7.68 9.96% 7.71 9.19% 7.66 9.88% 
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From Table 5.1, the most efficient method for the DCT is the skipping of 

macroblocks with low SAD parameters, which reduces power dissipation by an 

average of 65.6%. This is attributable to the fact that 57.8% to 79.8% of macroblocks 

are skipped. The “Foreman” sequence shows less power reduction than the other 

sequences because its high amount of motion causes higher SAD values in relation to 

the quantization parameter. Hence, fewer blocks are skipped.  

From Table 5.2, the most efficient method for the IDCT is the skipping of all-

zero input blocks. The power savings is larger than the DCT, because the decision to 

skip is made at the block level, not at the macroblock level. The DCT may produce all-

zero blocks that are not part of an all-zero macroblock.  

Surprisingly, the power savings from skipping all-zero input blocks to the IDCT 

is about the same for the three video clips. It is explained as we set a constant target bit 

rate for each video clip. With equal target bit rates, high motion video sequences such 

as "Foreman" have higher quantization parameters than low motion video sequences; 

hence, just as many coefficients are forced to zero in high motion video sequences as in 

low motion video sequences. This also means that our prediction method for all-zero 

DCT macroblocks could be more efficient for high motion video. Future research could 

improve the efficiency of all-zero macroblock prediction in the DCT for high motion 

video sequences. Since these video sequences result in high SAD and QUANT 

parameters, one proposal would be to weight high QUANT and SAD values with a 

higher THRESHOLD value. This could possibly result in more accurate prediction of 

all-zero DCT macroblocks in high motion video sequences. 

The second most efficient low power method for both is the gating of registers, 

which affects both the DCT and the IDCT unit almost equally. Registers account for a 

large portion of the power in the DCT and IDCT units. Since registers need only be 

enabled when they have meaningful input, gating registers saves a significant amount 

of power. The greatest power savings from results from gating the transposition 

memory. The transposition memory accounts for about 70% of the total number of flip-

flops in the DCT or IDCT circuit, and it needs to be enabled for only a very small 

portion of the 2-D cycle. Gating the 1-D DCT/IDCT unit and the I/O unit also results in 

significant power savings, but not as much as in the transposition memory. The 1-D 
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DCT/IDCT and the I/O units both contain fewer registers than the transposition 

memory. These registers require clocks for a larger percentage of time than the 

transposition memory registers. Therefore, gating the I/O and 1-D DCT/IDCT registers 

results in less overall power savings than in the transposition memory. 

The low power, low-precision multipliers make a smaller, yet significant, 

improvement in power dissipation. Note that the these multipliers can save more than 

10% of the power dissipation over the baseline unit, when the array multipliers 

dissipated less than 10% of the power in the baseline unit. This is explained by 

analyzing the power savings in the individual units in the low power 1-D DCT and 

IDCT blocks. The constant multipliers now dissipate less than 1% of the total power. 

The additional power is saved in the data paths of the 1-D DCT and IDCT blocks. The 

constant multipliers have one fixed input that never transitions, whereas both inputs in 

the array multipliers made transitions. Additionally, the constant multipliers have fewer 

adder rows and undergo fewer glitches on the outputs. So the constant multipliers result 

in fewer transitions in both the input and output multiplexers and in the output registers. 

The total power savings in the multipliers, registers, and multiplexers can add to more 

than 10% of total power savings. 

Optimizing the data path reduces power dissipation by a similar amount as the 

shift-and-add multipliers. The optimized data path reduces power by 15%-35% in the 

registers, arithmetic units, and multiplexers of the 1-D DCT and IDCT units. The 

overall power savings is around 10%. 

 

5.4 Combined Low Power Methods 
 

The five low power methods are then added to the baseline unit in order from 

the most efficient method to the least efficient method. Skipping blocks (in the IDCT 

unit) and macroblocks (in the DCT unit) is considered first. Next we add clock gating, 

following the order from the unit with the most power savings to the unit with the least 

power savings: the transposition memory, the 1-D DCT/IDCT unit, and the I/O 
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registers. Finally, we include the low power multipliers, followed by the low transition 

data path. 

For the DCT and IDCT blocks, Table 5.3 and Table 5.4 show the experimental 

results under the cumulative employment of the methods. The column heading 

“Power” denotes the power of a method combined with all the methods above it. 

Similarly, the column heading “Percent Reduction” denotes the power savings of a 

method combined with all the methods above it. 

 

Table 5.3: Efficiency of Low Power DCT Methods When Added Incrementally 

 

Claire Foreman Miss Am. Configuration 

Power  
(mW) 

Percent 
Reduction 

Power 
(mW) 

Percent 
Reduction 

Power  
(mW) 

Percent 
Reduction 

Baseline 9.25  9.39  9.32  

Skip All-Zero 

Blocks 

2.24 75.8% 4.73 49.6% 2.66 71.5% 

Gated Registers       

   Transposition 

Memory 

1.64 82.3% 2.89 69.2% 1.87 79.9% 

   1-D DCT 1.16 87.5% 1.87 80.1% 1.26 86.5% 

   I/O Registers 0.687 92.6% 1.23 86.9% 0.776 91.7% 

Constant Multipliers 0.425 95.4% 0.639 93.2% 0.470 95.0% 

Low Transition Data 

Path 

0.314 96.6% 0.501 94.7% 0.354 96.2% 

Total Power 0.314 96.6% 0.501 94.7% 0.354 96.2% 
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Table 5.4: Efficiency of Low Power IDCT Methods When Added Incrementally 

 

Claire Foreman Miss Am. Configuration 

Power  

(mW) 

Percent 

Reduction 

Power 

(mW) 

Percent 

Reduction 

Power  

(mW) 

Percent 

Reduction 

Baseline 8.53  8.49  8.50  

Skip All-Zero 

Blocks 

1.23 85.6% 1.41 83.4% 1.40 83.5% 

Gated Registers       

   Transposition 

Memory 

0.776 90.9% 0.914 89.2% 0.910 89.3% 

   1-D DCT 0.377 95.6% 0.442 94.8% 0.440 94.8% 

   I/O Registers 0.240 97.2% 0.296 96.5% 0.297 96.5% 

Constant Multipliers 0.161 98.1% 0.218 97.4% 0.226 97.3% 

Low Transition Data 

Path 

0.150 98.2% 0.189 97.8% 0.187 97.8% 

Total Power 0.150 98.2% 0.189 97.8% 0.187 97.8% 

 

 

We can observe from Tables 5.3 and 5.4 that each power savings technique has 

an impact, even after others are added. For both the DCT and the IDCT, the 

combination of power savings methods impact the overall power far more than any 

single design. The average power reduction of the proposed methods for DCT and 

IDCT is 95.8% and 97.9%, respectively. 

 

 

5.5 Effect on PSNR 

 
Since the skipping of DCT macroblocks and the lower precision multipliers 

degrade picture quality, we include the overall effect on PSNR when both methods are 



 

   87

added. We implement both methods in the software prototype, and Table 5.5 shows the 

effect of the methods on PSNR. Note that the combined methods degrade PSNR more 

than individual methods. However, the degradation is unnoticeable to human eyes.  

 

Table 5.5: PSNR Degradation of Proposed Low Power Methods 

 

Configuration PSNR (dB) 
Claire 

PSNR (dB) 
Foreman 

PSNR (dB) 
Miss Am. 

Baseline 40.53 29.64 40.52 

Lower Precision Multipliers 39.19 29.33 39.46 

Skip Low SAD Blocks 39.41 29.41 40.08 

Combined 38.51 29.12 39.10 

 

 

5.6 Comparison to Other Architectures 

 

In this section, we summarize the characteristics of previous architectures to 

obtain some comparisons to our architecture. It is difficult to compare the power 

efficiency of different DCT/IDCT designs due to differences in supply voltages, 

operating frequencies, throughput rates and processes. Additionally, most of the 

previous DCT and IDCT designs target high throughput applications such as MPEG or 

HDTV, while our proposed design targets low bit rate video. We look at the power, 

supply voltage, technology size, area, clock speed, and throughput of other DCT/IDCT 

designs. Table 5.6 gives these parameters for several other architectures as well as our 

proposed designs for the DCT and the IDCT. For our power measurements, we use the 

average power dissipation of all three sequences  
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Table 5.6: Comparison of DCT and IDCT Architectures 

Chip Power  

(mW) 

VDD  

(V) 

Tech. 

Size 

(µM) 

Trans. 

Count 

Area 

(mm^2) 

Clock 

(MHz) 

Throughput 

(Msmp/sec) 

[7]a 23.9  3.3 0.5 -- 1.28 18.5625 74.25 

[7]a  4.1  1.375 0.5 -- 1.28 18.5625 74.25 

[7]b 39  3.3 0.5 -- 2 18.5625 74.25 

[7]b 6.8  1.375 0.5 -- 2 18.5625 74.24 

[8] 4.65 1.32 0.5 160K 20.7 14 14 

[9] -- -- 0.6 10.9K 7.07 40 3.63 

[10] -- 3.3 0.6 130K 9.76 80 23.27 

[11] -- -- 0.8 67K 10 100 100 

[13] -- -- 0.5 10K * -- 33 33 

[15] -- -- 0.6 36K -- 100 100 

[17]a 22.46 -- 0.7 -- -- -- -- 

[17]b 17.96 -- 0.7 44K 6.41 -- -- 

[18] 4.28 1.56 0.6 120K 14.5 14 14 

[19] 138 2.0 0.6 152K 50 100 100 

[21] -- -- 1.5 98K 141 -- -- 

[22] -- -- -- 402K -- 1 16 

[23] -- -- 1.2 320K 240 50 50 

[26] -- -- 0.6 24K -- 54.9 23.6 

[27] --  0.8 -- .212 100 100 

[28] -- -- -- 7.3K * -- 27 -- 

[29] -- -- 0.8 140K 49.21 50 50 

[31] 17 1.5 1.2 -- -- 20 -- 

Proposed 
DCT 

0.390 3.3 0.35 22K*  2.5 0.38 

Proposed 
IDCT 

0.175 3.3 0.35 22K*  2.5 0.38 

* count is in gates 
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From Table 5.6, the proposed designs compare favorably to others in terms of 

transistor (gate) count. The low power methods do not contribute significant area 

overhead to the baseline design. Also, note that most other designs target a throughput 

that can be several orders of magnitude faster than in our proposed designs. Hence, our 

design performs much better in an absolute comparison of power efficiency. This 

comparison is unfair because of the differences in throughput. To overcome the 

difficulties of comparing the power efficiency of different DCT/IDCT designs, the 

authors of [18] propose scaling formulae for the purpose of comparing power 

dissipation between different DCT designs. The scaling formulae are as follows: 

 

'''

'
2

3

f
fPPP

U
Sff

U
SPP

V
VU

W
WS

ref×=

×=

×=′

′=

′=

                                                                                                          (4.2) 

 
where, 
 
W’ - Reference Process 
W - Process 
V’ - Reference Supply Voltage 
V - Supply Voltage 
P’ - Power after Scaling 
P - Power 
f ’ - Frequency after Scaling  
f - Frequency 
PP’ - Power for Fixed Throughput 
 

For example, when a process is scaled by 1/S and voltage by 1/U, then the power scales 

by S/U3 and frequency will scale by S2/U. The power further scales by fref/f’ if the 

frequency is scaled to the reference frequency by fref. 

Using the above formula, we compare power efficiency of various existing DCT 

and IDCT designs. The scaled power dissipation for the various methods is shown in 
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Table 5.7. Although the comparison may not be fair due to the scaling problem, it is a 

good indication on the standing of the proposed methods. Our methods perform far 

better than other methods, mostly by an order of magnitude.  
 

Table 5.7: Scaled Comparison of DCT and IDCT Architectures 

 

Chip Scaled 
Power 
(mW) 

Normalized 
Power 

[11] 21.2 0.37 

[13] 31.8 0.55 

[18] 58.1 1.00 

[26] 38.5 0.66 

[28] (Flow 

Graph) 

23.9 0.41 

[28] (Distributed 
Arithmetic) 

39 0.67 

Proposed DCT 3.27 0.056 

Proposed IDCT 1.31 0.022 
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Chapter 6: Conclusion 
 

This paper presents five low power techniques for an 8x8 2-D DCT or IDCT 

block in a low bit rate, wireless video application. To review, the techniques are as 

follows. 

 

- Skipping low energy DCT input macroblocks. 

- Skipping all-zero IDCT input blocks. 

- Clock gating for inactive registers. 

- Low precision shift-and-add multipliers. 

- Low transition data path. 

 

Some techniques are much more effective than others. We observe more power 

savings from techniques that apply to higher levels in the design hierarchy. Two low 

power techniques apply to the top level circuit: skipping input macroblocks for the 

DCT and skipping input blocks for the IDCT. These two techniques produce far more 

power savings than the other techniques. The next most effective technique is clock 

gating, which affects sub-blocks (the transposition memory, the 1-D DCT/IDCT unit, 

and the I/O registers) within the circuit. Finally, the two least effective techniques are 

the low-precision shift-and-add multipliers and the low transition data path. These two 

techniques apply to basic circuit components such as multipliers, registers, and 

multiplexers.  

For the DCT, the most efficient scheme is skipping macroblocks. Using this 

scheme can produce power savings from 50% to 75%, depending on the amount of 

motion in the video sequence. Low motion video sequences save more power than high 

motion sequences, because the decision to skip is based on the value of the SAD 

parameter with respect to the QUANT parameter. The SAD parameters from low 

motion sequences are lower with respect to the QUANT parameter. This technique is 

effective because the entire DCT circuit is placed in standby mode for a significant 

portion of time. In standby mode, the circuit dissipates very little power, because all 

registers are reset and the clock signal is gated. It is important to note that this 
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technique produces some small degradation in PSNR because of the inexactness of 

predicting all-zero macroblocks based on the SAD and QUANT parameters. However, 

the degradation is not noticeable to human eyes.  

The most efficient scheme for the IDCT block is skipping all-zero input data 

blocks, which decreases overall power dissipation by 80% to 85%. The power savings 

are similar for all three sequences, because the constant bit rate forces sequences with 

more motion to use a higher quantization parameter. The result is that both high motion 

and low motion sequences have approximately the same number of zeroes in the output 

data. This technique is effective because it places the circuit in standby mode, where 

little power is dissipated for over 90% of the input blocks. An added benefit of this 

method is that there is no degradation of video quality. 

The next most effective technique, clock gating, affects both the DCT and the 

IDCT similarly, regardless of the type of video sequence. The registers are gated for the 

same amount of time in both the DCT and the IDCT regardless of the input data. Clock 

gating is effective because registers account for the majority of power dissipation in the 

circuit. Since most registers simply store data for a majority of the time, we can gate the 

clock for a significant amount of time. This technique results in an overall power 

savings of around 55% - 60% from the transposition memory, 12 - 15% from the 1-D 

DCT/IDCT unit, and 9 - 11% from the I/O units. Note that this method produces no 

degradation in picture quality. 

With a substantial reduction in power from the above techniques, multipliers 

now become a concern for low power design. The array multipliers dissipate an 

increased proportion of the total power in the circuit. Shift-and-add multipliers are an 

effective replacement, because they reduce the number of adder rows over an array 

multiplier. The shift-and-add multipliers save power in both the multiplier units and in 

the data path. The low precision coefficients also reduce power by reducing the 

complexity of the multipliers. Reducing precision has the adverse effect of degrading 

picture quality, but not by a noticeable amount. Reduced precision multipliers save 

between 9 -11% of overall power dissipation for all three sequences over the baseline 

circuit for both DCT and IDCT. 
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Finally, the data path in the 1-D DCT/IDCT unit can be optimized for power 

instead of hardware complexity. We do this by eliminating “don’t care” conditions on 

the select inputs to the multiplexers in the data path. We replace the “don’t care” 

conditions with the previous select input, so as to reduce transitions in the registers, 

multiplexers, and arithmetic units in the 1-D DCT/IDCT unit. This technique is 

effective in both the DCT and the IDCT, regardless of the input data. The optimized 

data path results in an overall power savings of 8% – 9% with no degradation in picture 

quality.  

Each of these techniques produces enough power savings to make it worthwhile 

to include in a low power implementation. Even after we add the most effective low 

power techniques to the baseline circuit, the remaining power reduction techniques are 

important; they now reduce a greater proportion of power in the circuit. When 

combined, these techniques reduce average power dissipation by 96% for the DCT and 

by 98% for the IDCT.  

Finally, it is important to note that our methods can be integrated with some 

other existing methods such as adaptive precision [16] and zero-valued coefficients 

[16][21][34] to further reduce power dissipation. Further power reduction can also 

result from more common techniques such as lowering the supply voltage, 

parallelization, or using a low power standard cell library. 

We conclude the paper by summarizing the characteristics for our DCT and 

IDCT designs in Table 6.1. 

 

Table 6.1: Characteristics of Our DCT and IDCT Architectures 

 

 DCT IDCT 

Gate count 22,000 22,000 

Frequency 2.5 MHz 2.5 MHz 

Throughput 10 fps @ QCIF 10 fps @ QCIF 

Processing Technology .35µm .35µm 

Power .390 mW .175 mW 
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Appendix A: Port Connections for the DCT and IDCT 
 

2-D DCT Unit
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Figure A.1: Port Connections in the DCT Unit 
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2-D IDCT Unit
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Figure A.2: Port Connections in the IDCT Unit 
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