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Abstract— Accounting for spatial image transformations is a
requirement for multimedia problems such as video classification
and retrieval, face/object recognition or the creation of image
mosaics from video sequences. We analyze a transformation
invariant metric recently proposed in the machine learning
literature to measure the distance between image manifolds -
the tangent distance (TD) - and show that it is closely related to
alignment techniques from the motion analysis literature. Expos-
ing these relationships results in benefits for the two domains.
On one hand, it allows leveraging on the knowledge acquired in
the alignment literature to build better classifiers. On the other,
it provides a new interpretation of alignment techniques as one
component of a decomposition that has interesting properties
for the classification of video. In particular, we embed the TD
into a multi-resolution framework that makes it significantly less
prone to local minima. The new metric - multi-resolution tangent
distance (MRTD) - can be easily combined with robust estimation
procedures, and exhibits significantly higher invariance to image
transformations than the TD and the Euclidean distance (ED).
For classification, this translates into significant improvements in
face recognition accuracy. For video characterization, it leads to
a decomposition of image dissimilarity into “differences due to
camera motion” plus “differences due to scene activity” that is
useful for classification. Experimental results on a movie database
indicate that the distance could be used as a basis for the
extraction of semantic primitives such as action and romance.

Index Terms— Image similarity, Manifold distance, Tangent
distance, Multi-resolution, Invariance, Affine transformations,
Robust estimators, Face recognition, Semantic movie classifica-
tion

I. INTRODUCTION

A large collection of problems in multimedia involve either
classifying or aligning visual information. In particular,

classification and alignment are a substantial component of
the challenges posed by visual information retrieval and sum-
marization. Consider the problem of finding the most similar
match, in a given image database, to a query image provided
by a user. This is clearly a classification problem: each image
(or, if some form of labeling is available, each collection of
images under the same label) in the database defines a class,
and the goal is to find the class that best explains the query in
the sense of minimizing the probability of retrieval error [32].
Other components of the retrieval problem, e.g. face/object
detection and recognition [16], [19], [30], or extraction of
semantic descriptors such as “action” vs “romance” [34] or
“indoors” vs. “outdoors” [29], [31] are naturally formulated
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as classification problems as well. In these cases, a large
collection of images of the same “theme”, e.g. face or outdoors
images, are assembled and used to train a classifier off-line.
The classifier is then applied to the images of a particular
database, labeling them with semantic tags related to that
theme, e.g. “images containing people” or “images of the
wild”. Such labels extend the query language along semantic
dimensions that greatly increase the power and usefulness of
the retrieval system.

With respect to summarization, the standard solution is to
segment the movie into its composing shots and select one,
or a few, keyframes to represent each shot [2], [26], [37].
While this is a reasonable representation of the underlying
video content, important information can be lost by completely
eliminating the shot’s dynamic component. For example, it
may become impossible to distinguish two shots of a movie
where the same people perform different actions on the same
set. A better sense of the scene dynamics is achieved through
a mosaic [10], [14], [21] that presents the average of all the
images after alignment according to the dominant motion in
the scene (typically that of the camera). If the registration
is precise, static objects appear crisp while moving objects
create a smooth spatial trail determined by their motion. This is
generally sufficient to enable a coarse understanding of object
motion through the entire shot from the observation of the
static mosaic. Still better rendition of the scene dynamics can
be achieved with layering [21], [35], [36]. Here, each frame
is segmented into the composing objects, and an individual
mosaic created for each object. The combination of this
mosaic with a segmentation mask for each frame and the
object’s motion allows the perfect reconstruction of the objects
evolution in the scene.

For both retrieval and mosaic creation, significant perfor-
mance improvements are achievable by relying on precise
image alignment. In the case of retrieval, alignment is a means
to achieve invariance against spatial transformations such as
rotation or scaling. For mosaic creation, alignment is the
fundamental problem since without it the resulting mosaics or
layers will simply render an arbitrary average of the individual
frames and will not reflect the scene or its dynamics. In fact,
as we will show below, alignment and classification can be
seen as two sides of the same coin: while, on one hand, the
appropriate distance for classification is that which maximizes
alignment, on the other, classification requires very little else
once alignment is reached.

Despite these synergies, there are few unified treatments of
the two problems. In the vision literature, while a significant
body of work has been devoted to alignment (or recovery of
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motion parameters), considerably smaller attention has been
given to the question of how to explicitly account for it in
the context of classification [8]. Instead, invariance is usually
encoded in the features [12], [17], [22] or learned from exam-
ples [20], [23], [27]. Such solutions are not always satisfying:
invariant features can be quite arbitrary and it is usually
difficult to evaluate the impact on the classification error of
the information that is discarded, learning has combinatorial
complexity on the number of degrees of freedom of the
transformations to be learned [8]. Conversely, classification
has received tremendous attention in the learning literature,
where little attention has been given to the problem of visual
alignment.

One exception to this rule is the TD classifier introduced
in [24]. The key idea behind the TD is that, when subject to
spatial transformations, images span manifolds in high dimen-
sional Euclidean space, and an invariant metric should measure
the distance between those manifolds instead of the distance
between other properties of (or features extracted from) the
images themselves. The distance between two manifolds is
defined as the ED between their closest points. Because these
manifolds may have complex shapes, the resulting optimiza-
tion problem is usually a difficult one. It can, nevertheless, be
made tractable by considering the minimization of the distance
between the manifolds’ tangent spaces - the TD - instead of
that between the manifolds themselves. It turns out that the
tangent hyperplane to a manifold at the point corresponding
to a given image, is the first-oder Taylor series expansion of
the image intensity function. This expansion has been widely
used in the motion analysis literature (since [11]), and is well
known to hold only locally, i.e. when the ED between the
images to align is small.

Making the connection between the TD classifier and image
alignment techniques therefore explains one of the major
limitations of the former: while leading to impressive re-
sults for the problem of character recognition [25], it cannot
handle well natural images since these are usually subject
to a larger set of image transformations. In this paper, we
make the connection explicit by formulating recognition as
classification, alignment as regression, and showing that the
particular classification architecture on which the TD classifier
is based, known as nearest neighbors, actually embeds a
regression problem in the decision function used for classi-
fication. The TD classifier can, therefore, be seen as solving
the alignment problem for each evaluation of the decision
function. The new interpretation allows leveraging on the
knowledge acquired in the alignment literature to improve
the classification performance. In particular, we use the fact
that, by extending the range over which linear approximations
hold, multi-resolution decompositions significantly improve
the performance of image registration algorithms based on the
Taylor series approximation. In the context of classification,
this leads to a classifier that embeds the computation of
the TD on a multi-resolution framework [5]. We denote the
new metric by multi-resolution tangent distance (MRTD) and
evaluate its performance on the task of face recognition. These
experiments show that, when compared to the TD or ED,
the MRTD exhibits significantly higher invariance to image

transformations.
From the point of view of image alignment, the connection

to classification is important because it emphasizes the fact that
what cannot be explained by the alignment model, the MRTD,
is a significant piece of the information about two images. In
fact, it leads to a decomposition into “alignment parameters
plus what cannot be explained by alignment” which is, for
some alignment models, interesting by itself. We illustrate this
property by showing that when combined with simple models
of camera motion, such as affine transformations, the TD can
be interpreted as a metric of the activity in a video sequence,
an important feature for the semantic characterization of
a movie. Experiments on a movie database show that the
simple integration of the MRTD throughout a scene is a good
descriptor for the action content of that scene.

As a metric of image similarity, the MRTD is shown to
have several appealing properties: 1) maintains the general
purpose nature of the TD; 2) can be easily combined with
robust estimation procedures, exhibiting invariance to moder-
ate non-linear image variations (such as those caused by slight
variations in shape or occlusions); 3) is amenable to computa-
tionally efficient screening techniques where bad matches are
discarded at low resolutions; 4) performs well on recognition
tasks; and 5) enables the design of a single architecture
for problems as diverse as face recognition, semantic video
classification, and mosaic creation.

II. CLASSIFICATION

Consider a classification problem where a query pattern � is
to be classified into one of � classes. Both � and � can vary
depending on the classification domain. For example, in image
retrieval � is the number of image classes in the database,
while � can be a feature (e.g. a color histogram) or collection
of features (e.g. a collection of wavelet coefficients) extracted
from a query image. On the other hand, for face recognition
� � � (“face” and “non-face” classes) and � an image
patch. Defining a class-indicator variable � � ��� � � � � �� and
denoting by � the random variable according to which the
observed patterns are drawn1, it is well know that, when the
goal is minimize the probability of classification error, the
optimal solution is provided by the Bayes classifier [6], [7]

����� � �����	
�

�� �������� (1)

Furthermore, the probability of error is lower bounded by the
Bayes error

�� � ����
��	
�

�� ��������� (2)

where �� means expectation with respect to �����.
The Bayes classifier is not always easy to implement in

practice. A simpler and very popular alternative is the nearest
neighbors classifier. Denoting by �� � ������ � � � � �����

� the

1We use upper case for random variables and lower case for particular
values, e.g. � � � denotes that the random variable � takes the value �.
When the meaning is clear from context, we usually omit one of the symbols.
For example, ���� ����� is commonly used instead of ���� �� � ��� � ��.
Boldface type is used to represent vectors.
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training sample for the ��� class, it corresponds to the decision
function

���� � �����

�
���


�
���� ���� ��� (3)

where � is a metric, typically the ED. A common extension
is the 	-nearest neighbors classifier where the minimization
above is replaced by a majority vote among the 	 training
points that are closest to �. In addition to its simplicity,
kNN rules are attractive because it can be shown that their
probability of error is upper bounded by [6]

���� � ���� �
�
��
	
��� (4)

where �� is the Bayes error. Hence, even for 	 � �, there is
a guarantee that the probability of error will be at most twice
the Bayes error. Even though all that is presented in this work
is valid for 	-nearest neighbor classifiers, for simplicity we
concentrate on the nearest neighbor case.

III. REGRESSION

Regression is a statistical technique for modeling relations
between variables [15]. The most popular regression model is

� � ����� � �� (5)

where � is a predictor variable, � a response variable, and � a
random variable that accounts for the noise associated with the
observation of the response variable. The function �� belongs
to a family of functions parameterized by the parameter vector
�. Other regression models are possible, e.g. models that allow
noise not only in the observation of the response but also on
the predictor itself, but we will not consider them here.

Given a probability density for the noise ����� it is straight-
forward to see, from (5), that

��������� � ����� ������� (6)

The goal is, for a given training sequence of observed pairs
�
�� ���, to find the parameter vector that maximizes the like-
lihood of the observations under this model

�� � �����	
�

����� ������� (7)

where � and � are the vectors with entries �� and 
�, respec-
tively. A common assumption is that the noise is a a zero-mean
stochastic process from the exponential family

����� � ������� (8)

where � is a normalizing constant. In this case, (7) reduces
to

�� � �����

�
���� ������ (9)

which can usually be rewritten as

�� � �����

�
���� ������� (10)

where � is a metric. For example, when the noise samples
are independently distributed and Gaussian, � is the ED

���� ������ � ���� �������� �
�
�

��� � 
��������
�� (11)

The problem of image alignment is naturally formulated as
a regression problem. Consider two image patches with pixel
intensities ����� and �����, where �� is the 2D vector of
image coordinates of pixel �, and the manifold spanned by all
the possible spatial transformations

�� 
������ � ����������� (12)

that a pattern may be subject to, where � is a function
(typically) linear on �, but not necessarily linear on � �. Letting
�� � �����, 
� � �����, and ���
�� � ��
������, the
optimal parameter vector is

�� � �����

�
������� ��
������� (13)

IV. THE TANGENT DISTANCE

Comparing (10) with (3) it can be seen that, for each
� and �, the standard nearest neighbor classifier solves a
regression problem. The particular aspect of this regression
problem is that the family of functions ����� is restricted to
the identity map, leading to the trivial solution ������ � �.
The TD classifier relaxes this constraint by allowing a generic
regression problem inside the decision function (3).

The main idea is that the distances in which the classifica-
tion is based should be those between the manifolds spanned
by the query pattern and that in the training set, not the
distances between the patterns themselves. This is illustrated
in Figure 1.
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Fig. 1. The Euclidean distance (ED) between patterns � and �, and manifold
distance (MD) between the corresponding manifolds �� and ��.

Given two patterns ���� and ����, the distance between
the associated manifolds - manifold distance (MD) - is

	 ����� � ��

���

����
������ ��
��������� (14)

where ����� is the Euclidean norm (11). For simplicity, we
consider a version of the distance in which only one of the
patterns is subject to a transformation, i.e.

	 ����� � ��

�
������� ��
��������� (15)
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but all results can be extended to the two-sided distance.
Notice that this is exactly the image alignment equation of (13)
(when � is the Euclidean norm).

Since the pixel intensity ���� is usually a highly nonlinear
function of the image coordinates, there is, in general, no
closed form solution for (15). A well known trick from the
alignment literature is to linearize ��
����� through a first
order Taylor series expansion [3], [11]. Using the fact that


���
����� � 
����������

� 
�������
����������� (16)

where
��� is the gradient of �� with respect to �, ��
�����
can, for small �, be approximated by a first order Taylor
expansion around the identity transformation

��
����� � ���� � ��� ��	
�������
������

As shown in [24], this is equivalent to approximating the
manifold by a tangent hyper-plane, and leads to the TD.
Substituting this expression in (15), setting the gradient with
respect to � to zero, and solving for � leads to

� �

��
�


�������
�����
	
�����
	

�������

���

�
�
�

����
�������
����� � �� (17)

where ���� � ���� �����. Given this optimal �, the TD
between the two patterns is computed with (12) and (15).
The main limitation of this formulation is that, since it is a
first-order approximation, it is only valid for a small range
of variation in the parameter vector �. This is illustrated in
Figure 2.
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Fig. 2. Outside a narrow range of transformations, points close to the
manifold �� can have large TD (shown as a dashed line). Notice that for the
points on the right, the distance between the TD and the MD is much larger
than that for those on the left. I.e. the error depends on how the manifold
deviates from a plane.

A. Manifold distance via Newton’s method

As an alternative to linearization, the minimization of the
MD (15) can be performed through iterative procedures such
as Newton’s method

�
�� � �
 � �
�
�

�	 �����
���
�	 ����� � (18)

where 
�	 and 
�
�	 are, respectively, the gradient and

Hessian of the cost function (15) with respect to the parameter
�,


�	 � �
�
�


����� ��
������
���
�����


�
�	 � �

�
�

��
���
�����
	
���
����� �

� 
����������
�
���
�����

�
and �
 the optimal solution at iteration �.

Disregarding second-order order terms, choosing � � � �

and � � �, using (16), and substituting in (18) leads to (17).
I.e. the TD corresponds to a single iteration of the minimiza-
tion of the MD by a simplified version of Newton’s method,
where second-order derivatives are disregarded. This reduces
the rate of convergence of Newton’s method, and a single
iteration may not be enough to achieve the local minimum,
even for simple functions. It is, therefore, possible to achieve
improvement if iteration (18) is repeated until convergence.

V. EXTENSIONS TO THE TD

The iterative minimization of (18) suffers from two major
drawbacks [4]: 1) it may require a significant number of
iterations for convergence, and 2) it can easily get trapped in
local minima. Both these limitations can be at least partially
avoided by embedding the computation of the MD in a multi-
resolution framework, leading to the multi-resolution manifold
distance (MRMD).

A. The multi-resolution manifold distance

To compute the MRMD, the patterns to classify are first
subject to a multi-resolution decomposition (such as a Gaus-
sian pyramid [5]), and the MD is then iteratively computed for
each layer, using the estimate obtained from the layer above
as a starting point,

�
��� � �
� � �

��
�


����
�

�����
	

����� 
�����

���

�
�
�

�

� ���
����

�

������ (19)

where, �

� ��� � ���� � ���

�

�����. If only one iteration

is allowed at each image resolution, the MRMD becomes the
multi-resolution extension of the TD, i.e. the multi-resolution
tangent distance (MRTD).

To illustrate the benefits of minimization over different
scales consider the signal

��
� �

��
���

��
���
��

consisting of a sum of sinusoids at frequencies �� which
are multiples of a fundamental frequency �� � 	��� 	 �
�� � � � ��, and the manifold generated by all its possible
translations

� ��
� �� � ��
� �� �

��
���

��
����
� ����
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For a given translation �, the ED between the original and
translated functions is

���� �

� �
��
���

���
���
�� ��
����
� ����

��
�
�

and the corresponding manifold distance

	 � ��




�����

Figure 3 depicts the multi-resolution Gaussian decomposi-
tion of ��
�, together with the ED between ��
� and � ��
� ��
as a function of the translation �. Notice that as the resolu-
tion increases, the distance function has more local minima,
indicating that the manifold is “bumpier”. Therefore, even
when the patterns to align are on the manifold, the range
of translations with guaranteed convergence to the global
minimum (at � � �) decreases inversely to the resolution. I.e.,
at higher resolutions, a better initial estimate is necessary to
obtain the same performance from the minimization algorithm.

Notice also that, since the function to minimize is very
smooth at the lowest resolutions, the minimization will require
few iterations at these resolutions if a procedure such as New-
ton’s method is employed. Furthermore, since the minimum
at one resolution is a good guess for the minimum at the
next resolution, the computational effort required to reach that
minimum will also be small. Finally, since a minimum at low
resolutions is based on coarse, or global, information about
the function or patterns to be classified, it is likely to be
the global minimum of at least a significant region of the
parameter space, if not the true global minimum.

B. Affine-invariant classification

There are many linear transformations that can be used
in (12). In this work, we consider manifolds generated by
affine transformations

������ �

�
� � � � � �
� � � � � �

�
� � ������ (20)

where � � ����� ���� ���� ���� ���� ����
	 is the vector of

parameters which characterize the transformation. Taking the
gradient of (20) with respect to �, 
������� � ����	 ,
using (16), and substituting in (19),

�
��� � �
� �

�

��
�

����	
��
����
	

��
��������	

���

�
�
�

���������	
��
����� (21)

where � ���� � �������
� ��, and ����� � ���� �� ����.
For a given level � of the multi-resolution decomposition, the
iterative process of (21) can be summarized as follows.

1) Compute � ���� by warping the pattern to classify ����
according to the best current estimate of p, and compute
its spatial gradient 
��

����.
2) Update the estimate of �� according to (21).
3) Stop if convergence, otherwise go to 1.
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Fig. 3. Left: Five scales of the multi-resolution decomposition of ����. Right:
Euclidean distance vs. translation for each scale. Resolution decreases from
top to bottom.

The parameter � must be found through a line search [4]
in order to guarantee a decrease of the cost function at each
iteration. The simplest way to achieve this is to consider a
sequence �� � �����, with �� � �. These �� are successively
tried in step 2, until the ED between ���� and ���� warped
according to �
��� is smaller than that obtained with �
� . In
practice, it suffices to try two or three values of � since
a very small � indicates convergence. Once the final � � is
obtained, it is passed to the multi-resolution level below (by
doubling the translation parameters), where it is used as initial
estimate. Since the initial guess provided by the higher level
of the pyramid is, in general, close to the actual minimum,
the iterative procedure of steps 1-3 usually converges within
a small number of iterations. Given the values of � � that
minimize the MD between a pattern to classify and a set of
prototypes in the database, a K-nearest neighbor classifier is
used to find the pattern’s class.

C. Robust classifiers

One issue of importance for classification systems is that of
robustness to outliers, i.e errors that occur with low probability,



6

but which can have large magnitude. Examples are errors due
to variation of facial features (e.g. faces shot with or without
glasses) in face recognition, errors due to undesired blobs
of ink or uneven line thickness in character recognition, or
errors due to partial occlusions (such as a hand in front of a
face) or partially missing patterns (such as an undoted i). It
is well known that a few (maybe even one) outliers of high
leverage are sufficient to throw mean squared error estimators
completely off-track [18].

Several robust estimators have been proposed in the statis-
tics literature to avoid this problem. In this work we consider
M-estimators [9] which can be very easily incorporated in the
MD classification framework. M-estimators are an extension
of least squares estimators where the square function is sub-
stituted by a functional ���� which weighs large errors less
heavily. The robust-estimator version of the MD then becomes
to minimize the cost function

	 ����� � ��

�

�
�

������� ��
������� (22)

and it is straightforward to show that the “robust” equivalent
to (21) is

�
��� � �
� �

�

��
�

���
���������	
��
����
	

��
��������	

���

�
��

�

��
���������	
��
����

�
� (23)

where ���� � ���� � � ���� and ����� and ������ are,
respectively, the first and second derivatives of the function
���� with respect to its argument.

VI. EXPERIMENTAL EVALUATION

In this section, we report on experiments carried out to
evaluate the performance of the MRTD in various tasks.
The first set of experiments was designed to illustrate the
invariance of the TD to affine transformations, and compare
the range of invariance attained with the different extensions.
The second set demonstrates the benefits of the MRTD for
a classification task: face recognition. Finally, the third set
illustrates how the intuitive interpretation of the TD as “all that
cannot be explained by affine transformations” can be useful
for important multimedia applications such as the semantic
classification of movies.

A. Affine invariance of the TD

Starting from a single view of a reference image, we created
an artificial dataset composed by 441 affine transformations
of it. These transformations consisted of combinations of all
rotations in the range from ��� to �� degrees with increments
of 3 degrees, with all scaling transformations in the range from
��� to ���� with increments of ��. The images associated
with the extremes of the scaling/rotation space are represented
on the top portion of Figure 4.

On the bottom of Figure 4 are the distance surfaces obtained
by measuring the distance associated with several metrics at
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Fig. 4. Invariance of the tangent distance. In the bottom picture, the surfaces
shown correspond to ED, TD, MD through Newton’s method, MRTD, and
MRMD. This ordering corresponds to that of the nesting of the surfaces, i.e.
the ED is the cup-shaped surface in the center, while the MRMD is the flat
surface which is approximately zero everywhere.

each of the points in the scaling/rotation space. Five metrics
were considered in this experiment: ED, the TD, the MD
computed through Newton’s method, the MRMD, and the
MRTD. While the TD exhibits some invariance to rotation
and scaling, this invariance is restricted to a small range of the
parameter space and performance only slightly better than the
obtained with the ED. The performance of the MD computed
through Newton’s method is dramatically superior, but still
inferior to those achieved with the MRTD (which is very
close to zero over the entire parameter space considered in this
experiment), and the MRMD. The performance of the MRTD
is in fact impressive given that it involves a computational
increase of less than 50% with respect to the TD, while each
iteration of Newton’s method requires an increase of 100%,
and several iterations are typically necessary to attain the
minimum MD.

B. Face recognition

To evaluate the performance of the MRTD on a clas-
sification task, we conducted a series of face recognition
experiments, using the Olivetti Research Laboratories (ORL)
face database. This database is composed by 400 images of 40
subjects, 10 images per subject, and contains some variation
in pose, illumination, expressions and facial features. On the
other hand it exhibits almost no variation in terms of scaling,
or in-plane head rotation, and assumes no translation, i.e. all
faces are centered at approximately the same position.
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Fig. 5. A subset of the ORL face database.

For these reasons, the ORL database is a suitable candi-
date for the controlled experiments required to quantify the
impact on the recognition accuracy of the different degrees
of invariance achieved by different extensions of the TD. The
idea is to start from the original set of faces in the canonical
pose (a small subset of which is presented in Figure 5) and
create several replicas by applying different degrees of trans-
lation, scaling and rotation. The dependence of recognition
accuracy on these variables can then be quantified by simply
measuring the recognition rates on each dataset. We created
three artificial datasets by applying to each image a random
transformation drawn from a multivariate normal distribution
with zero average displacement and rotation, unitary average
scaling and the standard deviations presented in Table I. They
are ordered by increasing variability, i.e. degree of difficulty
that they pose to the recognition task. Figure 6 presents the
samples corresponding to that of Figure 5 for each of the three
new datasets.

Dataset �� �� �� ��
D1 4 3 5 1
D2 4 3 10 5
D3 4 3 20 10

TABLE I

STANDARD DEVIATION OF THE MULTIVARIATE NORMAL DENSITIES FROM

WHICH THE IMAGE TRANSFORMATIONS WERE DRAWN. �� , AND �� REFER

TO TRANSLATION,�� TO DEGREES OF ROTATION, AND �� TO PERCENT

SCALING.

We next designed three experiments with increasing degree
of difficulty. In the first, we selected the first view of each
subject as the test set, using the remaining nine views as
training data. In the second, the first five faces were used as test
data while the remaining five were used for training. Finally,
in the third experiment, we reverted the roles of the datasets
used in the first. The recognition accuracy for each of these
experiments and each of the datasets is reported on Table II
for the ED, the TD, the MRTD, and a robust version of this
distance (RMRTD) with

���� �

� �
��

�� if� �  �
	 �

� � if� !  ��

where � is a threshold (set to 2 in our experiments), and  a
robust version of the error standard deviation defined as  =

Fig. 6. Transformed versions of the sample of figure 5, according to the
parameters of Table I. Top to bottom: datasets D1, D2, and D3.

median ��� - median ����� / 0.6745. Notice that since for points
such that � !  � both the first and second derivatives of the
robust functional are zero, this estimator simply disregards
outliers. All results were obtained with a simple nearest
neighbor classifier to maintain consistency across experiments.

Bar graphs corresponding to these tables are plotted in
Figure 7. It is clear that the multi-resolution distances provide
a significantly higher invariance to linear transformations than
the ED or the TD, increasing the recognition accuracy by as
much as 37.8% in the hardest dataset (D3). In fact, for the
easier tasks of experiments one and two, the performance of
the multi-resolution classifiers is almost constant and accuracy
always above 90%. It is only for the harder experiment that
their invariance starts to break down. Even in this case the
degradation is graceful - recognition accuracy only drops
below 75% for considerable rotation and scaling (dataset D3).
On the other hand, the ED and the single resolution TD break
down even for the easier tasks, and fail dramatically when
the hardest task is performed on the more difficult datasets.
Among the multi-resolution distances the best performance is
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Train/Test Distance D0 D1 D2 D3
ED 97.5 82.5 75.0 60.0

9/1 TD 97.5 92.5 85.0 70.0
(exp. 1) MRTD 100.0 100.0 100.0 97.5

RMRTD 100.0 100.0 100.0 97.5
ED 92.0 81.5 82.5 82.5

5/5 TD 92.5 88.0 85.5 84.0
(exp. 2) MRTD 95.0 95.0 96.0 92.5

RMRTD 95.5 95.5 95.0 92.0
ED 71.1 39.7 35.3 21.7

1/9 TD 73.6 49.2 40.0 24.7
(exp. 3) MRTD 75.0 75.6 73.0 59.7

RMRTD 79.1 78.6 75.5 62.5

TABLE II

CLASSIFICATION ACCURACY (PERCENTAGE OF FACES CORRECTLY

RECOGNIZED) FOR THE THREE EXPERIMENTS DISCUSSED IN THE TEXT.

D0 IS THE DATASET OBTAINED FROM THE ORL DATABASE, WHILE D1, D2

AND D3 WERE OBTAINED THROUGH THE TRANSFORMATIONS OF TABLE I.

achieved by the RMRTD. A significant gain over the MRTD is,
however, only observed in the hardest problem (D3) indicating
that the MRTD is a sufficient solution whenever various
examples of the faces to recognize are available for training.

C. Detailed analysis

While the previous results demonstrate that significant gains
can be achieved by replacing the TD classifier by its multi-
resolution counterpart, a thorough understanding of the prop-
erties of the MRTD requires additional experiments. As seen
in section V the MRTD classifier propagates the parameter
estimates obtained at a given resolution to obtain initial
estimates at the next. Errors can therefore occur whenever
the low-resolution estimates are of poor quality or whenever
a minimum at a given (low) resolution occurs on a region
of parameter space where there are no minima at the higher
resolutions. It follows that it is possible for a test pattern to
be correctly classified under the TD and erroneously classified
under the MRTD. Quantifying how frequently such errors can
occur is an important requisite for a complete understanding
of the MRTD classifier.

For this, we start by noticing that the error rate achievable
by any classifier is strongly dependent on how well the
underlying representation separates the various image classes
in the database. Ideally, all patterns from the same class should
be confined to a region that does not overlap with the region
containing the patterns from all other classes. Or, in other
words, the distances between the patterns in the same class
(to which we refer as in-class distances) should be small,
while those between patterns in different classes (out-of-class
distances) should be large. An interesting way to compare two
classifiers is therefore to measure the ratios between their in-
class and out-of-class distances.

Figure 8 presents a characterization of these ratios, for the
TD and MRTD2, under the conditions of experiment three and
dataset D2. We measured all distances between test and train-
ing views and, for each test/train pair, the ratio ���	�"�	�

2Qualitatively similar results were observed on identical experiments com-
paring the RMRTD and TD classifiers whose analysis is omitted for brevity.
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Fig. 7. Recognition accuracy. From top to bottom: results from the first,
second, and third experiments. Datasets are ordered by degree of variability:
D0 is the ORL database D3 is subject to the affine transformations of greater
amplitude.

was computed. The figure presents the cumulative distribution
function of this ratio for both the in-class and out-of-class
distances, supporting two main conclusions. First, the MRTD
is smaller than the TD with very high probability, in both in
and out-of-class cases. However, the decrease is significantly
more drastic in-class than out-of-class, e.g. 1) while ��� of
the in-class ratios are smaller than ��� there are no out-of-class
ratios of such magnitude, and 2) while the MRTD is smaller
than half of the TD with probability ��� for in-class distances,
the corresponding probability for out-of-class distances is only
���. Second, while the MRTD can lead to an increase of the
in-class distances, the probability of such an event is very
small (about ����). Together, these observations show that the
MRTD separates the different classes significantly better than
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the TD.
Since better class separation usually translates into a smaller

number of classification errors, the results of this experiment
suggest that the probability of misclassification by the MRTD
when the TD classifier is correct should be quite small. To
confirm this conjecture, we collected statistics for the vari-
ous types of MRTD/TD error combinations. These statistics,
presented on table III, confirm that the percentage of MRTD
errors which are not also TD errors is indeed quite small (��).
On the contrary, about ��� of the TD errors are not MRTD
errors.

TD errors 228
TD errors which are not MRTD errors 101
MRTD errors 123
MRTD errors which are not TD errors 6

TABLE III

ERROR STATISTICS FOR THE TD AND MRTD CLASSIFIERS.

Figure 9 presents the � test patterns for which the TD clas-
sifier was correct and the MRTD counterpart in error. Analysis
of the images reveals a common theme for these errors, which
can be summarized by the following two conditions: 1) the
mapping between the test pattern and the database pattern
of the same class3 cannot be captured by the affine model
(e.g. due to out-of-plane rotation or changes in lighting) and
2) the (two-dimensional) pose of the database pattern of the
correct class is quite close to that of the test pattern. While
the first condition is responsible for the failure of the MRTD,
the second enables the success of the TD. The fact is that
whenever the transformation between the patterns deviates
strongly from the affine model neither the TD or the MRTD
should work. In these cases the reduced range of the TD
prevents it from aligning out-of-class patterns that may belong
or be very close to the manifold spanned by the test view but
whose distance along the manifold is large. Consequently it
will settle for patterns that are further away from the manifold,

3Remember that in this experiment there is only one view of each face in
the training set.

but whose manifold projection is close to the test pattern.
While, typically, these matches are errors there is some (small)
probability that they will belong to the right class. This,
however, is the result of pure chance rather than any principled
advantage of the TD classifier.

D. Robustness to deviations from the affine model

The artificially affine-transformed datasets of the previous
section allow a precise quantification of the range of transfor-
mations over which the extensions of the TD hold. However,
practical recognition usually involves image transformations
that cannot be captured by a pure affine model, e.g. including
some amount of illumination variation, out-of-plane rotation,
or background clutter. For this reason, it is important to
complement the evaluation above with a set of experiments
performed on a database where the transformations are not
imposed artificially. One example is the Media Laboratory’s
face database originally acquired to test the eigenfaces tech-
nique [30]. This database contains images of �� subjects that
vary in pose (head orientation), scale (camera zoom), and
lighting, in a total of �� images per subject (see Figure 10).
It reflects a practical recognition scenario in the sense that no
effort was made to keep the subjects from moving in between
pictures, to precisely segment the faces from the background,
or to precisely calibrate the variations in lighting, pose, etc.

To analyze how changes in the various imaging variables
affect recognition accuracy we created two databases: a neu-
tral database that contained one face from each subject
in neutral position (upright face, head-on illumination, and
medium scale) and a non-neutral database containing the
remaining faces. We then considered each face in the non-
neutral database as a query and ordered all faces in the neutral
database according to their similarity to this query, measuring
the average hit rate �� for the top 	 matches, with 	 variable.
The average hit rate is defined as

�� �
�

�

��
���

��
 � hits in top 	 matches of ��� query�
where a hit is an image from the query subject and �� is �
when � is true and � otherwise. This experiment simulates a
common application scenario where a database is assembled
under controlled conditions (e.g. a database of mugshots of
convicted felons, or a photo gallery of a movie star) and is
latter used for recognition in an uncontrolled scenario (e.g.
airport surveillance or the detection of the scenes where the
actor appears in a given movie).

Figure 11 a) presents the average hit rate for the ED, TD,
MRTD, and RMRTD classifiers. It is clear that while the TD
classifier is not much more accurate than the ED counterpart, a
significant improvement can be achieved by using the MRTD
or RMRTD. In fact the increase in hit rate of the two multi-
resolution-resolution classifiers, relative to that based on the
TD, is always larger than at least ��� (in absolute terms).
When compared to the results from the previous sections, the
only surprising aspect of the plots in the figure is the somewhat
disappointing performance of the RMRTD, which slightly
under-performs the MRTD. To explain this observation, as
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query TD MRTD query TD MRTD query TD MRTD

Fig. 9. Test patterns for which the TD classifier is correct and the MRTD classifier in error. Query is the text pattern, TD the best match under the TD, and
MRTD the best match under the MRTD.

Fig. 10. The set of images from a subject in the MIT Media Laboratory’s face database.

well as gaining some insight on the precise dependence of
the MRTD on the imaging conditions, we performed a second
set of experiments.

For this second set the goal was to analyze the impact of
each type of transformation on the recognition accuracy. To
fulfill this goal we considered each face in neutral database as
a query and created five subsets of the non-neutral database,
containing the following images:

� rotation database - all faces at the scale of the query,
under the same illumination, but with different head
orientation;

� scale database - all faces with the pose of the query,
under the same illumination, but at different scale;

� scale and rotation database - all faces under the same
illumination, but with different head orientation and scale;

� illumination database - all faces with the same head ori-
entation and scale as the query, but different illumination;

� scale, rotation, and illumination- all faces with different
head orientation, scale, and illumination than those of the
query.

We then ordered all faces in each of these databases according
to their similarity to each query. Figure 11 b)-f) presents plots
of the resulting average hit rate for the ED, TD, MRTD, and
RMRTD classifiers in each database.

Three interesting conclusions can be taken from the figure.
The first is that both the MRTD and RMRTD perform better
than the TD or ED in all but one case (the illumination
database). In fact, as long as the illumination is the same
for the query and database images the former outperform the
latter by a significant amount. For example, the hit ratio for
	 � � (percent of the queries for which the first match is
correct) of the MRTD or RMRTD is always more than twice

that of the ED or TD. While undesirable, the degradation of
recognition accuracy in the presence of illumination variability
was expected, since illumination changes are beyond the scope
of the affine model. Notice, nevertheless, that the MRTD and
RMRTD do exhibit some robustness to these changes, for
which retrieval accuracy is actually better than that achieved
under rotation. What is surprising is the high robustness of the
ED and TD under variable illumination conditions.

A second interesting aspect is the very different response
of the MRTD and RMRTD to variations in scale and head
orientation. While both perform very well under scaling trans-
formations (the RMRTD actually achieves a perfect score
of �� � � for all 	 considered) the recognition accuracy
degrades considerably under rotation. This is, once again, a
consequence of a significant deviation from the affine model.
While under scaling both the face and the background are
subject to the same affine transformation, for rotation only the
subject’s head is tilted (the background remains the same).
Therefore, a single affine transformation cannot map the query
into the database image. Nevertheless, while the performance
of the MRTD and RMRTD degrades in the presence of head
tilt, the gain over the TD or ED is still significant.

A third interesting observation is that while the performance
of the RMRTD is equivalent to or better than that of the
MRTD when the mapping between query and prototype is
approximately affine, that is not the case in the presence of
illumination variation. In fact, Figure 11 f) shows that the
MRTD actually performs best when illumination variation,
scaling, and rotation are all present. This confirms the results
of Figure 11 a) and supports the following conclusion: while a
robust estimator is advantageous when image transformations
comply with the model used to the derive the TD (affine in
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Fig. 11. Average hit rate as a function of the number of matches for the ED, TD, MRTD, and RMRTD classifiers on the various databases discussed in the
text. While in a) the images in the non-neutral database were used as queries, in the remaining cases the queries came from the neutral database. Retrieved
images came from: a) neutral, b) rotation, c) scaling, d) scale and rotation, e) illumination, and f) scale, rotation, and illumination database.
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these experiments) it can, on the other hand, perform worse
when this is not the case. Such a conclusion is consistent with
what is known about robust estimators, namely that there is
always a breakdown point in terms of the number of outliers
above which they are likely to fail [9], [18].

Hence, while a robust classifier can be useful by, for ex-
ample, ignoring background pixels when they do not conform
with the affine model, it is important to guarantee that it will
never operate above this breakdown point. In practice this can
usually be achieved in two ways: 1) extending the transfor-
mation model on which the TD is based in order to cover
all sources of variation present in the application of interest,
or 2) pre-process all images to eliminate such variations. For
example, illumination changes could be handled by 1) re-
defining the TD as

	 ����� � ��

�����

������� #��
����� � $���� (24)

where # and $ are constants, or 2) using standard pre-
processing tricks in common use in the face detection and
recognition literature, such as subtracting a plane to the image
intensities, performing histogram equalization, or cropping the
images tightly around the face area [19], [27]. The latter
solution would also eliminate the problems caused by the
background, namely when it does not follow the transforma-
tion of the subject’s face. The results obtained for the scaling
database (where the affine model holds reasonably well for
most of the image area considered in the matching) indicate
that, if these steps are taken, a robust estimator should be
sufficient to overcome the errors of the MRTD.

E. Implementation complexity

The previous sections illustrate a clear advantage, in terms
of recognition accuracy, of the multi-resolution classifiers.
However, this gain is achieved at the expense of increased
computational complexity. The practical relevance of the
multi-resolution classifiers can therefore only be assessed after
an analysis of this computational penalty.

For this we notice that all the distances considered above
involve, at some point, cycling through all the pixels in the
query and database images. The operations carried inside this
“pixel loop” include subtracting the two images (all that is
required by the ED), collecting spatial derivatives, and com-
puting running sums such as those of (17) or (19). Hence, the
computational complexity of this pixel loop is 
���� where
� and � are the image dimensions. The multi-resolution
classifiers execute this loop inside a “multi-resolution loop”,
i.e. by repeating the estimation at each resolution level. If there
are � � � such levels and the images are sub-sampled by a
factor of two (in each dimension) at each level, the overall
complexity is
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��
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�
��� �

����
�

�
�

a sequence that rapidly converges to 
����"��. Hence, the
computational increase of the multi-resolution classifiers is
never larger than ��� of the computation required by the TD.

This, however, assumes that an exhaustive search is per-
formed at each resolution. In practice it usually becomes clear,
even at the lowest resolutions, that some of the images in
the database will not be a good match to the query. These
images can therefore be ignored in the subsequent levels of
the multi-resolution decomposition without any degradation
of recognition accuracy. Assuming that there are a total of %
images in the database and, on average, only 	% are retained
at each level, 	 � ��� ��, the overall search complexity will be
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The ratio of computation involved in the multi-resolution
search over that required by the full resolution search is
therefore ��	���� � �"����	 � ��. Figure 12 shows the
dependence of this ratio on 	 and �, making it clear that,
for each �, there is a significant range of 	 for which the
multi-resolution search is more effective than full search. For
example when � � �, the value which we have used in all
experiments discussed above, this will hold as long as 	 is
smaller than ����, i.e. even if only �� of the images are
discarded at each resolution.
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Fig. 12. Ratio of computation complexity between multi-resolution and
single-resolution search as a function of the number of resolution levels (�)
and the percentage of images retained at each level (	).

F. Semantic video classification

We finalize with some experimental evidence for the ability
of the MRTD to capture elements of video structure that are
important for its semantic classification. The goal is not so
much to describe a full fledge semantic classifier or to show
that one of the variations of the TD is much better than
the others for this task, but to make clear that the MRTD
is applicable in much broader settings than simple visual
recognition. We emphasize that this is an important attribute
when one considers the design of practical multimedia ar-
chitectures, which must be versatile enough to be usable in
diverse applications. For the MRTD, it stems from the fact that
the MRTD has an objective, but intuitive, interpretation: it is
a measure of the differences between two patterns that cannot
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be canceled by alignment. Obviously, the meaning of these
differences depends on the particular set of transformations
that are allowed. In the affine case, they can be seen as the
image differences that cannot be compensated by nulling out
camera motions such as pans, zooms, or in-plane rotation.

This suggests that the MRTD could be used as a metric for
the action in a scene. Once the camera motion is compensated,
the differences that are left are likely to be due to the motion
of objects in the scene. In general, the stronger the amplitude
of the object motion and the larger the object size, the larger
will be the TD. While the ability to detect action is an asset
for various multimedia applications (from detecting events in
interactive environments to retrieving the action scenes of a
movie), it is hard to conceive that it could be done without
at least compensating for camera motion. For example, pans
are prevalent in scenic videos that depict scenes of very low
activity. Hence, one could argue that the TD should be a
dimension of any feature space used for detecting action. We
next present evidence that, in fact, the TD by itself already
appears to capture most of the information required for this
detection. Since these results were already presented in [33],
we will only summarize them here.

To evaluate semantic classification we relied on a database
containing 23 promotional movie trailers for commercially
released feature films. Each trailer consists of 2 to 5 minutes
of video and the total number of shots in the database is 1959.
The movie titles are presented in Table IV. Figure 13 shows
how the movie database populates a feature space obtained
by segmenting the video into shots and simply measuring the
average duration of each shot and the average value of the
MRTD (normalized to 
�� �� by dividing by the maximum
value along each axis) between consecutive frames in the
shot. We also performed a search in the Internet Movie
Database (IMDB) [1] for the genre assigned to each movie
by the Motion Picture Association of America. Three major
classes were identified: romance/comedy, action, and other
(which includes horror, drama, and adventure). There were
not enough points in the movie sample to further subdivide
the other class in a meaningful way. The genre classes are
indicated in the plots by the symbol used to represent each
movie.

Several interesting observations can be made from the
figure. First, the points seem to obey a law of the type ����
&�
#'
�(�
� � ')�*
#�
. This is particularly interesting because
the existence of a related law, '&#+#'
�+�#'
�)� � ')�*
#�

has been postulated in the film theory literature [13]. This
seems to confirm the fact that the MRTD is a good indicator
for the action content of a movie. Second, there seems to
be a clear separation between the three semantic classes in
the activity/length feature space. In particular, movies of the
romance and comedy genres are mostly above the top dashed
line, action movies below the bottom one, and the other genres
in between.

In fact, there are only four movies that violate these
rules, “jungle”, “madness”, “blankman” and “edwood”, and
all correspond to cases where the semantic classification is
ambiguous. For example, while the comedies above the top
dashed line are typically categorized as comedy/romance or

TABLE IV

TITLES OF THE ENTRIES IN THE MOVIE DATABASE AND NAMES THAT

APPEAR ON FIGURE 13.

Movie Legend
“Circle of Friends” circle
“French Kiss” french
“Miami Rhapsody” miami
“The Santa Clause” santa
“Exit to Eden” eden
“A Walk in the Clouds” clouds
“While you Were Sleeping” sleeping
“Bad Boys” badboys
“Junior” junior
“Crimson Tide” tide
“The Scout” scout
“The Walking Dead” walking
“Ed Wood” edwood
“The Jungle Book” jungle
“Puppet Master” puppet
“A Little Princess” princess
“Judge Dredd” dredd
“The River Wild” riverwild
“Terminal Velocity” terminal
“Blankman” blankman
“In the Mouth of Madness” madness
“Street Fighter” fighter
“Die Hard: With a Vengeance” vengeance

simply comedy, “edwood” receives the awkward categorization
of comedy/drama (indicating that characterizing its content
is probably a difficult task), and “blankman” that of com-
edy/screwball/super hero confirming the fact that it is an
action-packed comedy, which could easily fall in the action
category. Thus while, strictly speaking, the placement of these
movies on the other and action classes is incorrect, it is se-
mantically plausible. Similarly, while the romances above the
top line either belong to the category drama/romance or com-
edy/romance, “jungle” is categorized as adventure/romance
indicating a degree of action which is unusual for movies in
the romance class. Finally, while “madness” is assigned to the
horror genre, it is full of action-packed scenes. More samples
from the horror class would be necessary for a deeper analysis
of the interplay between these two genres.

We believe that these results illustrate how the natural
decomposition into “what can be explained by camera motion”
plus “what is left” is likely to play a role in semantic
video analysis. A more thorough analysis of the semantic
classification results is presented in [33], where we compared
the MRTD to histogram intersection [28], the most commonly
used similarity function in content-based image retrieval. It
was shown that, although the classification rates were similar,
histogram intersection led to to less intuitive errors. A good
example is the movie “riverwilde”, an action movie whose
plot revolves around white-water rafting and contains numer-
ous shots depicting this sport. While these shots exhibit a
significant amount of motion from frame-to-frame, the color
histograms tend not to change too much, because there is
always plenty of water in the background. The action content
cannot, therefore, be captured well by the histogram distance.
On the other hand, since it cannot be explained by camera
motion, it is captured by the MRTD.
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Fig. 13. Population of the feature space by the movies in our database. Movie names are listed in Table IV.

VII. CONCLUSIONS

In this work, we introduced the multi-resolution tangent
distance. In the multimedia context, this distance has several
interesting properties. First, it is generic and can be used
for any task involving image similarity. For example, the
MRTD classifier applies equal well to face recognition or
detection, gesture and character recognition, recognition of
traffic signals, video shot segmentation, etc. Despite its general
purpose character, the MRTD achieves high classification
rates, particularly for tasks where multiple views of each
prototype pattern are available, and exhibits high invariance
to linear transformations of the patterns to classify (that can
impair significantly the performance of techniques based on
the ED). It relies on a iconic (i.e. pixel-based) representation
of the images to classify and does not, therefore, depend
on features which are inherently task dependent, typically
tricky to define, error prone, and many times expensive to
compute and track. The MRTD can also be implemented with
complexity equivalent to or smaller than that of the ED, is
easily combined with robust estimation techniques, and is
suited for hierarchical image analysis tasks.

In addition to recognition, the natural interpretation of the
MRTD as what remains after camera motion is compensated
makes it suited for various video analysis and classification
tasks. We illustrated this fact with simple experiments on
semantic movie classification, but the distance could also be
applied to the segmentation of video into shots, the creation
of image mosaics, or any application where the decomposition
into camera and object motion is relevant. Despite all these
good properties, the main advantage of the MRTD as a simi-
larity metric may be of a practical nature. Because multimedia

processors are required to support a wide array of applications,
it is important that various tasks can share the same hardware
architecture. The flexibility of the MRTD, shown here by its
application to problems as diverse as face recognition and
video classification, as well as the natural connection to motion
estimation and mosaic creation can be significant assets in this
context.
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