
366 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Channel Folding—An Algorithm to
Improve Efficiency of Multicast

Video-on-Demand Systems
Jack Y. B. Lee, Senior Member, IEEE

Abstract—Recently a number of researchers have proposed
and investigated new video-on-demand architectures that make
use of network multicast to achieve vastly improved efficiency.
Techniques such as batching, patching, periodic broadcasting,
chaining, and piggybacking have been explored both in isolation
and in combinations. This study investigates a new tool in the
arsenal—channel folding, where aggressive client-side caching is
used to merge clients from one multicast channel into the other.
In particular, this channel folding algorithm is applied to a pre-
viously proposed unified video-on-demand (UVoD) architecture
to demonstrate and to quantify its impact on the performance
and the tradeoff in a multicast video distribution architecture.
This paper presents this channel folding algorithm in the context
of UVoD and derives a performance model to obtain the system
latency, the near-optimal channel partition policy, and the client
buffer requirement. Numerical results show that channel folding
can double the capacity of UVoD with a remarkably small over-
head in the client buffer requirement.

Index Terms—Caching, channel folding, merging, multi-
cast, performance analysis, unified video-on-demand (UVoD),
video-on-demand (VoD).

I. INTRODUCTION

DESPITE over a decade of research in video-on-demand
(VoD) systems, VoD service is still far from widespread

and only a handful of cities around the world have commercial
VoD services deployed. Apart from nontechnical issues such as
intellectual property right concerns, the cost of infrastructure
in provisioning large-scale VoD services are still prohibitively
expensive.

This challenge has motivated a number of researchers to
depart from the traditional unicast VoD model, where a server
sends a video stream to each client individually, to new models
and architectures that are based on multicast transmissions.
Unlike unicast transmission, data transmitted using multicast
can be received by more than one receiver. The network will
duplicate these video data at network junctions for forwarding
to receivers on separate network segments. In this way, the
bandwidth requirement at the server and the network can be

Manuscript received February 15, 2002; revised February 28, 2003. This
work was supported in part by a Direct Grant, and Earmarked Grant (CUHK
4328/02E, CUHK 4211/03E) from the HKSAR Research Grant Council and in
part by the Area of Excellence Scheme, established under the University Grants
Council of the Hong Kong Special Administrative Region, China (Project
AoE/E–01/99). The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Edward W. Knightly.

The author is with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong (e-mail: jacklee@computer.org).

Digital Object Identifier 10.1109/TMM.2005.843356

substantially reduced. The challenges are to achieve short startup
latency and to support interactive playback controls such as
pause–resume and slow motion despite transmitting data using
multicast.

Some of these novel approaches include batching [1]–[5],
chaining [6], [7], periodic broadcasting [8]–[21], patching
[22]–[26], and piggybacking [27]–[30]. These techniques are
often complementary and hence can be combined into even
more sophisticated architectures to further improve efficiency
[31]–[35]. A more detailed review of these works will be
presented in Section II.

In a previous study, Lee [35] presented and analyzed a unified
video-on-demand (UVoD) architecture for building efficient
large-scale VoD systems. The UVoD architecture integrates
multicast with unicast to vastly reduce resource requirement at
heavy loads. For example, under the same latency constraint,
UVoD is able to support over 400% the capacity of an equiv-
alent TVoD system.

This study extends this previous work by integrating a new
channel folding algorithm into the UVoD architecture to further
improve efficiency. In channel folding, a client aggressively
caches video data from another multicast channel so that the
current multicast channel can be released long before the video
session ends. As a result, the multicast channel can be reused to
shorten the startup latency of waiting clients. In this paper, we
present this channel folding algorithm, quantify the resource
reduction, and optimize the channel partitioning policy for
the modified UVoD architecture. Numerical results show that
channel folding can increase the system capacity by over 100%
and, even more remarkably, with little to no tradeoff in buffer
requirement.

The remainder of this paper is organized as follows. Section II
reviews some related previous works. Section III presents an
overview of the original UVoD architecture. Section IV presents
the channel folding algorithm. Section V presents a performance
model for the system. Sections VI and VII present two further
improvements to the channel folding algorithm. Section VIII
evaluates the performance of channel folding, and Section IX
concludes the paper.

II. RELATED WORKS

In this section, we briefly review the related works and com-
pare them with this study. Our literature survey reveals that there
are five common approaches to improve VoD system efficiency,
namely batching, chaining, periodic broadcasting, patching, and

1520-9210/$20.00 © 2005 IEEE

LEE: CHANNEL FOLDING – AN ALGORITHM TO IMPROVE EFFICIENCY OF MULTICAST VIDEO-ON-DEMAND SYSTEMS 367

piggybacking. These approaches can be used individually or
combined to form even more sophisticated architectures.

The first approach, batching, groups users waiting for the
same video data and then serves them using a single multicast
channel [1]–[5]. This batching process can occur passively
while the users are waiting or actively by delaying the service
of early-arriving users to wait for late-arriving users to join the
batch. Various batching policies have been proposed in recent
years, including first-come-first-serve (FCFS) and maximum
queue length (MQL) proposed by Dan et al. [1], maximum
factored queue (MFQ) proposed by Aggarwal et al. [4], and
Max_Batch and Min_Idle proposed by Shachnai et al. [5].

The second approach, called chaining or virtual batching
as proposed by Sheu et al. [6], [7], builds upon batching and
exploits client-side disk and network bandwidth to reduce the
batching delay. Specifically, clients from the same batch form a
logical chain where the first client of the batch starts playback
immediately, caches the video data, and then forward them
to the next client in the chain. This chaining process repeats
for subsequent clients in the batch. The primary advantage
of this approach is that earlier clients are not penalized with
longer wait due to the batching process. The tradeoff is that the
clients and the access network must have sufficient bandwidth
to stream video data to other clients.

The third approach, called periodic broadcasting, schedules
the transmissions of a video over multiple multicast channels
in a fixed pattern [8]–[21]. For the simplest example, near
video-on-demand (NVoD) repeatedly transmits a video over
multiple channels at fixed time intervals so that an arriving
user can simply join the next upcoming multicast cycle without
incurring additional server resource. More sophisticated broad-
casting schedules, such as pyramid broadcasting [10], [11],
skyscraper broadcasting [13], and Greedy Disk-Conserving
Broadcasting [17], have been proposed to further reduce the re-
source requirement by trading off client-side access bandwidth,
buffer requirement, and channel switching complexity.

The fourth approach, called patching, exploits client-side
bandwidth and buffer space to merge users from separate trans-
mission channels into an existing multicast channel [22]–[26].
The idea is to cache data from a nearby (in playback time)
multicast transmission channel while sustaining playback with
data from another transmission channel—called a patching
channel in [23].1 This patching channel can be released once
video playback reaches the point where the cached data began,
and playback continues via the cache and the shared multicast
channel for the rest of the session.

The fifth approach, called piggybacking, merges users on
separate transmission channels by slightly increasing the play-
back rate of the latecomer (and/or slightly decreasing the
playback rate of the early starter) so that it eventually catches
up with another user, and hence both can then be served using
the same multicast channel [27]–[30]. This technique exploits
user’s tolerance on playback rate variations and does not re-
quire additional buffer on the client side as in the case of
patching.

1In the study by Hua et al. [23], the term patching referred to the whole archi-
tecture that combined patching and batching. In this paper, we treat these two
techniques separately.

The previous five approaches are complementary and hence
can be combined to form even more sophisticated architectures.
For example, Liao et al. [22], Hua et al. [23], and Cao et al. [24]
have investigated integrating batching with patching to avoid the
long startup delay due to batching. Oh et al. [31] have proposed
an adaptive hybrid technique which integrated batching with
Skyscraper Broadcasting. They proposed a new batching policy
called Largest Aggregated Waiting Time First (LAW), which is
a refinement of the MFQ policy [4]. Unlike most studies that as-
sume stationary video popularity, their approach estimates video
popularity using an online algorithm and revises the Skyscraper
Broadcasting schedule from time to time to adapt to video pop-
ularity changes.

More recently, Gao et al. [32] proposed a controlled multicast
technique that integrated patching with dynamically scheduled
multicasting. This is further refined by Gao et al. [33] in their
catching scheme, which employed the Greedy Disk-Conserving
Broadcasting schedule for the periodic broadcasting channels.
Their study found out that catching outperforms controlled mul-
ticast at high loads but is otherwise not as good as controlled
multicast. This motivated them to further combine catching with
controlled multicast to form a selective catching scheme that dy-
namically switches between catching and controlled multicast
depending on the system load.

In another study, Ramesh et al. [34] proposed and analyzed
the multicast with cache (Mcache) approach that integrated
batching, patching, and prefix caching. They proposed placing
regional cache servers close to the users to serve the initial
portion (prefix) of the videos. In this way, a client can start
video playback immediately by receiving prefix data streamed
from a regional cache server. The server will then dynamically
schedule a patching channel for the client to continue the
patching process beyond the prefix and identify an existing
multicast channel for the client to cache and eventually merge
into.

In the previous work leading to this study, Lee [35] proposed
and analyzed the unified video-on-demand (UVoD) architecture
that integrated periodic broadcasting with patching. The UVoD
architecture includes the traditional TVoD and NVoD as special
cases of the architecture but generally outperforms them if prop-
erly configured. The study presented a performance model for
the architecture and derived the optimal policy to allocate chan-
nels for patching and periodic broadcasting purposes.

The channel folding algorithm presented in this paper is a new
approach that is orthogonal to the five approaches previously
discussed. Therefore, while we focus on integrating channel
folding to UVoD in this study, it is plausible that channel folding
can also be integrated into other architectures. More investiga-
tions will be needed to characterize and quantify the perfor-
mance impact to these other architectures.

III. SYSTEM ARCHITECTURE

In this section, we briefly review the architecture of UVoD,
with a focus on channel allocation, scheduling, and admission
algorithm. Interested readers are referred to [35] for details on
other aspects of UVoD.

368 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 1. Architecture of the UVoD server.

A. Channel Allocation and Scheduling

Fig. 1 depicts the architecture of the UVoD server. There are
a total of channels for streaming video data. A channel is the
collection of resources, such as I/O capacity at the server and
network bandwidth, for streaming one video stream. We assume
all video titles are encoded with the same parameters to produce
constant-bit-rate compressed bit streams at a rate of bytes
per second.

The channels are then allocated for two purposes:
of them for periodic broadcasting and the remaining

for patching. Each periodic broadcasting channel trans-
mits the same video title over and over using multicast as in
a NVoD system. Adjacent multicast channels broadcasting the
same video title are offset by a time interval of

(1)

seconds, where denotes the number of video titles in the
system, each having the same length denoted by .

These multicast channels will carry the bulk of the video data
to the clients. However, since a client can start playback at any
time, the data it needs may not be immediately available through
the multicast channels. In the worst case, it may take up to
seconds to wait for the needed data to become available through
the multicast channels. This is precisely the same limitation of
NVoD systems. The UVoD architecture tackles this problem by
dynamically allocating a patching channel to sustain playback
while the client caches data from a multicast channel that it
eventually merges into. The next section describes details of this
admission process.

B. Admission Algorithms

A client can be admitted to a UVoD system in two ways,
namely, admit-via-unicast and admit-via-multicast. When a
user requests a new video session, say at time , the system
first checks the multicast channels for the next upcoming
multicast of the requested video. Let be the time for the
next upcoming multicast, then the system will assign the user
to wait for the upcoming multicast (i.e., admit-via-multicast)

Fig. 2. Admission of a new user through the admit-via-multicast process.

if the waiting time is smaller than a predetermined admission
threshold

(2)

The user then simply receives and plays back video data (seg-
ment “A” in Fig. 2) from the multicast channel for the rest of the
session, as depicted in Fig. 2. The admission threshold is intro-
duced to divert a portion of the traffic to the multicast channels.
By setting the value of , one can control the latency experienced
by the users admitted through this admit-via-multicast process.

If (2) is not satisfied, then the system will assign the user to
wait for a free unicast channel to start playback using the admit-
via-unicast process depicted in Fig. 3. Specifically, immediately
upon arrival at time , the client begins caching video data from
the previous multicast of the requested video title (segment “B”
in Fig. 3). At the same time, it waits for a free unicast channel
to begin playback, i.e., receive and playback segment “A” from
time in Fig. 3. Let and be the nearest epoch times
(i.e., time when the video is restarted from the beginning) of
multicast channel and channel , for which

. Then the client will have cached video data from

LEE: CHANNEL FOLDING – AN ALGORITHM TO IMPROVE EFFICIENCY OF MULTICAST VIDEO-ON-DEMAND SYSTEMS 369

Fig. 3. Admission of a new user through the admit-via-unicast process.

multicast channel for the video starting from video time
, where video time is the time offset relative to the beginning

of the video. Therefore once video playback reaches time
, the unicast channel can be released and the

client continues playback using data received from multicast
channel through the buffer. The local buffers effectively add
time delay to the multicast video stream so that it matches the
client’s playback schedule.

This architecture achieves resource reduction in two ways.
First, a portion of the users will be admitted to multicast chan-
nels. As the number of multicast channels is fixed regardless
of how many users are being served, these admit-via-multicast
users will not result in additional load to the system. Second, for
admit-via-unicast users, since ,
we can see that the unicast channels are occupied for much
shorter duration compared to the length of the video . There-
fore this substantially reduces the load at the unicast channels
to allow far more requests to be served using the same number
of channels.

IV. CHANNEL FOLDING ALGORITHM

One of the keys to UVoD’s improved performance is the use
of caching to reduce the unicast channels’ channel-holding time.
In this study, we extend this principle into a channel folding al-
gorithm to reduce the channel-holding time of some of the mul-
ticast channels. Channel folding takes advantage of additional
client-side storage and aggressively caches data into the client
so that the client can release the current multicast channel by
merging into an adjacent multicast channel.

Specifically, the multicast channels are divided into even
channels (i.e., channel) and odd channels (channel

). Users admitted to an even channel will be served
using the original admission algorithms while users admitted
to an odd channel will be subject to channel folding, which
eventually merges to an adjacent even channel. Therefore, on
average, half of the admitted users will go through the channel
folding process. In the following sections, we present the
channel folding algorithm as applied to admit-via-multicast and
admit-via-unicast users on those odd channels. Similar to the

TABLE I
SUMMARY OF NOTATIONS

Fig. 4. Admission through admit-via-multicast and channel folding.

original UVoD architecture we assume a client can receive data
from up to two channels simultaneously. Table I summarizes
the notations used in this section.

A. Algorithm for Admit-via-Multicast Clients

For an admit-via-multicast client, the channel folding process
begins at the instant the client arrives at the system. Let the client
arrives at the system at time , waiting to begin playback at time

using multicast channel , as shown in Fig. 4. Note that
is an even integer so channel is an odd channel.
In the original UVoD architecture and ignoring interactive

playback control, this client simply receives all its data from
multicast channel for the entire video session from time

to . By contrast, with channel folding the client will
begin caching data from multicast channel immediately upon
arriving at time . As channel begins its multicast cycle at
a prior time , the client can only cache data beginning
from video time

(3)

The client continues to wait until to begin playback via
data received from channel . As data beginning from video
time has been cached, it is easy to see that the client can leave
channel at time

(4)

370 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 5. Admission through admit-via-unicast and channel folding.

and then continue playback using data received from channel
through the cache. Note that more than one client can share

channel , and it is therefore necessary to wait for all clients
on channel to complete channel folding before channel

can be released.
As channel starts at time and a client leaves at time
, the channel holding time is given by

(5)

Substituting (3) and (4) into (5) gives

(6)

Noting that , we can conclude that

(7)

In other words, all admit-via-multicast clients will have left
channel by time

(8)

B. Algorithm for Admit-via-Unicast Clients

For a client admitted through admit-via-unicast as depicted
in Fig. 5, the channel folding process does not begin immedi-
ately upon the client’s arrival. This is because during the startup
phase, the client already has to receive two channels of data, one
from a unicast channel for playback and the other from multi-
cast channel , thereby fully utilizing the client access band-
width. This restriction can be relaxed if the client has additional
access bandwidth (e.g., can receive three or more channels con-
currently).

Let be the time to wait for a free unicast channel. Then the
startup phase will end at time

(9)

This is also the time when channel folding begins and the client
starts caching data from channel , which by then is transmitting
data corresponding to video time

(10)

As data beginning from video time has been cached from
channel , it is easy to see that the client can leave channel
at time

(11)

and then continue playback using data received from channel
through the cache.

Substituting (9) and (10) into (11) gives

(12)

which simplifies to

(13)

Again there can be more than one admit-via-unicast clients
sharing channel , and so it is necessary to wait for all
clients on channel to complete the channel folding
process before channel can be released. We note that the
client will only wait until time for a free unicast channel
because otherwise the client can simply join channel to
begin playback (i.e., revert to admit-via-multicast). Therefore,
the waiting time is bounded by

(14)

Together with the observation that , we
substitute the upper bound of into (13) to obtain

(15)

In other words, all admit-via-unicast clients will have left
channel latest by time . As the multicast channel
is shared by both admit-via-multicast and admit-via-unicast
clients, the channel can only be released after both types of
clients have all left the channel. Comparing (8) and (15), it is
easy to see that, for small , admit-via-unicast clients always
has longer channel holding time than admit-via-multicast
clients. Thus, an odd multicast channel will be occupied for at
most seconds when .

C. Reusing Folded Channels

Channel folding enables all odd channels to be released
seconds after the start of a multicast cycle. This enables

the system to share a channel among odd multicast channels.
Specifically, an odd channel is utilized for only three out of the

segments of seconds. As there are a total of

LEE: CHANNEL FOLDING – AN ALGORITHM TO IMPROVE EFFICIENCY OF MULTICAST VIDEO-ON-DEMAND SYSTEMS 371

Fig. 6. Channel requirement after channel folding is applied (eight multicast channels).

odd channels, the average aggregate channel utilization is thus
equal to channels. Moreover, we note
that, at most, two odd channels will be active simultaneously
because adjacent odd channels are offset by seconds. Thus,
channel folding reduces the number of channels used for odd
channels from to only two channels, i.e., a reduction of
() channels.

For example, consider the case in Fig. 6 with eight multicast
channels. After removing the released channel segments and
combining the active channel segments, the aggregate channel
requirements will then be reduced to six channels. The two
channels released can then be reused as unicast channels for ad-
mitting clients through the admit-via-unicast process, thereby
reducing the time to wait for a free unicast channel. We formu-
late a performance model in the next section to quantify this
performance gain.

V. PERFORMANCE MODELING

Channel folding has three impacts on UVoD. First, the client
buffer requirement is increased because more data need to be
cached to perform channel folding. This is the price to pay for
the performance gain. Second, the total number of channels
required to achieve the same latency as the original UVoD is
reduced. Third, the near-optimal channel allocation derived by
Lee [35] no longer holds, and a new channel partition policy
is needed. We address these impacts in the following three
sections.

A. Latency

In [35], Lee has derived a performance model for UVoD.
Due to space limitation, we do not repeat the derivations here
and simply define a function to return the latency
achieved by UVoD using unicast channels and multi-
cast channels. Interested readers are referred to [35] for details
of the derivations.

From Section IV, we found that channel folding can release
() multicast channels. These free channels can be
added to the pool of unicast channels to further reduce latency.
Define as the latency function for UVoD with
channel folding, and then it can be computed from

(16)
which accounts for the additional unicast channels made avail-
able by channel folding. We can also conclude that channel
folding is effective only if or .

B. Channel Partition

Channel partition refers to the policy to divide available chan-
nels for use as unicast and multicast channels. Intuitively, too
many multicast channels will leave too few channels for unicast,
which may lead to overflow at the unicast channels. On the other
hand, too few multicast channels will increase channel-holding
time for requests entering the unicast channels, which again may
lead to overflow.

372 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

In the original UVoD architecture, Lee [35] derived a near-
optimal channel allocation policy for computing the number of
channels allocated to multicast channels

(17)

where the operator rounds to the nearest integer.
As additional channels are now made available by channel

folding, the same channel allocation policy may no longer be
valid. In the following, we derive the new near-optimal channel
partition policy for UVoD incorporating the effect of channel
folding.

Let be the rate at which new users arrive at the system.
We assume that the videos have an arbitrary popularity profile
given by where is the probability that a new
user requests video . Without loss of generality, we assume that
the video numbers are assigned according to popularity where

. Clearly we must have

(18)

Hence, the traffic intensity due to video at the unicast channels
is given by

(19)

where is the number of multicast channels assigned for each
video, is the proportion of requests routed to the
unicast channels, and is the average service
time.

In the original UVoD, the number of unicast channels is given
by . With channel folding, this number is increased to

(20)

Therefore, the load at the unicast channels, denoted by , be-
comes

(21)

Substituting (19) into (21) gives

(22)

Collecting terms gives

(23)

Noting (18), we can then drop altogether as follows:

(24)

Now, for , the last term in the denominator will become
zero, and (24) reduces to

(25)

which is the same as the original UVoD [35]. As when-
ever , the optimal channel partition will be the same as
the original UVoD, given by

(26)

For and assuming it is divisible by 2, we can then
rewrite (24) as

(27)

It can be shown that (27) is a convex function between
and . Thus, one way to find the that minimizes is to
differentiate (27) with respect to

(28)
and then solve for by setting to obtain

(29)

However, we note that (27) is defined only for ,
and thus we need to verify the optimal computed from (29) to
ensure that it is within the valid range. Moreover, in practice,
is discrete instead of continuous and as static multicast channels
are grouped into pairs, should be multiples of two as well.
Adding these constraints and the constraint that the total number
of channels allocated to multicast cannot be larger than , we
can obtain the near-optimal number of static multicast channels
per video title from

(30)

To integrate this channel-partition policy into the derivation
in Section V-A, we can simply replace the variable and
in (16) by () and , respectively, to obtain the
new latency accordingly.

C. Client Buffer Requirement

To support channel folding, the client will need to have addi-
tional buffer space to cache video data for later playback. For the

LEE: CHANNEL FOLDING – AN ALGORITHM TO IMPROVE EFFICIENCY OF MULTICAST VIDEO-ON-DEMAND SYSTEMS 373

patching operation, it is easy to see that the added buffer require-
ment is at most equal to seconds’ worth of video data as the
patching phase can sustain for at most seconds. Assuming
video is encoded with constant-bit-rate (CBR) algorithm at an
average rate , the buffer requirement will be equal to
bytes.

For the folding operation, additional video data may need to
be buffered and intuitively we need an additional buffer large
enough to store seconds’ worth of video data. This gives
a total client buffer requirement of bytes. However, we
show in the following that this intuitive argument is too loose
by deriving the buffer requirement from first principles.

We first consider the case of admit-via-multicast clients as
depicted in Fig. 4. The client arrives at time , immediately be-
gins caching data from channel while waiting to begin play-
back using channel at time . At a later time , the client
will have reached the point where the data cached from channel

begins, and at this instant the client can release channel
and continue playback via data from the cache.

To determine the buffer requirement in this scenario, we first
note that the amount of data accumulated in the client buffer
will never decrease during the startup phase. This is because the
client will always be receiving data from at least one channel
(at a rate) after arrival at time . Now given the data con-
sumption rate during playback is also , it is easy to see that
the amount of accumulated data cannot decrease.

A consequence of the previous nondecreasing property is that
the amount of data buffered at time , i.e., time for which the
startup phase completes, will determine the buffer requirement.
This amount is simply equal to the total amount of data received
by the time , denoted by , minus the total amount of data
consumed by the time , denoted by as

(31)

To compute , we note that the total amount of data received
from channel is equal to

(32)

and the total amount of data received from channel is equal
to

(33)

Therefore, is simply equal to the sum of (32) and (33).
To compute , we note that video playback starts from time
and, hence, by the time , the amount of data consumed will

be equal to

(34)

and hence the buffer requirement can be computed from

(35)

We observe that can be expressed in terms of as

(36)

Rearranging (36), we have

(37)

and hence the buffer requirement is a constant and is equal to

(38)

Next, we consider the case of admit-via-unicast clients, as
depicted in Fig. 5. The client arrives at time and immediately
begins caching data from channel while waiting to begin
playback using a unicast channel at time . At a later time ,
the client will have reached the point where the data cached from
channel begins, and at this instant the client can release the
unicast channel and continue playback via data from the cache.
At the same time, the client starts caching data from channel

until a later time when playback reaches the point where
cached data from channel begins. At this time, channel
can be released and playback continues with data cached from
channel .

Using similar derivations, we can compute the total amount
of data received by time from

(39)

where the first, second, and third terms are the amount of data
received from the unicast channel, channel , and channel

, respectively.
Now, as playback starts from time , the amount of data con-

sumed by time is given by

(40)

and the total buffer requirement becomes

(41)

Again, we express in terms of as follows:

(42)

Rearranging, we have

(43)

Consider : it is bounded from above by

(44)

374 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Rearranging, we have

(45)

Substituting into (43) gives

(46)

and hence the maximum buffer requirement is equal to

(47)

As admit-via-multicast does not need any extra buffer for
caching purpose, (47) then determines the client buffer
requirement.

VI. OVER ALLOCATION OF MULTICAST CHANNELS

In deriving the near-optimal channel partition policy in (30),
we have included a constraint to ensure that the number of mul-
ticast channels allocated will not exceed the total number of
available channels, i.e., . While intuitively sound, this
constraint can in fact be relaxed because odd multicast channels
are not occupied for the entire video duration. In particular, the
channel is occupied only during the first three segments of each
multicast cycle.

This observation motivates us to relax the constraint:
to allow the allocation of more multicast channels than the

total – over allocation. To determine the new constraint, we
begin with multicast channels, of which channels are
fixed and used as even channels. The channel folding process
will require no more than two multicast channels at any one
time, regardless of (cf. Section IV-C). Therefore, the channel
requirement after channel folding is equal to

(48)

and this must be no larger than the total number of channels
available

(49)

Rearranging, we can obtain the new constraint from

(50)

and (30) can be revised to include this new constraint

(51)
For example, given 200 channels and 10 videos,

the channel partition policy in (30) allows allocation of up to 20
channels per video—ten for unicast and ten for multicast. Now,
as channel folding reduces the channel requirement from ten to
two, eight of the multicast channels can be reused as unicast
channels, adding up to unicast channels. This con-
figuration is equivalent to a 36-channel UVoD system without
channel folding.

VII. COMPLEMENTARY CHANNEL SCHEDULING

Another observation in Fig. 6 is that the aggregate number of
multicast channels needed is not a constant. Instead, the number
alternates between () and (), where is
the number of multicast channels allocated. This oscillation is
due to the fact that an odd channel is occupied for three repeating
intervals while adjacent odd channels are time-staggered by two
repeating intervals, as shown in Fig. 6. As a result, half a channel
on average would be unused. For a system with videos, the
aggregate idling capacity would add up to channels, not an
insignificant number in large systems with tens to hundreds of
videos. To tackle this problem, we present below a complemen-
tary channel scheduling technique to combine the idle capacity
for reuse.

The key idea of complementary channel scheduling is to
schedule multicast channels for a pair of videos at a time so
that their multicast schedules complements each other, i.e.,
when one of the video requires () channels, the
other video will require () channels. Fig. 7 depicts
this technique with eight channels and two videos.
Let the repeating intervals be numbered from 0, 1, and so
on, then the first video is scheduled with multicast channel
() restarting at intervals

(52)

For the second video, the scheduled is time-shifted by one
repeating interval with multicast channel , restarting at intervals

(53)

With this new complementary channel scheduling, it is
easy to see that the number of channels occupied by the first
video is () in even numbered repeating intervals
and () in odd numbered repeating intervals. The
reverse case applies to video two, occupying ()
and () channels during even- and odd-numbered
repeating intervals, respectively. Hence, the combined channel
requirement will simply be equal to

(54)

for these two videos. Compared to the original channel require-
ment of () channels, we can free one more multicast
channel for every pair of videos scheduled using this comple-
mentary channel scheduling technique.

To simplify the derivations, we assume that is divisible by
2 (i.e., no orphan video that cannot be paired) and ()
is divisible by 4 (i.e., equal allocation of unicast and multicast
channels). With these two assumptions, we can rewrite (24) as

(55)

The near-optimal channel partition policy with over allocation
will then become

(56)

LEE: CHANNEL FOLDING – AN ALGORITHM TO IMPROVE EFFICIENCY OF MULTICAST VIDEO-ON-DEMAND SYSTEMS 375

Fig. 7. Complementary channel scheduling (eight multicast channels, two videos).

TABLE II
LIST OF SYSTEM PARAMETERS

Similarly, we need to modify the latency function to account
for the reduced channel requirement. Let be
the latency function for UVoD with channel folding and com-
plementary channel scheduling. Assuming there are an even
number of videos in the system, then it can be computed from

(57)
where and are determined according to (56).

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance gain and tradeoff
of applying channel folding to the UVoD architecture. In partic-
ular, we investigate the impact of channel folding on the channel
partition policy, the client buffer requirement, latency, and scal-
ability using the performance model derived in Section V. The
system parameters employed are summarized in Table II.

A. Impact on Channel Partition

Fig. 8 plots the near-optimal number of multicast channels
versus the admission threshold for a system with 200 channels
and 10 videos. The admission threshold represents the load of
the system as the average latency is equal to half of the admis-
sion threshold. The curves plot the optimal number of multicast
channels that result in the lowest latency. The key observation
is that the near-optimal channel partition policy differs signif-
icantly when channel folding is applied. In particular, channel
folding leads to a much larger portion of available channels to
be allocated for multicast transmissions. Second, with over al-
location of multicast channels, the near-optimal point shifted to
well over 200 channels. These results have a significant impact
to the client buffer requirement, which we will discuss next.

B. Client Buffer Requirement

The primary tradeoff of channel folding is increased client
buffer requirement. In particular, according to (47), a client
needs a buffer large enough to store up to seconds’ worth

376 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 8. Near-optimal channel partition versus admission threshold for 200
channels and 10 videos.

Fig. 9. Client buffer requirement versus latency (R = 3 Mb/s, 10 videos, 200
channels).

of video data, while the same for the case without channel
folding is only seconds [35]. This suggests that channel
folding requires double the amount of client buffer to achieve
its performance gain.

Remarkably, this is not the case, as shown in Fig. 9, which
plots the client buffer requirements versus latency. While
channel folding does require more buffers at small latencies
(e.g., 10 s and below), the increase is far less than 100%. For
example, at a latency of 10 s, the client buffer requirement
without channel folding is 270 MB, while the same for the case
with channel folding is only 300 MB. The buffer requirement
is increased by only 11% instead of 100% as the equations
suggested.

This counterintuitive result is a consequence of channel
folding’s impact on the channel partition policy. As discussed
in Section VIII-A, the use of channel folding leads to far more
channels being allocated for multicast transmissions (mul-
ticast channels), and thus significantly reducing the multicast
cycle length [see (1)]. For example, is equal to 720 s
without channel folding but is reduced to 400 s with channel
folding. Coupled with the fact that the client buffer requirement

Fig. 10. Latency comparisons (R = 3 Mb/s, 10 videos, 200 channels).

is proportional to , this reduction in offset the increase in
client buffer requirement.

C. Latency Comparisons

For the end users, latency is one of the primary measures in
evaluating the quality of a VoD service. We plot the latency
versus arrival rate in Fig. 10. There are two key observations
from this result. First, at low arrival rate, e.g., less than 0.2
customer/s, both cases achieve zero latency and hence channel
folding offers no advantage latency-wise. When the arrival rate
is increased the performance gains due to channel folding is very
substantial. The additional performance gains of over allocation
and complementary channel scheduling are also more signifi-
cant at high arrival rates (e.g., 1 customer/s or higher).

Second, note that the curve labeled “ , Same Buffer
Req” is obtained by forcing the buffer requirement of channel
folding to be the same as the case without channel folding. This
is achieved by changing the channel partition policy to assign
exactly double the number computed from the original UVoD
channel partition policy in (17). The results show that the im-
pact on the latency is relatively small, implying that one can
achieve significant performance gain even without any tradeoff
in increased buffer requirement.

D. System Capacity and Scalability

In this section, we evaluate the capacity of a UVoD system
with and without channel folding under a given latency con-
straint. Specifically, we determine the system capacity, denoted
by and for the case with and without channel folding,
respectively, by increasing the arrival rate until the given latency
constraint is reached:

(58)

(59)

LEE: CHANNEL FOLDING – AN ALGORITHM TO IMPROVE EFFICIENCY OF MULTICAST VIDEO-ON-DEMAND SYSTEMS 377

Fig. 11. Capacity gain under various system scale and latency constraints
(each video is allocated 20 channels).

where is the arrival rate, is the latency constraint, and
and are the latency functions to compute the

latency at the arrival rate of .
To facilitate comparison, we compute the capacity relative to

UVoD without channel folding

(60)

and plot the results versus system scale (i.e., total number of
available channels) in Fig. 11. The primary observation is that
the gain in capacity due to channel folding is consistent across
system scales. For small latency values (30 s), channel folding
can increase UVoD’s capacity by around 100%. For larger la-
tency value (e.g., 60 s), the improvement jumps to 200%. These
results suggest that channel folding can be applied to systems of
all scales with consistent performance improvement.

IX. CONCLUSION

In this study, we investigated a channel folding algorithm
to improve the efficiency of a multicast video distribution ar-
chitecture—the UVoD architecture. We derived a performance
model for the improved architecture and obtained the latency,
near-optimal channel partition policy, and client buffer require-
ment. Numerical results showed that channel folding can double
the capacity of a UVoD system with only a small client-side
buffering overhead. This channel folding algorithm is not lim-
ited to UVoD, and thus could be applied to other multicast video
distribution architectures. Further investigations will be needed
to explore the potential of this new tool in the arsenal.

REFERENCES

[1] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an
on-demand video server with batching,” in Proc. 2nd ACM Int. Conf.
Multimedia, 1994, pp. 15–23.

[2] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, “Channel Alloca-
tion under Batching and VCR Control in Movie-on-Demand Servers,”,
Yorktown Heights, NY, IBM Res. Rep. RC19588, 1994.

[3] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies for
an on-demand video server,” ACM Multimedia Syst., no. 4, pp. 112–121,
1996.

[4] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal batching policies
for video-on-demand storage servers,” in Proc. Int. Conf. Multimedia
Syst., Hiroshima, Japan, Jun. 1996, pp. 253–258.

[5] H. Shachnai and P. S. Yu, “Exploring wait tolerance in effective batching
for video-on-demand scheduling,” in Proc. 8th Israeli Conf. Computer
Syst. Software Eng., Jun. 1997, pp. 67–76.

[6] S. Sheu and K. A. Hua, “Virtual batching: A new scheduling technique
for video-on-demand servers,” in Proc. 5th Int. Conf. Database Syst.
Advanced Applicat., Melbourne, Australia, Apr. 1997, pp. 481–490.

[7] S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A generalized
batching technique for video-on-demand systems,” in Proc. Multimedia
Computing Syst., Ottawa, ON, Canada, Jun. 3–6, 1997, pp. 110–117.

[8] H. C. De-Bey, “Program Transmission Optimization,” U.S. Patent
5 421 031, Mar. 30, 1995.

[9] T. C. Chiueh and C. H. Lu, “A periodic broadcasting approach to
video-on-demand service,” Proc. SPIE, vol. 2615, pp. 162–9, 1996.

[10] S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand
service using pyramid broadcasting,” ACM Multimedia Syst., vol. 4, no.
4, pp. 197–208, 1996.

[11] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation-based pyramid
broadcasting scheme for video-on-demand systems,” in Proc. Int. Conf.
Multimedia Computing Syst., Jun. 1996, pp. 118–26.

[12] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to
provide a scalable and interactive video-on-demand service,” IEEE J.
Select. Areas Commun., vol. 14, no. 6, pp. 1110–1122, Aug. 1996.

[13] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting
scheme for meteropolitan video-on-demand system,” in Proc. ACM
Conf. Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’97), Cannes, France, Sep.
1997, pp. 89–100.

[14] L. S. Juhn and L. M. Tseng, “Harmonic broadcasting for video-on-de-
mand service,” IEEE Trans. Broadcast., vol. 43, no. 9, pp. 268–271, Sep.
1997.

[15] , “Staircase data broadcasting and receiving scheme for hot video
service,” IEEE Trans. Consum. Electron., vol. 43, no. 11, pp. 1110–1117,
Nov. 1997.

[16] E. L. Abram-Profeta and K. G. Shin, “Scheduling video programs in near
video-on-demand systems,” in Proc. ACM Conf. Multimedia, Seattle,
WA, Nov. 1997, pp. 359–369.

[17] L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for broadcasting
popular videos,” in Proc. NOSSDAV, Cambridge, U.K., Jul. 1998.

[18] J. F. Pâris, S. W. Carter, and D. D. E. Long, “Efficient broadcasting pro-
tocols for video on demand,” in Proc. 6th Int. Symp. Modeling, Anal.
Simulation Computer Telecommun. Syst., Jul. 1998, pp. 127–132.

[19] D. L. Eager and M. K. Vernon, “Dynamic skyscraper broadcasts for
video-on-demand,” in Proc. 4th Int. Workshop on Multimedia Informa-
tion Systems (MIS’98), Istanbul, Turkey, Sep. 1998, pp. 18–32.

[20] J. F. Pâris, S. W. Carter, and D. D. E. Long, “A low bandwidth broad-
casting protocol for video on demand,” in Proc. 7th Int. Conf. Computer
Commun. Netw., Oct. 1998, pp. 690–697.

[21] Y. Birk and R. Mondri, “Tailored transmissions for efficient
near-video-on-demand service,” in Proc. IEEE Int. Conf. Multi-
media Computing Syst., Florence, Italy, Jun. 1999, pp. 226–231.

[22] W. Liao and V. O. K. Li, “The split and merge protocol for interac-
tive video-on-demand,” IEEE Multimedia, vol. 4, no. 4, pp. 51–62, Apr.
1997.

[23] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for
true video-on-demand services,” in Proc. 6th Int. Conf. Multimedia, Sep.
1998, pp. 191–200.

[24] Y. Cai, K. Hua, and K. Vu, “Optimizing patching performance,” in
Proc. SPIE/ACM Conf. Multimedia Computing Netw., San Jose, CA,
Jan. 1999, pp. 204–215.

[25] S. W. Carter, D. D. E. Long, K. Makki, L. M. Ni, M. Singhal, and N.
Pissinou, “Improving video-on-demand server efficiency through stream
tapping,” in Proc. 6th Int. Conf. Computer Commun. Netw., Sep. 1997,
pp. 200–207.

[26] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Bandwidth skimming:
A technique for cost-effective video-on-demand,” in Proc. IS&T/SPIE
Conf. Multimedia Computing Netw., San Jose, CA, Jan. 2000, pp.
206–215.

[27] L. Golubchik, J. C. S. Lui, and R. R. Muntz, “Reducing I/O demand in
video-on-demand storage servers,” in Proc. ACM SIGMETRICS Joint
Int. Conf. Measurement Modeling of Computer Syst., Ottawa, ON,
Canada, May 1995, pp. 25–36.

[28] , “Adaptive piggybacking: A novel technique for data sharing in
video-on-demand storage servers,” ACM Multimedia Syst., vol. 4, no.
30, pp. 14–55, 1996.

378 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

[29] S. W. Lau, J. C. S. Lui, and L. Golubchik, “Merging video streams in
a multimedia storage server: Complexity and heuristics,” ACM Multi-
media Syst., vol. 6, no. 1, pp. 29–42, 1998.

[30] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal piggyback merging
policies for video-on-demand systems,” in Proc. Int. Conf. Multimedia
Syst., Jun. 1996, pp. 253–8.

[31] J. H. Oh, K. A. Hua, and K. Vu, “An adaptive hybrid technique for video
multicast,” in Proc. Int. Conf. Computer Commun. Netw., Lafayette, LA,
Oct. 1998, pp. 227–234.

[32] L. Gao and D. Towsley, “Supplying instantaneous video-on-demand ser-
vices using controlled multicast,” in Proc. IEEE Int. Conf. Multimedia
Computing Syst., vol. 2, Florence, Italy, Jun. 1999, pp. 117–121.

[33] L. Gao, Z. L. Zhang, and D. Towsley, “Catching and selective catching:
Efficient latency reduction techniques for delivering continuous multi-
media streams,” in Proc. 7th ACM Int. Multimedia Conf., Orlando, FL,
Nov. 1999, pp. 203–206.

[34] S. Ramesh, I. Rhee, and K. Guo, “Multicast with cache (Mcache): An
adaptive zero-delay video-on-demand service,” IEEE Trans. Circuits
Syst. Video Technol., vol. 11, no. 3, pp. 440–56, Mar. 2001.

[35] J. Y. B. Lee, “On a unified architecture for video-on-demand services,”
IEEE Trans. Multimedia, vol. 4, no. 1, pp. 38–47, Mar. 2002.

Jack Y. B. Lee (M’95–SM ’03) received the B.Eng.
and Ph.D. degrees in information engineering from
the Chinese University of Hong Kong in 1993 and
1997, respectively.

He participated in the research and development
of commercial video streaming systems from 1997
to 1998 and later joined the Department of Computer
Science at the Hong Kong University of Science
and Technology from 1998 to 1999. In 1999, he
joined the Department of Information Engineering,
Chinese University of Hong Kong, and established

the Multimedia Communications Laboratory to conduct research in distributed
multimedia systems, fault-tolerant systems, peer-to-peer systems, multicast
communications, and Internet computing.

	toc
	Channel Folding An Algorithm to Improve Efficiency of Multicast
	Jack Y. B. Lee, Senior Member, IEEE
	I. I NTRODUCTION
	II. R ELATED W ORKS
	III. S YSTEM A RCHITECTURE

	Fig.€1. Architecture of the UVoD server.
	A. Channel Allocation and Scheduling
	B. Admission Algorithms

	Fig.€2. Admission of a new user through the admit-via-multicast
	Fig.€3. Admission of a new user through the admit-via-unicast pr
	IV. C HANNEL F OLDING A LGORITHM

	TABLE I S UMMARY OF N OTATIONS
	Fig.€4. Admission through admit-via-multicast and channel foldin
	A. Algorithm for Admit-via-Multicast Clients

	Fig.€5. Admission through admit-via-unicast and channel folding.
	B. Algorithm for Admit-via-Unicast Clients
	C. Reusing Folded Channels

	Fig.€6. Channel requirement after channel folding is applied (ei
	V. P ERFORMANCE M ODELING
	A. Latency
	B. Channel Partition
	C. Client Buffer Requirement

	VI. O VER A LLOCATION OF M ULTICAST C HANNELS
	VII. C OMPLEMENTARY C HANNEL S CHEDULING

	Fig.€7. Complementary channel scheduling (eight multicast channe
	TABLE II L IST OF S YSTEM P ARAMETERS
	VIII. P ERFORMANCE E VALUATION
	A. Impact on Channel Partition
	B. Client Buffer Requirement

	Fig.€8. Near-optimal channel partition versus admission threshol
	Fig. 9. Client buffer requirement versus latency ($R _{v} =$ 3
	Fig. 10. Latency comparisons ($R _{v} =$ 3 Mb/s, 10 videos, 200
	C. Latency Comparisons
	D. System Capacity and Scalability

	Fig.€11. Capacity gain under various system scale and latency co
	IX. C ONCLUSION
	A. Dan, D. Sitaram, and P. Shahabuddin, Scheduling policies for
	A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, Channel Allo
	A. Dan, D. Sitaram, and P. Shahabuddin, Dynamic batching policie
	C. C. Aggarwal, J. L. Wolf, and P. S. Yu, On optimal batching po
	H. Shachnai and P. S. Yu, Exploring wait tolerance in effective
	S. Sheu and K. A. Hua, Virtual batching: A new scheduling techni
	S. Sheu, K. A. Hua, and W. Tavanapong, Chaining: A generalized b
	H. C. De-Bey, Program Transmission Optimization, U.S. Patent 5 4
	T. C. Chiueh and C. H. Lu, A periodic broadcasting approach to v
	S. Viswanathan and T. Imielinski, Metropolitan area video-on-dem
	C. C. Aggarwal, J. L. Wolf, and P. S. Yu, A permutation-based py
	K. C. Almeroth and M. H. Ammar, The use of multicast delivery to
	K. A. Hua and S. Sheu, Skyscraper broadcasting: A new broadcasti
	L. S. Juhn and L. M. Tseng, Harmonic broadcasting for video-on-d
	E. L. Abram-Profeta and K. G. Shin, Scheduling video programs in
	L. Gao, J. Kurose, and D. Towsley, Efficient schemes for broadca
	J. F. Pâris, S. W. Carter, and D. D. E. Long, Efficient broadcas
	D. L. Eager and M. K. Vernon, Dynamic skyscraper broadcasts for
	J. F. Pâris, S. W. Carter, and D. D. E. Long, A low bandwidth br
	Y. Birk and R. Mondri, Tailored transmissions for efficient near
	W. Liao and V. O. K. Li, The split and merge protocol for intera
	K. A. Hua, Y. Cai, and S. Sheu, Patching: A multicast technique
	Y. Cai, K. Hua, and K. Vu, Optimizing patching performance, in P
	S. W. Carter, D. D. E. Long, K. Makki, L. M. Ni, M. Singhal, and
	D. L. Eager, M. K. Vernon, and J. Zahorjan, Bandwidth skimming:
	L. Golubchik, J. C. S. Lui, and R. R. Muntz, Reducing I/O demand
	S. W. Lau, J. C. S. Lui, and L. Golubchik, Merging video streams
	C. C. Aggarwal, J. L. Wolf, and P. S. Yu, On optimal piggyback m
	J. H. Oh, K. A. Hua, and K. Vu, An adaptive hybrid technique for
	L. Gao and D. Towsley, Supplying instantaneous video-on-demand s
	L. Gao, Z. L. Zhang, and D. Towsley, Catching and selective catc
	S. Ramesh, I. Rhee, and K. Guo, Multicast with cache (Mcache): A
	J. Y. B. Lee, On a unified architecture for video-on-demand serv

