IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

315

Multimedia Rectangularly Addressable Memory

Georgi Kuzmanov, Member, IEEE, Georgi Gaydadjiev, Member, IEEE, and Stamatis Vassiliadis, Fellow, IEEE

Abstract—We propose a scalable data alignment scheme incor-
porating module assignment functions and a generic addressing
function for parallel access of randomly aligned rectangular blocks
of data. The addressing function implicitly embeds the module as-
signment functions and it is separable, which potentially enables
short critical paths and saves hardware resources. We also dis-
cuss the interface between the proposed memory organization and
a linearly addressable memory. An implementation, suitable for
MPEG-4 is presented and mapped onto an FPGA technology as
a case study. Synthesis results indicate reasonably small hardware
costs in the order of up to a few thousand FPGA slices for an ex-
emplary 512 x 1024 two-dimensional (2-D) addressable space and
a range of access pattern dimensions. Experiments suggest that
speedups close to 8 x can be expected when compared to linear
addressing schemes.

Index Terms—Linear addressing, memory modules, module as-
signment functions, rectangular block addressing, separability.

1. INTRODUCTION

HE problems of conflict-free parallel accesses of different

data patterns have been extensively explored in several re-
search areas. Vector processors designers have been interested
in memory systems that are capable of delivering data at the
demanding bandwidths of the increasing number of pipelines,
see, e.g., [1]-[4]. Different approaches have been proposed for
optimal alignment of data in multiple memory modules [1],
[3]-[7]. Module assignment and addressing functions have been
utilized in various interleaved memory organizations to improve
the performance. In graphical display systems, researchers have
been investigating efficient accesses of different data patterns:
blocks (rectangles), horizontal and vertical lines, forward and
backward diagonals [7], [8]. In this paper, we consider visual
data representations. For such an application, the most compu-
tationally intensive algorithms, like motion estimation and the
discrete cosine transform, operate on square pixel blocks, re-
quiring a significant data throughput. Therefore, the emerging
visual data compression standards have narrowed the problems
toward high-performance implementations of rectangularly ac-
cessible data storages.

In this paper, we propose an addressing function for rectangu-
larly addressable memory systems, with the following charac-
teristics: Rectangular subarrays can be accessed in a two-dimen-
sional (2-D) data storage with high scalability. The addressing
is separable, which potentially saves hardware. We also intro-
duce implicit module assignment functions and a conflict free

Manuscript received March 5, 2004; revised April, 2005. This work was sup-
ported by the Dutch embedded systems research program PROGRESS (project
AES.5021). The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Mihaela van der Schaar.

The authors are with the Computer Engineering Lab, EEMCS, Delft Univer-
sity of Technology, 2628 CD Delft, The Netherlands (e-mail: G.Kuzmanov@
ewi.tudelft.nl; G.N.Gaydadjiev@ewi.tudelft.nl; S.Vassiliadis @ sewi.tudelft.nl).

Digital Object Identifier 10.1109/TMM.2005.864345

- SCAN-LINE LENGTH
o[1]2]3fa]s]s 7/|18 9 [10]11]12[13]14]15
16[17[18[19]20| 21 2p423] 24] 25[26| 27] 28] 29[30 31
32[33] 343573637438 | 39]40[41 [42[43]4a] 25| 46] 47
48|4950|51]52]43 |54 55]56 |57 58| 50] 60| 6TNg2 63

64|65 |66|67|6q|69|70(71]72(73| 74|75 7677|779
\)]
80181] ALIGNED BLOCK BLOCK TO ACCESS

(a)
SCAN LINE LENGTH

| 0 | 1 | I24 25|26 27'28 | 140 41|42|43'44|45|46|47r

BLOCK TO ACCESS
(b)
BLOCK 0 BLOCK 2 BLOCK3 BLOCK 6 BLOCK 7

B

0] 1]..23]8[a]10]11[24]25[26]27] . 15[28[29] .. 41]42}a3] . 50[a4las| ..
A A

BLOCK TO ACCESS

(c)

Fig. 1. Addressing problem in LAM. (a) Pixels in a video frame. (b) Scan-line
alignment. (c) Block-based alignment.

data routing circuitry, which along with the high flexibility of
the design parameters, allow minimal number of memory mod-
ules and shortest critical paths. Compared to related work, our
proposal is the only one that combines the above characteristics
altogether and utilizes the lowest number of memory modules.
Therefore, our design is superior to related art in speed, scala-
bility, flexibility, and low complexity.

The remainder of the paper is organized as follows. Section II
introduces the particular addressing problem. In Section III, the
addressing scheme is described and the corresponding memory
organization with a possible implementation are discussed. Case
study synthesis results for FPGA technology are reported and
related work is compared to our design in Section IV. Finally,
the paper is concluded with Section V.

II. MOTIVATION

In this section, without loss of generality (our scheme ap-
plies equally to vector rectangular processing), we consider the
memory addressing and accessing problem by considering the
MPEG standards.

The Addressing Problem—A Motivating Example: Most of
the MPEG data processing is performed over regions (blocks
of pixels) from a frame. This generates memory problems
with data alignment and access illustrated by the following
motivating example. Assume a single port linearly address-
able memory (LAM) and a plane divided into blocks with
dimensions 4 x 2 byte pixels. Further, assume that the video
information is stored as a scan-line [see Fig. 1(a)] and that
the system is capable of accessing eight consecutive bytes per

1520-9210/$20.00 © 2006 IEEE

316

TABLE 1
NUMBER OF LAM CYCLES IN DIFFERENT CASES

| all aligned | mixed | none aligned |
SN | (B 4n-1)-N| (= +n)-N |

‘ n?
W

cycle. Because of non aligned blocks [see Fig. 1(b)], neither
of the blocks containing pixels {8,9,10,11,24,25,26,27}
and {26,27,28,29,42,43,44,45} is accessible by a single
memory transfer. Even though the memory system could be
accessing all data, because it can access linearly 8 bytes in a
single memory cycle, in fact it can access, e.g., either bytes
{26,27,28,29} or bytes {42,43, 44,45}, but not all 8 bytes
{26,27,28,29,42,43,44, 45}.

Another approach to process block-organized data may be to
reorder data into the LAM. If we position blocks into consecutive
bytes [Fig. 1(c)], we will be able to access such blocks in a single
memory cycle (e.g., pixels {8,9,10,11,24,25,26,27}). In
MPEG, however, some of the most demanding algorithms (e.g.,
motion estimation) require accessing block data at an arbitrary
position in the frame, thus in memory. In the Fig. 1(c) example,
accessing block {26,27,28 29,42, 43 44,45} requires four
cycles, even though the bandwidth is 8 bytes. This is because
only two of its bytes can be accessed in one memory access
cycle (i.e., either {26, 27}, or {28, 29}, or {42, 43}, or {44, 45}).
Fig. 1(c) suggests that in such cases data fetching may become
even less effective than the scan-line alignment scheme. In the
rest of the presentation, for conciseness, we will refer to blocks
like {8,9,10,11,24,25,26,27} in Fig. 1(a) as aligned, and to
the remaining blocks (like {26, 27,28, 29,42, 43,44,45}) as
nonaligned. The borders between aligned blocks in the figures
are marked with thick line crosses.

General Problem Introduction and Proposed Solu-
tion: Consider a LAM with word length of W bytes (typically
W =1,2,4,8,16) and the time for linear memory access to be
Tram- The time to access a single a x b subarray of one-byte
pixels, depending on its alignment in the LAM (refer to the
preceding motivating example) will be

1) aligned subarray: (a - b/W) - Tr.am;

2) not aligned subarray: ((a/W)+ 1) -b- Tram-

The time, required to access N a x b blocks with respect to their
alignment will be

1) all N blocks aligned: N - (a - b/W) - Tr,am;

2) None of the blocks aligned: N - ((a/W) + 1) - b - Tr,am;

3) Mixed: N .

[(1/a) - (a/W) + (a = 1/a)((a/W) + 1)] - b- Tran =

a 1
=N-|—=4+1—=)-b-TrLay 1
(W-i- a) LAM (D

By mixed access scenario we mean accessing both aligned
and nonaligned blocks. In (1), we assume that the probability to
access an aligned block is (1/a), while for a nonaligned block
itis (a — 1/a). For simplicity, but without losing generality, as-
sume square blocks of nxn, (i.e., a = b = n). Further assuming
N blocks to access, we can estimate the number of LAM cycles
as indicated in Table I. Obviously, the number of cycles to access
ann x n block in a LAM is a square function of 7, i.e., O(n?).

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

W ax BLOCK
LAM 2DAM PROCESSING
UNIT(S)

¢« LAM ¢ 12DA \p

Fig. 2. Memory hierarchy with 2DAM.

TABLE 1II
ACCESS TIME PER 2 X n BLOCK INLAM CYCLES, t = (T2pa/Tram)
n W LAM 2DAM
WC [Mix. [BC | Mix/BC | WC
T (8 bits) | 72 71 64 8+t 64+t
8 2 (16 bits) 40 39 32 4+t 32+t
4 (32 bits) 24 23 16 2+t 16+t
1 (8 bits) 272 271 256 32+t 256+t
16 | 2 (16 bits) 144 143 128 16+t 128+t
4 (32 bits) 80 79 64 8+t 64+t

An appropriate memory organization may speed-up the data ac-
cesses. Consider the memory hierarchy in Fig. 2 with time to
access an entire n X n block from the 2-D accessible memory
(2DAM) to be T5p 4. In such a case, the time to access Nn X n
subblocks in the mixed access scenario will be

[V)

N n
A N -Tora.
W LAM + 2DA;

~ [sec]

n Topa)
&S| =+ - N, [LAM cycles].
(W Tram | yeles]

That is the sum of the time to access the appropriate number of
aligned blocks (i.e., (IN/n)) from LAM plus the time to access
all N blocks from the 2DAM. It is evident that in a mixed ac-
cess scenario, the number of cycles to access an n X n block in
the hierarchy from Fig. 2 is a linear function of N, i.e., O(n)
and depends on the implementation of the 2-D memory array.
Table II presents access times per single n X n block. Time is
reported in LAM cycles for some typical values of N and W.
Three cases are assumed for LAM: 1) none of the N blocks is
aligned—worst case (WC); 2) mixed block alignment (Mix.);
and 3) all blocks are aligned—best case (BC). The last two
columns contain cycle estimations for the organization from
Fig. 2 where both mixed and best case scenarios assume that
aligned blocks are loaded from the LAM to the 2DAM first
and then nonaligned blocks are accessed from the 2DAM. The
2DAM worst case (contrary to LAM) assumes that all blocks to
be accessed are aligned. Even in this worst case, the 2DAM-en-
abled hierarchy may perform better than LAM best case if the
same aligned block should be accessed more than once (i.e., data
are reusable). For example, assume accessing k times the same
aligned block. In LAM (best case), this would take k-(n? /W) =
[(n?/W)+ (k—1) - (n?/W)], while in 2DAM (worst case), it
would cost [(n2/W) + (k — 1) - (TapaTram)] LAM cycles
per block. Obviously, to have a 2DAM enabled memory hier-
archy, faster than pure LAM, it would be enough if (n?/W) >
(Tapa/Tram)- All estimations above strongly suggest that a
2DAM with certain organization may dramatically reduce the
number of accesses to the LAM (main memory), thus consider-
ably speeding-up related applications.

KUZMANOV et al.: MULTIMEDIA RECTANGULARLY ADDRESSABLE MEMORY

SCAN-LINE LENGTH
T{2(374|5|6|7)8[9[10]11f12]13[1415
161718119120 |21 (22|23 §24|25)26|27]28|29]30]31
32 (331343573637 |38|3914(|41 L42[43[44 |45)46 |47
48 49 [50|51 £52 |53 15455 5p |57 |58 (59,60]61|62]63

64| 65|66 6768697071 1/12]73 \74 7517677178179

80 | 81 AL GNLD—ﬂ } BLOCK TO
A BLOCK - ACCESS
< N=16 >

ifoofo.1|02]03%0.4]05 0.6]0.7f0:8[0.9 pfiofo.1§o.190.13(0.140.15

rofrifiz{ialialis|iefn7fus| Lofof 2131411

wf2.0(2,12.2]2.3Y2.4(2,5(2,6 (27128 2.9f1d2.112,122,132,142,1

=|130(3,1[32133]3.4]3.5|3.6]3.7]3.8[3.9p,1003,113,123,13]3,143,1

40(4,1(42[4314,4(4,5|4,6|4,714,8|4,9[4,1q4,18,12]4,13/4,144,1
b4

-
0

Fig. 3. Mapping scan-lines into 2-D addresses (considered example).

III. BLOCK ADDRESSABLE MEMORY

In this section, we propose the addressing scheme, the
memory organization, and a potential implementation.

Addressing Scheme: Assume M x N image data stored in
k = a X b memory modules (1 < a < M;1 < b < N).
Furthermore, assume that each module is linearly addressable.
We are interested in parallel, conflict-free access of a x b blocks
at any (i,j) location, defined as

B(i,j) = {I(i+p,j +q)0 <p<a,0< g < b},
0<i<M-a, 0<j<N—b.

To align data in £ modules without data replication, we organize
these modules in a 2-D a x b matrix. A module assignment func-
tion, which maps a piece of data with 2-D coordinates (z, j) in
memory module (p,q) : 0 < p < a,0 < g < b, is required. We
separate the function denoted as m,, ,(4, j), into two mutually
orthogonal assignment functions my (%) and m,(j). We define
the following module assignment functions for each module at

position (p, q):
myp(i) = (i —p) mod a 2)
mg(j) = (j — ¢) mod b (3)

The addressing function for module (p, ¢) with respect to coor-
dinates (4, 7) is defined as

.. . N
Apq(ij)=(idiva+¢) - ?—i—] div b+ ¢; ()
_J1, imoda>p _J 1, jmodb>gq
€= 0, otherwise. 7710, otherwise.

Obviously,ifp =a—1=¢; = 0forVi;ifg=b—-1=¢c; =0
for Vj, respectively. In essence, c;, and c; are the module as-
signment functions, implicitly embedded into the linear address
Apq (4,9)-

Example: Consider the motivating example of Section II and
the pixel area from Fig. 1(a). The same pixel area is mapped into
a2-D addressing space with N = 16 as depicted in Fig. 3. In this
new mapping, we address data by columns and rows, as 2-D ad-
dressing is the actual addressing performed at algorithmic level.
That is, byte 27 is referred to as (1, 11). Consequently, we have
to perform the physical memory partitioning and assignment of

317

~*mal)) b= N=16 >
0,0]0,1[0.2/0,3[0,0[0,1]0.2[0.3]0,0[0,1]0.2[0.3[0.0]0.1]0.2[0.3
1,0[1.1]1.2[1.3[1,0{1,1]1.2[1.3[1.0[1.1[1.2[1.3[1.0]1.1]1.2[1.3
0,0[0,1]0,20,3[0,0{0,1]0,2[0.3]0,0[0,1]0.2]0,3[0,0]0,1]0.2[0,3
1,0|11,111,2/1,3]1,0]1,1|1,2|1,3]|1,0{1,1|1,2|1,3|{1,0{1,1|1,2|1,3
0,0]0,1]0.2/0.3[0.0[0,1]0.2[0.3]0,0[0.1]0.2[0.3[0.0]0.1]0.2[0.3

mp(i)

a=2

module(0,0)

A0 A1 A2 A3 A4 A5 A6_A7 A8 A9 A10 A11
module(1,3) N/b

AO A1 _A2 A3 A4 A5 A6 A7 A8 A9 A10 A1l

13] 171,11 1,15|3,3|3,7|3,11|3,15| -

(b

Fig. 4. Examples fora = 2,b = 4, N = 16. (a) Module assignments of the
2-D pixel area and (b) 2-D addresses and linear addressing within modules.

data. Assume that data will be stored into linearly byte address-
able memory modules, organized in a 2 x 4 matrix. Because in
our example we have 5 x 16 = 80-byte memory, we subdi-
vide the physical memory into eight modules in total, 10 bytes
each. Each pixel has to be allocated in a specific module by the
assignment function. The memory module assignments of all
pixels from the considered pixel area for a = 2, b = 4 are de-
picted in Fig. 4(a). In the Figure, the pixel with 2-D address
(1,11) from Fig. 3 is allocated by the module assignment func-
tion in module (1, 3). At the second addressing level, the linear
address of each individual pixel within the module (intramodule
address), has to be determined. The addressing function (4) gen-
erates a unique intramodule address within an uniquely assigned
memory module, for each and every byte from the 2-D ad-
dressing space. The intramodule address of pixel (1, 11), deter-
mined by (4) is 2, denoted as A2 in module (1, 3) [see Fig. 4(b)].
Consequently, the addressing scheme is in fact performed at two
levels- module assignment and intramodule addressing.

We access blocks rather than bytes (for the example—2 x 4
bytes). Blocks are addressed by the 2-D coordinates of their
upper-left pixels. Consider the shaded nonaligned block 2645
addressed as B(1, 10) (see Fig. 3). Note that the pixels of a block
are accessed from all eight modules simultaneously, in parallel.
Using (2)—(4), we can calculate the linear address of the pixels
from the considered block for each module (p, ¢) with respect
to 2-D address 4,5 = (1,10):

. module (p, q) = (0,0):

tmoda=1>p=>¢ =1
ijdb:2>q:>Cj:1

. module (p,q) = (1,3)

} = Aoyg(l, 10) =T.

tmoda=1=p=¢ =0
jmodb:?:q:>cj:0} = A13(1,10) = 2.
That is, the pixels of block i, = (1,10) will be allocated
at address 7 in module (p,q) = (0,0) and at address 2
in module (p,q) = (1,3). Identically, the intramodule ad-
dresses of the remaining six pixels of the considered block
can be calculated for each of the remaining six modules
to be A071(1,10) = 77 A0,2(1710) = 67A0,3(1710) =

A A A h |
Ao [Ate] [Ae] [ABG]
Ai0(i)
1\ Module 1\. Module| (M Module Module
N 00 MM o1 NN 02 ©,3) M
Ait(i) } \
LModuIe 1 \J{ Module L \ Module t Module
o | M an| M| M0
— M M N M
il \{shilfe] “{shuffle] ‘{shuffle] -{shuffl
Rj(j) shuffle 1
TTITITTT

Fig.5. The 2DAM fora = 2,b =4,and N = 2™ > 16.

6, A10(1,10) = 3, A1 1(1,10) = 3, A; »(1,10) = 2. Fig. 4(b)
illustrates the internal linear addressing and data alignment
within the considered two memory modules. Note that having
the intramodule addresses of all pixels in the considered block,
we only need to know which module contains the upper-left
pixel (7, j) = (1, 10) to reorder the data properly. The upper-left
pixel of block B(1,10) is calculated (from the zeroes of (2)
and (3) to be located in module (p, q) = (1,2). Thus, having
each and every of the 8 block pixels localized in each and
every of the 8 modules, we can access the entire block in one
cycle by accessing all the modules in parallel. Yet identically,
it can be shown that any 2 x4 block, regardless its position, can
be accessed in a single cycle. Recall that B(1,10) is the 2-D
notation of block {26 — 45} from the motivating example. That
block was accessible in two or four cycles from a conventional
8 byte LAM, thus two to four times slower than the proposed
scheme at the same bandwidth of 8 bytes per cycle.

Memory Organization and Implementation: Equations
(2)—(4) are generally valid for any natural value of parameters
a, b, and N. To implement the proposed addressing and module
assignment functions, however, we will consider practical
values of these parameters. Since pixel blocks processed in
MPEG algorithms have dimensions up to 16 X 16, values of
practical significance for parameters a and b are the powers of
two up to 16 (i.e., 1, 2, 4, 8, 16). For the particular implemen-
tation example we will consider a X b = 2 x 4.

Module Addressing: The module addressing function is sep-
arable thus, the function can be represented as a sum of two
functions of a single and unique variable each (i.e., variables
i and j). That is, A, ,(i,7) = Ai,(i) + Aj,(j) allowing the
address generators to be implemented per column and per row
(see Fig. 5) instead of implemented as individual addressing cir-
cuits for each of the memory modules. Taking into account the
separability of A, ,(¢, j) and considering an arbitrary range of
picture dimensions to be stored, we can define C;, = N =
2", n > 4 as “horizontal capacity” of the 2DAM (to be dis-
cussed later). The requirements for the frame sizes of all MPEG
standards and for video object planes (VOPs)[9] in MPEG-4 are
constituted to be multiples of 16, thus, N is a multiple of 24
by definition. Assuming the discussed practical values of N and
b, further analysis of (4) suggests that j div b + ¢; < (N/b)
and (j div b + ¢j)max = (IN/b) — 1, i.e., no carry can be ever
generated between Ai, (i) and Aj,(j). Therefore, we can im-
plement A, ,(,7) for every module (p, ¢) by simply routing

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

signals to the corresponding address generation blocks without
actually summating Ai, (i) + Aj,(j). Fig. 6(a) illustrates ad-
dress generation circuitry of g-addresses (Aj,(j)) for all mod-
ules except the first (1 < g < b). With respect to (4), if ¢;
is 1 the quotient j div b should be incremented by one, other-
wise it should not be changed. To determine the value of ¢;, a
Look-Up-Table (LUT) with jmodb inputs can be used. For the
assumed practical values of ¢ and b(< 16), such a LUT would
have at most 4 inputs, i.e., ¢; is a binary function of at most
4 binary digits. Row p-addresses are generated identically. For
p=1lorg=3,¢; = 0,c; = 0respectively. Therefore, address
generation in these cases does not require a LUT and an incre-
mentor. Instead, it is just routing ¢ div @ and 7 div b to the corre-
sponding memory ports, i.e., blocks Ai; (i) and Ajs(7) in Fig. 5
are empty. Fig. 6(b) depicts all 4 LUTs for the case a x b = 2 x 4.
The usage of LUTSs to determine c¢; and c; is not mandatory, fast
pure logic can be utilized instead.

Data Routing Circuitry: In Fig. 5, the shuffle blocks,
together with blocks R, (i) and R,(j), illustrate the data
routing circuitry. The shuffle blocks are in essence circular
barrel shifters, i.e., having the complexity of a network of
multiplexors. An n x n shuffle is actually an n — 1 n-way
multiplexor. In the example from Fig. 5, the :-level shuffle
blocks are four (2 — 1) 16-bit multiplexors and the j-level
one is (4 — 1) 64-bit. To control the shuffle blocks, we can
use the module assignment functions for p = ¢ = 0, i.e.,
R;(i) = ¢ mod a and R;(j) = j mod b. These functions
calculate the (p, ¢)-coordinates of the “upper-left” pixel of the
desired block, i.e., pixel (4, 7). For the assumed practical values
of a and b being powers of two, the implementation of R; (i)
and R;(j) is simple routing of the least-significant log, (a)-bits
[resp., log,(b)] to the corresponding shuffle level.

2DAM Capacity: Earlier, we have defined the “horizontal ca-
pacity” of 2DAM as Cj, = N = 2" n > 4. C}, is the maximal
scanline length in bytes (pixels), the 2DAM can store without ad-
dressing conflicts. The “vertical capacity” of 2DAM is denoted
as C,, and defined as the maximal number of Cj,—byte (C},-pixel)
scanlines the 2DAM can store. Finally, the capacity Cop anr of
a 2DM is defined as the couple (C), x C,,)-bytes (pixels).

LAM Interface: Fig. 7 depicts the organization of the inter-
face between LAM and 2DAM (recall Fig. 2) for the modules
considered in Fig. 5. Data bus width of the LAM is denoted
by W (in number of bytes). In the particular example, W is as-
sumed to be 2, therefore modules have coupled data busses. For
each (i, j) address, the AGEN block sequentially generates ad-
dresses to the LAM and distributes write enable (WE) signals
to a corresponding module couple. Two module WE signals
(WE;, WE;) are assumed for easier row and column selection.
In the general case, the AGEN block should sequentially gen-
erate (a-b/W') LAM addresses for each (¢, 7) address. Provided
that pixel data is stored into LAM in scan-line manner, the LAM
addresses to be generated are defined as

Apam(ij) ={a- (idiva) + k} - N +b-(jdive) +1-W.
Which, assuming that only aligned blocks will be accessed from
the LAM (i.e., (i, 7) are aligned), can be simplified:

Apam(i,j) = (i+k)-N+j+1-W
k=0,1,...,a=1;1=0,1,....,5% —1. (5

KUZMANOV et al.: MULTIMEDIA RECTANGULARLY ADDRESSABLE MEMORY 319
j-address
j di [i | [Jjmod imod | ¢
jdivb jmod b | b = p=0
log2(N/b) log2(b) 0]0 0 0 0 0
Y | 01 1 0 0 1 1
) | LUTq 110 1 1 0 - -
Ajq()) L] 1 1 1
(a) (b)
Fig. 6. Module address generation. (a) Generation Circuit of q-addresses for 1 < ¢ < b. (b) LUTs contents fora = 2,b = 4.
LAM Data (W=2 N Proof.'
memory d (di)
rmody=2p rdivy)- -y =
Address }(ALAM Module q Module Module Module .
fracam 00 [T1 ©n 02 [T ©3 rdivy=k = =k-y=z—-p=
— WEj L _ — — kE-y+p==x =z — 1z mody
AGEN [F— T]]] n
T WEi Theorem 1: (Consistency between the 2DAM and the
il oo verall Bl ol oo e LAM addressing schemes). Assume the 2DAM and LAM
addressing interface schemes defined by (2)—(4) and (5)—(7),

Fig. 7. LAM interface for W = 2,a = 2,b = 4.

In the 2DAM, the data are simultaneously written in modules:

as each byte of the word is stored at local module address:

N
ALAM(; 5y — (i diva) - — + j div b. @)

Psq b

Note, that accessing only aligned blocks from the LAM en-
ables thorough bandwidth utilization. When only aligned blocks
are addressed, all address generators issue the same address, due
to (4). Therefore, during write operations into 2DAM, the same
addressing circuitry can be used as for reading. If the modules
are true dual port, the write port addressing can be simplified to
just proper wiring of both 7 and ;7 address lines because the in-
crementor and the LUTs from Fig. 6(a) are not required. There-
fore, module addressing circuitry is not depicted in Fig. 7.

Addressing Consistency: In the following, we will prove that
the described scheme provides a consistent LAM and 2DAM
addressing. It means that each and every byte is allocated in the
same memory module and at the same intramodule address by
both LAM and 2DAM addressing schemes.

Lemma I: tmod 2z =2z —n-2ziff 0 <z -n-2<
z;Vz,n,z € N.

Proof: .Ifzmodz=2x—n-2=>0<z—-n-2<
z;Vz,n,z € N is true by the definition of mod operation. 2. If
0<z—mn-2<z=axmodz =x—mn-z;Yr,n,z € N. Let
x mod z = & — p - z. Then, by definition0 < z —p- 2z < z.
Assume p # n = |p — n| > 1. We derive the system:

0<xr—n-z<z
0<x—p-z<z

Its only solution p = n contradicts to the assumption. [|
Lemma 2: (z —y) mod z = (z mod z — y) mod z;Vy <
zVr,y,z € N.

Proof: By definition z mod z = z—nl-z and (z mod z—
y) mod z = (z mod z — y) — n2 - z. = By substitution
and based on Lemma 1, we derive: (z mod z — y) mod z =
(z—nl-z—y)—n2-z = (x—y)—(n1+n2)-z = (x—y) mod z
|

Lemma 3: (zdivy)- -y =2 —x mod y;Vx,y € N.

respectively. Any byte (¢/, j') is allocated in the same memory
module at the same intramodule address by both addressing
schemes.

Proof: (Consistency of module assignments.) Consider
byte (¢, 5). In consistence with (5), we define k¥ = ¢'mod a
and ! = (j'mod b) div W. Considering the LAM interface and
Lemma 3, the module, where byte (4’, j') should be stored is
calculated as follows:

(p,q)
= (k,l- W + (5'mod b) mod W)
= (k,{(j'mod b) div W} - W + (j'mod b) mod W)
= (k, (j'mod b) — (5'mod b) mod W
+ (j'mod b) mod W)
= (p,q) = (k,7'mod b) (8)
Considering (2)-(3) for the 2DAM module allocation and
Lemma 2, we derive:
my(i') =
=('—p)moda=0
(#moda — p)moda = 0 (j'mod b—¢) mod b =0
(k—p)moda=0;k<a j'mod b < b
= p=k;q=j'mod b.

mq(j') =
= (j' — ¢)modb =0

&)

Equations (8) and (9) indicate that any byte (3', j') will be allo-
cated in the same memory module both by the LAM interface
and by the 2DAM read circuitry.

(Consistency of intramodule addresses.) Assume (i,j) is
the aligned block, containing byte (i',7'), i.e., ¢ div a =
7'div a, j div b = j'div b. Consider (4):

Apq@,3") = (' diva+ ¢) - (N/b) + j' div b + ¢;, from
9):p =imod aand ¢ = jmod b = ¢; = ¢; = 0,=
A, @', 5") = (¢div a) - (N/b) 4+ j'div b = (Rec. assumption)
Ay (i, 5") = (idiv a) - (N/b) + j div b, identical to (7). m

Example: We consider a single (arbitrary chosen) byte and
show that it is allocated in the same memory module and at
the same intramodule address both by the LAM and by the
2DAM addressing schemes. Assume that visual data is scan-line
aligned in LAM with word length of 2 bytes and big-endian
convention. Consider the byte with 2-D address (1,11) (see
Fig. 3). The memory hierarchy of Fig. 2 indicates that byte

320

(1, 11) has to be loaded from the LAM into the 2DAM by means
of the proposed LAM interface. Assuming that the 2DAM is
first loaded in its entirety, all aligned blocks of the considered
5 X 16-byte area are to be loaded from the LAM into the 2DAM.
Byte (1,11) is assigned in the LAM as part of aligned block
(0,8). The LAM addresses of the four 2-byte words containing
the pixels of the block are Apayv = 8,10,24, 26, see Fig. 3.
The LAM address of the 2-byte word, containing the considered
pixel (1, 11) is calculated from (5) to be: Apanm(0,8)k=1,1=1 =
(0+1)-16+8+1-2 = 26. Recall Fig. 3, where byte
(1,11) had LAM address 27. Thus, in the assumed big-endian
LAM convention, the considered byte 27 is the MSB of the
2-byte memory word aligned at address 26. Considering (6), this
2-byte word should be stored into modules (1, 2) and (1, 3), see
Fig. 7. The MSB, i.e., byte 27, should be stored into module
(P, Qr=1,1=1 = (k,l- W + W — 1) = (1, 3). Its intramodule
address with respect to the LAM interface is calculated from
(7) to be: AF3M(0,8) = (0 div 2) - (16/4) + 8 div 4 = 2
That is, byte (1,11) with LAM address 27, will be stored by
the LAM-to-2DAM interface into module (1,3) at intramodule
address 2. Consider the 2DAM addressing scheme, the shaded
nonaligned block (1, 10) in Figs. 3 and 4, and (2)—(4). Indeed,
considering the 2DAM addressing scheme, byte (1,11) can be
read from address location 2 of module (1, 3), as it was shown
in the previous example.

Critical Paths: Assuming generic synchronous memories
we separate the critical paths into two: address generation
and data routing. For the proposed circuit implementation,
the address generation critical path (CP4) is determined by
CP 4 = max(CPaqd(n/a), CPadda(n/p)) + CPrut. That is the
critical path of either a log,((M/a))-bit, or a log,((N/b))-bit
adder, whichever is longer, and the critical path of one (max-
imum 4-input) LUT. The data routing critical path (CPp) is:
CPp = CPumux, + CPmux,. That is, the sum of the critical
paths of one ¢ — 1 multiplexor and one b — 1 multiplexor.

IV. EXPERIMENTAL RESULTS AND RELATED WORK

We note that our proposal is general, therefore we do not con-
sider implementations bound to any particular computer archi-
tecture or specific multimedia software. Thus, we are allowed
to analyze the proposed memory organization regardless the
system implementation platform and the particular multimedia
application. By doing so, we isolate the performance benefits
due to our proposal only. Binding the memory to any particular
processor system would introduce results dependent on the con-
sidered architectural context. Moreover, intermingling architec-
tural features with the proposed memory organization would not
give a clear indication of the benefits due to the memory organ-
ization only. It would rather introduce architectural discussions
outside the scope of this paper.

In this section, we present an experimental case study for a
number of FPGA-based designs and compare to related works.

Case Study: A generic VHDL model of the memory or-
ganization has been developed and synthesized for the recent
Virtex II Pro FPGA technology of Xilinx. We consider re-
configurable implementations as we also envision that the
proposed organization can be embedded in an FPGA aug-
mented processor (e.g., [10]) being part of its reconfigurable

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

TABLE III
SYNTHESIS FOR FRAMES UP-TO 512 X 1024 (DEVICE 2vp50ff1152)

[axb[2x4[4x8] 8x8 [16x16 [Avail

2-1mux 192 1280 | 3072 16384 N.A.
Adders: 4 10 14 30 N.A.
bits/# 8/1 7/3 6/7 5/15 N.A.
bits/# 8/3 77 77 6/15 N.A.
Slices 534 1512 | 3287 15408 | 24640
% 1 6 13 63 100
LUT4 928 | 2630 5723 26805 | 49280
% 1 5 11 54 100
10s 100 292 548 2084 756
BRAM 8x 32x 64x 256x 522K

64K 16K 8K 2K

TABLE IV

ESTIMATED TRANSFER SPEEDUPS FOR 11,y = 10 ns.

axb | Topa t= W Transfer Speedup

Lapa BC | Mix. [WC
LAM

1 (8bits) | 745 | 7,34 | 0,97
8x8 16,7ns 1,67 2 (16 bits) | 7,05 | 6,88 [0,95
4 (32 bits) | 6,54 | 6,27 | 091
1 (8bits) | 8,03 | 8,00 | 0,99
16x16 | 18,8ns 1,88 2 (16 bits) | 8,05 [8,00 [0,99
4 (32 bits) | 8,10 | 8,00 | 0,97

memory subsystem. Table III contains synthesis results for
the 2vp50ff1152 FPGA device (the last column displays some
of the resources available on the chip). The on-chip memory
volume allows frames or VOPs sized up-to 512 x 1024 pixels
to be stored. It should be noted that more than one frame can
be stored in the memory and accessed, depending on the par-
ticular frame format. For example, up-to fourteen CIF frames
(144 x 176) can be stored into the implemented 512 x 1024
storage. This issue is much more beneficial in MPEG-4,
where the arbitrary shaped VOPs to be stored vary both in
size and number for each particular codec session. Synthesis
data for practical MPEG pattern sizes of 2 x4, 4 x 8§, 8 X §,
and 16 x 16-pixels indicate that respective structures can be
efficiently implemented with a fraction of the available FPGA
resources. Only the 16 x 16 pattern creates a resource conflict
with regard to the available IO pins of the chip. This conflict,
however, should not be considered as a problem, since struc-
tures with bandwidth of that magnitude are usually intended
for on-chip implementations. In the “Adders” rows of Table III,
the notation “bits/#” denotes the number of bits in an adder and
the corresponding number of such adders, respectively. Results
indicate that in the most common case of 8 x 8 block patterns,
3287 Virtex II Pro slices are required, which is 13% of the
2vp50ff1152 FPGA device resources.

In Table IV, transfer speedup estimations are presented, as-
suming T1,ap = 10 ns. Calculations are made according to the
figures and notations presented in Table II. In BC, all blocks
are assumed to be nonaligned, while in WC the very unlikely
scenario that all blocks are aligned and accessed only once is
considered. T5p 4 values are derived from the synthesis reports
for the designs considered in Table III. Figures in Table IV in-
dicate that even in the unfavorable case when 2DAM is slower
than the LAM, considerable transfer speedups of up to 8x can
be achieved, due to the proposed memory organization.

KUZMANOV et al.: MULTIMEDIA RECTANGULARLY ADDRESSABLE MEMORY

TABLE V

COMPARISON TO OTHER PROPOSED SCHEMES

321

| Related Work \ scalability | # modules | implementation drawbacks or limitations |
Budnik, Kuck [1] VN x v/N from N x N prime m > N = 2™ mod(m), crossbar, no addressing
Lawrie [3] VN x VN m=2.N; N = 22n+1 mod(m), no addressing
Voorhis, Morin [4] p x q from M x N m>pXq not separable,mod(pq),mod(pq+1),
Kim, Prasanna [5] VN x v/N from N x N m=N certain blocks are inaccessible
De-lei Lee [6] VN x v/N from N x N m=N many modules for higher N
Sproull et al. [8] 8 X8 8% 8 time-space multiplexing, not general
Park [7] p X q from M x N prime m > p X q not separable, many adders, big LUTs
HiPAR-DSP [11], [12] N x N m = (1+ N)? 2 x N + 1 additional modules, mod(m)
HiPAR-DSP16 [14] p X q from M x N m>>pXq big number of modules, mod(m)
This proposal p X q from M X N m=pXgq none of the above, rectangular patterns only

Related Work: Accessing blocks of memory has been a main
concern for vector (array) processors researchers and devel-
opers for long time. Two major groups of memory organizations
for parallel data access have been reported in literature—or-
ganizations with and without data replication (redundancy).
We are interested only in those without data replication. An-
other division is made with respect to the number of memory
modules—equal to the number of accessed data points and
exceeding this number. Organizations with a prime number of
memory modules can be considered as a subset of the latter.
Their essential drawback is that the addressing functions are
nonseparable and are more complex, thus slower and costly to
implement. We have organized our comparison with respect
to block accesses, discarding other data patterns, due to the
specific requirements of visual data compression. It should be
noted, however, that our design can easily support horizontal
and vertical lines of length a x b.

To compare designs, two basic criteria have been estab-
lished: scalability and implementation drawbacks in terms of
speed and/or complexity. Comparison results are summarized
in Table V. Budnik and Kuck [1] described a scheme for con-
flict free access of VN x v/N square blocks out of N x N
arrays, utilizing m > N = 2" memory modules, where m
is a prime number. Their scheme allows the complicated full
crossbar switch as the only possibility for data alignment cir-
cuitry and many costly modulo(m) operations with m not a
power of two. In a publication, related to the development
of the Burroughs Scientific Processor, Lawrie [3] proposes an
alignment scheme with data switching, simpler than a crossbar
switch, but still capable to handle only VN x /N square
blocks out of m = 2N modules, where N = 22*t1 Both
schemes in [1] and [3] require larger number of modules than
the number of simultaneously accessed elements (V). Further-
more, in both papers authors do not describe the addressing cir-
cuitries for their schemes. Voorhis and Morin [4] suggest var-
ious addressing functions considering p X ¢ subarray accesses
and different number of memory modules m: both m = p X ¢
and m > p x gq. Neither of the functions proposed in [4]
is separable, which leads to an extensive number of address
generation and module assignment logic. In [5], the authors
propose a scheme based on Latin squares and capable of ac-
cessing VN x VN square blocks out of N x N arrays but
not from random positions. Similar drawbacks has the scheme
proposed in [6]. One early graphical display system, described
in [8], can be considered a partial case of our scheme, since
authors describe square 8 x 8 submatrix accesses and memory

alignment similar to the proposed in our scheme. The authors
in [8] did not consider rectangular subarray accesses, which
are not directly deducible from the proposed reading. No for-
malization of the addressing functions was presented either. A
more recent display system memory, capable of simultaneous
access of p X ¢ rectangular subarrays is described in [7]. It
utilizes a prime number of memory modules, which enables
accesses to numerous data patterns, but disallows separable
addressing. Large LUTs (in size and number) and long critical
paths containing consecutive additions are the other drawbacks
of [7]. Therefore, it is slower and requires more memory mod-
ules than our proposal. A memory organization, capable of ac-
cessing N x N square blocks, aligned into (1 + N)? memory
modules was described in [11]. The same scheme was used for
the implementation of the matrix memory of the first version
of HIPAR-DSP [12].Besides the restriction to square accesses
only, that memory system uses a redundant number of modules,
due to additional DSP-specific access patterns considered. A
definition of rectangular p x g block random addressing scheme
from the architectural point of view dedicated for multimedia
systems was introduced in [13], but no particular organization
was presented there. In the latest version of HiPARI16 [14],
the matrix memory was improved so that a restricted number
of rectangular patterns could also be accessed. This design,
however, still uses excessive number of memory modules as p
and M respectively g and N should not have common divisors;
e.g., to access the example 2 x 4 pattern, the HIPAR16 memory
requires 3 X 5 = 15 memory modules, instead of eight for our
proposal. The memory of [14] would require more-complicated
circuitry. Similarly to [8], [12], [14] assume separability, how-
ever, the number of utilized modules is even higher than the
closest prime number to p X g. An alternative solution, proposed
in [15], is the utilization of hardwired register buffers. Such an
approach is limited by the implementable registers size and
high routing complexity - in contrast to the current proposal,
which allows arbitrary larger data to be accessed. Compared
to [1], [3], [5]-[8], [11], [12], [14], our scheme enables higher
scalability and lower number of memory modules. This di-
rectly affects the design complexity, which has been proven to
be very low in our case. Address function separability reduces
the number of address generation logic and critical path penal-
ties, thus it enables faster implementations. Regarding address
separability, we differentiate from [1], [3]-[7], where address
separability is not supported. As a result, our design is envi-
sioned to have the shortest critical path penalties among all
referenced works.

322

V. CONCLUSION

We presented a scalable memory organization capable of
addressing randomly aligned rectangular data patterns out of
a 2-D data storage. High performance is achieved by reduced
number of data transfers between memory hierarchy levels,
efficient bandwidth utilization, and short hardware critical
paths. In the proposed design, data are located in an array of
byte addressable memory modules by an addressing function,
implicitly containing module assignment functions. An inter-
face to a linearly addressable memory has been provided to load
the array of modules. Theoretical analysis and experimental
evidence suggest that the proposed 2-D addressing scheme has
advantages over existing related art.

ACKNOWLEDGMENT

The authors would also like to thank J. P. Wittenburg for his
valuable opinion, which helped to improve the quality of this
material.

REFERENCES

[1] P. Budnik and D. J. Kuck, “The organization and use of parallel memo-
ries,” IEEE Trans. Comput., vol. 20, no. 12, pp. 1566—1569, 1971.

[2] P. M. Kogge, The Architecture of Pipelined Computers. New York:
McGraw-Hill, 1981.

[3] D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145-1155, 1975.

[4] D. C. van Voorhis and T. H. Morrin, “Memory systems for image pro-
cessing,” IEEE Trans. Comput., vol. C-27, no. 2, pp. 113-125, 1978.

[5] K. Kim and V. K. Prasanna, “Latin squares for parallel array access,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 4, pp. 361-370, 1993.

[6] D.lei Lee, “Scrambled Storage for Parallel Memory Systems,” in Proc.
IEEE Int. Symp. Computer Architecture, 1988, pp. 232-239.

[7]1 J. W. Park, “An efficient buffer memory system for subarray access,”
IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 3, pp. 316335, 2001.

[8] R.FE. Sproull, I. Sutherland, A. Thomson, S. Gupta, and C. Minter, “The
8 by 8 display,” ACM Trans. Graph., vol. 2, no. 1, pp. 32-56, 1983.

[91 MPEG-4 Video Verification Model Version 16.0. ISO/IEC

JTC11/SC29/WG11, N3312.

S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov,

and E. M. Panainte, “The molen polymorphic processor,” IEEE Trans.

Comput., vol. 53, no. 11, pp. 1363-1375, 2004.

J. Kneip, K. Ronner, and P. Pirsch, “A data path array with shared

memory as core of a high performance DSP,” in Proc. Int. Conf. on

Application Specific Array Processors, Aug. 1994, pp. 271-282.

J. P. Wittenburg, M. Ohmacht, J. Kneip, W. Hinrichs, and P. Pirsh,

“HiPAR-DSP: A parallel VLIW RISC processor for real time image

processing applications,” in Proc. 3rd Int. Conf. on Algorithms and

Architectures for Parallel Processing (ICAPP 97), Dec. 1997, pp.

155-162.

G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven, “A 2D addressing

mode for multimedia applications,” in Workshop on System Architec-

ture, Modeling, and Simulation (SAMOS 2001), vol. 2268, July 2001,

pp- 291-306.

[10]

[11]

[12]

[13]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 2, APRIL 2006

[14] H. Kloos, J. Wittenburg, W. Hinrichs, H. Lieske, L. Friebe, C. Klar,
and P. Pirsch, “HiPAR-DSP 16, a scalable highly parallel DSP core for
system on a chip: Video and image processing applications,” in Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3,
May 2002, pp. 3112-3115.

M. B. Haverkamp, G. Kuzmanov, and S. Vassiliadis, “Implementing 2D
memory buffers for MPEG,” PRORISC 2003, pp. 90-94, Nov. 2003.

[15]

Georgi Kuzmanov (S’95-M’05) was born in Sofia,
Bulgaria, in 1974. He received the M.Sc. degree in
computer systems from the Technical University of
Sofia in 1998 and the Ph.D. degree in computer en-
gineering from Delft University of Technology (TU
Delft), Delft, The Netherlands, in 2004.

Between 1998 and 2000, he was with Info Mi-
croSystems Ltd., Sofia, where he was involved in
several reconfigurable computing and ASIC projects
as a Research and Development engineer. He is
currently with the Computer Engineering Laboratory
at TU Delft. His research interests include reconfigurable computing, media
processing, computer arithmetic, computer architecture and organization,
vector processors, and embedded systems.

Georgi Gaydadjiev (M’01) was born in Plovdiv,
Bulgaria, in 1964.

He is currently an Assistant Professor with the
Computer Engineering Laboratory, Delft University
of Technology (TU Delft), The Netherlands. His
research and development experience includes 15
years in hardware and software design at System
Engineering Ltd., Pravetz, Bulgaria, and Pijnen-
burg Microelectronics and Software B.V., Vught,
The Netherlands. His research interests include
embedded systems design, advanced computer ar-
chitectures, hardware/software co-design, VLSI design, cryptographic systems,
and computer systems testing.

Stamatis Vassiliadis (M’86-SM’92-F’97) was born
in Manolates, Samos, Greece, in 1951.

He is currently a Chair Professor in the Electrical
Engineering, Mathematics, and Computer Science
(EEMCS) Department, Delft University of Tech-
nology (TU Delft), The Netherlands. He previously
served in the Electrical Engineering faculties of Cor-
nell University, Ithaca, NY, and the State University
of New York (SUNY), Binghamton. For a decade,
he worked with IBM, where he was involved in
a number of advanced research and development

projects.

Dr. Vassiliadis has received numerous awards for his work, including 24 pub-
lication awards, 15 invention awards, and an outstanding innovation award for
engeneering/scientific hardware design. His 72 U.S. patents rank him as the top
all-time IBM inventor. He received an honorable mention Best Paper award at
the ACM/IEEE MICRO25 in 1992 and Best Paper awards in the IEEE CAS
(1998), IEEE ICCD (2001), and PDCS (2002).

	toc
	Multimedia Rectangularly Addressable Memory
	Georgi Kuzmanov, Member, IEEE, Georgi Gaydadjiev, Member, IEEE,
	I. I NTRODUCTION

	Fig.€1. Addressing problem in LAM. (a) Pixels in a video frame.
	II. M OTIVATION
	The Addressing Problem A Motivating Example: Most of the MPEG da

	TABLE I N UMBER OF LAM C YCLES IN D IFFERENT C ASES
	General Problem Introduction and Proposed Solution: Consider a L

	Fig.€2. Memory hierarchy with 2DAM.
	TABLE II A CCESS T IME P ER $n \times n$ B LOCK IN LAM C YCLES,
	Fig.€3. Mapping scan-lines into 2-D addresses (considered exampl
	III. B LOCK A DDRESSABLE M EMORY
	Addressing Scheme: Assume $M \times N$ image data stored in $k =
	Example: Consider the motivating example of Section€II and the p

	Fig.€4. Examples for $a=2, b=4, N=16$. (a) Module assignments o
	Fig.€5. The 2DAM for $a=2, b=4$, and $N=2^n\ge 16$.
	Memory Organization and Implementation: Equations (2) (4) are ge
	Module Addressing: The module addressing function is separable t
	Data Routing Circuitry: In Fig.€5, the shuffle blocks, together
	2DAM Capacity: Earlier, we have defined the horizontal capacity
	LAM Interface: Fig.€7 depicts the organization of the interface

	Fig.€6. Module address generation. (a) Generation Circuit of q-a
	Fig.€7. LAM interface for $W=2, a=2, b=4$.
	Addressing Consistency: In the following, we will prove that the
	Lemma 1: $x\ {\bmod}\ z=x-n\cdot z\ {\rm iff}\ 0\leq x-n\cdot z
	Proof: 1. If $x\ {\bmod}\ z=x-n \cdot z \Rightarrow 0\leq x-n\cd

	Lemma 2: $(x-y)\ {\bmod}\ z=(x\ {\bmod}\ z-y)\ {\bmod}\ z; \fora
	Proof: By definition $x\ {\bmod}\ z = x- n1 \cdot z$ and $(x\ {\

	Lemma 3: $(x\ {\rm div}\ y)\cdot y=x-x\ {\bmod}\ y; \forall x,y
	Proof: $$ \left\Vert \matrix{ x\ {\bmod}\ y=p & & (x\ {\rm div}\

	Theorem 1: (Consistency between the 2DAM and the LAM addressing
	Proof: (Consistency of module assignments.) Consider byte $(i^\p

	Example: We consider a single (arbitrary chosen) byte and show t
	Critical Paths: Assuming generic synchronous memories we separat
	IV. E XPERIMENTAL R ESULTS AND R ELATED W ORK
	Case Study: A generic VHDL model of the memory organization has

	TABLE III S YNTHESIS FOR F RAMES UP - TO 512 $\,\times\,$ 1024 (
	TABLE IV E STIMATED T RANSFER S PEEDUPS FOR $T_{\rm LAM}=10$ ns.
	TABLE V C OMPARISON TO O THER P ROPOSED S CHEMES
	Related Work: Accessing blocks of memory has been a main concern
	V. C ONCLUSION
	P. Budnik and D. J. Kuck, The organization and use of parallel m
	P. M. Kogge, The Architecture of Pipelined Computers . New York:
	D. H. Lawrie, Access and alignment of data in an array processor
	D. C. van Voorhis and T. H. Morrin, Memory systems for image pro
	K. Kim and V. K. Prasanna, Latin squares for parallel array acce
	D. lei Lee, Scrambled Storage for Parallel Memory Systems, in Pr
	J. W. Park, An efficient buffer memory system for subarray acces
	R. F. Sproull, I. Sutherland, A. Thomson, S. Gupta, and C. Minte

	MPEG-4 Video Verification Model Version 16.0 . ISO/IEC JTC11/SC2
	S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzman
	J. Kneip, K. Ronner, and P. Pirsch, A data path array with share
	J. P. Wittenburg, M. Ohmacht, J. Kneip, W. Hinrichs, and P. Pirs
	G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven, A 2D address
	H. Kloos, J. Wittenburg, W. Hinrichs, H. Lieske, L. Friebe, C. K
	M. B. Haverkamp, G. Kuzmanov, and S. Vassiliadis, Implementing 2

