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Abstract—We address the problem of recognizing sequencesretrieval purposes [38], [22], e.g., to structure a meeting into
of hum_an interac_tion patterns in meetings, Wi_th the goal of g sequence of high-level items.
structuring them in semantic terms. The investigated pattems | naraction in meetings is inherently group-based [24] and
are inherently group-based (defined by the individual activities . . . .
of meeting participants, and their interplay), and multimodal (as Multimodal [16]. In the first place, we can view a meeting
captured by cameras and microphones). By defining a proper @s a continuous sequence of mutually exclusive group actions
set of individual actions, group actions can be modeled as ataken from an exhaustive set [22], [7]. Each of these group
two-layer process, one that models basic individual activities gctions involves multiple simultaneous participants, and is thus
from low-level audio-visual features, and another one that models ;. ity constrained by the actions of the individuals. In the
the interactions. We propose a two-layer Hidden Markov Model T o .
(HMM) framework that implements such concept in a principled  S€€ONd place, as the principal modality in meetings, speech has
manner, and that has advantages over previous works. First, by recently been studied in the context of interaction modeling
decomposing the problem hierarchically, learning is performed [13], [39], [7]. However, work analyzing the benefits of mod-
on low-dimensional observation spaces, which results in simpler eling individual and group actions using multiple modalities
models. Second, our framework is easier to interpret, as both has been limited [1], [22], [23], [32], despite the fact that
individual and group actions have a clear meaning, and thus . . . S .
easier to improve. Third, different HMM models can be used in actions in meetings, both at the individual (e.g., note-taking
each layer, to better reflect the nature of each subproblem. Our Or talking), and at the group level (e.g. dictating) are often
framework is general and extensible, and we illustrate it with defined by the joint occurrence of specific audio and visual
a set of eight group actions, using a public five-hour meeting patterns.
gorpu_s. Experiments ar_1d comparison with a single-layer HMM In this paper, we present a two-layer HMM framework for
aseline system show its validity. - R . .
o _ _ group action recognition in meetings. The fundamental idea
Index Terms— Statistical models, multimodal processing and s that, by defining an adequate set of individual actions,
multimedia applications, human interaction recognition. we can decompose the group action recognition problem into
two levels, from individual to group actions. Both layers use
|. INTRODUCTION ergodic HMMs or extensions. The goal of the lower layer is
Devising computational frameworks to automatically infeto recognize individual actions of participants using low-level
human behavior from sensors constitutes an open problemaldio-visual (AV) features. The output of this layer provides
many domains. Moving beyond the person-centered paradigte input to the second layer, which models interactions.
[36], recent work has started to explore multi-person scenaridggividual actions naturally constitute the link between the
where not only individual but also group actions or interactiodgw-level audio-visual features and high-level group actions.
become relevant [11], [14], [31], [1]. Similarly to continuous automatic speech recognition, we per-
One of these domains is meetings. The automatic analytsi§m group action recognition directly on the data sequence,
of meetings has recently attracted attention in a number @griving the segmentation of group actions in the process. Our
fields, including audio and speech processing, computer visi@pproach is general, extensible, and brings improvement over
human-computer interaction, and information retrieval [18previous work, which reflects on the results obtained on a
[38], [27], [3], [35], [4], [22]. Analyzing meetings poses apublic meeting corpus, for a set of eight group actions based
diversity of technical challenges, and opens doors to a numliggr multimodal turn-taking patterns.
of relevant applications. The paper is organized as follows. Section Il reviews related
Group activity plays a key role in meetings [38], [27]work. Section Il introduces our approach. Section IV and
and this is documented by a significant amount of work ifiection V describe the meeting data and the feature extraction
social psychology [24]. Viewed as a whole, a group shargsocess respectively. Experiments and discussion are presented
information, engages in discussions, and makes decisions, proSection VI. Conclusions are drawn in Section VII.
ceeding through diverse communication phases both in single
meetings and during the course of a long-term teamwork [24]. 1

Recognizing group actions is therefore useful for browsing and
Current approaches to automatic activity recognition define
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involving few people [31], [14] has been investigated usingf low-level actions is a model parameter learned during
visual features [15], [14], [31], [36], [40], although some workraining, or set by hand, which makes the structure of the
on the speech community can also be categorized as intenamodels difficult to interpret. The other work closest to ours
tion recognition [13], [39]. In [13], recognition of a specificis [30], in which layered HMMs were proposed to model
kind of interaction in meetings (agreement vs. disagreementlltimodal office activities involving mainly one person at
has been addressed using both word-based features (suchasasus time granularities. The lowest layer captured one video
the total number of words, and the number of “positive” andnd two audio channels, plus keyboard and mouse activity
“negative” keywords), as well as prosodic cues (such as paufestures; the middle layer classifies AV features into basic
frequency and duration). In [39], the relationship between “hevents like“speech”,"music”, “one person”, “nobody” , etc.
spots” (defined in terms of participants highly involved irFinally, the highest layer uses the outputs of previous layers
the discussion) and dialogue acts has been examined ugsmgecognize office activities with longer temporal extent. In
contextual features (such as speaker identity or type of tthés way, actions at different semantic levels and with different
meeting) and lexical features (such as utterance length dimde granularities have been modeled with a cascade pyramid
perplexity). of HMMs. This hierarchical representation has been tested
To our knowledge, however, little work has been conductéd SEER, a real-time system for recognizing typical office
on recognition of group-based, multi-modal actions from muéctivities, and produced improvement over a simple baseline
tiple audio-visual streams captured by cameras and micieMM.
phones [1], [22], [23]. [1] described automatic discovery of The solution we present to the problem of group action
“influence” in a lounge room where people played interactivecognition is novel. On one hand, unlike our previous work
debating games. The so-called influence model, a Dynanmi#2], [23], the framework presented here explicitly models
Bayes Network (DBN) which models group interactions as &ctions at different semantic levels (from individual to group
group of Markov chains, each of which influences the otherigvel) at the same time scale. This layered structure coincides
state transitions, has been applied to determine how muetth the structure of meetings as modeled in social psychology,
influence each participant has on the others. Furthermore, that is, that meetings comprise individual actions and interac-
previous work presented different statistical sequence modgétss [24]. On the other hand, our ultimate goal -modeling
to recognize turn-taking patterns in a formal meeting roogroup activity- is different than that of [30]. Since the two
scenario, where people discuss around a table and usélMM layers are trained independently, our framework is easy
white-board and a projector screen [23], [22]. The analysis tif interpret and enhanced at each of the levels. Unlike [30], we
multimodal group interactions has been explicitly addressédve studied a number of models suitable for multimodal data.
without distinguishing actions at individual and group leveld-or example, for the individual action layer, we use multi-
Regarding statistical models, most of the existing work hasream HMMs [9] and asynchronous HMMs [2], which are
used Hidden Markov Models (HMMs) [34] and extensionsnore suitable to model multimodal asynchronous sequences.
including coupled HMMs, input-output HMMs, multi-streamFurthermore, the type of sensors is also different. For our
HMMs, and asynchronous HMMs (see [29] for a recent revieproblem, the proposed work has a number of advantages, as
of models). Although the basic HMM, a discrete state-spadescribed in the next section. A prelimary version of our work
model with an efficient learning algorithm, works well forwas first reported in [43].
temporally correlated sequential data, it is challenged by a
large number of parameters, and the risk of overfitting when I1l. GROUPACTION RECOGNITION
learned from limited data [30]. This situation might occur in

h ¢ multimodal " i h i th In this section, we first introduce our computational frame-
€ case ol multimodal group action recognition Where, In thi, . \ve then apply it to a specific set of individual and group

simplest case, possibly large vectors of AV features from eaﬁ@tions. Finally, we describe some specific implementation
participant are concatenated to define the observation SPALE '

221, [23]. ails.

The above problem is general, and has been addressed )
using hierarchical representations [41], [7], [30]. In [41]A- Framework Overview
an approach for unsupervised discovery of multilevel video Our framework is based on the use of Hidden Markov
structures using hierarchical HMMs was proposed, in thdodels (HMMs) and some of their extensions. HMMs have
context of sports videos. In this model, the higher-level strubeen used with success for numerous sequence recognition
ture elements usually correspond to semantic events, whieks, including speech recognition [34]. HMMs introduce
the lower-level states represents variations occurring withan hidden state variable and factorize the joint distribution
the same event. In [7], two methods for meeting structuof a sequence of observations and states using two simpler
ing from audio were presented, using multilevel DBNs. Theistributions, namely emission and transition distributions.
first DBN model decomposed group actions in meetings &sich factorization yields efficient training algorithms such
sequences of sub-actions, which have no explicit meaniag the Expectation-Maximization algorithm (EM) [5], which
and were obtained from training process. The second DBfdn be used to select the set of parameters to maximize
model processed independently features of different natutiee likelihood of several observation sequences. In our work,
and integrate them at higher level. In both [41], [7], the lowwe use Gaussian Mixture Models (GMMSs) to represent the
level actions have no obvious interpretation, and the numhbamission distribution.



JOURNAL OF IEEE TRANSACTION ON MULTIMEDIA 3

(Person 1 AV Featuresk—{1-HW 1 cases of limited amount of training data. (2) The I-HMMs
(Person 2 Av Features) are person-independent, and in practice can be trained with
: much more data from different persons, as each meeting
: provides multiple individual streams of training data. Better
(Person N Av Features}; generalization performance can then be expected. (3) The G-
( @oup AV Features } HMMs are less sensitive to slight changes in the low-level
features because their observations are the outputs of the
Fig. 1. Two-layer HMM framework individual action recognizers, which are expected to be well
trained. (4) The two layers are trained independently. Thus, we
can explore different HMM combination systems. In particular,
The success of HMMs applied to sequences of actionsvi@ can replace the baseline I-HMMs with models that are
based on a careful design of sub-models (distributions) corffiore suitable for multi-modal asynchronous data sequences,
sponding to lexical units (phonemes, words, letters, actiong)ith the goal of gaining understanding of the nature of the
Given a training set of observation sequences representiiigga (Section 11I-C.1). The framework thus becomes simpler
meetings for which we know the corresponding labeling (bt understand, and amenable to improvements at each separate
not necessarily the precise alignment), we create a new HMdel. (5) The framework is general and extensible to recognize
for each sequence as the concatenation of sub-model HMNgwv group actions defined in the future.
corresponding to the sequence of actions. This new HMM can
then be trained using EM and will have the effect of adaptin o ]
each sub-model HMM accordingly. When a new sequen&e Definition of Actions
of observation features of a meeting becomes available, theAs an implementation of the proposed framework, we
objective is to obtain the optimal sequence of sub-modgkfine a set of group actions and individual actions in this
HMMs (representing actions) that could have generated thection. On one hand, a set of group actions is defined based
given observation sequence. An approximation of this can ba multi-modal turn-taking patterng23]. A solid body of
done efficiently using the well-known Viterbi algorithm [37].work in social psychology has confirmed that, in the context
This process therefore leads to the recognition of actioo$ group discussions, speaker turn patterns convey a rich
directly on the data sequence, generating the action boundasigsunt of information about the dynamics of the group and
in the process. the individual behaviour of its members, including trends of
In our framework, we distinguish group actions (whictinfluence, dominance, and interest [24], [33], [10]. While
belong to the whole set of participants) from individual actionspeaking turns are described mainly by audio information,
(belonging to specific persons). Our ultimate goal is thsignificant information also exists in non-verbal cues. Work in
recognition of group activity, and so individual actions shoulthe literature has studied how participants coordinate speaking
act as the bridge between group actions and low-level featuresns via an ensemble of multimodal cues, such as gaze,
thus decomposing the problem in stages. The definition of batheech back-channels, changes in posture, etc. [33], [21]. From
action sets is thus clearly intertwined. a different perspective, recognizing multimodal group turn-
Let -HMM denotes the lower recognition layer (individualtaking is also useful for meeting structuring, for access and
action), and G-HMM denotes the upper layer (group actiormetrieval purposes.
I-HMM receives as input AV features extracted from each par- The list of group actions is defined in Table I. Note that
ticipant, and outputs recognition results, either as soft or hasg consider @monologue” or a “presentation” as a group
decisions (Section III-C). In turn, G-HMM receives as inpuéction, because we define it as the joint occurrence of several
the output from I-HMM, and a set ajroup featuresdirectly individual patterns (e.g., one person speaks while the others
extracted from the raw streams, which are not associated to disen to her). For meeting browsing and indexing, it might
particular individual. In our framework, each layer is trainetde also desirable to know which specific participant is doing
independently, and can be substituted by any of the HM& monologue in the meeting. Therefore, we further divide
variants that might capture better the characteristics of the dat& “monologue” action into“monologuel”, “monologue?2’,
more specifically asynchrony [2], or different noise conditionstc., according to the number of participants. In a similar
[9] between the audio and visual streams. Our approachway, we divide the“monologue+note-taking” action into
summarized in Figure 1. The training procedure is describ&tionologuel+note-taking”, “monologue2+note-taking'and
in Section IlI-C. so on. Thus, for a four-participant meeting, a sef\Nof = 14
Compared with a single-layer HMM, the layered approadjroup actions has been defined a%&; = {discussion, mono-
has the following advantages, some of which were previoudhguel, monologuel + note-taking, monologue2, monologue2
pointed out by [30]: (1) a single-layer HMM is defined ont note-taking, monologue3, monologue3 + note-taking, mono-
a possibly large observation space, which might face thmgue4, monologue4 + note-taking, note-taking, presentation,
problem of overfitting with limited training data. It is importantpresentation + note-taking, whiteboard, whiteboard + note-
to notice that the amount of training data becomes an issudaking} . These group actions are multimodal, and commonly
meetings where data labeling is not a cheap task. In contrdstnd in meetings. For modeling purposes, they are assumed
the layers in our approach are defined over small-dimensiotal define a partition (i.e., the action set is non-overlapping
observation spaces, resulting in more stable performanceaimd exhaustive). This set is richer compared to the one that
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TABLE | TABLE Il
DESCRIPTION OF ACTIONS RELATIONSHIPS BETWEEN GROUP ACTIONSINDIVIDUAL ACTIONS AND
GROUP FEATURES THE SYMBOL “x’/ INDICATES THAT THE WHITE-BOARD
Group action description OR PROJECTOR SCREEN ARE IN USE WHEN THE CORRESPONDING GROUP
Discussion | most participants engaged in a conversatjon ACTION TAKES PLACE. SYMBOL “/’ INDICATES THAT THE NUMBER OF
Monologue one participant speaking PARTICIPANTS FOR THE CORRESPONDING ACTION IS NOT CERTAINTHE
continuously without interruption

Mon0|ogue+ one panicipan[ Speaking Con[inuous|y NUMBERS(O,l,...)|ND|CATE THE NUMBER OF MEETING PARTICIPANTS
Note-taking others taking notes INVOLVED IN THE GROUP ACTION.

Note-taking most participants taking notes

: one participant presenting _ _
Presentation using the projector screen Group Actions Individual Actions | Group Features
Presentation+ one participant presenting using _ _ speakingriting’ idle white-boarfprojecto
Note-taking projector screen, others taking notes d|scu|53|0n >12 (/) ;
. one participant speaking monologue

White-board using the white-board monologue+note-taking 1 | >=1| /
White-board+ one participant speaking using note-taking 0 | >2| 0

Note-taking white-board, others taking notes presentaton | 1 0 ! *

Individual action description presenta'tlon+note-tak|ng 1 >=1 / *
Speaking one participant speaking hit vt\,/hlte(ﬁoa:d taki } (i 1 ; *
Writing one participant taking notes whité-board+note-taxing >= *
Idle one participant neither speaking nor writing

_ . o . the following symbols:
we defined in [23], as it includes simultaneous occurrence

of actions, like"monologuetnote-taking” which could occur
during real situations, like dictating or minute-taking. The
group actions we defined here can be easily described by
combinations of a proper set of individual actions defined in
the following. Our framework is general, and other type of * * )
group actions could be defined. Note that high-level group V|§ual stream) up to “F“e-
: ) . . ¢ the HMM state at time t
actions in semantic terms (e.g. agreement / disagreement)
would certainly require language-based features [13] 1) Individual Action Models:We investigate three models
On the other hand, we define a small set §f = 3 for the lower-layer I-HMM, each of which attempts to model
multimodal individual actions which, as stated earlier, wilspecific properties of the data. For space reasons, the HMM
help bridge the gap between group actions and low-levéodels are described here briefly. Please refer to the original
AV features. The list appears in Table I. While the list ofeferences for details [34], [9], [2]. The investigated models
potentially interesting individual actions in meetings is largéire:
our ultimate goal is recognition of the group-level actions. It is Early Integration HMM (Early Int.) where a basic HMM
interesting to note that, although at first glance one would ni@4] is trained on combined AV features. This method involves
think of “speaking” or “writing” as multimodal, joint sound aligning and synchronizing the AV features to form one
and visual patterns do occur in these cases and are usefut@ncatenated set of features which is then treated as a single
recognition, as the results in later sections confirm. stream of data. The concatenation simply defines the audio-
Finally, meeting rooms can be equipped with white-boardésual feature space as the cartesian product of the audio
or projector screens which are shared by the group. Extragnd video feature spaces, creating vectors which first contain
ing features from these group devices also helps recognike components of the audio feature vector, followed by the
group actions. They constitute the group features describeemponents of the video feature vector. Early integration
in the previous subsection. Their detailed description will bgelects the set of parametets of the model corresponding
presented in section V. to action: that maximizes the likelihood of. audio-visual
The logical relations between individual actions, groupbservation sequences as follows:
actions, and group features are summarized in Table Il. The .
group actions can be seen as combinations of individual ac- _ atv
tions plus states of group devices. For examfpegsentation 07 = arg me?XH P(O;7710:). (3
+ note-taking” can be decomposed intspeaking” by one
individual, with more than onéwriting” participant, while  Audio-visual Multi-Stream HMM (MS-HMM)which com-
the group device oprojector screenis in use. Needless to bines the audio-only and visual-only streams. Each stream is
say, our approach is not rule-based, but Table I is useful teodeled independently); = (0;,,0;,) are the best model
conceptually relate the two layers. parameters for action to maximize the likelihood of audio-
only and visual-only sequences respectively,

o O%: a sequence of audio-only feature vectors.

« OV: a sequence of visual-only feature vectors.

04%**: a sequence of concatenated audio-visual feature
vectors.

01.; £ 01,09,...,0,: a sequence (audio, visual, or audio-

=1

C. Implementing the Two-layer Framework

L
In this section, we present some details about the architec- 07 = arg maxHP( 910 ), @)
ture of our framework. To facilitate description, we first define b Oia -7 ’
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L and being in the stateat time¢. We denote this probability

Oiv = argmaXHP( (103.0)- ©) as p(i,t). For different I-HMMs, the probabilityp(i,t) is

Oi v 7
he final classification i :3_1 d he fusi . computed in different ways.
The final classification is based on the fusion of the outputs_ Early integration normal HMM

of both modalities by estimating their joint occurrence [9], as
follows: p(i,t) = afi,t), (6)

P(O§"|q;) = P(OF|gs,0:,0)° P(O} |gr, 0:.,) %), (4) wherea(i, t) £ P(oy.,q = i) is the forward variable in
the standard Baum-Welch algorithm [34);.; could be
audio-only, visual-only or audio-visual stream.

o Multi-stream HMM:

where the weighting factow (0 < w < 1) represents the
relative reliability of the two modalities.

Audio-visual Asynchronous HMM (A-HMMwhich also
combines the audio-only and visual-only streams, by learn- p(i,t) = P(0%4,07.4,q =1) @)
ing the joint distribution of pairs of sequences when these = P(o%,,q =i)*P(o',,q =)', (8)
sequences are not synchronized and are not of the same length
or rate [2]. This situation could occur in the meeting scenario Where of,; is the audio-only sequence and,, is the
at the group level when, for instance, an individual starts Visual-only sequencew is the weighting factor defined
playing her role before the rest of the group. A similar situation ~ in Equation (4).
could happen at the individual level between the audio and® Asynchronous HMM:

visual streams. For instance, it is known that the movements t+At
of the face are not synchronized with the actually uttered p(i,t) = Z P(of.,,0y.,qt =i, 7t = 8), 9
speech of a person [20]. Furthermore, in a conversational s=t—At

setting, a person tends to move before taking a turn, and often
stops gesticulating before finishing speaking as a turn-yielding
signal [8]. Being able to stretch some streams with respect
to others at specific points could thus yield performance
improvement. The A-HMM for actioni models the joint
distribution of the two streams by maximizing the likelihoo
of L observation sequences as follows:

where At is the size of a sliding window centered at
current timet. The variabler; = s can be seen as the
alignment between sequeno&, andoy...

In the second step, we normalize the probabifity, ¢) for

d’;lll states of all the models. The probabilities of all states for
all models sum up to one,

Ns
L
* a vig. ZP(Qt:]):L (10)
07 = argn}fxllj[lp( [ Or16:). ) =
Furthermore, while normal HMM optimization technique

integrate the likelihood of the data over all possible values 8

ézvhereNS is the number of all states for all models. Then the
fobabilityP(qt =i|o;.;) of statei given a sequence;.; is

the hidden variable (which is the value of the state at each time Plg = ilov) = P(g =4,01.¢) (11)
step), asynchronous HMMs also integrate this likelihood over 9 =o1t) = P(o1.)
all possible alignments between observation sequences, adding P(q, =i,01.4)

_ 1ents be . o - L (12)
a new hidden variable; = s meaning that observatiost is ZNS P(gr = j,o1)
aligned with observatiom?. With the hidden variable; and g=1 M= 0, 0Lt
using several reasonable independence assumptions, the model _ p(i,t) . (13)
in [2] can factor the joint likelihood of the data and the hidden Zé\’jl (4, 1)

variables into several simple conditional distributions, whicgl. . S .
makes the model tractable using the EM algorithm. The Viter| |Ith this, the probabilityP; of model M} given a sequence

algorithm can be used to obtain the optimal state sequenceoéfé is then computed as

well as the alignment between the two sequences. Pl = Z P(q =ilo1) (14)
2) Linking the Two Layers:Obviously, a mechanism to iE€M,,

link the two HMM layers has to be specified. There are two p(i, 1)

approaches to do so, based on different I-HMM outputs. Let = Z SN 1) (15)

at = (af,...,dly,) € R™" denote a vector in a continuous ieMy, 2vj=1 P>

space of dimension equal to the number of individual actiomgherei is the state in model;, which is a subset of the

(N7), which indicates the degree of confidence in the recogtates of all models, aniis is the total number of states. The

nition of each individual action at timefor a sequence; ;. probability P} of model M/, is the sum of the probabilities of
The first approach directly outputs the probabil for all states in model\.

each individual action modeM;,k = 1,...,N;, as input  Inthe second approach, the individual action model with the

feature vector to G-HMMgal, = P} for all k. We refer to highest probability outputs a value bfwhile all other models

it as soft decision output a zero value. The vector generated in this way is used
In soft decision, the probability?} of model M) given as input to G-HMM. We refer to it abard decision

a sequence;.; is computed in two steps. In the first step, We concatenate the individual recognition vectors from

we compute the probability of having generated the sequerdalk participants, together with the group-level features, into
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Person-specific visual featureBor each video frame, the
raw image is converted to a skin-color likelihood image, using
a 5-component skin-color Gaussian mixture model (GMM).
We use the chromatic color space, known to be less variant to
the skin color of different people [42]. The chromatic colors
are defined by a normalization process= ﬁ,g =
ﬁ. Skin pixels were then classified based on thresh-
olding of the skin likelihood. A morphological postprocessing
step was performed to remove noise. The skin-color likelihood
image is the input to a connected-component algorithm (flood
filling) that extracts blobs. All blobs whose areas are smaller
. . . than a given threshold were removed. We use 2-D blob features
?u(r]:éeT é\;P p;rii\fzci;; ;;]cti;mzr;s(;?;al i\slefr;[gr d(;,r;h:r:gg o 'Softr;ﬁe to represent each participant in the meeting, assuming that the

features) as obs,ervationg to G-HMM for arou actio%XtraCted b_Iol?s correspond to human faces and hands. Flrs_t, we
group fea group use a multi-view face detector to verify blobs corresponding
recognition. to the face. The blob with the highest confidence output
by the face detector is recognized as the face. Among the

IV. MEETING DATA remaining blobs, the one that has the rightmost centroid

We used the publicly available meeting corpus we firforizontal position is identified as the right hand (we only
described in [22], which was collected in a meeting roorfXtracted features from the right hands since the participants in

equipped with synchronized multi-channel audio and viddB€ corpus are predominately right-handed). For each person,
recorders (publicly available &ttp://mmm.idiap.ch/ ~ the .d.etected face blpp is represented by its v_ertlcal centroid
The sensors include three fixed cameras and twelve micRSition and eccentricity [36]. The hand blob is represented
phones [26]. Two cameras have an upper-body, frontal view B i_ts_ horizontal cer_1troid pogition, eccentricity, a_nd angle.
two participants including part of the table. A third wide-viewdditionally, the motion magnitude for head and right hand

camera captures the projector screen and white-board. AuBl§ &/So extracted and summed into one single feature.
was recorded using lapel microphones for all participants, Person-specific audio featuredsing the microphone array

and an eight-microphone array placed in the center of tgad the lapels, we extracted two types of person—_specific audio

table. The complex nature of the audio-visual informatioffatures. On one hand, speech activity was estimated at four
present in meetings will be better appreciated by Iookirﬁfated Iocatl_ons, from the microphone array wave_forms. The

directly at the above website. A snapshot of the three camé&@@ted locations are expressed as 3-D vectors in Cartesian
views, and the visual feature extraction is shown in Figuf@ordinates, measured with respect to the microphone array in
2. The corpus consists of 59 short meetings at five-minu@slr meeting room. T_hese vectors correspond to the location

average duration, with four participants per meeting. THEhere people are typically seated. One measure was computed
group action structure was scripted before recording, so pRR" Seat location. The speech activity measure coming from

of the group actions labels we define were already availalj@ch seated location was the SRP-PHAT (Steered Response
as part of the corpus. However, we needed to relabel tR@Wer-Phase Transform) measure, an increasingly popular
rest of the group actions (e.gionologuesnto either mono- technique used for acoustic source localization due to its

logues or monologues note-taking, and to label the entire suitability for reverberant environments [6]. SRP-PHAT is

corpus in terms of individual actions. All ground-truth wa& continuous value that indicates the speech activity at a
produced usingAnvil, a publicly available video annotationParticular location. On the other hand, three acoustic features
tool (http://www.dfki.de/ ~kipp/anvil/ ). were estimated from each lapel waveform: energy, pitch and

speaking rate. We computed these features on speech seg-

ments, setting a value of zero on silence segments. Speech

segments were detected using the microphone array, because
In this section, we describe the process to extract the titois well suited for multiparty speech. We used the SIFT

types of AV features: person-specific AV features and grouptgorithm [19] to extract pitch, and a combination of estimators

level AV features. The former are extracted from individugPR8] to extract speaking rate.

participants. The latter are extracted from the whiteboard and

projector screen regions. B. Group AV Features

-~ Group AV features were extracted from the white-board and
A. Person-Specific AV Features projector screen regions. Given the constrained topology of a
Person-specific visual features were extracted from the car@al meeting room, most people will naturally tend to occupy
eras that have a close view of the participants. Person-spedifie same regions when making a presentation or using the
audio features were extracted from the lapel microphonesiteboard. The features are listed in Table 111
attached to each person, and from the microphone array. Th&roup visual featuresThese were extracted from the cam-
complete set of features is listed in Table IlI. era that looks towards the white-board and projector screen

Fig. 2. Multi-camera meeting room and visual feature extraction

V. MULTI-MODAL FEATURE EXTRACTION
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TABLE 1l Recogni zed actions [ A1] 2] a1 a2 |
AUDIO-VISUAL FEATURE LIST o g N | | | | |
ound-trut Al A2 Al A2
Description Fig. 3. AER is not a meaningful assessment for small number of actions.
SRP-PHAT from each seat
Audio speech relative pitch
speech energy ) ) )
Person- speech rate only once during the course of a meeting). AER might not
FSPEtC'f'C heﬁd \éemcal i—e”ttfo'd provide a meaningful assessment in such cases. As shown in
eatures ead eccentricity . . .
Visual Fight Frand Frorizontal centroid Figure 3, AER equal; zero because the recognlzgd actions and
right hand angle the ground-truth actions have the same sequential order. But
nghhhanéi r:accdentrlct!ty obviously, the result in Figure 3 is not perfect. Therefore, it is
eaa an and motion . . .
s SRP-PHAT from white-board necessary to verify the temporal allg_nment of the recpgmz_ed
Group SRP-PHAT from projector screen actions with another measure, especially for the case in which
Features [ .o o mean difference from white-board the total number of actions is small.
mean difference from projector screen

In this view, we adopt FER as the performance measure for
individual action recognition. FER is defined as one minus the
ratio between the number of correctly recognized frames and
area. We first get difference images between a reference batle number of total frames, FER (1 — correctr;r%rggiz X
ground image and the image at each time, in the white-boar@)%. This measure reflects well the accuracy of the bound-
and projector screen regions (Figure 2). On these differersdes (begin and end time) of the recognized actions, compared
images, we use the average intensity over a gridéok 16 to manually labeled action boundaries.
blocks as features. With limited number of training and testing actions, results

Group audio featuresThese are SRP-PHAT features exare likely to vary due to the random initialization of the
tracted using the microphone array from two locations corr&aining procedure based on the EM algorithm [34]. For this

sponding to the white-board and projector screen. reason, and to assess consistency in the results, we report
the mean and standard deviation (STD) for AER and FER,
VI. EXPERIMENTS computed over 10 runs with random initialization of the EM
procedure.

In this section, we first describe the measures used 1o,
evaluate our results, and then present results for both individldg
action recognition and group action recognition.

inally, we also use confusion matrices, whose rows and
umns index the recognized and ground-truth actions, re-
spectively. The element;; of the confusion matrix corre-
sponds to either the percentage (for individual actions) or the
A. Performance Measures instances (for group actions) of actigrrecognized as action

We use theaction error rate (AER) and theframe error i. The confusion matrix for group actions is based on AER,

rate (FER) as measures to evaluate the results of group act.&g"there are .substltutlon, msert.lon, gnd d.elet|on errors. For
recognition and individual action recognition, respectively. individual actions, there are nelthe_r insertions nor deletions

AER is equivalent to the word error rate widely used iff€cause the peformance measure is FER.
speech recognition, and is defined as the sum of insertions
(Ins: symbols that were not present in a ground truth sequenBe, Experimental Protocol
but were decoded in the recognized sequence), deletions (Dekor both individual and group action recognition, we use 6-
symbols that were present in a ground truth sequence, but wiylel cross-validation on the training set to select the values of
not decoded in the recognized sequence), and substitutigms model parameters that are not estimated as part of the EM
(Sub: symbols that were present in a ground truth sequenggjorithm. In a HMM/GMM architecture, these include the
but were decoded as a different symbol in the recognizedmber of states per action, and the number of components
sequence), divided by the total number of actions in th&aussians) per state. In 6-fold cross-validation, we divided the
ground-truth, AER= %%—ﬂ%ﬁéx 100%. For group action data into 6 subsets of approximately equal size. We then train
recognition, we havéVs = 14 possible actions which in manythe models six times with different parameter configurations,
cases have no clear-cut temporal boundaries. Furthermoregath time leaving out one of the subsets from training, and
least five actions occur in each meeting in the corpus. Wsing only the omitted subset to compute the corresponding
believe that AER is a thus good measure to evaluate gropgrformance measure (FER for individual actions, AER for
action recognition, as we are more interested in the recognitigroup actions). The parameters resulting in the best overall
of the correct action sequence rather than the precise tipgrformance were selected, and used to re-train the models on
alignment of the recognized action segments. the whole training set.

However, AER overlooks the time alignment between rec- For group actions, as described in [22], two disjoint sets
oghized and target action segments. For individual actiaf eight people each, whose identities were known, were
recognition, there are onlyW; = 3 possible actions. Fur- used to construct the training and test sets. Each meeting
thermore, some streams (participants) in the corpus consigts recorded using a randomly chosen 4-person combination
of only two individual actions (e.g., a person who talksvithin each of the sets. With this choice, no person appears in
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TABLE IV TABLE V
NUMBER OF FRAMES(N ) AND NUMBER OF ACTIONS(IN 4) IN RESULTS OF INDIVIDUAL ACTION RECOGNITION
DIFFERENT DATA SETS
Method Features FER (%) | STD
: Visual 34.17 3.64
— ) train test
Individual Actions N7 i N7 N Early Int. AUd'.o 23.48 270
speaking 35028 | 1088 | 33747 | 897 Audio-visual | 9.98 [ 285
writing 15803 | 363 | 27365 | 390 MS-HMM | Audio-visual | 8.58 | 1.76
idle 127569 | 1426 | 112488 | 1349 A-HMM | Audio-visual |  7.42 1.13
total 178400 | 2877 | 173600 | 2636
. train test
Group Actions N7 Na N7 Na TABLE VI
discussion 17760 | 48 14450 | 49 CONFUSION MATRIX OF RECOGNIZED INDIVIDUAL ACTIONS (USING
monologue 7615 26 7585 26 VISUAL -ONLY FEATURES) ROWS: RECOGNIZED ACTIONS COLUMNS:
monologue + note-taking] 6260 17 6695 23 ) '
note-taking 640 6 320 3 GROUND-TRUTH
presentation 3170 6 3345 9
presentation + note-taking 3455 5 3865 9 A — I
white-board 2155 | 5 265 | 1 __| Speaking| Writing | _ldle
white-board + note-taking 3545 11 6875 19 Speaking 51'920/0 3.00? 8'22?
Idle 2.21% 11.07% | 57.13%

both the training and the test set. For individual actions, the o ]
original 8-people set in the training set was further split into 1€ summary of the results for all the individual action
two disjoint subsets at each time during the cross-validati6Rcognition models is presented in Table V, in terms of
procedure. One of these subsets was used to extract the stréahis Mean and standard deviation, obtained over 10 runs (as
belonging to the training set. The other subset was useddgscribed ear_llt_er, each run starts with a random initialization
create the validation set. With this choice, we ensure that tAbthe EM training procedure).
data extracted from the same person is not used to both traifffom Table V, we observe that all methods using AV
and validate the individual action models. features produced less than 10% FER, which is about 15% ab-
From the 59 meetings, 30 are used as training data, a¥Rjute improvement over using audio-only features, and about
the remaining 29 are used for testing. The number of fram@s% absolute improvement over using visual-only features.
(Nr) and number of actionsN4) for individual action and Asynchronous HMM prpduced the best result. Given that the
group action in the different data sets are summarized in Talfia! number of frames is oves, 000, the improvement using
IV. The number of individual actions is much larger than th&Synchronous HMM over the other HMM methods is statisti-
of group actions. There are two reasons. First, for individugflly significant with a confidence level above 99%, using a
action recognition, there are four participants for each meetir%‘?‘ndard proportion test [12]. The improvement suggests that
Therefore, there arg0 x 4 = 120 streams for training angh x  there exist asynchronous effects between the audio and visual
4 = 116 streams for testing. Second, the duration of individudnodalities. Additionally, we tested the MS-HMM system with
actions is typically shorter than that of group actions. an equal-weight scheme (0.5, 0.5). The performance decreased
compared to the MS-HMM with larger weight on audio (0.8
and 0.2, see earlier discussion). This is not surprising given
the predominant role of audio in the defined actions.
The three methods described in Section I1I-C.1 were testedThe confusion matrices for visual-only, audio-only, and

C. Individual Action Recognition

for individual action recognition. audio-visual streams, corresponding to a randomly chosen
Early integration (Early Int.),trained on three feature setssingle run, are shown in Tables VI, VII, and VIII, respectively.
audio-only, visual-only. and audio-visual. We can see thaspeaking” is well detected using audio-only

Audio-visual multi-stream HMM (MS-HMM)combining features, and thatwriting” is well detected using visual-
individual audio and visual streams. Audio and visual streamaly features. Using audio-visual features, béspeaking”
are modeled independently. The final classification is basedd“writing” are generally well detected. Using AV features,
on the fusion of the outputs of both modalities by estimatiriyriting” tends to get confused wittidle” , which in turn
their joint occurrence (Section IlI-C.1). is the action with the highest FER. This is likely due to the

Audio-visual asynchronous HMM (A-HMMypmbining in- catch-all role that this action plays. In practitielle” includes
dividual audio and visual streams by learning the joint disl other possible AV patterns, (e.g. pointing, laughing, etc.),
tribution of pairs of sequences when these sequences arewlbich makes its modeling more difficult, compared with the
synchronized (Section 1lI-C.1). other two well-defined actions.

Multi-stream HMMs allow us to give different weights In order to empirically investigate asynchronous effects in
to different modalities 4. Following the discussion presentatle individual actions, we performed forced alignment decod-
in [23], we use (0.8,0.2) to weight the audio and visuahg on the audio-only and visual-only streams independently.
modalities, respectively. For asynchronous HMM, the allowedl similar approach was taken to establish empirical evidence
asynchrony ranges front2.2s. for asynchrony in multi-band automatic speech recognition
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TABLE VII TABLE IX
CONFUSION MATRIX OF RECOGNIZED INDIVIDUAL ACTIONS (USING RESULTS OF GROUP ACTION RECOGNITION
AUDIO-ONLY FEATURES) ROWS; RECOGNIZED ACTIONS COLUMNS:
GROUND-TRUTH Method AER (%) | STD
Visual 48.20 3.78
- — Single-layer HMM Audio 36.70 4.12
__| Speaking| Writing | Idle Audio-visual 2374 | 2.97
Spga_klng 91.74:.)@ 1.26€0 1.78? Visual 2745 585
e L
e . 0 . () . 0
caty . [ 1o 112
Two-layer HMM - -
MS-HMM |_hard 17.27 2.01
TABLE VIII soft | 1583 | 1.61
CONFUSION MATRIX OF RECOGNIZED INDIVIDUAL ACTIONS (USING AV hard 17.85 2.87
A-HMM ft 1511 | 148
FEATURES) ROWS: RECOGNIZED ACTIONS COLUMNS: GROUND-TRUTH SO : :
Speaking | Writing Idle
Speakin 94.23% | 2.12% | 4.73% . .
V'?,ritmgg 103% | 89.60% | 10.89% of the I-HMM trained on visual-only features, and the
idle 474% | 8.28% | 84.38% visual group features. The soft decision criteria is used.

2) Early integration, audio-only, soft decisiorBame as
above, but replacing visual-only by audio-only informa-
tion.

) Early integration, AV, hard decisiorBame as above, but
replacing visual-only by audio-visual information. The

in [25]. The decoder in each stream was constrained by thes
ground-truth individual action sequence, and so the output

action sequences differ only in their temporal boundaries. hard decision criteria is used

We calculat_ed the_tlme misalignment (start-time dlfference_ of 4) Early integration, AV, soft decisiorBame as above, but
corresponding actions ) between the two sequences. Actions changing the criteria to link two HMM layers

having absolute misalignments larger thanwere discarded, 5) Multi-stream, AV, hard decisigrusing the multi-stream

as the misalignments were more likely caus.ed by recognition HMM approach as I-HMM. The hard decision criteria
errors, rather than asynchronous effects. Figure 4 shows the is used

resulting histogram of m|sall|gn'm'ents, ass umed due.to asyn-6) Multi-stream, AV, soft decisionSame as above, but
chronous effects, for these individual actions. The histogram

can be approximated by a Gaussian distribution, with a mean7) ZZ?ggmgggﬁscrgm\aﬂ tOA{I/nkhZ\r/g I(-jl(l;/lcl;/sliloagveer SL.Jse the

of —0.13s (as mlsgllgnments happened in both d!re(?tl_ons) and asynchronous HMM for individual action layer and
a standard deviation &.05. More than80% of the individual L .. A
audio-visual features. The hard decision criteria is used.

actpn; are d|str|buted'|n the range 60 25 (defmed f"‘t the 8) Asynchronous HMM, AV, soft decisiocBame as above,
beginning of this section), while there aig% individual but changing the criteria to link two HMM layers

actions without any asynchronous effecB({ = 0) = 17%).
This suggests that, for most individual actions having evidenceAs baseline methods for comparison, we tested single-
in both streams, allowing asynchrony between streams shol@iger HMMs, using low-level audio-only, visual-only, and AV
model the data more accurately. features as observations [22], and trained by cross-validation
following the same experimental protocol. The results appear
in Table 1X, in terms of AER mean and standard deviation
over 10 runs. We observe from Table 1X that the use of AV
Using the outputs from I-HMM and the group-level featuregeatures outperformed the use of single modalities for both
concatenated as described in Section 1lI-C.2, we investigaigifigle-layer HMM and two-layer HMM methods. This result
a number of cases for recognition of group actions, as listedpports the hypothesis that the group actions we defined
as follows. are inherently multimodal. Furthermore, the best two-layer
1) Early integration, visual-only, soft decisio® normal HMM method (A-HMM) using AV features improved the
HMM is trained using the combination of the resultperformance by over 8% compared to the AV single-layer
HMM. Given the small number of group actions in the corpus,
a standard proportion test indicates that the difference in
performance between AV single-layer and the best two-layer
02 HMM is significant at thed6% confidence level. Additionally,
0.15 the standard deviation for the two-layer approach is half the
baseline’s, which suggests that our approach might be more
robust to variations in initialization, given the fact that each
HMM stage in our approach is trained using an observation
% 0 t(s) . space of relatively low dimension. Regarding hard vs. soft de-
cision, soft decision produced a slightly better result, although
Fig. 4. Histogram of asynchronous effects of individual actions not statistically significant given the number of group actions.

D. Group Action Recognition
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TABLE X TABLE XII
CONFUSION MATRIX OF RECOGNIZED GROUP ACTIONS FOR RESULTS ON UNCONSTRAINED MEETINGS
SINGLE-LAYER HMM USING AUDIO-VISUAL FEATURES. ROws:
RECOGNIZED ACTIONS COLUMNS: GROUND-TRUTH Method Ng | correct rate (%)
Single-layer HMM | 40 57.5
TETCTEIT IS - T Two-layer HMM | 37 70.3
o |[S|S|S|S|S|S|2|S|=z|a|d|z|z2]|38
D 45 1
M1 2 6 3
M1+ 3
2 s 12 , E. Recognizing Actions in Unconstrained Meetings
M3 2 1 . .. . .
NED 37 To facilitate training and evaluation, the previous exper-
2 . . . .
e 35 iments were conducted on scripted meetings recorded in
B " - constrained conditions. To assess the proposed framework on
o T s natural multi-party conversations, we use a one-hour publicly
i . . g v available natural meeting recorded in the same setup, with

which the AV single-layer HMM was compared to the best
two-layer method, i.e., AV asynchronous HMM with soft-
decision. All parameters used for both methods are the same
as in previous experiments.

The two methods were evaluated independently by two
observers. The subjects watched and listened to the meeting
recording, and judged the correctness of the actions auto-
matically recognized using the single-layer and the two-layer

TABLE XI
CONFUSION MATRIX OF RECOGNIZED GROUP ACTIONS FOR TWXRAYER
HMM (USING ASYNCHRONOUSHMM WITH SOFT DECISION. Rows:
RECOGNIZED ACTIONS COLUMNS: GROUND-TRUTH

o |2 Z g § 2 ; 3 2 2ol Zls| %z methods. A final decision was made by the third person, for
SN LN E - L those actions in disagreement among each pair of observers.
ML - The results are shown in Table XINy denotes the number
3] S 1 of recognized actions for each system).
ek I We can see that the results obtained with the two-layer
wiar 11 HMM approach are better than those of the single-layer HMM,
5 - 1 which again suggests the benefits of the proposed framework.
W T For the one-hour natural meeting, oved% group actions
v . EI N N were correctly recognized using the layered method, which

could be quite useful to meeting browsing and indexing. In
practice, we noticed that it is difficult to determine clear-cut
differences between the monologue and discussion actions,
o ) o which constituted the main source of disagreement between
However, the standard deviation using soft-decision is agqifl, sypjects that evaluated the results. Therefore, in future

around half the corresponding to hard-decision. Overall, the, . e need to address the ill-defined nature of some actions
soft decision two-layer HMM appears to be favored by thg (oq) data.

results.

To further analyze results, we provide the confusion matri- VII. CONCLUSIONS ANDFUTURE WORK

CHel\jl\jlolszi:g]gf\;liyoi: yehc/:lil\sfliolf:r? d 'g\éyfﬁfrt]lrjéiz’ugr:jl\ﬁwvﬂa%’aer In this paper, meetings were defined as sequences of multi-
’ o . . modal group actions. We addressed the problem of modelin

bles X and XI, respectively. We showed discussion (D), mong- group actions SS P g

: nd recognizing such group actions, proposing a two-layer
logue (M1 -- M4), monologue-+note-taking (M1+N-M4+N), - j\in framework to decompose the group action recognition
note-taking (N), presentation (P), presentation+note-taki

; . ) Yoblem into two layers. The first layer maps low-level AV
(P+N), white-board (W), and white-board+note-taking (W+Nk, ., -o5 into individual actions. The second layer uses results
Empty cells represent zero values. It is evident that the th-

I thod tv reduced th ber of gjm the first layer as input to recognize group actions.
ayer method greatly reduced the number ot errors, comparg periments on a public 59-meeting corpus demonstrate the
with the single-layer method. For both matrices, we se

Ll ; tffectiveness of the proposed framework to recognize a set
that most substitution errors come from confusions betwegp multimodal turn-taking actions, compared to a baseline
actions with and without note-taking. This might be mainl ’ '

. o _ ingle-I HMM system. Wi li thodol t
because several instances“ofriting” could not be reliably %mg e-layer system. We believe our methodology to be

oo X . . . promising. In the short term, we will explore its applicabilit
detected as individual actions, as mentioned in the prewops 9 b PP Y

subsection. There are sevefptesentation” actions confused {0 other sets of group actions, in multi-party conversations.
with “white-board”, which might be because some speakers
moved around the white-board and projector-screen regions
during a presentation. On the other hafdiscussion” and This work was partly supported by the EU 5th FWP IST
“note-taking” actions can be recognized reasonably well. project M4 (IST-2001-34485), the EU 6th FWP IST Integrated
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