
1

Multiple TFRC Connections Based Rate Control for
Wireless Networks

Minghua Chen, Student Member, IEEE, and Avideh Zakhor Fellow, IEEE

Abstract— Rate control is an important issue in video stream-
ing applications for both wired and wireless networks. A widely
accepted rate control method in wired networks is equation based
rate control [1], in which the TCP Friendly rate is determined
as a function of packet loss rate, round trip time and packet
size. This approach, also known as TFRC, assumes that packet
loss in wired networks is primarily due to congestion, and
as such is not applicable to wireless networks in which the
bulk of packet loss is due to error at the physical layer. In
this paper, we propose multiple TFRC connections as an end-
to-end rate control solution for wireless video streaming. We
show that this approach not only avoids modifications to the
network infrastructure or network protocol, but also results in
full utilization of the wireless channel. NS-2 simulations, actual
experiments over 1xRTT CDMA wireless data network, and
and video streaming simulations using traces from the actual
experiments, are carried out to validate, and characterize the
performance of our proposed approach.

I. INTRODUCTION

Rate control is an important issue in both wired and wireless
streaming applications. A widely popular rate control scheme
over wired networks is equation based rate control [1] [2],
also known as TCP Friendly Rate Control (TFRC). There are
basically three advantages to rate control using TFRC: first, it
does not cause network instability, thus avoiding congestion
collapse. Second, it is fair to TCP flows, which is the dominant
source of traffic on the Internet. Third, the TFRC’s rate
fluctuation is lower than TCP, making it more appropriate for
streaming applications which require constant video quality.
The key assumption behind TCP and TFRC is that packet
loss is a sign of congestion. In wireless networks however,
packet loss can also be caused by physical channel errors,
thus violating this assumption. Neither TFRC nor TCP can
distinguish between packet loss due to buffer overflow and
that due to physical channel errors, resulting in underutilization
of the wireless bandwidth. Hence streaming rate control and
congestion control over wireless are still open issues.

Consequently, There have been a number of efforts to
improve the performance of TCP or TFRC over wireless [3]–
[24]. These approaches either hide end-hosts from packet loss
caused by wireless channel error, or provide end-hosts the abil-
ity to distinguish between packet loss caused by congestion,
and that caused by wireless channel error. To gain a better
understanding of the spectrum of approaches to rate control

This work was supported by AFOSR contract F49620-00-1-0327.
M. Chen and A. Zakhor are with Video and Image Processing Lab,

Department of Electrical Engineering and Computer Science at University
of California at Berkeley, Berkeley, CA 94720 USA (e-mail: {minghua,
avz}@eecs.berkeley.edu).

over wireless, we briefly review TCP and TFRC solutions over
wireless.

Snoop, a well-known solution, is a TCP-AWARE local
retransmission link layer approach [3]. A Snoop module
resides on router or base station on the last hop, i.e. the
wireless link, and records a copy of every forwarded packets.
Assuming snoop module can access TCP acknowledgement
packets (ACK) from the TCP receiver, it looks into the ACK
packets and carries out local retransmissions when a packet
is corrupted by wireless channel errors. While doing the
local retransmission, the ACK packet is suppressed and not
forwarded to the TCP sender. Other similar approaches based
on local link layer retransmission include [9], [12]–[16]. These
schemes can potentially be extended to TFRC in order to
improve performance, by using more complicated treatment
of the ACK packets from the TFRC receiver.

Explicit Loss Notification (ELN) can also be applied to
notify TCP/TFRC sender when a packet loss is caused by
wireless channel errors rather than congestion [4], [17]. In
this case, TFRC can take into account only the packet loss
caused by congestion when adjusting the streaming rate.

End-to-end statistics can be used to help detect congestion
when a packet is lost [5]–[8], [10], [11], [18]–[22], [24],
[25]. For example, by examining trends in the one-way delay
variation, Parsa and Garcia-Luna-Aceves [21] interpret loss as
a sign of congestion if one-way delays are increasing, and a
sign of wireless channel error otherwise. One-way delay can be
associated with congestion in the sense that it monotonically
increases if congestion occurs as a result of increased queueing
delay, and remains constant otherwise. Similarly, Barman and
Matta [5] proposed a loss differentiation scheme based on the
assumption that the variance of round trip time is high when
congestion occurs, and is low otherwise.

Cen et. al. present an end-to-end based approach to fa-
cilitate streaming over wireless [19]. They combine packet
inter-arrival times and relative one way delay to differentiate
between packet loss caused by congestion, and that due
to wireless channel errors. There are two key observations
behind their approach; first, relative one way delay increases
monotonically if there is congestion; second, inter-arrival time
is expected to increase if there is packet loss caused by
wireless channel errors. Therefore, these two statistics can help
differentiate between congestion and wireless errors. However,
the high wireless error misclassification rate may result in
under-utilizing the wireless bandwidth, as shown in [19]. Yang
et. al. [24] also propose a similar approach to improve video
streaming performance in presence of wireless error, under the
assumption that wireless link is the bottleneck.

2

Other schemes such as [6]–[8], [10], [11], [18] that use end-
to-end statistics to detect congestion, can also be combined
with TFRC for rate control. The congestion detection scheme
can be used to determine whether or not an observed packet
loss is caused by congestion; TFRC can then take into account
only those packet losses caused by congestion when adjusting
streaming rate.

Tang et. al. proposed the idea of using small dummy packets
to actively probe whether the network is congested in case
of packet loss, so as to differentiate between packet loss due
to congestion and that due to channel error [23]. Yang et.
al. [25] propose a cross-layer scheme that uses link layer
information to determine whether a packet loss is caused by
channel error or congestion, assuming that only the last link is
wireless. In this approach, when a packet is lost, TFRC goes
beyond layering abstraction and enquires the link layer about
the recent signal strength. The packet loss is recognized to be
due to wireless channel error if recent signal strength is low,
and due to congestion otherwise. A similar assumption is made
by Akan and Akyildiz in [26] to derive a wireless TFRC-like
equation based protocol to facilitate video streaming.

The disadvantage of end-to-end statistics based approaches
is that congestion detection schemes based on statistics are
not sufficiently accurate, and they either require cross layer
information or modifications to the transport protocol stack.

Another alternative is to use non-loss based rate control
schemes. For instance, TCP Vegas [27], in its congestion
avoidance stage, uses queueing delay as a measure of con-
gestion, and hence could be designed not to be sensitive
to any kind of packet loss, including that due to wireless
channel error. It is also possible to enable the routers with
ECN markings capability to do rate control using ECN as
the measure of congestion [28]. As packet loss no longer
corresponds to congestion, ECN based rate control does not
adjust sending rate upon observing a packet loss.

In this paper, we show that using one TFRC connection in
wireless streaming applications results in underutilization of
the wireless bandwidth. We then propose the use of multiple
simultaneous TFRC connections for a given wireless streaming
application. The advantages of our approach are as follows:
first, it is an end-to-end approach and does not require any
modifications to network infrastructure and protocols, except
at the application layer. Second, as will be pointed out later,
it has the potential to fully utilize the wireless bandwidth
provided the number of connections and packet size are
selected appropriately. The disadvantages are, more complex
control procedures, and more system resources, e.g. memory,
for opening more connections on end-hosts.

Other similar work, but not related to our approach include
MULTCP [29] and NetAnts [30]. They both open multiple
connections to increase throughput. MULTCP was originally
used to provide differential service, and was later used
to improve the performance in high bandwidth-round-trip-
time product networks. NetAnts achieves higher throughput
by opening multiple connections to compete for bandwidth
against others. Since fairness of TCP is at the connection
level rather than application level, using more connections than
other applications can result in higher individual throughput.

The difference between NetAnts and our approach are as
follows. First, opening more connections than needed in wired
networks increases the end-to-end packet loss rate experienced
by end-host. Second, unlike our approach, there is no mecha-
nism to control the number of connections in NetAnts.

The rest of the paper is structured as follows. In Section
II, we present the problem formulation together with an
optimal strategy based on multiple TFRC connections. NS-2
simulations and actual experiments are carried out to validate
the basic idea. In Section III, we propose a practical system
called MULTFRC to implement the approach discussed in
Section II. NS-2 simulations, actual experimental results, and
video streaming simulations using traces from the actual
experiments are included in Section IV to show the efficiency
of MULTFRC. Conclusions and future works are in Section
V.

II. PROBLEM FORMULATION

In this section, we begin by analyzing the performance of
one TFRC for streaming over wireless. We then propose a rate
control strategy, based on multiple TFRC connections, that has
the potential to achieve optimal performance, i.e. maximum
throughput, and minimum end-to-end packet loss rate.

A. Setup and Assumptions

The typical scenario for streaming over wireless is shown in
Figure 1 where the sender is denoted by s, and the receiver by
r. As shown, a video server in the wired network is streaming
video to a receiver in the wireless network. The wireless link is
assumed to be the bottleneck, and is associated with available
bandwidth Bw, and packet loss rate pw, caused by wireless
channel error. This implies that the maximum throughput over
the wireless link is Bw(1 − pw). There could also be packet
loss caused by congestion at node 2, denoted by pc. The end-
to-end packet loss rate observed by receiver is denoted by
p. The streaming rate is denoted by T . This implies that the
streaming throughput is T (1 − p). We refer to the wireless
channel as underutilized if T (1− p) < Bw(1− pw).

The reasons for choosing this scenario to analyze are that
first, it is a simplified version of the popular cellular wireless
data transmission scenario in which we are interested. Second,
it captures the fundamental problem that we wish to analyze.
Third, it makes our analysis easy to understand and evaluate.
To evaluate performance of the proposed scheme in a more
realistic environment, we rely on NS-2 simulations and actual
experiments over Verizon 1xRTT wireless data network in
Section IV.

Fig. 1. Typical scenario for streaming over wireless.

Given this scenario, we assume the following:

3

1) The wireless link is assumed to be the long-term bottle-
neck. By this, we mean there is no congestion at node
1. Hence the end-to-end packet loss rate depends only
on pc and pw.

2) There is no congestion and queuing delay at node 2,
if and only if the wireless bandwidth is underutilized,
i.e. we achieve pc = 0 and minimum round trip time,
denoted by RTTmin if and only if T ≤ Bw. This in
turn implies that if T > Bw then rtt ≥ RTTmin, where
rtt is the end-to-end round trip time.

3) Bw and pw are assumed to be constant.
4) The packet loss caused by wireless channel error is

assumed to be random and stationary.
5) Our objective is to optimize long-term streaming

throughput and packet loss rate performance rather than
short term behavior.

6) Packet size S for all connections of one application are
the same, unless otherwise stated.

7) We assume one TFRC connection not to fully utilize
Bw, otherwise it already achieves optimal performance,
and no improvement is to be expected.

8) For simplicity, the backward route is assumed to be
error-free and congestion-free; otherwise one can always
carry out sufficient amount of retransmissions or use
reliable protocol (e.g. TCP) to transmit the limited
amount of information back to sender reliably.

Based on this scenario, the two goals of our rate control
can be stated as follows. First, the streaming rate should not
cause any network instability, i.e. congestion collapse. Second,
it should lead to the optimal performance, i.e. it should result
in highest possible throughput and lowest possible packet loss
rate.

TFRC can clearly meet the first goal, because it has been
shown (a) to be TCP-friendly, and (b) not to cause network
instability. In the remainder of this paper, we propose ways
of achieving the second objective listed above, using a TFRC-
based solution, without modifying the network infrastructure
and protocols.

B. A Sufficient and Necessary Condition for Underutilization

We use the following model for TFRC to analyze the
problem [2]:

T =
kS

rtt
√

p
(1)

T represents the sending rate, S is the packet size, rtt is the
end-to-end round trip time, p is the end-to-end packet loss
rate, and k is a constant factor between 0.7 [31] and 1.3
[32], depending on the particular derivation of Equation (1).
Although this model has been refined to improve accuracy
[1] [33], it is simple, easy to analyze, and more importantly, it
captures all the fundamental factors that affect the sending rate.
Furthermore, the results we derive based on this simple model
can be extended to other more sophisticated models, such as
the one used in [1], which we have empirically verified not to
affect our results and conclusions.

Given this model, the average throughput measured at the
receiver is T (1 − p), when streaming rate is T , and overall

packet loss rate is p. End-to-end packet loss rate p is a
combination of pw and pc, as follows:

p = pw + (1− pw)pc (2)

Equation (2) shows that pw is a lower bound for p, and that
the bound is reached if and only if there is no congestion, i.e.
pc = 0. Combining Equations (1) and (2), an upper bound, Tb,
on the streaming rate of one TFRC connection can be derived
as follows:

T ≤ kS

RTTmin
√

pw
≡ Tb (3)

If there is no congestion, i.e. pc = 0, and hence no queuing
delay caused by congestion, we get rtt = RTTmin, p =
pw, and therefore T = Tb in Equation (3). In this case,
the throughput is Tb(1 − pw), which is the upper bound of
throughput given one TFRC connection for the scenario shown
in Figure 1. We define the wireless link to be underutilized if
the overall end-to-end throughput is less than Bw(1 − pw).
Based on these, we can state the following:

Theorem 1: Given the assumptions in Section II.A,
sufficient and necessary condition for one TFRC connection
to underutilize wireless link is

Tb < Bw. (4)
Proof: Since Tb(1 − pw) is the upper bound of one

TFRC’s throughput, clearly Equation (4) implies underutiliza-
tion of the wireless channel, and hence the “sufficient” part
of the Theorem is obvious. To see the necessary part, note
that if underutilization happens, i.e. T (1− p) < Bw(1− pw),
then invoking assumption 2 in Section II.A, no congestion
happens, thus rtt = RTTmin, p = pw and T = Tb, resulting
in Tb(1− pw) < Bw(1− pw).

If the condition in (4) is satisfied, then direct application of
TFRC or TCP to wireless scenario results in underutilization.
In essence, the approaches taken in [3], [4], [6]–[19], [34] en-
sure the condition in (4) is not satisfied, through modifications
to network infrastructure or protocols.

For example in the TFRC-AWARE Snoop-like solution,
pw becomes effectively zero through local retransmissions.
This makes Tb → ∞ and thus ensures the condition in (4)
is avoided. Basically by effectively setting pw = 0, Snoop-
like module translates the new problem, i.e. rate control for
streaming over wireless, into an old one, i.e. rate control for
streaming over wired network, for which a known solution ex-
ists. Similarly, ELN and end-to-end statistics based approaches
make TFRC not respond to packet loss caused by wireless
channel errors, thus not taking pw into account when adjusting
streaming rate. This is effectively the same as setting pw = 0,
thus improving the performance of the TFRC connection.

C. A Strategy to Reach the Optimal Performance

It is not necessary to avoid the condition in (4) in order to
achieve good performance for one application. This is because
it is conceivable to use multiple simultaneous connections
for a given streaming application. The total throughput of
the application is expected to increase with the number of
connections until it reaches the hard limit of Bw(1− pw).

4

1) Analysis on the Optimal Number of Connections: Given
the scenario shown in Figure 1, and the assumptions stated
in Section II.A, we now argue that multiple connections can
be used to achieve optimal performance, i.e. throughput of
Bw(1 − pw), and packet loss rate of pw. To see this, let us
consider a simple example in which

Bw(1− pw) =
2.5kS

RTTmin
√

pw
(1− pw) = 2.5Tb(1− pw)

By opening one TFRC connection with packet size S, the
application achieves a throughput of kS

RTTmin
√

pw
(1 − pw) =

Tb(1−pw) and packet loss rate of pw. This is because accord-
ing to Theorem 1, underutilization implies rtt = RTTmin,
p = pw and T = kS

RTTmin
√

pw
= Tb.

Let us now consider the case with two TFRC connections
from sender s to receiver r in Figure 1. Following the as-
sumptions and analysis in Sections II.A and II.B, it is easy
to see that pw for each of the two TFRC connections remain
unchanged from the case with one TFRC connection. This is
because the throughput upper bound for each of the two TFRC
connections is still Tb(1− pw), and the aggregate throughput
upper bound for both of them is 2Tb(1−pw), which is smaller
than Bw(1−pw), implying channel underutilization. Invoking
assumption 2, we conclude that there is no congestion and
hence rtt = RTTmin and pc = 0, and thus p = pw. The
throughput for each connections is then kS

RTTmin
√

pw
(1− pw).

Consequently, the total throughput for both connections is
2 kS

RTTmin
√

pw
(1− pw) with packet loss rate at pw.

A similar argument can be made with three TFRC connec-
tions, except that the wireless channel is no longer underuti-
lized and rtt > RTTmin. Furthermore, if the buffer on node
2 overflows then pc will no longer be zero and hence using
Equation (2) we get p > pw. In this case the wireless link is
still fully utilized at T (1 − p) = Bw(1 − pw), but round trip
time is no longer at the minimum value RTTmin; furthermore
overall packet loss rate p could exceed pw, i.e. the overall
packet loss rate in the two connections case.

In general, given Bw, pw, and the packet size S for each
connection, it can be shown that when full wireless channel
utilization occurs, the optimal number of connections, nopt,
satisfies:

Bw(1− pw) = nopt
kS

RTTmin
√

pw
(1− pw)

⇒ noptS = Bw

RTTmin
√

pw

k
(5)

Thus what really matters is the product of nopt and S,
and it is always possible to achieve full wireless channel
utilization by choosing nopt to be an integer, and by selecting
S accordingly1. It is also possible to analyze the case with
different packet sizes for different connections, but this is
harder to analyze, and it is not fundamentally different from
the case with the same packet size for all connections. For the
case with the packet size fixed at S, the optimal number of

1Of course pw may also change when packet size changes, but for the sake
of simplicity, we assume pw is stable as packet size changes. Analysis can
be extended given a relation between pw and S. The point here is to change
packet size to achieve finer granularity in increase/decrease.

connections is given by
⌊
Bw

RTTmin
√

pw

kS

⌋
≡ n̂opt (6)

resulting in throughput of n̂opt
kS

RTTmin
√

pw
(1−pw) and packet

loss rate of pw.
To show that opening more than nopt connections results

in larger rtt, or possibly higher end-to-end packet loss rate,
assume nopt and S lead to the optimal performance, and
consider opening nopt+δn connections, where δn is a positive
integer. Denoting the end-to-end packet loss rate as p′ for this
case, the overall throughput is given by (nopt +δn) kS

rtt
√

p′ (1−
p′) = Bw(1− pw) and hence

(nopt + δn)S = Bw
1− pw

1− p′
rtt
√

p′

k
(7)

Comparing the above equation with Equation (5), and taking
into account that the right hand sides of Equations (5) and (7)
are monotonically increasing functions with respect to overall
packet loss rate and round trip time, we conclude that either
rtt > RTTmin and/or p′ > pw.

The intuition here is that as number of connections exceeds
nopt, the sending rate of each connection has to decrease.
Thus by (1), the product rtt

√
p has to increase, so either rtt

increases or p increases, or they both increase. In practice, as
the number of connections exceeds nopt, initially p remains
constant and rtt increases due to the increase on queueing
delay at node 2, i.e. rtt > RTTmin; if the number of con-
nections keeps increasing and buffer on node 2 overflows, rtt
will then stop increasing, and p begins to increase. Eventually
we get both rtt > RTTmin and p > pw.

To summarize, if the number of TFRC connections is too
small so that the aggregate throughput is smaller than Bw(1−
pw), wireless channel becomes underutilized. If the number of
connections is chosen optimally based on Equation (5), then
wireless channel becomes fully utilized, the total throughput
becomes Bw(1 − pw), the rtt = RTTmin, and the overall
packet loss rate is at the lower bound pw. However, if the
number of connections exceeds nopt, even though the wireless
channel continues to be fully utilized at Bw(1− pw), the rtt
will increase beyond RTTmin and later on packet loss rate can
exceed the lower bound pw. In Section III, we use the above
conclusions to develop a practical scheme called MULTFRC
to determine the optimal number of connections.

2) Simulations and Experimental Verification: To validate
the above conclusions, we carry out both NS-2 [35] simu-
lations and actual experiments over Verizon Wireless 1xRTT
CDMA data network. The topology for NS-2 simulations is the
same as the one shown in Figure 1 with the following settings:
Bw = 1 Mbps, RTTmin = 168 ms, S = 1000 bytes, and pw

varying from 0.0 to 0.16. Also, no cross traffic is introduced
for illustration purposes. Within NS-2, we stream 1, 2, 4, 8, 16
and 32 TFRC connections from a fixed host to mobile hosts
for 10 runs with each run lasting 1000 seconds. The wireless
link is modelled as a wired link with an exponential random
packet loss model.

The results of NS-2 simulations indicating throughput,
packet loss rate and round trip time as a function of wireless

5

channel error rate, pw, for different number of connections,
are shown in Figure 2; also shown in Fig. 2(d) is the optimal
number of connections computed as the ratio between the
bandwidth and one connection’s throughput. There are three
observations to be made. First, for a given pw, throughput
increases with the number of connections up to a point, after
which there is a saturation effect. For example, for pw =
0.04 we need to open at least 4 connections to maximize
the throughput. Second, for a fixed pw, opening too many
connections results in either higher packet loss rate, or higher
round trip time than RTTmin, or both; for instance, seen from
Figure 2, at pw = 0.04, opening 8 connections results in
increase in round trip time but not in packet loss rate; however,
opening 16 or 32 connections results in packet loss rate to
be higher than 0.04, and larger round trip time. Third, given
Bw, pw, RTTmin, and S, there is an ”optimal” number of
connections with the highest throughput and the lowest packet
loss rate; for example, for pw = 0.04, the optimal number of
connections is a number slightly larger than 4. One might
note this is higher than the corresponding optimal number
of connections shown in Fig. 2(d), which is 3.85. This is
because when the number of opened connections is close to
the computed optimal one, every connection suffers from the
variance of the wireless packet loss; when the bottleneck is
fully in use, competition among connections results in lack of
full utilization.

Another observation about the optimal number of connec-
tions is that it increases abruptly after pw > 0.1. A careful
observation into the trace file shows that TFRC suffers many
timeouts when pw is high and too many packets are lost,
in which case TFRC’s performance is no longer packet loss
rate dominated but rather timeout dominated. TFRC resets its
sending rate when timeout happens, and goes into slow start
stages as if it is just started. As a result, the throughput of
one TFRC drops significantly, hence requiring more TFRC
connections in order to achieve full utilization, resulting in
an abrupt increase in the number of connections. We should
point out pw > 0.1 is probably too large to be observed in
practice; as such, in the later part of the paper, we focus on
the pw ≤ 0.1 scenario.

Similar experiments are carried out on Verizon Wireless
1xRTT CDMA data network. The 1xRTT CDMA data network
is advertised to operate at data speeds of up to 144 kbps for
one user. As we explore the available bandwidth for one user
using UDP flooding, we find the highest average available
bandwidth averaged over 30 minutes to be between 80 kbps
to 97 kbps. In our experiments, we stream for 30 minutes from
a desktop on wired network in eecs.bekerley.edu domain to a
laptop connected via 1xRTT CDMA modem using 1, 2 and 3
connections with packet size of S = 1460 bytes. We measure
the total throughput, packet loss rate and round trip time as
shown in Table I. Clearly, the optimal number of connections is
2. Specifically, the loss rate is slightly higher for 3 connections
than for 2, while the throughput is more or less the same for
2 and 3 connections.

The fact that the average rtt of 3 connections is lower than
that of 2 connections is somewhat counter-intuitive. However,
a careful investigation of the trace files indicates that when

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate
 (a)

one connection
two connections
four connections

eight connections

sixteen connections
thirty-two connections

"optimal"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate
 (b)

one connection
two connections
four connections

eight connections
sixteen connections

thirty-two connections

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 r
ou

nd
 tr

ip
 ti

m
e

(s
)

Wireless channel error rate
 (c)

one connection
two connections
four connections

eight connections
sixteen connections

thirty-two connections

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

O
pt

im
al

 n
um

be
r

of
 c

on
ne

ct
io

ns
 to

 b
e

op
en

ed

Wireless channel error rate
 (d)

Fig. 2. NS-2 simulations showing (a) End-to-end throughput, (b) packet loss
rate, (c) round trip time, and (d) optimal number of connections as a function
of wireless channel error rate, pw , for different number of connections. For
clarity of illustration, we have not plotted the standard deviation associated
with each point in the graphs. To provide a rough idea, the highest standard
deviation for the points in the figures are (a) 9.3k bps, (b) 0.0012, and (c)
0.0024 seconds.

6

3 TFRC connections is opened, the wireless link is heavy
congested, and TFRC sender sometimes gets into timeout
states, resetting its sending rate to zero, and performing slow
start again; this mimics the behavior of TCP. As a result,
for a certain period after the timeout event, the total sending
rate becomes low, the queue on the bottleneck is decreased,
resulting in a smaller rtt. On the contrary, when we open 2
TFRC connections, the wireless link is fully utilized but not
heavily congested, resulting in no observed timeout events
in the trace files. Therefore, the queue is kept full. Hence,
the average rtt of 3 connection case, which is affected by
timeout events, is lower than the average rtt of 2 connection
case, which is timeout free. The same reasoning explains the
throughput of 3 connections being somewhat lower than that
of 2 connections.

TABLE I
EXPERIMENTAL RESULTS FOR VERIZON WIRELESS 1XRTT CDMA DATA

NETWORK.

number of throughput rtt pkt loss
conn.’s (kbps) (ms) rate

one 57 1357 0.018
two 48.2+45.6=94 2951 0.032

three 33.2+31.9+27.8=93 2863 0.046

Based on the above analysis and experiments, strategy
leading to optimal performance can be described as follows:

Keep increasing the number of connections until an additional
connection results in increase of end-to-end round trip time
or packet loss rate.

As seen in Section III, in practical implementation of the
above strategy, we use average round trip time measurements,
rather than packet loss rate as in indicator of the optimal
number of connections; this is because the increase in av-
erage round trip time typically happens before the increase
in packet loss rate, and thus enables us to detect the full
utilization earlier. In the next section, we propose a system
called MULTFRC that uses round trip time measurements to
implement the above strategy.

III. MULTIPLE TFRC (MULTFRC)

The basic idea behind MULTFRC is to measure the round
trip time, and adjust the number of connections accordingly.
Specifically, we increase the number of connections n by α/n
or decrease it by β, depending on the rtt measurements. α and
β are preset constant parameters of our control algorithm. The
design goals are twofold: first, utilize the wireless bandwidth
efficiently; second, ensure fairness between applications.

The framework of MULTFRC is shown in Figure 3. As
seen, there are two components in the system: rtt mea-
surement sub-system (RMS), and connections controller sub-
system (CCS). The flowchart of the system is shown in Figure
4. We now describe each component in detail.

Sender

Connections
controller

Receiver

rtt
measurement

Connections
controller

reports

Fig. 3. MULTFRC system framework.

sum_rtt = sum_rtt + rtt;
ave_rtt = sum_rtt/m;

sum_rtt = 0;

m -- number of reports received over which we compute
 the average rtt;

n -- number of connections opened;
fn -- float version of n, used in inversely increase computation;
th -- threshold used to judge whether there is an increase in

 ave_rtt
sum_rtt -- sum of reported rtts, use internally for computing ave_rtt;
ave_rtt -- average round trip time computed;
alpha -- parameter alpha in IIAD
beta -- parameter beta in IIAD
gamma -- ratio used when updating the th

ave_rtt - rtt_min < th? YesNo

fn = 1+alpha/fn;
n = floor(fn);

Have received m reports past
since last measurement?

No

Yes

Report from
receiver: rtt

sum_rtt = sum_rtt + rtt;

fn = fn -beta;
n = floor(fn);

rtt_min = min(rtt_min, ave_rtt);
th = rtt_min*gamma;

Fig. 4. Flow-chart for MULTFRC system. Blocks in gray represent the
functionalities of rtt measurement sub-system, blocks in white represent those
of connection controller sub-system.

A. rtt Measurement Sub-system (RMS)

The gray blocks in Figures 3 and 4 represent RMS that
resides at the sender; it basically measures average rtt over
a window, denoted by ave rtt, and reports it to the CCS.
As shown in the system flowchart in Figure 4, RMS receives
reports from receiver every round trip time, containing the
an average rttsample measured in the past round trip time
window. RMS then further computes a smoothed version of
these average rtt’s every m reports, as follows:

ave rtt =
∑m

i=1 rtt samplei

m
(8)

Setting m to large values can reduce the noise in ave rtt,
while setting it to small values makes the system more
responsive to changes in round trip time.

7

B. Connection Controller Sub-system (CCS)
The CCS is shown as the white blocks in Figures 3 and 4.

Its basic functionality is to Inversely Increase and Additively
Decrease (IIAD(α, β)) the number of connections n, based on
the input from RMS, as illustrated in Figure 4. Specifically, the
CCS block at the sender first sets the rtt min as the minimum
ave rtt seen so far, and then adapts the number of connection,
denoted by n, as follows:

n =
{

n− β, if ave rtt− rtt min > γrtt min;
n + α/n, otherwise. (9)

where γ is a preset parameter. The choice of IIAD to control
n is motivated by [36]. Specifically, it is shown in [36] that
sending rates controlled by IIAD can efficiently and fairly
share the network bandwidth, at the same time has lower rate
variations than Additive Increase and Multiplicative Decrease
(AIMD). We expect the number of connections controlled by
IIAD to also have this property.

In practice, the number of connections opened should be
an integer. However, controlling n as shown in (9) might not
result in an integer. Thus in our implementation of MULTFRC,
we quantize n to its closest integer to determine the number
of connections. This quantization may result in bandwidth
underutlization, as shown and discussed in Section IV.

For a given route, the rtt min is a constant representing the
minimum round trip time for that route, i.e. with no queuing
delay. As an example, on a wireless link with no cross traffic,
the rtt min simply corresponds to physical propagation delay.
As such, ave rtt − rtt min corresponds to current queuing
delay, and γrtt min is a threshold on the queuing delay that
MULTFRC can tolerate before it starts to decrease the number
of connections. As a result, under ideal conditions, MULTFRC
keeps increasing the number of connections to make ave rtt
as close as possible to (1 + γ)rtt min without exceeding it.
Ideally, ave rtt becomes larger than rtt min if and only if the
link is fully utilized, and the queue on bottleneck link router
is built up, introducing additional queuing delay. Thus by
evaluating the relation between ave rtt and rtt min, MULT-
FRC detects full utilization the wireless link, and controls the
number of connections accordingly.

When there is a route change either due to change in
the wireless base station, or due to route change within
the wired Internet, the value of rtt min changes, affecting
the performance of MULTFRC. Under these conditions, it
is conceivable to use route change detection tools such as
traceroute [37] to detect the route change, in order to reset
rtt min to a new value. Furthermore, it can be argued that the
overall throughput of MULTFRC will not go to zero, resulting
in starvation; this is because MULTFRC always keeps at least
one connection open.

Since the video stream is transmitted using multiple connec-
tions, the receiver could potentially receive out of order video
packets. In case receiver uses a buffer to reorder the arriving
video packets, the out of order arrival is not a serious issue.

C. Rate of change of the number of connections
From Equation (9), it is seen that MULTFRC increases

n at a rate that is inversely proportional to the number of

n*

n*− β

T

Fig. 5. Demonstration of the change on the number of connections n,
controlled by single MULTFRC over single wireless link.

connections. The continuous time approximation of control
low in (9) for increasing stage of n is as follows:

ṅ(t) =
α

m · rtt · n(t)
⇒ n2(t)− n2(0) =

2α

m · rtt t.

Therefore, to increase n from N2 to N1, assuming N1 > N2,
it roughly takes MULTFRC m

2α (N2
1 −N2

2) rtts. On the other
hand, MULTFRC decreases the number of connections, n, at
a constant rate. The continuous time approximation of control
low for the decreasing stage is:

ṅ(t) = − β

m · rtt ⇒ n(t)− n(0) = − β

m · rtt t.

Therefore, it takes MULTFRC m(N1−N2)
β rtts to decrease n

from N1 to N2. In summary, MULTFRC is conservative in
adding connections, but aggressive in closing them.

In a simple topology with one MULTFRC system over
one wireless link, we can use the increasing rate result to
roughly compute bandwidth utilization ratio. In this simple
topology, MULTFRC periodically increases the number of
connections n to the optimal n∗ that fully utilize the wireless
bandwidth, and proportionally decreases n upon reaching
n∗. The approximated continuous version of this process is
demonstrated in Fig. 5. In the plot, T is the time for n(t)
to increases from n∗ − β to n∗ 2, and hence is ((n∗)2 −
(n∗ − β)2)mrtt/2α. The number of connections n(t) =√

(t− kT)2α/mrtt + (n∗ − β)2, kT ≤ t ≤ (k + 1)T, k ∈
Z+.

The utilization ratio, in the stationary stage, is then the
ratio between the average number of connections and n∗, as
follows:

1
Tn∗

∫ T

0

n(δ)dδ =
2
3

1 + n∗−β
n∗ + (n∗−β

n∗)2

1 + n∗−β
n∗

. (10)

This ratio is at least 2/3, and only depends on β and is
independent of wireless packet loss rate, m, and rtt. Further,
this utilization ratio is a monotone function of the ratio
(n∗−β)/n∗. The larger the optimal number of connections n∗,
the smaller β, the better utilization. This meets the intuition
that the throughput decrease due to constant decrease on n is
less significant for large values than small ones.

2Here we assume n∗ − β ≥ 1; otherwise the analysis follows with the
increase stage starts from 1 rather than n∗−β, since MULTFRC always has
one connection opened.

8

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we carry out NS-2 simulations and actual ex-
periments over Verizon Wireless 1xRTT CDMA data network
to evaluate the performance of MULTFRC system.

A. Setup

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

2Mbps, 20ms 1.6Mbps, 10 ms 1Mbps, 40ms
s r

wireless link

Fig. 6. Simulation topology.

The topology used in simulations is shown in Figure 6.
The sender denoted by s, and the receiver denoted by r, both
run MULTFRC at the application layer. For all simulations,
the wireless bandwidth Bw is set be 1 Mbps and is assumed
to be the bottleneck. The wireless link is modelled by an
exponential error model, and pw varies from 0.0 to 0.08 in
increments of 0.02. DropTail type queue is used for each node.
In order to evaluate MULTFRC’s performance in the presence
of wireless channel errors. We examine three issues; first, how
MULTFRC performs in terms of average throughput, average
round trip time, and packet loss rate, as a function of pw.
Second, whether the number of connections is stable. Third,
whether or not a MULTFRC application can fairly share with
an application using one TFRC or one TCP connection. In all
the simulations, throughput is measured every second, packet
loss rate is measured every 30 seconds, the average round
trip time is measured every 100 packets, and the number of
connections is sampled whenever there is a change in it.

For the actual experiments over 1xRTT, we stream from
a desktop connected to Internet via 100 Mbps Ethernet in
eecs.berkeley.edu domain to a notebook connected to Internet
via Verizon Wireless 1xRTT CDMA data network. Thus it is
quite likely that the last 1xRTT CDMA link is the bottleneck
for the streaming connection. The packet size S is 1460 bytes,
and the streaming takes 30 minutes. As we cannot control pw

in actual experiments, we measure the average throughput,
average number of connections, and packet loss rate.

B. Performance Characterization of MULTFRC

We have empirically found the following parameters to
result in reasonable performance: α = β = 1, γ = 0.2
and m = 50. Intuitively, larger m results in more reliable
estimates of round trip time, but at the expense of a lower
sampling frequency, resulting in a less responsive system.
Larger γ results in a system that is more robust to round
trip time estimates, but at the expense of longer queues in
routers and hence a longer queueing delay. Larger α and β
result in a large adaptation rate, but at the expense of a large
variation in the number of connections controlled, resulting
in more throughput fluctuations. We have empirically found
these values through simulations and experiments.

We simulate the MULTFRC system to stream for 9000
seconds, and compute the average throughput and packet loss
rate for pw =0.0, 0.02, 0.04, 0.06 and 0.08, and compare them
to the optimal, i.e. Bw(1 − pw) for each pw. The results for

Bw = 1 Mbps and RTTmin = 168 ms are shown in Figure
7(i). As seen, the throughput is within 25% of the optimal, the
round trip time is within 120% of RTTmin, and the packet loss
rate is almost identical to the optimal, i.e. a line of slope one
as a function of wireless channel error rate. As expected, the
average number of connections increases with wireless channel
error rate, pw. To confirm MULTFRC’s performance over a
wider range of parameters, we carry out additional simulations
using the same topology as in Figure 6, with Bw = 100 kbps
and RTTmin = 757 ms. The results, shown in Figure 7(ii)
are as expected, and validate our earlier observations. 3 The
results also show that MULTFRC throughput is reasonably
close to the predicted values, which are computed using (10)
with β = 1 and n∗ being the average number of connections
opened in the corresponding simulations. This observation
demonstrates the effectiveness of the utilization ratio analysis
in Section III-C.

Considering the throughput plots in Figure 7, we notice
that for some values of pw, there is a significant difference
between the actual and optimal throughput. This is due to
the quantization effect in situations where the number of
connections is small, i.e. 2 to 4. In these situations, a small
oscillation around the optimal number of connections results
in large variation in observed throughput. One way to alleviate
this problem is to increase γ in order to tolerate larger queuing
delay and hence absorb throughput fluctuations, at the expense
of being less responsive. Another alternative is to use smaller
packet size in order to reduce the ”quantization effect” at the
expense of (a) lower transmission efficiency and (b) the slower
rate of convergence to the optimal number of connections.
As will be shown in the next subsection, yet anther way
to alleviate this quantization effect is to combine all the
connections into one.

To examine the dynamics of MULTFRC system, we show
throughput, packet loss rate, and the number of connections
as a function of time for pw = 0.04 in Figure 8. As seen, the
throughput and the number of connections are quite stable;
as expected, packet loss rate is around 0.04 and round trip
time is low, and is in agreement with the results corresponding
pw = 0.04 in Figure 7(i). Similar results are obtained for other
values of pw.

In order to examine MULTFRC’s performance as a function
of pw, we use MULTFRC with pw initially set at 0.02. Then
at 3000th second, pw is switched to 0.08, and at 6000th

second switched back to 0.02. Here, we artificially change
pw to see how MULTFRC adapts to the change in pw. The
throughput, packet loss rate, round trip time and the number
of connections opened are shown in Figure 9. As seen, the
number of connections increases from around 3 to around 7
as pw switches from 0.02 to 0.08.

We have examined two sets of parameters (α, β) in these
simulations, in order to demonstrate their influence on the
rate of change of the number of connections. The first set
is α = 1, β = 1, and the second one is α = 6, β = 2. As
seen from Fig. 9(a), setting α = 1 and β = 1 leads to a

3Note the round trip times for pw = 0 are shown neither in Figure 7(i) or
7(ii) because they represent the channel error free case in which MULTFRC
reduces to one TFRC connection.

9

400000

500000

600000

700000

800000

900000

1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

MULTFRC
optimal

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

ate

Wireless channel error rate (packet level)
 (b)

0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23
0.24
0.25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s)

Wireless channel error rate (packet level)
 (c)

0
1
2
3
4
5
6
7
8
9

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
um

be
r

of
 c

on
ne

ct
io

n
op

en
ed

Wireless channel error rate (packet level)
 (d)

predicted

40000

50000

60000

70000

80000

90000

100000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

MULTFRC
optimal

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

ate

Wireless channel error rate (packet level)
 (b)

0.8

0.9

1

1.1

1.2

1.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

ro
un

d
tr

ip
 ti

m
e

(s)

Wireless channel error rate (packet level)
 (c)

0

1

2

3

4

5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
um

be
r

of
 c

on
ne

ct
io

n
op

en
ed

Wireless channel error rate (packet level)
 (d)

predicted

(i) (ii)

Fig. 7. NS-2 simulations for (i) Bw = 1 Mbps, RTTmin = 168 ms, and (ii) Bw = 100 kbps, RTTmin = 757 ms; (a) throughput, (b) end-to-end
packet loss rate, (c) end-to-end round trip time, (d) number of connections, all as a function of packet level wireless channel error rate.

lower fluctuations on the number of connections, a low average
round trip time, but a slower convergence of the number
of connections. Specifically, it takes about 214 seconds for
MULTFRC to increase the number of connections from 3 to
7, which are the optimal number of connections for pw = 0.02
and pw = 0.08, respectively. Similarly, the ramping down
stage in which pw changes from 0.08 to 0.02 takes about 87
seconds. On the other hand, as seen from Fig. 9(b), setting
α = 6 and β = 2 leads to a fast convergence of the number of
connections, but a huge fluctuation on the number of opened
connections, and a high average round trip time. Specifically,
the increasing stage takes about 30 seconds, and the decreasing
stage takes about 43 seconds. These observations confirm the
intuition behind choosing values for α and β in the first
paragraph of this subsection, and are in agreement with the
analysis of rate of change of the number of connections shown
in Section III-C.

As for actual experiments, we compare the performance
of MULTFRC system and one TFRC connection in Table
II with packet size of 1460 bytes. As seen, MULTFRC on
average opens up 1.8 connectioins, and results in 60% higher
throughput at the expense of a larger round trip time, and
higher packet loss rate. Comparing the results of Tables I and
II, we observe that MULTFRC achieves good performance as
on average, it opens appropriate number of connections.

Table III shows packet loss details of MULTFRC for one

of those 30 minutes long experiments. As expected, both the
packet loss rate and burstness of the loss increase as the
number of connections increases.

TABLE II
ACTUAL EXPERIMENTAL RESULTS FOR A MULTFRC SYSTEM OVER

1XRTT CDMA.

scheme throughput rtt packet loss ave. #
(kbps) (ms) rate of conn.

one TFRC 54 1624 0.031 N/A
MULTFRC 86 2512 0.045 1.8

TABLE III
PACKET LOSS DETAILS OF MULTFRC

of % of pkt loss avg. burst snd. max. burst
conn. time rate err. len. dev. length
one 24.6 0.015 2.86 3.43 7
two 60.1 0.047 2.41 3.63 10

three 15.4 0.083 3.25 9.93 11

C. All-In-One TFRC (AIO-TFRC)

There are two drawbacks associated with MULTFRC as
seen from the simulations and actual experiments. First draw-
back has to do with bandwidth underutilization, and the second

10

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

1
2
3
4
5
6
7
8
9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g

rt
t (

s)

Time (s)

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

1
2
3
4
5
6
7
8
9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
g

rt
t (

s)

Time (s)
(a) (b)

Fig. 9. NS-2 simulation results as pw changes from 0.02 to 0.08 and back again, for case (a) α = 1, β = 1, (b) α = 6, β = 2. Plots from top to bottom
indicate throughput, end-to-end packet loss rate, end-to-end RTT, and number of connections, all as a function of time.

one with implementation complexity. We will begin with
utilization drawback. NS-2 simulations show that although
MULTFRC performs reasonably well, there is still some
gap between its throughput and the optimal. Specifically,
MULTFRC achieves only 77% utilization for pw = 0.02.
This suboptimal performance has two causes. First one is the
control behavior described in (9): as described, n is decreased
when the full utilization of bottlenecks is detected, and is
inversely increased until the next full utilization is detected.
During this period, bottlenecks stay underutilized, resulting in
suboptimal average throughput. It is impossible to remove this
sub-optimality resulting from the control law without changing
the law. The second reason for bandwidth underutilization is
the “quantization effect” in MULTFRC whereby in practice
the number of connections is forced to be an integer. This loss
of granularity typically results in bandwidth underutilization.
For example, if the optimal number of connections has been
determined to be 1.5, then n is forced to take fractional values
between 1 and 3, e.g. 1, 1.25, 1.45, 2.14, 1.14, ..., as dictated
by (9). MULTFRC then quantizes n to the closest integer to
oscillate between one and two, resulting in loss of throughput
granularity. This effect can be eliminated by avoiding the
quantization step.

The second drawback of MULTFRC is of a more practical
nature. Operating multiple connections in one application
could potentially consume too much system resources. For
example, each TFRC connection uses a different port to send

out data packets, carries out individual feedback process, and
updates the loss event rate and RTT even though they are
highly correlated for these TFRC connections. Clearly, there is
unnecessary overhead associated with operating multiple con-
nections, in terms of computation, processing power, memory,
and ports, particularly for today’s low power, resource-limited
handheld devices.

We can propose an alternative to MULTFRC, called All-
In-One TFRC (AIO-TFRC), in order to address the two
drawbacks of MULTFRC, while retaining the same control law
for n as in MULTFRC [38]. AIO-TFRC achieves these goals
by creating one connection whose throughput is equivalent
to that of the optimal number of TFRC connections even
though the optimal number could be non-integer. It does
so by measuring round trip times, adjusting the number of
virtual connections n based on the measurements according
to (9), and then controlling the sending rate of the only
physical connection to be n times that of one TFRC’s, using
the bandwidth filtered loss detection (BFLD) technique from
[39]. NS-2 simulations show that AIO-TFRC achieves similar
throughput as MULTFRC in high packet loss rate situation, but
better throughput than MULTFRC at the low packet loss rate
scenarios, as shown in Fig. 10. For example, when pw = 0.02,
AIO-TFRC achieves 95% utilization of the wireless band-
width, while MULTFRC’s utilization is only 77%. Therefore,
by avoiding the “quantization effect”, AIO-TFRC achieves
better throughput performance than MULTFRC.

11

0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ou

nd
 tr

ip
 ti

m
e

(s
)

Time (s)
 (a)

0

200000

400000

600000

800000

1e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)
 (b)

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 c

on
ne

ct
io

n
op

en
ed

Time (s)
 (c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Time (s)
 (d)

Fig. 8. NS-2 simulations for Bw = 1 Mbps and pw = 0.04; (a) end-to-end
round trip time, (b) throughput, (c) end-to-end packet loss rate, (d) number
of connections, all as a function of time.

AIO-TFRC is fundamentally similar to MULTFRC as they
share the same theoretical analysis and design insights; as they
only differ in implementation details, we will not go into the
details of AIO-TFRC here [38].

D. Fairness between MULTFRC and TCP

To investigate the fairness of MULTFRC, we carry out NS-2
simulations based on the “dumbbell” topology shown in Fig.
11. Senders are denoted by si, i = 1, . . . , 16, and receivers
are denoted by di, i = 1 . . . , 16. We investigate two types of
fairness: the inter-protocol fairness between MULTFRC and
TCP, and the intra-protocol fairness within MULTFRC.

The intra-protocol fairness is defined as the fairness between
MULTFRC flows. In our simulations, we run MULTFRC on
all 16 sender-receiver pairs shown in Fig. 11 for 5000 seconds,
and compare their throughput. MULTFRC is said to be intra-
protocol fair if all receivers get the same throughput. The
fairness ratios for pw = 0.01 and pw = 0.04 are shown in
Table IV. The fairness ratio is defined as receivers’ throughput
divided by the average throughput; the closer to one, the more
fair the MULTFRC system is. As seen, the fairness ratio is
close to one, indicating MULTFRC flows are fair to each other,

0

200000

400000

600000

800000

1e+06

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
hr

ou
gh

pu
t (

bp
s)

Wireless channel error rate (packet level)
 (a)

AIO-TFRC
the otpimal
MULTFRC

0

0.02

0.04

0.06

0.08

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08E
nd

-t
o-

en
d

pa
ck

et
 lo

ss
 r

at
e

Wireless channel error rate (packet level)
(b)

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
E

nd
-t

o-
en

d
ro

un
d

tr
ip

 ti
m

e
(s

)
Wireless channel error rate (packet level)

(c)

0
1
2
3
4
5
6
7
8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A
ve

ra
ge

 n

Wireless channel error rate (packet level)
(d)

Fig. 10. NS-2 simulations for Bw = 1 Mbps and RTTmin = 168 ms; (a)
throughput, (b) end-to-end packet loss rate, (c) end-to-end RTT, (d) number
of connections, all as a function of packet error rate on the wireless channel.

at least in this simulation setting. The bandwidth utilization
ratios are 98% for pw = 0.01 and 99% for pw = 0.04.

To show that a new MULTFRC connection consumes its
fair share of bandwidth, we carry out the simulations for
the same topology shown in Fig. 11 with pw = 0.01. Eight
MULTFRCs are spawned at t = 0, and 8 more are added
at t = 2000. The average throughput for two sets of values
for α and β are shown in Fig. 12, to demonstrate their effect
on rate of convergence. As seen, the later connections share
the bandwidth fairly with the former ones. As seen in Fig.
13, the convergence time for the average throughput is about
180 seconds for case α = β = 1, and 90 seconds for case
α = β = 2. Although larger values of α and β lead to a faster
adaptation speed, the variance on the number of connections,
as well as the throughput and rtt, is also slightly higher. These
observations are in agreements with those made from Fig. 9.

The inter-protocol fairness is defined as the fairness between
MULTFRC and TCP4. In our simulations, we run MULTFRC
on the first 8 sender-receiver pairs, i.e. (si, di), i = 1, . . . , 8,

4We choose TCP SACK implementation in simulations.

12

0
100000
200000
300000
400000
500000
600000
700000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

average MULTFRC thput (old connections)
average MULTFRC thput (new connections)

1
1.5

2
2.5

3
3.5

4
4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

#of connection of sampled old connection
of connections of sampled new connection

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.5
0.6
0.7
0.8
0.9

1
1.1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)

0
100000
200000
300000
400000
500000
600000
700000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

average MULTFRC thput (old connections)
average MULTFRC thput (new connections)

1
1.5

2
2.5

3
3.5

4
4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

#of connection of sampled old connection
of connections of sampled new connection

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.5
0.6
0.7
0.8
0.9

1
1.1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
(a) (b)

Fig. 12. MULTFRC intra-fairness for case (a) α = β = 1, (b) α = β = 2. As seen, new MULTFRC connections can attain fair share of bandwidth. Plots
from top to bottom correspond to throughput, end-to-end packet loss rate, end-to-end RTT, and number of connections, all as a function of time.

0

100000

200000

300000

400000

500000

600000

700000

2000 2100 2200 2300 2400 2500

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

average MULTFRC thput (old connections)
average MULTFRC thput (new connections)

0

100000

200000

300000

400000

500000

600000

2000 2100 2200 2300 2400 2500

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

average MULTFRC thput (old connections)
average MULTFRC thput (new connections)

(a) (b)

Fig. 13. MULTFRC intra-fairness for case (a) α = β = 1, (b) α = β = 2. As seen, new MULTFRC connections can attain fair share of bandwidth. Both
plots show throughput as a function of time from t = 1990 to t = 2500 second.

and TCP on the remaining 8 sender-receiver pairs shown in
Fig. 11; each session lasts 5000 seconds, and we compare their
throughput for pw = 0.01 and pw = 0.02. Under the simula-
tion settings, each MULTFRC consumes more bandwidth than
one TCP under full utilization. This is because in this case, the
wireless channel error rate is large enough to make the number
of virtual connections of each MULTFRC to be larger than
one. Hence, it is meaningless to define the fairness between
MULTFRC and TCP as having the same throughput. As such,
in our simulations, we define MULTFRC to be fair to TCP if it

does not result in a decrease in TCP’s throughput. Specifically
for our simulations, it implies TCP retains the same throughput
whether or not it coexists with MULTFRC under the same
network setting. The throughput of MULTFRC and TCP, as
well as the total bandwidth utilization ratios for the setup
shown in Fig. 11, are shown in Table V for two scenarios: (a)
8 MULTFRC coexisting with 8 TCP connections, (b) 16 TCP
connections. Fig. 14 also shows the dynamics of throughput,
packet loss rate, RTT, and the number of virtual connections n.
Comparing MULTFRC+TCP with TCP-alone, we see the for-

13

TABLE V
SIMULATION RESULTS FOR FAIRNESS BETWEEN MULTFRC AND TCP.

settings 8 MULTFRC + 8 TCP 16 TCP
ave. thput. ave. thput. utili- ave. thput. utili-

(MULTFRC) (TCP) zation (TCP) zation
(kbps) (kbps) (%) (kbps) (%)

pw=0 311.84 313.16 100 312.46 100
γ=0.2

pw=0.01 446.73 165.67 99.0 200.168 65
γ=0.2

pw=0.01 402.73 180.37 94.2 200.168 65
γ=0.1

pw=0.02 488.53 122.08 99.7 139.674 46
γ=0.2

pw=0.02 461.74 131.10 96.8 139.674 46
γ=0.1

Fig. 11. The simulation topology for MULTFRC’s fairness evaluation.

TABLE IV
SIMULATION RESULTS FOR INTRA-PROTOCOL FAIRNESS OF MULTFRC.

recver fairness fairness recver fairness fairness
ratio ratio ratio ratio

pw=0.01 pw=0.04 pw=0.01 pw=0.04
d1 1.07 0.93 d9 1.03 0.92
d2 1.03 0.94 d10 1.05 1.07
d3 1.04 1.14 d11 0.92 0.89
d4 0.95 1.00 d12 1.03 0.90
d5 0.89 1.08 d13 1.05 1.12
d6 0.90 0.96 d14 0.96 1.14
d7 1.10 0.87 d15 1.02 0.92
d8 1.02 1.17 d16 0.95 0.91

mer has a much higher utilization of the wireless bandwidth at
the expense of lower TCP throughput. A careful examination
into the traces and statistics reveals that this throughput drop
is mainly caused by the higher RTT for MULTFRC+TCP as
compared with TCP-alone. For example, for pw = 0.01 and
γ = 0.2, MULTFRC+TCP experiences around 0.58 seconds
RTT, while TCP-alone only experiences 0.5 seconds RTT, i.e.
the propagation delay. As TCP’s throughput is known to be
inversely proportional to RTT, the 16% increase in the RTT
roughly explains the 17% decrease in the TCP’s throughput
shown in first row in Table V.

This increase in the RTT is, by design, a consequence
of MULTFRC controlling n according to (9). As n is only

decreased after the queuing delay exceeds the threshold
γrtt min, round trip time is increased when MULTFRC
increases n to achieve full utilization. One way to address
this problem is to use a smaller value for γ, in order to
reduce the increase in the RTT, and hence minimize the TCP’s
throughput drop. However, smaller values of γ also results
in lower bandwidth utilization due to increased sensitivity
of MULTFRC to RTT measurements. As shown in Table V,
γ = 0.1 results in a smaller drop in the TCP’s throughput than
γ = 0.2.

Clearly, there are situations in which MULTFRC ends
up opening exactly one TFRC connection, and as such its
performance is similar to one connection case. An example
would be MULTFRC competing for bandwidth with TCP on
wired networks. In that case, the fairness between MULTFRC
and TCP is reduced to the fairness between TFRC and TCP,
which has been well explored in [1]. This is because in this
situation, MULTFRC only opens one TFRC connection. To
verify that, we set pw = 0 and carry out the above simulation
with MULTFRC and TCP sharing bandwidth with each other.
The results, shown in the first row in Table V, clearly validate
this claim.

E. Video streaming simulations

To evaluate the performance of MULTFRC in video stream-
ing applications, we simulate streaming of a 60 second long
video clip through a channel, with throughput trace corre-
sponding to one of the the traces obtained from actual experi-
ments over 1xRTT CDMA as described in Section IV-B. Our
goal is to compare the quality of video streaming achievable
using one TFRC connection with that of MULTFRC.

We encode 300 frames of news.cif sequence using MPEG-
4 at bit rates varying from 50kps to 100 kbps as controlled
by TMN-5 [40]. The frame rate is 10 frame per second and
hence the duration of the video clip is 30 seconds; the I-
frame refresh rate is once every fifteen frames. The coded
video bit stream is packetized with fixed packet size of 760
bytes. The packets are then protected using Reed-Solomon
(RS) codes with different protection levels for one TFRC and

14

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

one MULTFRC thput
one tcp thput

1
1.5

2
2.5

3
3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)

0
100000
200000
300000
400000
500000
600000
700000
800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

one MULTFRC thput
one tcp thput

1
1.5

2
2.5

3
3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)
(a) (b)

Fig. 14. NS-2 simulation results for the case (a) pw = 0.01, γ = 0.2 and (b) pw = 0.01, γ = 0.1. Plots from top to bottom correspond to the dynamics
of throughput, number of connections, end-to-end packet loss rate, and end-to-end RTT, all as a function of time.

MULTFRC. This is because packet loss statistics are different
in the two cases. Specifically, the statistics of 30 minutes long
trace indicates the longest burst loss to be 6 packets long for
one TFRC and 11 packets long for MULTFRC. Thus, we apply
RS(56,50) to one TFRC case, and RS(61,50) to MULTFRC
case in order to sufficiently protect packets in both cases.

The RS-coded packets are then passed through channels
simulated using one TFRC, and MULTFRC packet level traces
each lasting 70 seconds, selected from the 30 minutes long
actual experiments described in Section IV-B. The throughput
and packet loss details for a 70 second long segment of one
TFRC and MULTFRC connections are shown in Fig. 16. As
Seen, both the throughput and the packet loss rate are higher
for MULTFRC than for one TFRC case.

The receiver decodes the received RS-coded packets and
stores the MPEG-4 bit streams into a playback buffer. In this
simulation, we fill the buffer with 10 seconds worth of data
before starting the MPEG-4 decode and display process. The
playback rate is fixed at 10 frames per second, and hence
decoding process is stopped and the display is frozen whenever
the playback buffer is empty.

To show the efficiency of MULTFRC, we compare the
playback buffer occupancies of MULTFRC and one TFRC for
several bit rates in Fig. 17. As seen, TFRC can only sustain
a 50 kbps clip, while MULTFRC can sustain video streaming

up to 90 kbps without freezes and decode buffer starvation;
hence, MULTFRC can achieve higher visual quality, despite
the fact that it needs stronger FEC to combat the higher packet
loss rate.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed an end-to-end rate control
scheme for wireless streaming that achieves both high through-
put and low packet loss rate, without having to modify
network infrastructure or protocols. Our proposed strategy is
based on increasing the number of connections, and selecting
proper packet size when necessary. We developed a practical
algorithm called MULTFRC to implement our basic approach.
NS-2 simulations and actual experiments over 1xRTT CDMA
data network were used to show the effectiveness of our
approach. Video simulations demonstrate that it is possible
to apply MULTFRC to sustain video streaming at higher bit
rates, despite the fact that it needs stronger FEC to combat
the higher packet loss rate. The simulations also shows that
MULTFRC is relatively fair to TCP, and fair to itself.

Even though Bw and pw are assumed to be constant in
our analysis, in some networks such as wireless Local Area
Networks (WLAN) and CDMA networks, Bw and pw might
be time varying or even change in a correlated fashion.

15

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

bp
s)

time (s)

throughput

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

bp
s)

time (s)

total throughput

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 100 200 300 400 500 600 700

lo
ss

seqno

packet loss

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 200 400 600 800 1000 1200

lo
ss

seqno

packet loss

(a) (b)

Fig. 16. Throughput and packet loss details for (a) one TFRC; (b) MULTFRC.

Nevertheless, as long as the necessary and sufficient condition
in (4) is satisfied and the wireless channel is underutilized, our
proposed MULTFRC approach opens an appropriate number
of connections to achieve full utilization. The only issue in
these time varying situations is rate of convergence to the
optimal number of connections. Our experimental results in
this paper have verified that in the long term, the convergence
rate of our approach is not an issue in CDMA network.

Compared to other schemes such as [6], [7]that use delay
or round trip time variation to infer congestions, although
MULTFRC also makes use of the round trip time variation,
, it differs from them in the following aspects: first MULT-
FRC measures the round trip time variation over a large
time window, while the other schemes measure the round
trip time variation instantaneously, resulting in a more noisy
measurement; second, MULTFRC uses the measured variation
to adapt the number of opened connections in order to adapt
the rate, while the other schemes use it to differentiate between
congestion loss and wireless loss.

As discussed earlier, AIO-TFRC has some advantages over
MULTFRC. Specifically, it only requires opening one con-
nection, rather than multiple connections, and it alleviates the
quantization effect associated with MULTFRC. However, if we
were to extend MULTFRC to MUL-TCP, and AIO-TFRC to
AIO-TCP, respectively, one can easily see that the required
application layer code needed to implement MUL-TCP is
considerably simpler than that of AIO-TCP. This is because
MUL-TCP only needs to concern itself with determining the
optimal number of TCP connections to be opened. AIO-TCP,
on the other hand, would have to implement a substantial
portions of the TCP protocol itself in the application layer.
Since TCP is the dominate protocol on the internet today, even

for streaming applications, we believe that from a practical
point of view, a MUL-TCP type protocol has a higher chance
of being adopted than AIO-TCP.

Future work will be focused on considering the stability
issues and examining the performance when both the number
of connections and the sending rate of each connections are
changing dynamically in a network, i.e. multiple MULTFRC
connections sharing wireless or wired links with/without mul-
tiple TCP connections. Applying the idea to improve the
performance of TCP over wireless would also be a future
direction.

REFERENCES

[1] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proc. ACM SIGCOMM,
Stockholm, Sweden, Aug. 2000, pp. 43–56.

[2] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the internet,” IEEE/ACM Trans. Networking, no. 4, pp. 458 –
472, Aug. 1999.

[3] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A compari-
son of mechanisms for improving tcp performance over wireless links,”
IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 756–769, 1997.

[4] H. Balakrishnan and R. Katz, “Explicit loss notification and wireless web
performance,” in Proc. of IEEE Globecom Internet Mini-Conference,
Nov. 1998.

[5] D. Barman and I. Matta, “Effectiveness of loss labeling in improving
tcp performance in wired/wireless networks,” in Proc. of the 10th ICNP,
Washington, DC, USA, 2002, pp. 2–11.

[6] S. Biaz and N. H. Vaidya, “Discriminating congestion loss from wireless
losses using inter-arrival times at the receiver,” in Proc. of IEEE Sym-
posium on Application-specific System and Software Engr. and Techn.,
Richardson,TX, USA, Mar. 1999, pp. 10–17.

[7] N. Samaraweera, “Non-congestion packet loss detection for tcp error
recovery using wireless links,” IEE Proceedings of Communications,
vol. 146, no. 4, p. 222C230, Aug. 1999.

[8] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, “Achieving
moderate fairness for udp flows by pathstatus classification,” in Proc.
of 25th Annual IEEE Conf. on Local Computer Networks, Tampa,FL,
USA, Nov. 2000, p. 252C261.

16

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

(a)

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50
bu

ffe
r

le
ng

th
 (

by
te

s)
time

decoding buffer length

(b)

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 10 20 30 40 50

bu
ffe

r
le

ng
th

 (
by

te
s)

time

decoding buffer length

(c)

Fig. 17. Playback buffer occupancies for one TFRC (left) and MULTFRC (right): the streaming bit rate is at (a) 50kbps; (b) 70kbps; (c) 90kbps.

[9] C. JA and A. P., “Congestion or corruption? a strategy for efficient
wireless tcp sessions,” in Proc. of IEEE Symposium on Computers and
Communications, Los Alamitos, CA, USA, 1995, pp. 262–268.

[10] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan, “A wireless transmission control protocol for cdpd,” in
Proc. of IEEE Wireless Communications and Networking Conference,
Piscataway, NJ, USA, Jan. 1999, pp. 953–957.

[11] ——, “Wtcp: a reliable transport protocol for wireless wide-area net-
works,” Wireless Networks, no. 2-3, pp. 301–316, 2002.

[12] W. Ding and J. A, “A new explicit loss notification with acknowledgment
for wireless tcp,” in Proc. of 12th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, Piscataway, NJ,
USA, 2001, pp. B–65–9.

[13] C. CF and M. M., “Improving tcp over wireless through adaptive link
layer setting,” in Proc. of IEEE Global Telecommunications Conference,
Piscataway, NJ, USA, 2001, pp. 1766–1770.

[14] J.-H. Choi, S.-H. Yoo, and C. Yoo, “A flow control scheme based on
buffer state for wireless tcp,” in Proc. of the 4th International Workshop
on Mobile and Wireless Communications Network, Piscataway, NJ,
USA, 2002, pp. 592–596.

[15] K. Ratnam and I. Matta, “Wtcp: an efficient mechanism for improving
wireless access to tcp services,” International Journal of Communication
Systems, no. 1, pp. 47–62, Feb. 2003.

[16] J. Rendon, F. Casadevall, and J. Carrasco, “Wireless tcp proposals with
proxy servers in the gprs network,” in Proc. of 13th IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications,
Piscataway, NJ, USA, 2002, pp. 1156–1160.

[17] Y. Yang, H. Zhang, and K. R., “Channel quality based adaptation of tcp
with loss discrimination,” in Proc. of IEEE Global Telecommunications
Conference, Piscataway, NJ, USA, 2001, pp. 2026–2030.

[18] J.-J. Lee, F. Liu, and K. C-CJ, “End-to-end wireless tcp with non-
congestion packet loss detection and handling,” in Proc. of the SPIE,
San Jose, USA, Jan. 2003, pp. 104–113.

[19] S. Cen, P. Cosman, and G. Voelker, “End-to-end differentiation of
congestion and wireless losses,” IEEE/ACM Trans. Networking, vol. 11,
no. 5, pp. 703–717, 2003.

[20] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature
in a hybrid wired/wireless environment,” in Proc. WiOpt, 2003.

[21] T. eun Kim, S. Lu, and V. Bharghavan, “Improving congestion control
performance through loss differentiation,” in Proc. ICPP Workshop,
1999, pp. 140–145.

[22] C. Parsa and J. Garcia-Luna-Aceves, “Improving tcp congestoin control
over internet with heterogeneous media,” in Proc. ICNP, 1999, pp. 213–
221.

[23] J. Tang, G. Morabito, I. F. Akyildiz, and M. Johnson, “Rcs: A rate
control scheme for real-time traffic in networks with high bandwidth-
delay products an high bit error rates,” in Proc. IEEE INFOCOM,
Alaska, USA, Apr. 2001, pp. 114–122.

[24] G. Yang, M. Gerla, and M. Y. Sanadidi, “Adaptive video streaming in
presence of wireless errors,” in Proc. ACM MMNS, San Diego, USA,
Jan. 2004.

17

0
100000
200000
300000
400000
500000
600000
700000
800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

one MULTFRC thput
one tcp thput

1
1.5

2
2.5

3
3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 c

on
ne

ct
io

n

Time (s)

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000E
nd

-t
o-

en
d

pk
t l

os
s

ra
te

Time (s)

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
 r

tt
(s

)

Time (s)

Fig. 15. NS-2 simulation results for the case pw = 0.01, γ = 0.1:
(a)throughput, (b) number of connections , (c) end-to-end packet loss rate,
(d) end-to-end RTT, all as a function of time.

[25] F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end tcp-friendly
streaming protocol and bit allocation for scalable video over mobile
wireless internet,” in Proc. IEEE INFOCOM, Hongkong, China, Mar.
2004.

[26] Ö. B. Akan and I. F. Akyildiz, “Arc: the analytical rate control scheme
for real-time traffic in wireless networks,” IEEE/ACM Trans. Network-
ing, vol. 12, no. 4, pp. 634–644, 2004.

[27] L. S. Brakmo and L. L. Peterson, “Tcp vegas: end-to-end congestion
avoidance on a global internet,” IEEE J. Select. Areas Commun., no. 8,
pp. 1465–1480, Oct. 1995.

[28] S. Floyd, “Tcp and explicit congestion notification,” ACM Computer
Communication Review, pp. 10–23, Oct. 1994.

[29] J. Crowcroft and P. Oechslin, “Differentiated end to end internet ser-
vices using a weighted proportional fair sharing tcp,” ACM Computer
Communication Review, vol. 28, no. 3, July 1998.

[30] Netants - fast download manager. [Online]. Available: http://www.
netants.com

[31] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the tcp congestion avoidance algorithm,” ACM Computer
Communication Review, no. 3, July 1997.

[32] J. Mahdavi and S. Floyd. (1997, Jan.) Tcp-friendly unicast rate-
based flow control. Technical note sent to end2end-interest mailing
list. [Online]. Available: http://www.psc.edu/networking/papers/tcp\
friendly.html

[33] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp through-
put: A simple model and its empirical validation,” in Proc. ACM
SIGCOMM, 1998, pp. 303 – 314.

[34] S. Biaz and N. H. Vaidya, “Distinguishing congestion losses from
wireless transmission losses: a negative result,” in Proc. of the Seventh
International Conference on Computer Communications and Networks
(IC3N), New Orleans, USA, Oct. 1998.

[35] Network simulation version 2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[36] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic
behavior of slowly-responsive congestion control algorithms,” in ACM
SIGCOMM 2001, San Diego, CA, Sept. 2001.

[37] Traceroute. [Online]. Available: http://www.traceroute.org/
[38] M. Chen and A. Zakhor, “Aio-tfrc: A light-weighted rate control scheme

for streaming over wireless,” in Proc. of IEEE WirelessCom Symposium
on Multimedia over Wireless 2005, June 2005.

[39] D. E. Ott, T. Sparks, and K. Mayer-Patel, “Aggregate congestion control
for distributed multimedia applications,” in Proc. IEEE INFOCOM,
Hongkong, China, Mar. 2004.

[40] TMN (H.263) encoder/decoder, version 2.0, tmn (h.263) codec, T.
Research Std., 1996.

PLACE
PHOTO
HERE

Minghua Chen received the M.S. and B.Eng.
degrees in Electronic Engineering from Tsinghua
University in 2001 and 1999, respectively. Since
2001, he has been with Department of Electrical
Engineering and Computer Science in University
of California at Berkeley, where he currently is
pursuing his Ph.D degree. He received a Pao Family
fellowship in 2001, a Management of Technology
in China Fellowship in 2004, all from U.C. Berke-
ley. He is co-author of the book IPv6 Principle
and Practice (People’s Posts and Telecommunication

Publishing House, 2000). His research interests are in Flow control in wireless
network, video streaming over wireless, digital signal processing, and wireless
communications, with current emphasis on flow control over wireless and
application layer implementation.

PLACE
PHOTO
HERE

Avideh Zakhor received a B. S. degree from Cali-
fornia Institute of Technology, Pasadena, and S. M.
and Ph. D. degrees from Massachusetts Institute of
Technology, Cambridge, all in electrical engineering,
in 1983, 1985, and 1987 respectively. In 1988,
she joined the Faculty at U. C. Berkeley where
she is currently Professor in the Department of
Electrical Engineering and Computer Sciences. Her
research interests are in the general area of image
and video processing, multimedia communication,
and 3D modeling. Together with her students, She

has won a number of best paper awards, including the IEEE Signal Processing
Society in 1997, IEEE Circuits and Systems Society in 1997 and 1999,
international conference on image processing in 1999, and Packet Video
Workshop in 2002. She holds 5 U.S. patents, and is the co-author of the
book, “Oversampled A/D Converters” with Soren Hein.

Prof. Zakhor was a General Motors scholar from 1982 to 1983, was a Hertz
fellow from 1984 to 1988, received the Presidential Young Investigators (PYI)
award, and Office of Naval Research (ONR) young investigator award in 1992.
From 1998 to 2001, she was an elected member of IEEE Signal Processing
Borad of Governers. In 2001, she was elected as IEEE fellow. She received
the Okawa Prize in 2004.

She co-founded OPC technology in 1996, which was later by Mentor
Graphics (Nasdaq: MENT) in 1998, Truvideo in 2000, and Urban Scan in
2005.

