IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 6, DECEMBER 2006

1147

Scalable and Efficient Video Coding
Using 3-D Modeling

Raphacle Balter, Patrick Gioia, and Luce Morin

Abstract—In this paper, we present a three-dimensional (3-D)
model-based video coding scheme for streaming static scene video
in a compact way but also enabling time and spatial scalability ac-
cording to network or terminal capability and providing 3-D func-
tionalities. The proposed format is based on encoding the sequence
of reconstructed models using second-generation wavelets, and ef-
ficiently multiplexing the resulting geometric, topological, texture,
and camera motion binary representations. The wavelets decom-
position can be adaptive in order to fit to images and scene con-
tents. To ensure time scalability, this representation is based on a
common connectivity for all 3-D models, which also allows straight-
forward morphing between successive models ensuring visual con-
tinuity at no additional cost. The method proves to be better than
previous methods for video encoding of static scenes, even better
than state-of-the-art video coders such as H264 (also known as
MPEG AVC). Another applications of our approach are smoothing
camera path for suppression of jitter from hand-held acquisition
and the fast transmission and real-time visualization of virtual en-
vironments obtained by video capture, for virtual or augmented
reality and interactive walk-through in photo-realistic 3-D environ-
ments around the original camera path.

Index Terms—3-D model-based Coding, 3-D reconstruction,
second-generation wavelets.

I. INTRODUCTION

ITH the development of video applications over net-

works and wireless devices such as cell phones and per-
sonal digital assistants (PDAs), low bit-rate video compression
is still a key issue. More precisely, distant visualization on het-
erogeneous terminals requires video coding schemes providing
a scalable bitstream adaptable to multiple and variable terminal
resources.

State-of-the art video coders rely on pixel-based prediction/
correction paradigms and they provide very efficient compres-
sion algorithms for generic contents video sequences in a wide
range of bitrates. Indeed, this type of compression scheme has
been optimized to reach its best performances in the latest stan-
dard video coder H264 ITU/MPEG-AVC [1].
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Exploiting particularities of the encoded content can dramat-
ically improve compression efficiency by using specific coding
schemes. Typically, 3-D model-based video coding exploits the
fact that the scene contains known objects for which a specific or
generic 3-D model is available and can be transmitted together
with texture and animation parameters. This method produces
very efficient compression and it is particularly well adapted
to the video-conference field where a 3-D model of the human
face is used to represent the video sequence of the speaker [2].
However, it is necessary for the scene content to be known and
that an a priori known 3-D model is available both at the coder
and the decoder [3]. For a video with unknown contents, 3-D
model-based coding may still be used if the scene is static, i.e.,
with no moving object inside, and acquired by a moving camera,
by automatically reconstructing the captured 3-D environment
from the video and transmit it as a 3-D model, a texture and
camera parameters.

Automatic 3-D modeling of static scenes from uncalibrated
images and video sequences has been studied for a long time,
using computer vision structure-from-motion and self-calibra-
tion techniques [4]-[7]. Most previous work focused on off-line
video analysis for obtaining an accurate 3-D model of the scene
in order to replace manual modelling or to provide a precise ref-
erence frame for augmented reality [8], but few works have con-
sidered the issues of compressing and streaming the resulting
3-D representation.

Such considerations have been mainly addressed for trans-
mitting synthetic 3-D models. Several methods have been pro-
posed for the efficient and scalable coding of the 3-D models
geometry and connectivity providing a progressive and scalable
bitstream [9]-[11]. It is assumed that texture will be transmitted
as an image using standard fixed image coders or as a few pa-
rameters in the case of parametric texture. However, in the case
of 3-D models extracted from videos, texture is the most expen-
sive information to be transmitted, and it is also a major factor
in the final visual quality. With such input data, an effective
3-D model coding and streaming scheme should take into ac-
count the geometry, connectivity and texture. In the context of
multi view-point acquisition, as studied in the MPEG-3-DAV
consortium [12], real-time streaming of 3-D point-based rep-
resentation has been proposed, assuming fixed and calibrated
cameras [13]. Other approaches seek to compress image-based
rendering view-sets of virtual environment [14]. 3-D informa-
tion can be used to compensate disparity between between im-
ages [15]. However all those representations are often limited to
small objects or require a particular capture system.

In order to benefit from the compactness and from the func-
tionalities of 3-D model-based coding in the case of unknown
scene contents and uncontrolled acquisition procedure, we pro-
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pose a video coding scheme based on a set of successive 3-D
models extracted from subsections of the video, instead of a
unique one containing all the information viewed in the entire
video sequence, as in previous automatic shape-from-motion
schemes [7]. This choice has several advantages:

* Global consistency of extracted 3-D information is not re-
quired. This allows us to simplify estimation and use inac-
curate camera parameters.

e The set of 3-D models directly provides a streaming
format.

* Global illumination changes along time are modeled and
reconstructed.

* Sequences of arbitrary size can be processed with
on-the-fly estimation and streaming of the 3-D models.

¢ Camera motion is unconstrained.

Our first experiments validated this approach for low bitrate
coding [16]. This scheme still allows 3-D functionalities usually
provided by classical 3-D model-based video coding, such as il-
lumination changes, object insertion, stereoscopic visualization
or generation of virtual viewpoints close to actual ones [17].

However, the previously proposed scheme does not provide
full scalability, which is a key point for targeted applications
such as distant and interactive visualization. In particular, mesh
geometry has fixed resolution. It involves, furthermore, a com-
plex and computationally expensive morphing and re-meshing
process at the decoder side to ensure smooth visual transition
between successive 3-D models [16], [18].

In both image coding and synthetic 3-D models coding,
wavelets [19] have been effectively used to achieve scalability
in an elegant and efficient way. Second-generation wavelets
[20] provide hierarchical representations for arbitrary sampled
data and they are the current most effective tool for scalable
representation of 3-D models [21].

Therefore we propose a scalable video coding scheme based
on wavelet decomposition of an evolving model represented by
a consistent 3-D models stream. It provides low bit-rate coding,
as well as time and spatial scalability and 3-D functionalities.
Targeted applications include impact simulation, and help for
geo-positioning or virtual tourism.

In the following study, we first give an overview of the
proposed method, then briefly describe the extraction of 3-D
models in Section III and explain the proposed hierarchical
representation more thoroughly in Section IV. We then present
inter-relations between media flows and we explain the coding
and decoding schemes in Section V. Finally the results on real
video sequences are finally shown and discussed.

II. OVERVIEW OF THE METHOD

The proposed representation is based on 3-D information ex-
tracted with the Galpin reconstruction algorithm. For each sub-
section of the sequence called a group of frames (GOF), it pro-
vides a dense depth map and camera positions for each frame in
the GOF. The behavior of the coder is then as follows.

The first step is to transform each depth map into a hierar-
chical 3-D triangular mesh. We define the base mesh, denoted
BM,, as the mesh related to GOF k at coarser level and the
fine mesh, denoted FM}y, as the dense mesh related to GOF
k at finer level. The refinement from coarser to finer level is
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Fig. 1. Proposed representation based on a 3-D model stream and second-gen-
eration wavelet.

then expressed as wavelets coefficients (r;7 on Fig. 1) using a
second-generation wavelet transform. Scale coefficients (e;7 on
Fig. 1) represent the geometry of the base mesh BM ;. Succes-
sive 3-D models in the stream are encoded differentially with
coefficients d;’.

To ensure time consistency of the wavelets coefficients for
successive models, wavelet decomposition is applied based on
a single connectivity mesh (SCM), possibly evolving in time,
and gathering the connectivities of each base mesh model.

This representation induces several media streams, such as
topology (the connectivity of the single base mesh), geometry
(wavelet coefficients and incremental model representation),
and texture. These streams are closely interrelated and they are
multiplexed in order to produce a single streamable format.

In Sections III-VII, we describe the main components and the
stream types they generate further.

III. 3-D MODELS GENERATION

The 3-D models stream is automatically extracted from the
input video sequence using shape from motion methods devel-
oped in computer vision [5]. Unlike state of the art multiview
stereo recontruction algorithms such as [22] which aim at recon-
structing an accurate 3-D model from calibrated cameras and
controlled view-points, our reconstruction method is focused on
retrieving a 3-D model suitable for video restitution, and com-
patible with uncontrolled video acquisition. Each 3-D model
is extracted and used for a restricted portion of the video se-
quence called a GOF. Two successive GOFs share one image
(cf. Fig. 2). These border images are usually called keyframes.
Keyframes are automatically selected according to video con-
tents, based on several criteria. These criteria mainly depend on
motion, percentage of outgoing points in images, and 3-D re-
construction feasibility and stability [17]. On average, a GOF
contains 30 frames.

Disparity estimation is performed by a dense mesh-based
affine motion estimator using multigrid and multiresolution
approaches [23]. This robust algorithm minimizes the EQM
and allows to estimate large disparities with lighting variations,
thanks to mesh deformation. The motion field is then readjusted
under epipolar geometry constraint. The camera intrinsic pa-
rameters are set to approximate values in order to get a quasi
euclidean reconstruction. Extrinsic parameters define camera
3-D motion during the acquisition. They are computed using
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Fig. 2. Reconstruction of the original sequence.

Fig. 3. Example of a depth map (b) extracted from the Street video sequence,
the associated vrml model (c), and the corresponding image in the sequence (a).

classical self-calibration methods and an adapted bundle ad-
justment algorithm [17] allowing readjustment between models
that is necessary for virtual reality applications. The dense mo-
tion field from the first to the last image of the GOF and camera
parameters for these two images allow the reconstruction of a
dense depth map for the first image of the GOF. Fig. 3 shows
an example of such a depth map extracted from the Street
video sequence. Camera-extrinsic parameters are then retrieved
for each image in the video sequence using a pose estimation
algorithm.

The 3-D reconstruction step thus provides for each GOF:

* the 3-D model geometry: a dense depth map of the scene

viewed from the first image in the GOF;
 the 3-D model texture: the first image in the GOF;
e camera parameters for each frame in the GOF.

IV. HIERARCHICAL 3-D MODELS
We now explain how the hierarchical 3-D triangular mesh is
constructed from the dense depth map.
Notations

The following notations will be used in the rest of the paper.
e M,;" is the 3-D model related to GOF & at resolution 7.

* Ky is the keyframe for GOF £ (i.e., the first image in GOF
k, also used as texture image T}, for Mki).

e ()} is the camera position related to keyframe K. CY is
defined by a translation ¢;, and a rotation 2, .

* (CM; is the corresponding mesh; it denotes the 3-D model
associated with GOF k whose vertices match vertices in
the precedent model M t,._1 that are still visible from the
next point of view C, and the related faces.

* Wedenote as Pr(M, T, C) the image issued from perspec-
tive projection of 3-D model M textured with image 7" onto
the viewpoint related to camera C'.

A. Single-Connectivity Mesh and Global Indexing

Using a stream of 3-D models instead of a unique one
for the whole sequence provides several benefits that were
mentioned previously. However, it also has the drawback of
independently and arbitrarily sampling each 3-D model. As
a consequence, the vertices of two successive models are
not matching points, whereas the models usually represent
largely overlapping parts of the scene (see Fig. 5). Applying
hierarchical wavelet decomposition on such independently
sampled models, as illustrated in Fig. 4, leads to high residual
information and suboptimal coding efficiency. Moreover, such
independent sampling prevents smooth swapping between
3-D models at visualization stage. Therefore, we propose to
build a consistent sampling for all 3-D models with vertices
corresponding to identical physical points. This is done by
separating connectivity and geometry; a planar graph, denoted
as single connectivity mesh (SCM), gathers the connectivity
information of every base mesh in the sequence, regardless
of their geometry. This mesh evolves during time in order to
take into account outgoing and incoming points. The SCM is
computed starting from the connectivity information of the
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Fig. 4. Principle of the wavelet decomposition for the 3-D model stream.

first base mesh, and updated with the connectivity information
associated with new points appearing from one base mesh to
another. The SCM computation and update is based on the
base meshes construction described in Section IV-C. A global
indexing system provides a unique index for each vertex in the
SCM, thus implicitly defining matching between base meshes
vertices. The SCM is described as a list of triangles expressed
in the new global indexing system. The SCM also provide a
unique index for each face in the SCM.

Wavelet decomposition based on the SCM is consistent for all
models and leads to compact coding. Moreover, smooth swap-
ping at visualization can then be achieved by direct morphing
between vertices without ghost effect due to a fading [17] nor
morphing additional computing cost [16], [18]. This can be done
at each level of subdivision thanks to the consistent connectivity
of all base meshes and the global index system. Indeed, thanks
to base mesh faces global index, a unique index can be computed
for all vertices at each level using his barycentrical coordinates
in base face. At each level 7, smooth transition between models
M}, and M} can be achieved by linear interpolation between
corresponding vertices

M. =a* M+ (1 —a)* My with a
|

” ttk+1 - ttk ||

where M. denotes the interpolated model for current time t.
and t;_, t;, andty, , denote translation vectors defining camera
position for the current frame, keyframe K} and K1, respec-
tively.

_ H ttk+1 - tt{‘

B. Base Meshes Construction

Base meshes use nonuniform triangulation in order to ensure
global connectivity consistency and smooth transition between
models. Furthermore, to better represent the video content, the
base mesh must also to fit features of the scene.

For the first GOF, the adaptive triangular mesh is based
on feature points computed on the first frame in the GOF
(keyframe), using a block-based Harris corner detector [24].

The size of block used for Harris detection fixes the number of
the base mesh vertices (e.g., 200 vertices for our experiments).
A two-dimensional (2-D) Delaunay triangulation of these
points under the constraint of image borders provides the base
mesh connectivity. In order to avoid texture stretching near
image borders, we add vertices on image borders. The 3-D base
mesh BMj, is then derived by elevation of this 2-D mesh using
3-D information provided by the depth map.

In order to build the SCM, each base mesh is forced to con-
tain the correspondents of the previous base mesh vertices, if
they are still visible in the GOF. To meet the SCM constraint,
triangles of these correspondents, whose set is denoted by C My,
are included in the base mesh: C M, C BM,.

When adding vertices on the border of the model, the new
triangulation has to preserve the connectivity derived from the
preceding GOF without edge crossing. This is achieved by 2-D
Delaunay triangulation constrained by image borders and cor-
respondent mesh C' M}, borders. These new triangles are added
to the SCM.

In Section IV-D, we describe the wavelet analysis scheme
applied on the base meshes in order to provide a multiresolution
scalable representation for each 3-D model.

C. Wavelet Decomposition

The goal of wavelet decomposition is to decorrelate geo-
metric information so as to proceed to the first step towards
compression. In addition, the multiresolution aspect of this
transform allows very efficient reconstruction and transmission,
possibly in real time [25].

Since we describe geometric deformations, first-generation
wavelets do not apply. Indeed, these parameterizations are de-
fined over topological spaces (typically base meshes BM;, of
Fig. 1) which are not linear spaces. Thus, wavelets themselves
have to be defined according to the base domain, its subdivisions
and geometric irregularities.

In the context of subdivision surfaces [20], wavelets can be
defined starting from a low-pass reconstruction filter P7. This
filter operates over a global topological subdivision consisting
in facets quadrisections, similarly as interval dichotomies in the
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Fig. 5. Successive models for the Thabor sequence (c) M,,, (d) M, +, and
associated texture image (a) T, (b) T,+1 (lateral translation of the camera).
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Fig. 6. Estimation of the depth to encode with wavelets.

classical wavelet setting. Filter P7 transforms coefficients at
level 7 — 1 into a prediction at level j

Al = pig, 1))

The resulting coefficients are an approximation, without
adding any information, which coincides with the refinement
operator in the case of subdivision surfaces. The wavelet setting
can be seen as “completing” the representation by adding
details through a high-pass reconstruction filter Q7. This filter
has to satisfy an exact reconstruction criterion, which implies
that matrix (P?Q7) is invertible.

Scaling functions ((bf ) ~and wavelets ('L/Jf ) _are directly de-
fined by these filters, so that the parameterizatﬁon to transform
can be expressed as

S:ZZdiﬁﬂLZC%?- (@)

>0 i i

In our case, we use continuous piecewise linear wavelets,
which implies that matrix P/ has the form P = (I P’)! where
I denotes identity and P’ a canonical averaging matrix. As for
matrix @, it is chosen so that the resulting wavelets are stable
and provide good compression. This is achieved by the require-
ment of vanishing moments through the lifting scheme [26].

For encoding depth maps, we start by defining a geometrical
deformation as illustrated on Fig. 6. The transform is expressed
as a scalar in terms of distance to the observer: the scalar func-
tion p : M B,— > R maps a point = on the base mesh to the
offset p between = and Mi+! N (Crx).
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a (13765 vertices)

b (10783 vertices)

Fig. 7. Example for sequence Thabor: progressive meshes reconstructed with
(a) classical and (b) adaptive wavelet decomposition.

We then process the wavelet transform by applying
(P7Q7)~! for every j

(f;) = (PIQ)) L, 3)

The representation to encode is shown on Fig. 1. Fine models
F'M; are represented by base meshes BM,, and wavelet coeffi-
cients 7. Scale coefficients e expressing the geometry of base
meshes are gathered and indexed by the SCM.

In classical decomposition, all faces are subdivided at the
same fixed level at the encoding stage. However all the faces
of the mesh do not need to be subdivided at the same level de-
pending on the size on the face and on the part of the scene they
represent. Therefore we introduce an adaptive wavelet decom-
position. The level a face is decomposed at is given by the size
of the 3-D face in order to gather two criteria; the depth gradient
and the area of the 2-D face of the image. Fig. 7 gives examples
of meshes given by classical and adaptive decomposition for the
Thabor sequence.

At this stage, we have obtained a set of multiresolution
meshes based on non-uniform triangulation, with corre-
sponding vertices. This representation has several advantages,
among which are:

* vertex positions can be adapted to scene contents;

* vertex to vertex correspondence between successive
models is implicitly provided by the mesh structure and
therefore does not need to be transmitted or estimated at
the decoder side. It allows to smooth transitions between
3-D models through implicit morphing using a simple
linear interpolation between vertices.

This 3-D representation for videos induces several media
streams, such as topology (the connectivity of the single base
mesh), geometry (wavelet coefficients and incremental model
representation), and texture as well as camera parameters for
each frame. Efficient coding of these streams is described in
Section V.

V. COMPRESSION OF THE REPRESENTATION

A. Inter-Relations Between Different Media

A key observation is that the information streams to be trans-
mitted are not independent and an efficient coding algorithm
should take into account this redundancy for both compression
rate and quality of the reconstructed sequence.
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Fig. 8. Thabor sequence: predicted images. (a) Image 107 from original se-
quence. (b) Associated predicted image.
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Fig. 9. Inter-relations between the media in 3-D model-based coding.

Here is the description of inter-relations occurring within 3-D
model-based coding that we use in our coder.

First of all camera positions can help the transmission of
3-D models. Indeed, for each vertex of the nonuniform meshed
model, five coordinates have to be transmitted: three coordinates
for vertex location (3-D coordinates) and 2 for texture (2-D co-
ordinates). If the camera positions are known on the decoder
side only three parameters instead of five are required. Indeed
2-D texture coordinates can be retrieved by reprojecting 3-D
vertices M; on camera position of the GOF key frame view-
point. As the key frame is also the texture image, the coordi-
nates of the resulting projection m; are the texture coordinates
for vertex M. These parameters can be the exact positions of
3-D vertices M or texture coordinates m; and the associated
depth d; if the 3-D model is an elevation map. This is repre-
sented on Fig. 9 by the arrow (1).

Furthermore, since 3-D models represent overlapping parts of
the scene, the related textures include redundant information. To
exploit this redundant information, compressing texture images
using a classical scheme IPP, where the first image is in Intra
mode and the others are in Predicted mode, is useful. Using one-
dimensional (1-D) and 3-D information predicted images can
be estimated thanks to the reprojection of the precedent textured
model onto associated camera (cf. Fig. 8). This is represented by
the arrows (2) on Fig. 9.

In the same way, 3-D models geometry share common infor-
mation. This redundancy can be reduced by using an IPP scheme
for 3-D information. Predicted models are given by the common
part of the precedent model. This is represented on Fig. 9 by the
arrow (3). These inter-relations are summarized on Fig. 9. To
taking into account those interrelations allows to dramatically
reduce the bit rate [27].

Depending on the envisioned applications, texture or geom-
etry has to be favored. For instance, texture is very important in
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video broadcasting applications, because human vision is very
sensitive to texture. In virtual reality applications (virtual view-
point generation or addition of objects for example), 3-D ge-
ometry has to be more accurate. With a unique stream instead
of several ones we can update on the fly the rate associated to
each medium whose particular encoders are presented in Sec-
tion V-B.

B. Camera Encoding

Key frame camera positions are differentially encoded and in-
termediate camera positions are retrieved by linear interpolation
between key positions

t -1
CC:a*Ck+(1—a)*Ck+1witha:M.
| thtr =t |

C. Texture Encoding

An IPP scheme is used where predicted image P(I41) is
obtained by the reprojection of the precedent textured model on
the current key position, as described in Section V-A. Padding
is used in areas where prediction does not apply (cf. Fig. 8)

P(Kjy1) = Pr (My', Ty, Cry1) -

Fine granularity scalability for the texture images is allowed
by EBCOT coder. The use of the IPP scheme hinder decoding
scalability. Therefore we add a low bandwidth for texture trans-
mission. At the coding stage, the image used in order to get the
prediction is the precedent image, but decoded at a very low bit
rate. Refinements are transmitted in the error image.

D. Connectivity and 3-D Geometry Encoding

Three-dimensional information encoding is based on the base
mesh BM}, and a set of wavelet coefficients for refinements.

Two-dimensional texture coordinates are not encoded, as ex-
plained in Section V-A since they can be retrieved by repro-
jecting the 3-D model on the related key position.

The base meshes are encoded using a topological surgery
(TS) encoder [10] for geometry and connectivity. We can
rapidly identify vertices having a correspondent in the next
model by re-projecting vertices of the current model on the
key image of the next GOF. In this way, we retrieve the
common information between two models at the decoding
stage without transmitting additional information. The global
indexing system introduced in Section IV helps to implicitly
encode correspondences between successive base meshes. In
order to avoid numerical errors, a stage of robust selection of
base mesh vertices is added to the Harris corner selection.

After the wavelet transform, we get some sets of wavelet coef-

o J
ficients (rf ) ~ with low first-order entropy. This representation

is then binarized using a zero-tree algorithm suited to the geo-
metric setting [21], [28]. To this end, a special hierarchy is setup
on the mesh, ordering vertices instead of facets. The SPIHT al-
gorithm can be applied directly onto this hierarchy, similarly to
the 2-D case. The use of this adaptation of the SPIHT zero-tree
encoder adds bitplane scalability.
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(a) 29.6603 (b) 26.2669

Fig. 10. Thabor sequence: (a) texture image and (b) reconstructed image.
While its PSNR is much lower, the visual quality of the reconstructed image is
similar to the texture image visual quality.

Note that the SPIHT algorithm does not contain any entropy
coding stage. It is possible to take advantage of such a coding
in a post-process, but this may not be desirable in the case of
adaptive decoding or bitstream degradation, since it makes real-
time decoding slower.

VI. RESULTS AND DISCUSSION

We show results on two sequences, illustrating the compres-
sion rates reached by comparison to Galpins and H264 encoders
at low and very low bitrates on both constrained and free navi-
gation.

For the wavelet decomposition we use the classical midpoint
bi-orthogonal analysis performing a subsampling [26].

A. Visual Quality and PSNR

While PSNR is appropriate for measuring block based errors,
it has however, little meaning when it comes to geometric dis-
tortion. Global distortion on reconstructed images is produced
both by texture (texture image compression artefacts) and geo-
metric distortions (from 3-D model estimation errors and depth
compression artefacts). Geometric distortion greatly decreases
the peak signal-to-noise ratio (PSNR) when it may have little
impact on visual quality. A demonstrative example is the geo-
metric distortion defined by a one-pixel translation.

This is shown by comparing visual quality and PSNR of tex-
ture images and reconstructed images, as in Fig. 10. The texture
image PSNR is the PSNR obtained with texture distortion alone,
and without geometric distortion. It is dramatically much larger
than the eventual PSNR value on reconstructed image, but vi-
sual quality is equivalent for both images.

Thus, low PSNR values of reconstructed images are essen-
tially due to geometric distortion, but they do not reflect visual
quality, which is more related to texture accuracy.

‘We thus show PSNR values in an informative way and rather
rely on visual assessment of the reconstructed images, in par-
ticular in the case of free viewpoint generation for which PSNR
has little meaning.

B. Compression Results

‘We show compression results for a sequence of 110 frames of
the Thabor sequence for low and very low bit rates on Figs. 11
and 12. No comparison can be made with H264 if such a low
rate cannot be reached at 25 Hz.
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Fig. 11. Thabor sequence: Image 122 from: (a) original sequence (CIF, 25 Hz)
and (b) reconstructed images at 125 kb/s with H264 coder, (c) with Galpin coder,
and (d) with our coder.

Fig. 12. Thabor sequence: Reconstructed images 71 at 30 kb/s with (a) Galpin
coderand with (b) our coder.

In Galpin’s method, depth maps were encoded as an image
with EBCOT. The number of vertices in the uniform mesh is
then reduced to be competitive with the rate achieved by our
progressive coder (15 kb for 2400 vertices against 22 kb for
1600 vertices for Galpin’s coding for the stairs sequence). This
profits allows to allocate more bitrate for texture information in
order to better preserve texture details (as shown on Fig. 12 on
the wall on the right or in the background on the image). Since
texture information is prominent over geometry for low bitrates,
this profit is particularly useful in order to achieve a very low
bitrate.

C. Scalability Results

Here we show some results of the scalability obtained with
our coder. We show PSNR values even if it does not allow the
evaluation of the quality of the reconstructed sequence, because
of geometric distortion.

The table of the Fig. 13 shows the number of vertices and the
associated rate depending on the level of the wavelet decomposi-
tion. Fig. 14 shows reconstructed images associated with these
levels of decomposition. The size of the binary representation
increases with the wavelet decomposition level, and so does the
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Level | Number of Vertices | size (bits)
0 148 7744
1 565 10869
2 2185 17155
3 8736 29806

Fig. 13. Number of vertices and associated rate function of the level of the
wavelet decomposition.

— ~

(c) 21.6228 (d) 21.6238

Fig. 14. Thabor sequence: spatial scalability Image 71 from the (a) original
sequence (CIF, 25 Hz) and reconstructed images at 125 kb/s at different level of
wavelet decomposition: (b) 0, (c) 2, and (d) 3.

quality of the reconstructed images. This is particularly visible
on the steps of the stairs. For this sequence, the choice of level
2 seems to be a good rate/distortion tradeoff.

D. Virtual Navigation Results

Including inter-relations into the coder not only dramatically
decreases compression rates, but it also increases the visual
quality of the reconstructed sequence by linking up different
models together.

Fig. 15 shows successive images around a transition between
two GOFs, the last of the preceding GOF and the first of the fol-
lowing. One can see the discontinuity between two successive
frames of the video on these images with the right-hand edge
blank due to missing information for appearing areas. Fig. 15
shows also the same images reconstructed with our method. The
artefacts are greatly reduced by the morphing enabled by model
vertex matching.

Galpin 3-D fading [17] allows to reduce artefacts near model
transitions and also produces ghost effects on the images of the
middle of the GOF and on images associated to free viewpoints.
The implicit morphing strongly contributes to the visual quality
of the scene, avoiding these ghost effects while smoothing tran-
sitions between models.

Fig. 16 shows reconstruction results during free navigation,
i.e., when the viewer is not restricted to the camera path defined
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Fig. 15. Thabor sequence: Reconstruction of original path around a transition
between two successive models. Successive reconstructed images without post-
treatment (no morphing nos fading) (a) and (b). Successive reconstructed images
with our coder (c) and (d).

Fig. 16. Street sequence: Reconstruction on virtual path with (a) Galpin and
(b) proposed method.

during capture. In a similar way, results on the original path vi-
sual quality of reconstructed images is increased by eliminating
artefacts of ghost effects even though some geometric distor-
tions are visible near the upper image border, due to nonuniform
triangulation.

Our algorithm is, however, limited by occlusions and by 3-D
informations and camera parameters precision. Our approach
does not require an accurate geometry, and therefore, the models
cannot be used to generate a free viewpoint far from the original
camera.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new model-based coding scheme for
static video with fine-grain scalability, allowing content adapta-
tion over a very wide spectrum of terminals and networks. This
scheme takes advantage of specific video content, i.e., a fixed
scene acquired with a moving camera, to build a 3-D represen-
tation which allows better performances and advanced function-
alities. In particular, 3-D can be streamed adaptively in appli-
cations of free navigation over networks. The coder, showing
better compression results and finer scalability than previous
schemes, exploits all the power of second-generation wavelets
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and implicit morphing thanks to the design of a connectivity
mesh gathering each GOF connectivity information.

To further improve this scheme, it would be interesting to ex-
press the temporal increments in a wavelet basis themselves.
Furthermore, reconstructed images have shown the need for a
suitable error metric for reconstructed images taking into ac-
count the geometric distortion to meet visual quality measure.
Finally, whereas encoding/decoding the representation can be
done on-line, nonlinear optmizations for disparity estimation or
bundle adjustment harm complexity of the 3-D extraction al-
gorithm. It could be interesting to try new graphics processors
to accelerate treatments to reach real-time applications such as
video-conferencing.
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