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Automatic Meeting Segmentation Using
Dynamic Bayesian Networks
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Abstract—Multiparty meetings are a ubiquitous feature of orga-
nizations, and there are considerable economic benefits that would
arise from their automatic analysis and structuring. In this paper,
we are concerned with the segmentation and structuring of meet-
ings (recorded using multiple cameras and microphones) into se-
quences of group meeting actions such as monologue, discussion
and presentation. We outline four families of multimodal features
based on speaker turns, lexical transcription, prosody, and visual
motion that are extracted from the raw audio and video record-
ings. We relate these low-level features to more complex group be-
haviors using a multistream modelling framework based on multi-
stream dynamic Bayesian networks (DBNs). This results in an ef-
fective approach to the segmentation problem, resulting in an ac-
tion error rate of 12.2%, compared with 43% using an approach
based on hidden Markov models. Moreover, the multistream DBN
developed here leaves scope for many further improvements and
extensions.

Index Terms—Multimodal, multistream, meeting actions.

I. INTRODUCTION

I NVOLVEMENT in meetings is a common experience in
daily life, particularly in the workplace, where managers

spend more than a day each week in meetings1. Meetings per-
form several functions, such as the resolution of disputes, social-
ization, problem solving, planning, or the review of results. Only
rarely is a meeting focused on a single task; usually, groups are
engaged in multiple interdependent functions on multiple con-
current projects [1].

Traditionally the minutes of a meeting are taken by someone
present at the meeting. Unfortunately, this is a time-consuming
job, and often fails to capture all the required information. It
would be desirable to have an automatic system to enable ef-
ficient organization, search and recall of the information con-
tained in a meeting, or a set of meetings. Such a system would
be required to extract high level information such as meeting
phases, meeting tasks, textual transcriptions, topic structure, and
summaries [2]. These high-level descriptions can provide a mul-
tiperspective analysis of a meeting, more detailed and more ob-
jective than a hand-made minute. Moreover such an analysis
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could facilitate browsing over meeting series, making it possible
to search for specific events [3].

In this paper, we are concerned with the automatic structuring
of meetings, based on multistream meeting recordings—pri-
marily audio and video streams captured using multiple mi-
crophones and cameras. Analysis of natural human commu-
nication based on multiple streams corresponding to record-
ings of different modalities is a difficult task, since acoustic
recordings are corrupted by environmental noise and room re-
verberations; video recordings include occlusions and environ-
mental changes; the participant interactions are highly sponta-
neous and usually unconstrained; there is a very wide range of
topics, speakers, speaking styles and accents.

The automatic structuring of meetings is a complex task that
intersects many research areas, including automatic speech
recognition, gesture recognition, topic segmentation, and
emotion detection. In this work we are concerned with the
recognition of group actions, whereby a meeting is interpreted
as a sequence of interactions between the participants. Our
goal is to segment automatically each recorded meeting into a
sequence of group meeting actions. We have used a set of five
basic group meeting actions: monologues, discussions, note
taking, presentations, and whiteboard-based presentations [4].
Monologues are focused on an individual addressing the group,
which may provide an active feedback. Discussions, in contrast
to monologues, involve two or more participants in conversa-
tion. Presentations are similar to monologues, except that the
orator speaks from the projection screen area. Another variant
of monologues are white-board presentations, in which the
main speaker makes use of a white-board to explain concepts.
Finally, note taking is a group action in which participants write
down their own notes. These group action symbols are assumed
to be mutually exclusive and non-overlapping. Moreover, the
meeting action dictionary is also assumed to be exhaustive:
gaps between different actions are not allowed.

To segment a meeting into a sequence of group meeting ac-
tions, we first extract features from the multimodal recordings,
then construct statistical models that represent the meeting
action sequence in terms of the extracted features. We have
used four main categories of features: prosodic features (such as
fundamental frequency), speaker turn features, lexical features
(based on a word-level transcription for each speaker), and
motion-based video features. This feature extraction step may
be regarded as describing a meeting as a set of streams, where
each stream corresponds to a particular modality. To model
this multistream situation, we have used dynamic Bayesian
network (DBN) models in which a hierarchical state space is
constructed, enabling individual feature streams to be processed
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independently at a lower, subaction level, and collectively at a
higher meeting action level.

The paper is structured as follows. We review related ap-
proaches to individual and group action recognition in the fol-
lowing Section II. More details about the multimodal meeting
recordings that we have used are given in Section III. We out-
line the extraction of the four feature families in Section IV.
Section V contains a brief introduction to DBNs and Section VI
gives a more detailed description of the multistream model that
we have adopted. We present a set of experiments using these
models for meeting action recognition in Section VII. Finally,
conclusions are drawn and some areas for future work are out-
lined in Section VIII.

II. RELATED WORK

The recording and analysis of meetings has become a
flourishing research area recently, with specific foci including
meeting browsing, microphone array processing, speaker
tracking, and person identification [5]–[7]. Several researchers
have focused on the automatic recognition of actions in meet-
ings, at both individual and group levels.

A. Individual Action Recognition

Automatic interpretation of human activities, and automatic
recognition of individual actions in particular application do-
mains, is an active research field. Most of the work in this area
relies on a supervised approach: unseen multimodal sequences
are interpreted using statistical models estimated using anno-
tated data. Both unimodal and multimodal approaches have
been used for such problems.

Hidden Markov models (HMMs) have provided a good
framework for unimodal tasks, such as speech or hand-
writing recognition, and usually form the baseline system
for multimodal situations. Starting from the assumption that
incorporating more knowledge of the underlying problem into
the model can improve the model’s accuracy, many HMM
variants have been investigated, such as hierarchical HMMs,
coupled HMMs, buried HMMs and semi-Markov models. An
important feature of multimodal analysis is the requirement
to process multiple asynchronous and interdependent feature
streams. This may be addressed through the use of models
based on multiple parallel Markov chains, usually referred to
as multistream models. Oliver et al. [8], for example, proposed
a structured approach to the inference of typical office user
activities (e.g., making a phone call, having a face to face
conversation, etc.) using features derived from audio and video
signals, and computer activity logs. This approach relied on a
layered HMM, which is hierarchically composed of multiple
HMM chains. At the lowest level, there is a signal-analysis
HMM which connects low-level features to an intermediate
layer, which forms the observations for a higher level HMM,
and so on up to the highest level of the model. Each layer may
be trained independently (with a supervised approach) and is
characterized by its own temporal granularity.

Multimodal sensing has been used to improve speech-based
command and control interfaces [9], such as information kiosks
or video games. Here user presence and focus of attention
are inferred from low level audio, video and “contextual”

features using an ad-hoc developed DBN model. A custom
DBN (derived from human expertise) encoded causal relations
between multimodal features (mouth motion, silence detection,
skin detector, face detector, etc.) and classes that need to be
recognised (visible speaker, frontal view of the speaker, focus
of attention).

Automatic classification of broadcast news is another rel-
evant example of multimodal sensing. For example Snoek et
al. [10] proposed a framework to detect TV news monologues
using multiple style detectors based on multimodal features
(frontal face detector, video optical character recogniser, speech
detector and speech recogniser) and a support-vector-ma-
chine-based classifier.

Audio-video speech recognition [11] may be viewed as
a particular example of multimodal human activity recogni-
tion. This is a well-defined domain and forms a good testing
ground for the comparison of different approaches and models.
Dupont et al. [12] proposed a synchronised multistream hidden
Markov model, in which the audio and video streams were
processed independently. Partial recognitions were integrated
only at particular state space configurations (anchor points).
This multistream model was implemented by considering the
whole cartesian product of the two independent stream state
spaces (HMMs). Therefore state durations, anchor points, and
the amount of synchronism/asynchronism between the streams
were all explicitly encoded into the model’s state-space struc-
ture. Another multistream approach, which took advantage of a
DBN-based formalism, is outlined in [13]. This approach, using
words instead of subword units as anchor points, further relaxed
the assumption about stream synchronisation. Moreover, in this
approach, state-duration modeling and level of synchronisation
between the signals were implicitly determined.

B. Group Action Recognition

The literature concerning group interaction analysis using
multimodal features, is much less developed than that about
individual action recognition. Hakeem and Shah [14] proposed
a multilevel structured approach to classify visually related
meeting actions and the meeting genre. Head and hand posi-
tions were estimated using a standard condensation tracking
algorithm, enhanced with a small set of categorized movement
attributes. Sequences of movements were mapped into actions
or events by a state machine. A hierarchical set of rules was
used to detect higher level meeting activity.

Howard and Jebara [15] introduced a model for multiple
concurrent processes (such as the trajectories of the members
of a football team), referred to as a dynamical systems tree.
This DBN model consists of a structured hierarchy of aggre-
gating parent Markov chains (aggregating-nodes), and a set of
switching linear dynamical systems that are used to discretise
the continuous feature space (leaf-nodes). Basu et al. [16] have
investigated the automatic analysis of human interaction in
informal settings. Multimodal features (speaker audio activities
and motion based visual activities) are related to group behav-
iors through a coupled HMM. Direct computations using such
a model, with chains and states per chain, requires
parameters, making this approach intractable even for small .
Basu et al. approximated the model by taking into account the
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individual interactions between a chain and neighboring
chains , instead of considering all the possible interactions
between and the remaining chains.

There has been some previous work using the same corpus
and dictionary of meeting actions that we employ here. 2 Re-
iter et al. [17] developed an algorithm to segment meetings in
terms of meeting actions, based on a minimum length constraint
and dynamic programing. Using automatic speaker segmenta-
tion and other hand labeled features, this model was used to
classify segments as monologues, discussions, etc. by fusing
the output of different basic classification approaches (Bayesian
network, Multilayer Perceptron network, and Radial Basis net-
work). More recently, Al-Hames et al. [23] proposed a frame-
work for meeting action classification based on three multi-
modal features: binary speech and silence segmentation, four
Mel-frequency cepstral coefficients plus energy, and a visual-
based global motion vector. These features were modeled using
a DBN composed of three partially coupled hidden Markov
chains. Experiments applying this DBN approach to artificially
perturbed pre-segmented meetings offered improved accuracy
compared with a baseline HMM classifier.

McCowan et al. [18] investigated several approaches to multi-
modal feature integration and meeting action recognition, inves-
tigating both participant and group actions. Both early and late
integration approaches were investigated. The best results were
achieved with a group-based multistream approach [12], with
good results obtained using audio features alone (speaker ac-
tivity and prosodic features). These results highlighted the fact
that although acoustic related features outperform video derived
features (such as the positions of head and hands), a multistream
approach was essential to achieving good results. This work also
employed the asynchronous HMM [24] to address the task of
group action recognition with a model expressly designed to
cope with asynchronous multimodal signals. However, the re-
sults obtained with this model did not offer an improvement over
early feature integration and a simple HMM.

More recently the same feature families have been modelled
using a two-level layered HMM [20]. In this hierarchical ap-
proach, features are firstly related to participant actions (such as
speaking, writing, and idle) through a low-level HMM. A higher
level HMM, employing the participant action probabilities and
other group level features, is then used to recognise meeting ac-
tions. This framework has been adapted to the unsupervised case
[25] in which meetings (or meeting series) are segmented and
clustered into a set of hidden meeting actions.

Previously, we have outlined a meeting action recognition
framework based on acoustic and lexical related features and
a layered multistream dynamic Bayesian network model [19],
[21]. This model combines the advantages of independent fea-
ture-stream processing together with a structured approach. In
this paper, we provide a clear and unified view of this frame-
work, providing further extensions both to the feature set and to
the model structure.

2Even sharing the same corpus and the same task, differences in the feature
set, the data set subdivision and the evaluation methodology, make a direct com-
parisons between the present paper and [17]–[21] infeasible. A first attempt to
overcome this situation, by comparing the performance of our DBN multistream
model on three different feature setups (IDIAP, Munich and Edinburgh feature
sets), can be found in a recent joint work [22].

Fig. 1. Meeting scene example captured with three fixed video-cameras: white-
board and projector screen region (top image) and two opposite sides of the table
(bottom images).

III. THE M4 MEETING CORPUS

We performed our experiments using a corpus of 69 short
meetings, recorded at IDIAP as part of the M4 project, referred
to as the M4 Meeting Corpus [4]3. Each recording in the corpus
captures the interaction of four participants following an overall
meeting structure that was planned in advance. The structure is
defined in terms of a sequence of meeting actions from the dic-
tionary outlined in Section I: monologue, discussion, presenta-
tion, presentation at whiteboard, and notetaking. The resultant
meetings thus follow a high-level “script”, but the individual
participant behaviors and language are unscripted and natural.
The boundaries between meeting phases tend to be smooth and
spread over several seconds.

The corpus consists of more than five hours of synchronized
multichannel audio-video recordings. Recordings took place in
an instrumented meeting room. Each participant wore a lapel
microphone, and a eight-element circular microphone array
was placed on the table between participants. Note that nothing
was done to prevent reverberation or to reduce environmental
noise, thus offering realistic recording conditions. Orthographic
(word-level) transcriptions were provided for 30 of the 69 meet-
ings. Three fixed cameras provided visual recordings of the
meeting activity (Fig. 1). Two wall-mounted cameras gave a
landscape view of each side of the table (usually two people
in shot). The third camera framed the projector screen and the
white-board area. As for audio, the video recording conditions
were unconstrained with phenomena such as object occlusions
and changes in illumination.

These meeting recordings involve only audio and video, but
the communicative process is spread between several modali-
ties including speech, prosody, gestures, handwriting, and fa-
cial and body expressions. Further streams of data could be
captured easily: for example, handwriting could be recorded
through whiteboard capturing devices, graphic tablets, or digital
pen/paper. Unfortunately this is not the case for modalities such

3This corpus is publicly available from http://mmm.idiap.ch/



28 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 1, JANUARY 2007

as gestures or facial expression, for which the use of specialized
recording devices is impractical and invasive. When specialized
recordings are not available, it is possible to extract multiple
modalities from single streams. For example, speech could be
separated from noise and other sound sources using microphone
array beamforming, physical motion could be measured using
image processing techniques, and may be further integrated into
a gesture recogniser. Note that this is a simplified view of the
problem, because a single modality corresponds to multiple dif-
ferent streams: for example, speech is manifested not only as a
sound, but also as a lip motion. The situation is further compli-
cated if we consider the correlations that exist between different
modalities, such as speech and gestures [26].

IV. FEATURE EXTRACTION

Four feature families were employed: a basic set of prosodic
features, features relating to speaker turn dynamics, a lexical
based monologue/dialogue discriminator, and a rough estimate
of the motion of participants’ head and hands.

A. Prosodic Features

A feature vector of three independent features was extracted
for each participant, using audio recordings provided by indi-
vidual lapel microphones. This vector consists of three entities:
a smoothed estimate of fundamental frequency (F0), an estimate
of the syllabic rate of speech, and energy.

The smoothed F0 is estimated in two steps: an initial F0 con-
tour estimate using the ESPS pitch tracking algorithm4, fol-
lowed by a chain of three filters, inspired by Sonmez et al. [27],
that denoise the initial estimate of F0. A histogram filter re-
moves incorrect estimates arising from other undesired sound
sources, followed by a median filter to smooth the F0 contour
by removing spurious peaks, and a linear interpolation filter that
provides a piecewise-continuous smoothed output.

The syllabic speaking rate was estimated from the acoustic
signal using the algorithm mrate[28], which integrates the
output of multiple rate of speech estimators.

The logarithm of root-mean-square energy was evalu-
ated for each lapel microphone channel . , then normal-
ized as follows [29]:

The minimum log-energy can be interpreted as an esti-
mate of the noise floor level recorded by channel . Therefore
it needs to be subtracted in order to compensate for different
channel gains. The last term represents the mean log-energy av-
eraged across all channels. We are primarily interested
in sounds (speech) that occur only in proximity of the channel.
Considering one channel at a time, those sounds should be
considerably above the background noise (multichannel aver-
aged energy).

In order to improve the quality of F0 and rate of speech,
discretized versions of the speaker activities estimated using

4Available from http://www.speech.kth.se/snack/

microphone array processing techniques (Section IV-B) were
used to mask inactive lapel microphone channels. Unfortunately
prosodic features could not be extracted when participants are
presenting a talk or standing at the whiteboard, since the use of
wired lapel microphones is feasible only when participants are
close to the table. Therefore the prosodic feature set is partially
incomplete and also affected by estimation errors.

Both F0 and rate of speech were normalized across the entire
meeting, in order to have comparable features for different
speakers. The resulting prosodic feature set thus captures
variations in speaking style, highlighting specific aspects of the
speech modality.

B. Speaker Turn Features

Face-to-face meetings display a complex turn-taking struc-
ture. The dynamics of this process can be extremely useful to
distinguish between different meeting phases. For example,
during dialogues speakers tend to alternate frequently, speaking
for shorter periods.

To investigate the turn-taking process, it is necessary to detect
speech activity for each participant in the meeting. This is diffi-
cult using the lapel microphone signals for two reasons. Firstly,
since they are wired microphones, meeting participants only
wear the lapel microphones while seated, which makes them im-
possible to use when someone is presenting a talk or standing
at the whiteboard. Secondly the lapel microphones are omnidi-
rectional and it is difficult to distinguish whether a signal is the
speech of the participant wearing the microphone, or crosstalk
from another speaker [29], [30]. Instead, we used microphone
array recordings to detect speaker activity.

A microphone array can be regarded as a steerable directional
microphone, but, compared with an orientable microphone,
there are no moving parts. The steering direction can be im-
posed at any time during or after the recording session using
a beamforming process. It is therefore possible to steer the
virtual microphone in any direction, evaluating sound activity
at a specific spatial location. There are only six spatial regions
in which participants spent most of their time: the four seating
regions that are individually associated with participants, the
white-board and a presentation space near the projection screen.
We detected continuous sound activities in each of these
six regions , which were used as a basis for features to describe
the turn-taking process. Each is directly proportional to
the probability of observing an active sound source (a meeting
participant speaking or generating noise) in the spatial region
at time , and it is zero when no activity is detected.

We constructed a 216-element feature vector to describe the
turn-taking process at each time. The vector consists of all
possible products of the six sound activity locations during
a time window of three frames [19]

where each vector highlights the turn taking interaction
pattern around the time . Considering, for simplicity, a smaller
turn taking matrix evaluated only on two frames
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Fig. 2. Overview of the “monologue/discussion” classifier.

the diagonal elements highlight whether a speaker ac-
tive at time , is still speaking at time . The terms above
the diagonal are greater than zero when it is likely
that is speaking after . Similarly implies
that at time and at time are both active. When
all: , , , and are greater than zero, it is likely that a
discussion (turn-taking alternation) between and is taking
place. A similar discussion applies to .

Dimension reduction of using principal component anal-
ysis was not effective, with reductions below 200 dimensions
resulting in a degradation in performance. Thus, we used the
unreduced 216-element feature vector in our experiments.

C. Lexical Features

Monologues and dialogues are characterized by different
speaking styles and different language models. In particular
we hypothesize that the distribution over words is different for
transcripts from these two meeting phases. Using a transcript
for each speaker we constructed trigram language models for
each communicative context that we wish to recognize. In this
work, we estimated language models for monologue and dis-
cussions only, but the idea could be extended to more elaborate
domains.

The approach is illustrated in Fig. 2. Trigram language
models correspond to monologues and discussions .
Those multinomial distributions over words are estimated
using transcriptions from the training data set, and then used to
partition unseen word sequences from the test set. Note that the
language models are estimated employing all the transcribed
words, irrespectively of the function they serve in the discourse.
Each word (together with its context , if avail-
able) contained in the transcription under test is compared with

Fig. 3. Filtering of ~k(w ).

both the models and and assigned to the
class with the highest probability

where is the output of the classifier.
The resultant sequence of output symbols is noisy, with

constantly switching between the two states (small dots
of Fig. 3). However, if we consider the symbol density, the
output is much more stable (lines of Fig. 3). Therefore, we
smooth the output by evaluating the relative frequency of
over a sliding window of 24 words. This window length has
been arbitrarily chosen, but it seems not to be critical because
values between 20 and 30 are equally acceptable. This lexically
based approach is able to classify unseen word sequences
as monologues or discussions with a percentage of correctly
classified words of about 93%. 5 Removing the smoothing step
and considering the noisy sequence the classification
accuracy falls to 78%. A lower bound on the class accuracy of
48% is obtainable by drawing the symbols by chance, according
to the prior distribution.

D. Video Features

Meetings provide a well-defined and highly constrained en-
vironment for video and image processing. Participants spend
most of the time in a few spatial locations—they move location
rarely and there are relatively few physical actions. In the case
of the M4 corpus, cameras are fixed, most furniture does not
move and lighting conditions are partially constrained. How-
ever, participants are free to perform any action or gesture and
do whatever they like. Therefore object occlusions are relatively
frequent, and nothing has been done to facilitate object tracking
(ie there is no “blue screen” or preassigned colors for clothing
or furniture). Note that exposure settings are different for each
camera. In particular, this is a critical issue for the camera ori-
ented on the bright projection screen and dark white-board area
(Fig. 1).

Although the recordings were made using high-quality equip-
ment and good video resolutions (full frame PAL), regions of
interest represent only a small fraction of the entire scene, pro-
viding a relatively low resolution. This resolution is sufficient
for tasks such as tracking the head, hands, and other objects of
a similar size. Close-up video recording will be required to ad-
dress problems such as lip feature extraction for audio-video

5Average recognition using leave-one-out cross-validation strategy on 30
manually transcribed short meetings.
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speech recognition or eye-gaze tracking for conversational at-
tention prediction [31].

We assume visual information about the participants is corre-
lated with meeting phases. For example, a speaker who is highly
involved in the conversation will tend to gesticulate, and the use
of a white-board involves a complex sequence of physical ac-
tions, such as standing up, walking and writing. Under that as-
sumption we are interested in extracting a set of region based
low level visual activities [16], that could improve the recogni-
tion of highly visual actions such as note taking and presenta-
tions.

Our efforts are concentrated on the two cameras oriented to-
wards the meeting table. Each of those captures a scene with
two speakers. As mentioned above, meeting participants spend
most of the time sitting, and therefore only the upper body part
is visible through those cameras (Fig. 1). In each scene, we an-
alyze four areas: the head and hand regions for each of the two
participants in shot. Instead of recognizing and tracking head
and hand blobs [20] we have chosen a faster and more flexible
approach that does not require an appearance model or any form
of (re-)initialization.

Our system relies on an optical flow-based algorithm, which
is used to track a fixed number of feature points.
We have adopted an enhanced version of the “Kanade Lucas
Tomasi” (KLT) feature tracker outlined in [32]. In particular the
condition used to select the tracking feature set has been revised
and extended. Given an image and a region , KLT
relies on solving a linear system associated with the following
matrix :

if and are the two eigenvalues of , the system will be well
conditioned if the smallest eigenvalue is large enough

(1)

Adopting this condition, Tomasi [32] states that “good features
are the ones that can be tracked well”, proposing therefore to
track feature regions with a particularly rich texture.

Being interested in tracking skin-like regions, we have ex-
tended the feature quality metric (1) proposed by Tomasi with
an additional condition over the candidate region’s color

(2)

It is thus feasible to evaluate the chromatic distribution of skin
blobs [33], and to use that distribution to estimate the proba-
bility of a given region to be skin. The chromatic space can be
represented through different bases: here, we adopted the lumi-
nance and chrominance space . Skin-like colors are
well clustered under the subspace, and a 3 component
GMM was trained using unseen skin blobs. The resulting skin
color model provided an easy way to estimate the skin proba-
bility (2) for each candidate region . Therefore a good feature
is now one that can be tracked well (1) and has a high proba-
bility to be part of a skin area (2).

Our approach to the video feature extraction process is de-
picted in Fig. 4. Each video stream is processed on a frame-to-
frame basis, the skin probability is estimated and used to select

Fig. 4. Overview of the “video features” extraction process.

and track 100 features. Those features are processed off-line.
Feature trajectories that are too long and have a limited amount
of motion are automatically removed. The next step consists
of partitioning the trajectory space into four regions (head and
hand areas for the two participants). Four Gaussian distributions
(one centroid for each region) were estimated using the entire
sequence. This rough global estimation was refined on a frame
basis, by using a k-means clustering. If a trajectory of length

is assigned to a set , of different regions,
and is the most frequent assignment, then the whole trajec-
tory is classified as part of region .

For each frame, and for each region, two video features were
extracted: the average feature motion intensity, and the approx-
imate motion direction. Thus, from each raw video signal, an
eight-element feature vector is extracted each frame. The fea-
ture vectors from the two cameras are combined, resulting in a
16-element global video feature vector. Owing to the recording
conditions of the third camera (projector screen and whiteboard
area), motion vectors extracted from this source are less reliable,
and were excluded from our experimental setup.

This approach exploits few assumptions about the scene
structure without pretending to precisely identify head or hand
blobs. Therefore, object occlusions are only partially handled.
However, recovering from an unexpected event is fast and com-
pletely automatic, there is no need for manual initialization, and
this technique translates well between domains. The system is
able to operate in the presence of complex colored backgrounds



DIELMANN AND RENALS: AUTOMATIC MEETING SEGMENTATION USING DBN 31

without any performance degradation, and is able to cope with
gradual illumination changes.

V. DYNAMIC BAYESIAN NETWORKS

Bayesian networks (BNs) are directed probabilistic graph-
ical models, in which nodes represent random variables, and
directed arcs between nodes represent conditional dependences
among variables. The conditional (in-)dependence relationships
encoded in the graph provide a compact factorized representa-
tion for the joint probability of all the nodes. This representation
may be exploited in order to reduce the computational effort re-
quired for probabilistic inference. Inference is the key step both
for parameter estimation (model training) and model decoding.

For signal-processing applications, we are interested in mod-
elling systems of time-dependent variables. DBNs are an ex-
tension of BNs to process time series. In a DBN, a local BN
is instantiated for each time slice, and the complete network is
formed by adding interconnections between the local networks.
Each local BN describes the relations between different random
variables within a time frame. The temporal dynamics are rep-
resented using additional arcs between nodes in different time
frames. Hence, a DBN is a set of static BNs interconnected by
some additional causal links across slices, which explicitly rep-
resent the time flow. DBNs (and graphical models in general)
have several advantages over basic HMMs:

• increased flexibility in the state-space factorisation and
structuring;

• capability to integrate some problem specific knowledge
into the model, and therefore ability to develop potentially
more discriminative models;

• improved and more parsimonious use of the parameter
space;

• unified graphical-mathematical formalism.
It is possible to express simpler models such as HMMs and
Kalman filters, or richer models including coupled HMMs,
factorial HMMs, hierarchical HMMs, and semi-Markov models
as DBNs [34]–[36]. Using this formalism common sets of tools
have been developed to perform standard activities such as
training model parameters, state space decoding, and sampling.
In this work, we have employed the Graphical Model ToolKit
(GMTK) [37].

VI. MULTISTREAM MEETING MODELS

This work addresses the automatic recognition of meeting
group actions, in which each group action is the result of the
interaction of multiple subjects over multiple communicative
modalities. Several approaches to group action recognition
have been proposed (Section II-B). A straightforward approach
to the problem would consist of early integration of feature
streams extracted from different subjects and modalities,
followed by a simple HMM-based infrastructure, and such
an approach has formed the baseline system used in our ex-
periments (Section VII-A). This solution is simplistic, since
two main issues are disregarded: the explicit modeling of the
interaction between multiple feature families, allowing an in-
dependent tuning and a better control over each feature stream;
the necessity of relaxed temporal synchronization constraints

among multiple modalities and participants. Therefore, coupled
HMMs, layered HMMs, and other multistream approaches are
potentially better suited to this task. In particular, multistream
models are highly flexible, intuitive, and lend themselves to
further improvement.

Multistream approaches to group action recognition may use
participant-based integration, or modality-based integration. In
participant-based approaches, features from different modali-
ties (individually extracted from each participant) are grouped
together and modeled as a single stream. Thus, each stream
corresponds to a participant, and the whole group behavior is
inferred from the integration of single participant behaviors
(substates). On the other hand, the modality-based approach
focuses on modeling each communicative modality individ-
ually, grouping together behaviors associated with different
participants.

Our multistream approach is based on processing different
modalities independently. We assume that the group acts as a
single subject and that “meeting actions” are related in the first
instance to the entire group behavior. Note that features such
as “speaker turns” (Section IV-B) are inherently related to the
whole group rather than to individual participants. Moreover we
preferred this strategy because it seems to provide better results
when compared with the participant based one [18].

A third, hybrid, approach obtained by modeling each par-
ticipant-based unimodal feature stream independently, could
be investigated also. Unfortunately, although this approach
has promising results, it requires a much larger state-space
(and hence considerable compute resources) for realistic
applications.

A. Multistream DBN Model

The most attractive feature of the DBN framework is
its extreme flexibility in the factorization and structure the
state-space. We assume that meeting actions can be interpreted
as sequences of atomic units (subactions), much as sentences
are subdivided into sequences of words. Thus, we propose
a model which is structured as a hierarchy of three layers:
complete meeting actions at the top, subactions in the middle
and the observed feature streams at the bottom. Thus, low-level
features are mapped into atomic subactions, which are them-
selves the building blocks of complete meeting actions.

Each feature family represents a single modality (even if ex-
tracted from multiple media). If we assume that multiple modal-
ities are independent at a subaction level and interact only at the
highest level, then the feature streams are integrated (avoiding
artificially introduced forms of stream weighting) at the top level
during the global meeting action recognition. Thus, this may be
regarded as a multistream approach, since feature-streams are
processed independently using their own subactions.

These subactions are obtained in an unsupervised way as the
result of a training process. Each subaction is expected to repre-
sent a cluster of feature vectors which is associated with a par-
ticular meeting behavior and is dominated by a common under-
lying dynamic. There is no clear and immediate interpretation
of subactions, and supervised approaches to obtain subactions
could be extremely difficult and expensive.
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Fig. 5. Multistream DBN model (a) enhanced with a “Counter Structure” (b);
square nodes represent discrete hidden variables and circles must be regarded
as continuous observations.

The state-space factorization property may be exploited via
both a hierarchical decomposition and a feature based subdi-
vision. Consider a DBN, with a local BN at each time . The
resulting model [Fig. 5(a)] appears as a tree-shaped structure in
which the observable features , are individually
connected to their subaction variables which are further con-
nected to the action node . The hidden variables and are
each characterized by their own dynamics, in which each node
is linked with its predecessor, forming a Markov chain.

The hierarchical relationship between and results
in a structure that resembles a hierarchical HMM (HHMM)
[38]. However this model is quite different, since HHMMs are
characterized by a structured hierarchy of multiple Markov
chains, and by a re-synchronisation mechanism which enables
state transitions in higher chains only when lower HMMs
have reached a “terminal state”. Our model is free from this
constraint, since actions are free to change independently
of the state of . Similarly, the multistream approach to
audio-video speech recognition [12] also relies on some re-syn-
chronization points, referred to as anchor points. It is possible
to interpret this model as a Dynamical Systems Tree [15] with
three leaves, a single level of “aggregating nodes”, and without
the switching linear dynamical systems to couple the leaf nodes
with subaction chains.

The lowest level of the model contains continuous observ-
able feature vectors (nodes ), each of which represents a
single modality that has been extracted from raw audio/video
recordings. Each feature stream is then mapped into dis-
crete substates through a Gaussian mixture model with
components

(3)

where is a Gaussian density with mean
and covariance , evaluated at , and

is the conditional prior weight of each mixture component
associated with stream .

Each substate node is part of an independent
Markov chain, and each subaction node is a child of the
global action node . Therefore, substate transition matrices

and an initial state distributions , associated with
, are functions of the action variable state

(4)

(5)

where is the initial subaction distribution for the stream
, given an initial action ; and represents the

transition probability from subaction to substate , given that
the global meeting action variable is in state .

The sequence of action nodes forms a Markov chain
with multiple subaction nodes as children. Therefore
can be regarded as an HMM generating hidden discrete
subaction sequences , through

, , respectively. In a further anal-
ysis, is then responsible for the modelling of the
joint dynamics of multiple streams.
is the initial state probability vector associated with , and

is the transition probability
matrix. Note that the Markov chain acts as an integration
point, collating together the whole information carried by
each subaction stream (representing a single feature family).
Pushing the integration point to the highest level of the model
in this way is referred to as “late integration”. Finally, the joint
distribution for a sequence of temporal slices, considering
the entire multistream model Fig. 5(a), is given by

(6)

Note that the cardinality of action nodes is imposed by
the size of the “action dictionary”: in this work. The
cardinalities of the subaction nodes are model parameters;
from some development experiments we discovered that all our
feature families (except the lexical-based monologue/discussion
discriminator) perform at their best when modeled with at least
five subactions. Note also that the maximum allowable degree of
asynchrony between the parallel streams is directly propor-
tional to the dimension of the product state space, .

B. Counter Structure

HMMs are characterized by a distribution in which the proba-
bility of remaining in a given state decreases as an inverse expo-
nential [39]. This state duration distribution is not well-matched
to the behavior of meeting action durations. This issue may be
addressed in various ways, such as semi-Markov models, and



DIELMANN AND RENALS: AUTOMATIC MEETING SEGMENTATION USING DBN 33

state duplication to impose minimum duration constraints, as
well as ad hoc solutions such as action transition penalties.

We preferred to improve the flexibility of state duration
modelling, by enhancing the existing model with an additional
“counter structure” Fig. 5(b). The duration of meeting actions is
constrained by using a counter node and an enabler node .
The sequence of counter nodes forms a Markov chain, which
attempts to model the expected number of recognized actions,
whereby is ideally incremented by a unit during each action
transition. In this counter-structure enhanced model, action
variables are not only parents of subactions , but also of
the enabler nodes . Therefore, generates both sequences
of subactions and a sequence of hidden enabler states .
Moreover, the binary enabler variables , reach their active
state 1 only in the presence of action transitions ( only
if and therefore ), thus providing
an interface between action variables and counter nodes .
The counter variable can be incremented only if the enabler
variable was high during the previous temporal
slice

(7)

where represents the state
transition probability for the counter variable given global
counter structure state during the previous frame . Any
evolution of the enabler node is conditioned on both the action
variable and on the counter variable . If is in state and
the counter in state , the probability to activate is given by

(8)

where represents the state transition probability associ-
ated with . Suppose that the th meeting action has been rec-
ognized at time , then the probability of encountering
a new action (the th) or equivalently to have activated

will be modelled by . Assuming
that action transitions are not possible during the first time frame

, the initial probability of is equal to
and for coherence .

The complete joint distribution of the multistream model en-
hanced with a counter structure [Fig. 5(a) and (b) combined],
computed for a sequence of frames, is given by

(9)

Note that the use of a counter structure is not limited to the
multistream model used here, but can be applied to any Markov
chain.

VII. EXPERIMENTS

All experiments were conducted on a subset of the publicly
available meeting data corpus described in Section III. We em-
ployed a baseline HMM system and multistream DBN systems,
using the feature families described in Section IV: 12 prosodic,
216 speaker turn, 1 lexical, and 16 visual features for total of
245 features. The lexical features (Section IV-C) require word-
level transcriptions. However this data comprises natural speech
from non-native speakers, recorded using lapel and far field mi-
crophones, which results in high automatic speech recognition
(ASR) word error rates. Our experiments were therefore per-
formed using the human transcriptions, and the reported results
are for a semi-automatic system. ASR transcriptions of each
speaker would be required for a fully automatic framework.
Only 30 meetings were transcribed (about 150 min), which is
a too small amount of data to provide separate training and test
sets. We therefore performed our experiments using a leave-
one-out cross-validation strategy, in which models were trained
on 29 meetings and tested on the remaining one, the procedure
being iterated 30 times.6

The task of meeting action recognition involves both segmen-
tation and classification. Since the boundaries between meeting
actions are not always precise, we have adopted an evaluation
metric focused on the recognition of the correct sequence of ac-
tions and flexible about temporal boundaries [4], the action error
rate (AER)

The AER is evaluated by summing the substitution, insertion,
and deletion errors of each recognized sequence when aligned
to its reference transcription. Note that the adopted meetings
follow a predefined sequence of actions (Section III) which con-
stitutes the ground truth for our experiments. AER is analogous
to the word error-rate metric used in speech recognition, and like
word error-rate, is usually more severe than the frame-based ac-
curacy.

A. Baseline Systems

A baseline system to relate low-level features with high-level
meeting actions was developed using an ergodic HMM. Six sys-
tems were developed, one trained on each of the four feature sets
individually, one trained combining nonvisual features only, and
a sixth using all four feature sets combined together. Since the
four feature sets previously outlined were extracted in different
contexts, they have different sampling rates. In order to share the
same sampling frequency, all of them were down-sampled, to a
common sampling rate of 2 Hz. The word-level-based time scale
of lexical features was converted using the word-time bound-
aries provided by transcriptions. Although the feature families
shared the same sampling frequency after this process, it is not

6Compared with the experimental setup in [19], here we used a different
subset of the M4 meeting corpus, a more robust experimental methodology
(cross-validation), and a smaller parameter space (jS j = 5 instead of 7).
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TABLE I
COMPARISON BETWEEN MEETING ACTION RECOGNITION RATE (% CORRECT)

AND (SUBSTITUTION, INSERTION, DELETION, AND OVERALL) ERROR

RATES ACHIEVED USING FOUR FEATURE CONFIGURATIONS

AND A SIMPLE HMM MODEL

the case that they show similar temporal behaviors: each feature
set has its own time scale and level of asynchrony.

Tests on a development set (without the lexical information)
indicated that an 11-state ergodic HMM was well suited to this
data. Table I shows the action error rates for each feature set. It
can be seen that speaker turns provide the highest percentage of
correctly recognized actions, followed by lexical features and
prosodic features. Lexical features are most useful for discrim-
inating between discussion and monologue, and the video-re-
lated features help most to discriminate between highly visual
actions (note taking, presentation, and presentation at the white-
board). Note that monologue and discussions represent the 66%
of the corpus, with the other actions comprising only 34%. All
the results shown in Table I are thus affected by this action distri-
bution: speaker turn and lexical feature results are enhanced and
video features weakened. The integration of visual features (last
line of Table I) into the baseline system composed by speaker
turn, lexical and prosodic features (fourth line of Table I) re-
sulted in a small improvement in the overall recognition rate.

B. Multistream Model

We compared experimentally the accuracy of the baseline
HMM system with the multistream DBN model (Section VI-A),
and the multistream model enhanced with a counter structure
(Section VI-B). The results of these experiments are reported in
Table II. The multistream models were trained using three inde-
pendent feature streams. Note that prosodic and lexical features
were early integrated into a single 13-dimensional feature vector

, and that the state-space has been limited to only five sub-
actions per stream . The multistream
model shows a decisive improvement over this baseline system:
the recognition rate (% correct) is increased by 17.9%, and to-
gether with a significant drop in the number of insertions, this re-
sults in a substantially reduced AER of 13.5%. Further small im-
provements were provided by the addition of a counter structure.
This halved the number of insertions (at the cost of a small in-
crease in the number of deletions), indicating an increased state
duration, resulting in a further improvement in AER (12.2%),
the best results achieved on this task.

Model training is about three times slower than real-time on
a 3-GHz P4 processor, and feature decoding/recognition is two
times faster than real-time. However, the memory requirements
of Viterbi decoding were large, with about 1.5 Gb required for
decoding a system that used five substates per stream.

Fig. 6. Model A (left), model B (right); both the models are enhanced with a
“Counter Structure”.

TABLE II
AERS (%) FOR: A SIMPLE HMM, A 3-STREAMS DBN MODEL,

AND A 3-STREAMS COUNTER-ENHANCED VERSION; LOWER AERS

INDICATE BETTER PERFORMANCES

C. Extended Multistream Models

The binary lexical features are able to discriminate between
monologue and discussion with a good accuracy. Since these
two categories are a subset of the action dictionary, there is no
reason why they need to be integrated with prosodic features
and then modeled by an intermediate Markov chain (subaction

). Hence, we have investigated an extended model (model
A in Fig. 6) in which observable lexical features are direct
parents of the top level action chain (nodes ). The whole joint
distribution after unrolling the model for temporal frames is
given by a slightly modified version of (6) or (9). The number
of independent streams was set to , and was
replaced by . Note that speaker turns, prosodic
features, and motion data are modeled as usual using three in-
dependent subaction Markov chains with the following car-
dinalities: , and . As can be seen in
Table III, the AERs obtained using this model are poorer than
the standard multistream approach discussed below, supporting
the need of a dedicated intermediate level (subaction nodes )
for lexical feature processing.

In order to further address this issue, we investigated a second
hybrid model (model B on the right side of Fig. 6) based on the
multistream approach (Fig. 5). The lexical feature data stream
was modeled in conjunction with prosodic data using a substate
chain , that was directly related to action nodes . Similar
to model A, the joint probability distribution could be obtained
from (9) by replacing with .
Note that is the prosodic feature vector (as for the previous
experiment) and contains only the binary lexical feature.
The experimental results achieved with this model are reported
in the last two rows of the Table III: the extended model B has
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TABLE III
AERS (%) FOR TWO EXTENDED VERSIONS OF THE MULTISTREAM MODEL

a lower AER compared with A, but the counter structure does
not seems to improve the AER for model B.

Unfortunately, the meeting corpus adopted for these experi-
ments is very small, and it is not possible to discriminate be-
tween the standard multistream model and model B. These two
models offer similar accuracy, and the addition of a direct depen-
dency of the highest level Markov chain on a low-level feature
stream, did not compromise the performance. In order to vali-
date and improve the accuracy of these results, we are looking
forward to repeating all these experiments on a much larger and
more realistic corpus [40]. Furthermore, it is of interest to inves-
tigate multistream models enhanced with a more complicated
dependency structure between the subactions and the feature
vectors.

VIII. SUMMARY AND CONCLUSION

In this work, we have addressed the problem of automatically
segmenting a meeting into a sequence of group meeting actions
taken from a dictionary of events such as monologue, discus-
sion, and presentation. We performed our experiments using a
publicly available corpus of meetings recorded using multiple
cameras and microphones. This corpus has some limitations, in-
cluding the short duration of each meeting (5 min per meeting,
on average), the fact that only 30 meetings (150 min) were fully
annotated, and the somewhat artificial content of the meeting
agenda and topics. Despite these limitations, the corpus does
feature natural and spontaneous interactions between partici-
pants, and provides a good basis for investigations in multi-
modal processing and event recognition in multiparty meetings.

The multiperspective audio/video recordings were processed
by extracting relevant multimodal features, followed by statis-
tical modeling. Four feature families were extracted from these
recordings, representing speaker turn dynamics, prosodic and
lexical information, and participant motion (head/hand/body
movements). In order to relate these low-level feature streams
with high-level meeting actions, a DBN multistream model
was adopted. Using this multistream framework, it is possible
to process each feature stream independently at a lower level
of the model, and to collect together partial results at the upper
stage of the model, thus offering a hierarchical approach to the
integration of multiple feature streams.

The capability to incorporate some knowledge of the problem
into the model structure is one of the principal features of the
DBN framework, resulting in a more parsimonious model com-
pared with simple HMMs. Moreover, the use of a multistream
approach shows some advantages over merging all the feature
families into a single feature vector (early integration).

• The integration point in which knowledge from different
feature streams is collected together, may be delayed to a
later stage of the processing (late integration).

• The independent feature processing increases the flexi-
bility in modeling the interdependences between different
modalities, allowing the model to encompass complex
statistical dependences, lack of synchronism, and multiple
time scales.

These advantages have resulted in a significant increase in ac-
curacy when the DBN multistream models are used in place of
an HMM for the meeting action recognition task, resulting in an
action error rate of 12.2%.

The systems that we developed could be improved in various
ways, such as through the use of a reliable cross-talk detector,
reliable ASR to obtain the word transcriptions, and improve-
ments to the visual features by using an appearance model for
the head area and by estimation of head poses (useful to predict
speaker addressing). Custom visual features specialized on the
projector/whiteboard area are another potentially valuable ex-
tension for the present framework.

Many aspects of the multistream DBN framework outlined
above (e.g., multiple time scale models) have not been exploited
in the current work and there is much scope for exploration and
improvement. Furthermore it is our intention to validate this
framework, as soon as possible, on a more realist multimodal
meeting corpus [40] that we are currently collecting, that is char-
acterized by real, fully unconstrained meetings.
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