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Scene Parsing Using Region-Based
Generative Models

Matthew R. Boutell, Member, IEEE, Jiebo Luo, Senior Member, IEEE, and Christopher M. Brown

Abstract—Semantic scene classification is a challenging problem
in computer vision. In contrast to the common approach of using
low-level features computed from the whole scene, we propose
“scene parsing” utilizing semantic object detectors (e.g., sky,
foliage, and pavement) and region-based scene-configuration
models. Because semantic detectors are faulty in practice, it is crit-
ical to develop a region-based generative model of outdoor scenes
based on characteristic objects in the scene and spatial relation-
ships between them. Since a fully connected scene configuration
model is intractable, we chose to model pairwise relationships
between regions and estimate scene probabilities using loopy belief
propagation on a factor graph. We demonstrate the promise of this
approach on a set of over 2000 outdoor photographs, comparing it
with existing discriminative approaches and those using low-level
features.

Index Terms—Factor graph, generative models, scene classifica-
tion, semantic features.

1. INTRODUCTION

EMANTIC features, such as the output from object and
material detectors, can help classify scenes when those
features are available. As semantic (high-level) features have
already begun to bridge the “semantic gap” between pixels and
image understanding, scene classification using these features
should become more accurate, given accurate detectors, than
that using low-level features such as color or edges. While
a scene classifier using reliable high-level semantic features
seems like “standing on the shoulders of giants,” the key is how
to handle computed semantic features that are imperfect.
Semantic features include the output of object (e.g., buildings,
airplanes, faces) and material (homogeneous, e.g., grass, sand,
and cloth) detectors: we generically refer to image regions de-
tected by either type of detector as semantic regions. A further
advantage to approaches using these features is their modularity,
allowing one to use independently developed, domain-sensitive
detectors. Only recently has object and material detection in nat-
ural environments become accurate enough to consider using
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Fig. 1. (a) Beach scene. (b) Its manually labeled materials. The true configu-
ration includes sky above water, water above sand, and sky above sand. (c) The
underlying graph showing detector results and spatial relations.

in a practical system. Recent work using object and material
detection for other tasks [7], [12], [17] has achieved some suc-
cess using primarily their presence or absence alone as evidence.
However, despite improvements, the detectors still make errors,
presenting a continuing difficulty for this approach.

How does one overcome detector errors? One way is to use
a principled probabilistic inference system (versus a rule-based
one [12]) to classify a scene based on the presence or absence
of certain objects and materials. More importantly, one should
extract additional useful evidence from the input image, such as
spatial relationships between the detected semantic regions, to
improve scene classification.

Fig. 1 shows an image; true identities of key regions
(color-coded); detector results, expressed as confidence that
each region is labeled with a given material; and spatial rela-
tionships between the regions. The problem is how to determine
which scene type best explains the observed, often imperfect,
evidence. As humans, we can easily see that the evidence
taken as a whole [Fig. 1(c)], though ambiguous for each region
individually, better fits a beach model than a field or city street
model; our job is to train a system to do likewise.

We make the following contributions. 1) We present genera-
tive models, factor graphs in particular, for scene configurations,
consisting of semantic regions’ identities and their spatial rela-
tions, in Section II. 2) We show that such models can be used
to classify medium- to long-distance outdoor scenes, given se-
mantic features (Section III) and the scene configurations. Our
technique is not applicable to close-up photos of people; face
and body detection and recognition would be useful there, but
is beyond the scope of this work. The most effective of these
models uses pairwise spatial relationships between regions. 3)
In Section V, we compare this model with three other generative
models: an exact model that models the full joint distribution of

1520-9210/$20.00 © 2006 IEEE



BOUTELL et al.: SCENE PARSING USING REGION-BASED GENERATIVE MODELS

the scene type and every semantic region in the image, one that
models co-occurrence of these regions while ignoring the actual
spatial relations, and one that treats these regions independently.
4) Finally, we compare our model with a discriminative model
that uses high-level features and with one that uses low-level
features. In particular, the main novelty of the work lies in the
explicit use of spatial relations in building a generative model to
parse a scene, distinguishing it from other work using semantic
features [7], [12], [17].

II. GENERATIVE MODELS FOR SCENES

Our generative model is based on the concept of scene con-
figurations. Scene configurations consist of two parts. First is
the actual spatial arrangement of semantic regions (edge labels
in the graph of Fig. 1(c). Second is the material configuration,
the identities of those regions [node labels in Fig. 1(c)]. We use
theterm material in this paper generically to refer to both mate-
rials (grass, sky) and objects (buildings). We use the following
terminology to discuss configurations:

n number of distinct semantic regions detected in
the image;
M small set of semantically critical materials for

which detectors are used;

m; € M identity of semantic region j;

R set of spatial relations (e.g., above, beside);

rri € R spatial relationship between semantic regions
k and [;

G set of configurations of materials in a scene;

g single scene configuration.

Under this formalism, G = mq X mq1 X -+ -1y, X 11 X 112 X
“++XT(n—1)n (We assume complete graphs), and an upper bound
on the number of scene configurations, |G/, is

|Gl = |M[" - RO ()
in a complete graph. We use the standard notation C(n, k) for
the number of combinations of k elements chosen from n. Each
of the n regions could have one of M identities, and each of the
C(n,2) edges in the graph could be one of the |R| spatial rela-
tions. However, some of these enumerated spatial arrangements
are inconsistent, e.g., X above Y, Y above Z, X below Z. In
our experiments, for example, we have |M| = 10 materials of
interest (the potential labels for a single region) and |R| = 7
spatial relations. An image with n = 4 regions has 10* mate-
rial configurations and C'(4,2) = 6 pairwise spatial relations
yielding 7% spatial arrangements and a total of 10 - 76 ~ 1.2
trillion scene configurations. While this is an overestimate, we
clearly need an efficient method to determine which is most
likely!

In the inference phase, the spatial arrangement of the regions
in the test image is computed yet fixed; thus, its graph need
only be compared with those of training images with the same
arrangement. The distribution of material configurations with
a fixed spatial arrangement can be learned independently of
those with other spatial arrangements. Each such distribution
has | M|™ material configurations. For example, an image with
two regions, r; above 1, has only |M|? configurations. In our
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example above, once the spatial arrangement is known, there
would only be 10* = 10,000 possible material configurations.

A. Formalizing the Problem of Scene Classification
From Configurations

We formalize the scene classification problem as follows: let
S = {S;} be the set of scene classes considered, and F =
{E1, Es, ..., E,} be the detector evidence, one for each of the
n regions. Bach E; = {Ej1, Eja, ..., Ejjp}, in turn, is a con-
fidence or belief vector for the identity of region 5. In Fig. 1, for
example, if we consider only detectors for sky, water, sand, and
rug, Fy = {0.9,0.1,0,0} for region 1 at the top. These beliefs
are computed using a list of which material detectors fired on
that region and with what belief, as described in Section I'V-C.

In this framework, we want to find the scene with maximum
a posteriori (MAP) likelihood, given the evidence from the de-
tectors, or argmax; P(S;|E). By Bayes’ Rule

P(S:)P(E|S:)

@)
Atinference time, we have the evidence F, thus P(F) is fixed
and does not depend on the scene ¢. Thus
arg max P(S;|E) = argmax P(S;)P(E|S;) 3)
because the value of the argmax does not change when multi-
plying by the constant 1/ P(F). Taking the joint distribution of
P(E|S;) with the set of scene configurations G yields

arg max P(5;) Z P(E,¢|S:). )
¢ geG
Conditioning on g gives
arg max P(S;) Z P(g]S:)P(Elg, S;). )

geG

B. Graphical Model

While all graphical models may have the same representa-
tional power, not all are equally suitable for a given problem.
A two-level Markov random field (MRF) is a suitable choice
for a region-based approach, due to the similarity to its use in
low-level vision problems. However, we are solving a funda-
mentally different problem than those for which MRFs are used.
MRFs are typically used to regularize input data [5], [9], finding
P(g|E), the single configuration (within a single scene model,
S,;) that best explains the observed faulty evidence. In contrast,
we are trying to perform cross-model comparison, P(S;|E),
comparing how well the evidence matches each model S; in
turn. To do this, we need to sum across all possible configu-
rations of the scene nodes (5). We formalized our work in this
fashion in previous work [1].

Another alternative is to use a factor graph [10]. A factor
graph is a graphical model that encodes functions, in particular,
probability distributions, over a set of variables using a biparti-
tite graph. We assume the distribution, A(X'), can be written as
a product of local factors: A(X) = J],c 4 fa(Xa), where A is
the set of factors and each X, C X. A key observation about
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factor graphs is that they also encode the calculations needed to
compute the marginal functions of h(X) for each variable. This
leads directly to the derivation of the sum-product algorithm, a
version of belief propagation that generalizes the forward algo-
rithm for hidden Markov models and Pearl’s algorithm [14].
We use the factor graphs shown in Fig. 2 to efficiently en-
code and calculate arg max P(S;|E) in (5). The observations

P(Elg, S;) are encoded in the set of detector factors; there is
one factor E; for each region. We describe these in detail for real
and simulated detectors in Section IV-C. The set of scene-to-re-
gion factors in the graph encode P(g|S;), the compatibilities
between the scene type and the scene configurations. The prior
factor encodes the prior distribution, P(.S). There is one vari-
able node for the scene class S and n for the material identities
M; (one per region j).

We efficiently propagate evidence through the network using
the standard sum-product message-passing rules given in [10]
(details omitted here due to lack of space). After the message
passing algorithm has completed, we find the scene class by
taking the value with the highest marginal probability at the
scene node. We now discuss our simple technique for learning
the factors.

C. Learning the Model Parameters

For efficiency, we learn each factor by counting frequencies
in the training set, rather than using a maximum likelihood tech-
nique on the factor graph.

Learning P(F|g, S;) is relatively easily. As is standard with
probabilistic models used in low-level vision [8], we assume a
locality condition: a detector’s output on a region depends only
on the material present in that region and not on other materials
in the scene nor any spatial relations between the objects. We
refer to “semantic regions” as those parts of the image where
one or more material detectors have detection with nonzero be-
liefs. Furthermore, we assume that the detector’s output is in-
dependent of the class of the scene (again, given the material
present in that region). This allows us to factor the distribution
as

P(Elg, Si) = P(Elg) =H (Ejlm;) 6)

in which each factor on the equation’s right-hand side describes
a single detector’s characteristics. These characteristics can be
learned by counting detection frequencies on a training set of
regions or fixed using domain knowledge. This distribution is
used in the belief calculations given in Section IV-C.

P(S) models the prior distribution of scene types across the
image population. We currently do not take advantage of prior
information and simply use a flat prior, but priors could be
learned in the future.

Learning P(g|:S;), the set of scene to region factors, is more
difficult. At this coarse level of segmentation, even distant (with
respect to the underlying image) nodes may be strongly corre-
lated, e.g., sky and pavement in urban scenes. Thus, we must
assume that the underlying graph of regions is fully connected,
prohibiting us from factorizing the distribution P(g|S;), as is
typically done in low-level vision problems. Fortunately, for
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scene classification, and particularly for landscape images, the
number of critical material regions of interest, n, is generally
small (n < 7 in the ground truth labeled by humans): over-seg-
mentation is rare because the material detectors can be imbued
with the ability to merge regions. Thus a brute-force approach
to maximizing (5) can be tractable.

One difficulty with learning and inference in this approach
is that each feature and relation is discrete. Disparate materials
such as grass, sand, and foliage cannot be parameterized on a
continuum. Even while rocks and pavement might be considered
similar, their frequencies of occurrence in various scene types
are dramatically different: rocks occur primarily on mountains
and beaches, while pavement occurs primarily in urban and sub-
urban scenes. Relations such as above and enclosing are discrete
as well. Therefore, we learn the set of scene-configuration fac-
tors by counting instances from the training set and populating
matrices. The number and type of these factors can vary, de-
pending on our independence assumptions, as we now discuss.

D. Factor Graph Variations for Between-Region Dependence

We experiment with a number of methods to enforce the com-
patibility P(g|S;) between the scene and set of regions, as given
in the set of scene-to-region factors. The exact topology is dy-
namic, depending on the number of regions in the image. Fur-
thermore, for a given number of regions, we can change the net-
work topology to enforce or relax independence assumptions
in the model and observe the effects of these assumptions. We
present four generative models of between-region dependence,
given the scene type.

1) Exact: generative model in which the full scene (material
and spatial) configuration is taken as a single, dependent
unit.

2) Spatial Pairs: same as Exact, but an approximation using
pairwise spatial relationships.

The next two are used are baselines for comparison.

1) Material Pairs: dependent only on the pairwise co-occur-
rence of materials.

2) Independent: each region is independent.

We now discuss the scene-to-region factors and the factor

graph topology for each option.

1) Exact: Recall that we cannot factor the distribution
P(g|S;) into individual components because of the strong de-
pendency between regions. We model it with a fully connected
structure, i.e., each pair of region nodes is adjacent. If we want
an exact MAP solution to the distribution given in (5), we must
use the factor graph shown in Fig. 2(a).

Here, the single scene-to-region factor encodes the con-
ditional probability P(g|S;), the distribution of all region
identities for a given scene. We model this distribution using
a sparse matrix representation. We first populate a matrix of
counts N (S;, g) Vi by counting instances of each configuration
g in the training set. Consider only images with n regions in
the same spatial arrangement. Then each single configuration
can be represented as a point in an (n + 1)-dimensional space,
in which the first n dimensions each encode the identity of a
single region and the last dimension encodes the image class.
For example, when n = 3, each scene can be represented
by the point (m1,m9,m3,S) in the four-dimensional (4-D)
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Fig. 2. Factor graphs modeling various independence assumptions for n = 3 regions. The difference between the models is the number and type of Scene-to-

Region factors, described in the text. (a) Exact model. Due to its tree structure,

we can perform exact inference on it. However, the complexity of the model is

hidden in the spatial configuration factor; learning it is problematic. (b) Spatial pairs model. While it is not exact due to the loops, each spatial factor’s parameters
are easier to learn than the joint one proposed in the exact model. Furthermore, its dynamic structure allows it to work on any image. (c) Independent model. This

is equivalent to a tree-structured Bayesian network.

matrix; a typical beach scene would be represented by (sky,
water, sand, Beach). We then normalize the matrix such that
Vi, > eq N(Si,g) = 1, to obtain the conditional probability
P(g|S;) to use in the factor graph. This matrix has |M|™ - |S]
elements.

The main benefits of this model are both due to its loopless
topology: it can give an exact solution and it provides for effi-
cient inference. However, it suffers from drawbacks. The dis-
tribution P(g|S;) is sparsely populated: the number of training
images (call it | T'|) is typically much less than the number of en-
tries | M|™-|S]. (Consider that |T'| = 1000 is considered large in
the literature, and that for |M| = 10 and |S| = 6, a factor for a
matrix with five regions has 600 000 entries.) The sparseness is
exacerbated by correlation between objects and scenes, causing
some entries to receive many counts and most entries to receive
none: for example, open-water scenes always have water and
sky regions, but never pavement.

Recall that each feature and relation is discrete, so we cannot
interpolate between training examples to smooth the distribu-
tion (as can be done with parameterized distributions such as
mixtures of Gaussians). In previous work [1], we proposed a
graph-based smoothing technique to deal with this sparse dis-
tribution problem.

2) Spatial Pairs: Even after smoothing, using the full joint
distribution has a major limitation keeping it from being used in
practice: the distribution of regions is also a function of the spa-
tial arrangement of the regions in the image, which includes the
number of regions in the image. For example, the distribution
of regions in the arrangement: “X beside Y, Y beside Z and
X beside Z > (three horizontally arranged regions) is distinct
from those in the arrangement “X above Y, Y above Z, and X
above Z 7 (three vertically stacked regions), which is distinct
from those in the arrangement of four vertically stacked regions
W, X,Y,and Z.

Thus, a new matrix must be learned for each spatial arrange-
ment, the number of which equals the number of edge labelings
in the spatial configuration graph, |R|°("?) for |R| = 7 spa-
tial relations and 7 regions, as we showed in the beginning of

Section II. Granted, some are inconsistent and many are unlikely
to appear in practice. However, for a training set of 1400 images
and only the relations, above, below, and beside, we counted
133 distinct spatial arrangements of objects, many of which only
occur once in the training set. Even though we can enumerate
all possible arrangements, we do not have nearly enough data
even to think about training all the models.

However, approximating the joint distribution as the product
of pairwise distributions, as shown in Fig. 2(b), means we only
have to learn pairwise relationships. Each conditional proba-
bility P(m; rel m;|S) for materials m; and ms and spatial re-
lation rel is only a three-dimensional (3-D) matrix with only el-
ements. For example, m; above my, in S; is represented by the
point (m;, my, S;) in the matrix for above. Furthermore, there
are only |R| = 7 of them, and because each training example
contains multiple pairwise relations, the pairwise distributions
will be much more densely populated: pairwise relations such
as “sky above grass” occur frequently, compared to full config-
urations such as “sky above foliage above pavement enclosed
by grass”.

This model does contain loops, and so encounters the typical
problems with loopy belief propagation: it can be slow and may
not converge. However, we have found that . tends to be small in
practice, thus speed is not an issue, and empirically it converges
most of the time.

Furthermore, we can create the graph structure on the fly once
the number of regions is known, and once each pairwise rela-
tionship is modeled (X above Y, X beside Y, X enclosed by
Y and their inverse relationships), any spatial arrangement con-
taining those relations can be modeled. Thus, for the set of 1400
images described above, we would need to learn only seven fac-
tors and use one dynamically created network using combina-
tions of these densely populated factors rather than needing 133
networks with sparsely populated factors.

3) Material Pairs: One may argue that the spatial relation-
ships do not provide information about relative position—per-
haps they just encode which materials tend to co-occur. Our
model, Material Pairs, is designed to test this hypothesis. We
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use the same network topology as shown in Fig. 2(b), but replace
the spatial relation factors with co-occurrence factors. We obtain
these co-occurrence factors by counting the number of times a
pair of materials j and k occur together regardless of their spa-
tial relationship in the training set for a scene S;. Normalizing
the matrix gives P(m, co-occur my|.S;) for each scene S;. Note
that, as before, the materials are encoded as indices in the matrix.

4) Independent: In our final model, Independent, we
consider each of the 7 regions independently of each
other region and any spatial relationships given the scene,
P(g]Si) =~ [lj=; P(m;|Si). This yields the factor graph
shown in Fig. 2(c). Each scene-to-region factor is just a nor-
malized two-dimensional (2-D) matrix of counts of the number
of times each material occurs in each scene type.

E. Computing the Spatial Relationships

Singhal, er al. found that |R| = 7 distinct spatial relations
were sufficient to model the relationships between materials in
outdoor scenes; we use the same relations (above, far_above,
below, far_below, beside, enclosed, and enclosing). We also
use the same hybrid technique to compute these relations: dis-
tant regions are compared efficiently by using their bounding
boxes, while ones with overlapping bounding boxes are com-
pared using a lookup table based on the directional weights of
the pixels in the two regions [15].

For simplicity, we compute the spatial relations between
every pair of regions in the image, adjacent or not. The current
model also ignores the shape and size of the regions and occlu-
sions that cause regions to be split. While any of these may be
useful features in a full-scale system, we ignore them in this
work.

III. DISCRIMINATIVE APPROACH

An alternative to the generative model-based approach is a
discriminative approach, in which a classifier is trained to learn
the distribution P(S|F) directly, using spatial relations to help
overcome detector errors. One direct way to encode the location
of the semantic regions (objects) and the spatial relations be-
tween them is to use a grid-based approach. We divide the image
into 49 blocks using a 7 x 7 grid; the grid size was chosen em-
pirically based on experience with solving a similar problem;
in that case the results were robust with respect to the size of
the grid, similar to the finding in [22]. We compute the belief in
each material for each block by weighting each region’s beliefs
output by the combined detectors (A(B) in (7) by the percentage
of the area the region occupies in a block. For |[M| = 10 ma-
terials, this always yields a 490-dimensional feature vector, re-
gardless of the number of regions in the image. We then train a
set of support vector machines [21] for doing multiclass classi-
fication. Support vector machines (SVMs) are binary classifiers
that operate by maximizing the margin between the examples
in the two classes by projecting the data into a higher dimen-
sion via a kernel function. To obtain multiclass classification, we
trained a SVM for each class to distinguish it from all others, and
classified the image with the class whose SVM gave the max-
imum output. Further details are given in [3].
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IV. SEMANTIC DETECTORS

While most past approaches to scene classification used low-
level features, semantic features, such as the output from ob-
ject and material detectors, provide strong evidence for some
scene types when the features are available. We define semantic,
or high-level, features to be labeled image regions. For out-
door scenes, the ten labels of highest interest include sky, cloud,
grass, foliage, sand, snow, water, rocks, pavement, and build-
ings. A region with ambiguous identity usually has a low be-
lief value, and may also have multiple labels. In this study, we
use high-level features generated from three types of detectors:
1) output from actual object and material detectors; 2) output
from simulated detectors; and 3) output from best-case detec-
tors (hand-labeled regions).

A. Best-Case (Hand-Labeled) Detectors

Images in which the semantically critical regions have been
hand-labeled form an integral part of this work. First, we use
them for training. Specifically, we learn from them the distribu-
tion of which objects and materials appear in which scene and
in what configurations. Second, we use them to test the perfor-
mance of best-case material detectors. It suffices to assume that
no actual detector can outperform a human on labeling typical
materials in natural photographs, so we can use hand-labeled re-
gions to determine an upper bound on performance for the clas-
sifiers we have designed. Third, we can perturb the region labels
assigned by a human to simulate faulty detectors with various
error characteristics (Section IV-D).

To label materials defined primarily by homogenous color
and textures (like grass or sand), we start by automatically
segmenting the image using a general segmentation algorithm
(mean-shift [6]). Next, we manually label the semantically
critical regions with their identities. The labels correspond to
those ten high-interest materials for which we have detectors.
Other regions are unmodeled and thus left unlabeled.

We use a different approach to label manmade structures such
as buildings, houses, and boats. Because these regions tend to
be greatly over-segmented by the segmentation algorithm, we
instead use a block-based detector (similar to Bradshaw, et al.’s
system [4] and described below) and modify the region map
output by the utility described above as needed. A typical image,
with the various labeling steps, is shown in Fig. 3.

B. Actual Detectors

Each of our actual detectors is based on color and texture
features, similar to the common approach in the literature [13],
[16], [20]. The following describes a typical material detector
[15].

First, color (Luv) and texture (six high-frequency coefficients
from a 2-level biorthogonal 3-5 wavelet transform of the lu-
minance L band) features are computed for each pixel on the
input image, and averaged locally. The features are fed to trained
neural networks, which produce a probability or belief value in
that material for each pixel in the image according to the color
and texture characteristics [Fig. 4(b)]. The collection of pixel
belief values forms a pixel belief map. After pixel classification,
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(c) (d)
Fig. 3. Process of hand-labeling images. (a) Street scene. (b) Output from the
segmentation-based labeling tool. (c) Output from a manmade object detector.
(d) Combined output, used for learning spatial relation statistics.

(b)

Fig. 4. Process of material detection, shown for the foliage detector. (a) Orig-
inal image. (b) Pixel-level belief map. (c) Output of the detector. In (b) and (c),
brightness corresponds to belief values.

spatially contiguous regions are obtained from the raw pixel be-
lief map after thresholding the belief values. Next, each spa-
tially contiguous region is post-processed according to unique
region-based characteristics of the material type [output shown
in Fig. 4(c)]. In blue sky detection, for example, the color gra-
dient is calculated and is used to reject false positive sky regions.
Because true blue sky becomes less saturated in color as it ap-
proaches the horizon, the detector can reject blue colored mate-
rials such as walls or clothing [11]. Finally, the belief value of
each region is the average belief value of all pixels in the region.

Our manmade structure detector classifies blocks of pixels
using color and wavelet texture features (similar to [4]): build-
ings tend to be grayish in color and have regular textures with
strong vertical and horizontal components (e.g., windows,
siding on houses) giving the belief that the block contains
manmade content. Similar to the material detectors, the belief
value for any group of manmade blocks is the average belief of
the blocks in the group.

Note that these detectors are individually designed using
bottom-up strategies with no spatial model initially imposed,
and for general outdoor scenes. While some detectors have very
good accuracies (e.g., sky, 95%), other material detectors have
substantially lower performance (e.g., water and rock below
70%), primarily due to high false-positive detection rates.

All of the detectors are run independently. After this, the
region maps are aggregated, inducing a segmentation map upon
the image [Fig. 5]. Some regions are unambiguously detected
as a single material. Commonly, however, some regions are
detected as multiple materials (e.g., the snow detector and
the cloudy sky detector often both fire on cloudy sky). In this
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(2

Fig. 5. Aggregating results of individual material detectors for an image (a)
Original image. (b) Blue-sky. (c) Cloudy sky. (d) Grass. (¢) Manmade. (f) Sand.
The foliage detection result from Fig. 4 is also used. Other detectors gave no
response. (g) The aggregate image with seven detected regions. (h) Pseudo-col-
ored aggregate segmentation map.

(h)

case, we label that region with multiple labels, calculating
beliefs of each material according to the process described in
Section IV-C. For example, the region in the middle of the
bottom half has a belief of 0.29 being manmade and 0.36 being
unmodeled (the beliefs need not sum to 1.0). If the amount of
overlap between any two regions is small (less than the size
of the smallest region we care about, e.g., 0.1% of the image),
we discard the overlapping region; otherwise, we create a new
region with aggregated beliefs.

This technique for material detection is a bottom-up strategy
because no spatial model is initially imposed, and the detectors
work for general outdoor scenes. While some of these individual
material detectors have very good accuracies (e.g., sky, 95%),
other material detectors have substantially lower performance
(e.g., water and rock below 70%), primarily due to high false-
positive detection rates.

C. Combining Evidence for a Region From Multiple Detectors

Each region is processed independently in the fol-
lowing manner. Let D be the set of material detectors,
D = {Dy,Ds,...Dy}. Each detector D; outputs a belief
value Ap;(B) in [0, 1] for region B, where Ap;(B) = 0 means
the detector did not fire and Ap;(B) = 1 means it fired with
full confidence. The initial evidence for B is the vector Ap(B)
of those belief values.

When combining the evidence, we need to incorporate two
other factors. First, the detectors are faulty. For example, if the
water detector fires, we want to allow for the possibility that it
was a false detection on a sky region. Second, some detectors are
more reliable than others. Materials with unambiguous charac-
teristics and relatively little variability, like blue sky, are much
more reliably detected than those with heterogeneous appear-
ances and widely varying textures and colors, like rocks.

To incorporate this information in a principled way, we use a
two-level Bayesian network (Fig. 6). Define the characteristics
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P(DsanolB)

Virtual
evidence:

Bel(DsAND)

BeI(DPAVE)

Fig. 6. Bayesian network showing relationship between regions and detectors.

TABLE I
CHARACTERISTICS OF SAND DETECTOR

P(DygongM) True material (M)

0.10 Background
(unmodeled)

0.01 Bluesky

0.05 Cloudysky

0.01 Foliage

0.05 Grass

0.10 Manmade

0.05 Pavement

0.05 Rock

0.90 Sand

0.05 Snow

0.05 Water

of detector D on a set of materials M to be the set of conditional
probabilities { P(D|m;) : m; € M}. They include both rrue
positive rates (recall) and false positive rates. Take the sand de-
tector (Table I) as an example. The first column gives the proba-
bility that the sand detector fires, given the true material. In this
example, the sand detector has a 90% recall of true sand, and
detects sand falsely on 10% of manmade structures (made of
concrete). Likewise, its false positive rate on water is 5% (be-
cause some water contains brown reflections or covers shallow
sand). It also fires falsely on 10% of the unmodeled regions in
the images because they have similar colors. Such characteris-
tics can be learned by counting performance of detectors on a
validation set or estimated when there is not enough data.

We have a detector for each material of interest. One node
per detector is linked to the region, B, as shown in Fig. 6. Input
to the Bayesian network consists of virtual evidence (Ap(B)
described above) at the leaf nodes. Note that this graph’s root
node corresponds to a specific region in the image.

The beliefs generated by the individual material detectors are
fed into the leaf nodes of the network and propagated to the root
node, which outputs a composite material belief for that region.
We follow Pearl’s treatment and notation ([14, Sect. 2.2.2]),
using A for beliefs.

The combined belief of each material being the true material,
given the set of detectors firing is given by

AB)=a[] rp,(B)

=a[] Apjim\D;) (7
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where « is a normalizing constant and A is a probability matrix
as defined by Pearl [14]: A,|, = P(y|z). More specifically, the
(4,7)th position in A, = P(y;l|z;).

These beliefs, A\(B), are passed on to the remainder of the
network, i.e., by attaching the subgraph to each material leaf in
the factor graphs shown in Section II-D.

D. Simulating Faulty Detectors for a Region

While we have actual detectors, we are also interested in de-
termining the usefulness of the scene models on a wider range
of detector performance. Using the hand-labeled regions, we
can simulate detector responses for each region. We start with
a hand-labeled image, which is already segmented and labeled
with the semantically critical regions. We then apply the fol-
lowing material perturbation algorithm for each region labeled
with material M. We assume that the detector responses for each
region are independent.

1) Determine which detectors fire by sampling the detector
characteristics (the Bayesian network in Fig. 6); i.e., for
each detector ¢, we generate a random number z € [0, 1].
The detector fires if and only if z < P(D;|M).

2) For each detector that fires, sample the belief distribution
to find the confidence in the detection. We assume that
they are distributed with means prp for true detections
and ppp for false detections; using different parameters for
each allows us to simulate detectors of various accuracy.

3) Propagate the beliefs in the Bayesian network to determine
the overall belief of each material, as we did for actual
detectors in Section IV-C.

In this process, the segmentation of the regions does not
change, so the segmentation map generated by the simulator
is identical to the corresponding hand-labeled map, except
each region has different detected identities. As a corollary, the
spatial relationships of the hand-labeled map and the simulated
map are identical, i.e., the identity of each region was per-
turbed, not its location. Such simulation is somewhat limited
as it avoids the over-segmentation often produced by actual
detectors.

We change two parameters in this algorithm to simulate
detectors with a wide range of accuracy. We consider 11
operating points, ranging from O (best) to 1 (worst) inclusive,
in increments of 0.1. First, we allow each false detection rate
P(D|M) < 0.5 to vary between O (best) and 2P(D|M)
(worst) and allow each true detection rate P(D|M) > 0.5
to vary between 1 (best) and 1 — 2(1 — P(D|M)) (worst).
Second, when sampling the belief distributions, we fix purp = 1
(high beliefs in true positive regions are typical for our actual
detectors) and vary pupp, allowing it to range from 1 (worst:
when false positives are detected, it is usually with high belief,
indistinguishable from that of true detections) to O (best: when
the detector fires falsely, it tends to do so with low belief). This
assumes that ypp = 0.5 is realistic for the actual detectors.
We anticipate that scene classification accuracy using “better”
detectors (via simulation) will outperform the actual ones.

We conclude this section by elaborating on the fact that the
Bayesian network used to combine detector results into a single
set of likelihoods can be combined with the factor graph because
factor graphs subsume Bayesian networks [10]. We separated
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TABLE II
IMAGE SETS

Name Size Classes and comments

DI 937 Regions are hand-labeled; we also
ran actual detectors on D1.

D2 165 Subset of D1 having three vertically
arranged regions.

D3 1153 Drawn from same sources, but non-
overlapping with D1. Used actual
detectors.

TABLE III
SCENE CLASS DESCRIPTIONS
Class Description
Beach At least 5% each of water, sand, and sky
Field No aerial view, not cluttered with trees
(“open”)
Mountain | Open, whole mountains, mid-range view
Street Urban, plus must have pavement in the
image
Suburban | Includes pictures of houses and yards and
recreation areas (parks)
Open- Picture taken primarily of water from a
water boat (vs. those taken from land, which are
beaches or coastal scenes).

them in our experiments only because we must combine the se-
mantic detector results into likelihoods for input to the discrimi-
native model as well. Furthermore, our method of simulating de-
tectors could be re-used in other contexts. While the combined
model would allow for the detection likelihoods to be updated,
that is not the goal of this work.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The three image databases we used (Table II) were chosen
such that they could be described in terms of the objects or ma-
terials expected to be present in them. For example, an image
with sky, water, and sand is a beach. Data set D2 included all of
the images from D1 with a specific spatial arrangement: we ig-
nored the far modifier and the enclosure relations (which occur
rarely) and focused further on the single spatial arrangement oc-
curring most often in training: the 165 images with a vertically
stacked structure, X above Y, Y above Z, and X above Z.

Table III gives descriptions of various scene classes. In gen-
eral, the images chosen did not have a dominant main subject.
This is legitimate; for example, a close-up image containing
a horse in a field would be considered a “horse” image, not a
“field” image. Future work includes investigating how to adapt
the framework for such images. The images are taken from a
mix of personal images, Corel photos, and images from the In-
ternet. Each set has approximately the same number of images
from each of the six classes.

Data set D1 was automatically segmented and hand-labeled,
as described in Section IV-A. To simulate actual detec-
tors, which are faulty, we randomly perturbed the ground
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TABLE 1V
ACCURACY (%) COMPARISON BETWEEN TECHNIQUES

Model Generative Discriminative

Test Spatial Mat’l. | Ind. | High- Low-

set Pairs Pairs level level
features | features

Dla 94.5 91.7 | 92.2 93.1 78.0

D1b 80-93 | 7089 | 67- | 7491 | (doesnt

use
90 detectors)
Dilc 51.0 47.2 45.6 75.6
D2 46.0 41.5 | 40.0 54.2 67.4

truth to create simulated detector responses, as described in
Section IV-D.

Pairwise spatial relations in our model are encoded as prob-
ability density functions of the two regions and the scene for
each of the seven spatial relations; these are learned from D1.
The material detectors were trained on image sets not used in
this study.

B. Spatial Pairs Model

To show the benefit of spatial relations, we compare them
against the baseline models mentioned earlier: Material Pairs
(using co-occurrence relations) and Independent regions. We
then compare them against the discriminative approach. Finally,
we compare the high-level features against a discriminative ap-
proach using low-level features (spatial color moment features
[19] extracted using the same 7 x 7 grid and classified using
a support vector machine [21]). Table IV shows classification
accuracies for a number of scenarios. In each case, we learned
from image set D1. We tested either on D1 using cross-valida-
tion (CV) to avoid biasing our results, or on D3. Fig. 7 is an
expansion of row 2, comparing performance across the range of
simulated detector accuracy.

In our experiments, classification using the Spatial Pairs
model always outperformed those using the other generative
models, Material Pairs and Independent, showing that spatial
information does help distinguish scenes. The marginal differ-
ence between the two increased as the accuracy of the detectors
decreased. This is not surprising, given that spatial relations
are expected to mitigate the effects of faulty detectors, more so
when they are more faulty.

Fig. 8 contains example images (and their corresponding
segmentations) for which the Spatial Pairs model yielded an
improvement over one of the baseline generative models. The
first example shows a beach scene with a manmade structure
(building) on the shore. In this case, because open-water scenes
are more likely than beaches to contain manmade objects
(boats), the Material Pairs model, using co-occurrence of
materials only, classified it incorrectly as an open-water scene.
However, the fact that the sand was beside the water and that
the manmade structure was above the sand allowed the Spatial
Pairs model to classify it correctly as a beach. In the second
example (mountain), the sand and rock detectors both fired on
the rock region. The presence of both water and sand caused the
Independent model to misclassify it as a beach scene. However,
the spatial model used the fact that the region was above both
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Fig. 7. Classification accuracy of the methods as a function of simulated de-
tector error rate. We repeated each simulation ten times and report the mean
accuracy. Error bars are for the standard error between test runs.

Fig. 8. Examples of images and segmentations for which the Spatial Pairs
model gave correct results while the baseline model failed. See text for details.

foliage and water to rule out sand as an option (as sand is very
unlikely to occur in the background beyond foliage). Finally, in
the last image, the rock region was misdetected as sand. Without
spatial information, sand, water, and sky appear most often in
beach images, causing both the MaterialPairs and Independent
models to classify this open-water image incorrectly. However,
typical beach images have sand in the foreground (or next to
the water if the photographer looks up the beach as in the first
example), not the background, since the photographer usually
stands on the beach; this spatial relationship caused Spatial
Fairs to classify it correctly.

We also found that spatial relations outperformed the discrim-
inative models when the simulated detectors were good enough
or in the best-case (hand-labeled). Of course, if the detectors
are inaccurate enough, then no amount of spatial information
will help due to the abundance of noise. When using actual de-
tectors, the discriminative approach outperformed the genera-
tive approach using the same feature set. This could be due to
the following reasons. First, the discriminative models, by their
nature, are trained to classify, whereas generative models are
more general; they can perform classification, but only when
the joint distribution between the class and the features is mod-
eled. Second, while the generative model and the discriminative
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Fig. 9. Comparison between accuracy obtained using the Spatial Pairs model,
the Exact model, and the discriminative model using high-level features for the
range of simulated detector error rates.

model both encode spatial information (explicitly and implic-
itly, respectively), only the discriminative model encodes the
relative size of regions through the number of blocks occupied
by the region and to a lesser degree the shape of the region.
Therefore, if buildings are expected to occupy a large portion of
a street scene, but only a smaller portion of a suburban scene,
the discriminative model can differentiate the two, whereas the
generative model, which has no “region area” evidence factor,
cannot. While we have focused only on using spatial relations
between regions to help performance, an interesting direction to
explore in the future is to learning how to encode area or shape
factors and determining whether or not using them would help
classification.

A comparison between the two discriminative methods is cer-
tainly also of interest but beyond the scope of this paper; it is
covered in depth in another paper [3].

C. Comparison Between All Methods

As stated earlier, the Exact model is limited in that it can
only be applied when the spatial arrangement of the regions is
fixed. Therefore, when comparing this model with the others on
a single data set, we use data set D2, which includes the 165 ver-
tically stacked images in D1. Furthermore, to ensure the model
is populated densely enough, we must ignore the far modifier
and the enclosing relations, as we did in [1]. We also compare it
with the other generative models (Material Pairs and Indepen-
dent) and the two discriminative models. We use leave-one-out
cross-validation on set D2 and obtain the results shown in Fig. 9.

Fig. 9 shows that the approximate model outperforms the
exact model. This is counter-intuitive because when we approx-
imate, we are losing information. However, upon close exami-
nation of the data set, we see two types of images for which the
model’s output differs.

The first type, those images classified correctly by the Exact
model, but not by Spatial Pairs, include images with full con-
figurations that are repeated, though rarely, in the training set,
but consist of pairwise relations seen more often in other scenes.
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For example, three field images have a pond in the background,
yielding “sky over water over grass”. The relation “sky over
water” (seen predominantly in beach and open-water scenes)
dominates the relation “sky over grass” seen in Field scenes
(while the third relation “water over grass” occurs rarely in any
class), so the approximate model classified it as beach. How-
ever, because the full configurations of each of those three im-
ages were not unique, the exact model classified each correctly
as field.

The second type, those images classified correctly by the ap-
proximate model, but not by the exact model, include those
“singleton” images containing a unique configuration of mate-
rials. This is due to the fact that the model is undertrained, i.e.,
the distributions of scene configurations are too sparsely popu-
lated. For example, one open-water image has a water region
broken into two parts, yielding “sky over water over water”.
The exact model classified it incorrectly because that config-
uration occurred nowhere else in training, whereas the approxi-
mate model, influenced by the relation “sky over water” occur-
ring twice, classified it correctly as open water. Because there
are more images of the second type, the accuracy of the exact
model is lower on the training set.

D. Comparison With the Discriminative Models

We note that on this small data set, that when high-level fea-
tures are used, the Spatial Pairs model outperforms the discrim-
inative and the baseline generative models. The reduction in the
discriminative model’s accuracy is because the discriminative
model is undertrained given its dimensionality and the available
training data. High-level features outperform the low-level fea-
tures (75.2% accuracy, not shown on graph) except when the
simulated detectors are highly inaccurate, which is expected,
given our previous results on the larger data set (Table IV).

We chose the discriminative approach as a baseline to com-
pare to our approach because it is a mainstream approach that
is also based on training. There is no known disadvantage in
the discriminative approach when compared to logic/rule-based
[12] and other “soft” methods [7]. While these soft methods
may achieve a slightly higher accuracy in some cases, we ex-
pect rigorous training should ultimately provide the most robust
and generalizable systems.

VI. DISCUSSION AND CONCLUSIONS

We presented a scheme for parsing the scene content in order
to determine the semantic class of a scene, utilizing semantic
object detectors (e.g., sky, foliage, and pavement) and generative
scene-configuration models. With comprehensive experiments,
we demonstrated the promise of this approach and compared
it with existing discriminative approaches and those using low-
level features.

Discriminative models have been used effectively in pattern
recognition. However, generative models offer a number of ad-
vantages at the expense of slightly lower accuracies, even in the
context of classification:

1) The systems can be highly modular, exemplified by the sys-

tems we have designed. In each case, the method of ex-
tracting local cues is independent of the model, allowing
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for independently developed cue extractors to be used. Fur-
thermore, the cue extractors can be improved in the future
and readily plugged in without having to retrain the model.
2) Generative models usually offer much insight to the rela-
tionship between and influence of various factors involved
in the problem. This is often not the case with discrimina-
tive models such as neural networks. As another example,
the conditional probabilities used in Bayesian networks are
intuitive, whereas the linear models used in conditional
random fields are not.
3) Generative models operate as well as discriminative
models when there is a shortage of labeled training data.
In semantic scene classification, this is often the case.
Generative models can be “surprised”, that is, when con-
fronted with data unlike any seen in training, they emit a
small output probability. Discriminative models only offer
a forced-choice solution.

5) Generative models can operate in the face of missing
cues. By contrast, in a discriminative model, examples
with missing cues cannot be used. In the context of scene
classification, it may be desirable to turn off expensive
semantic features to gain speed. Generative models would
easily allow that.

6) Our generative model is flexible enough work backwards,
using knowledge of the scene type to improve region
labeling. To perform this, we instantiate the scene node,
propagate messages, and take the highest marginal proba-
bilities at the region nodes [2]. The model can also classify
regions and the scene as a whole simultaneously.

Because our database already contains a large number of per-
sonal images from various sources, we believe that our approach
will scale well to larger databases containing similar types of
these images. We also believe our approach could be used for
images of different environments (e.g., indoor images), given
the appropriate bank of detectors for materials and objects in
those environments (e.g., furniture [18]). In this case, the mod-
ularity of the approach is very important: to handle a wide va-
riety of images, a large number of detectors can be created in-
dependently (and in fact, many have been created already) and
integrated within this framework.

One limitation of our approach is that it does not handle
closeup images of people, which are a common subject for pho-
tographs; however, our approach complements classification
using face and people recognition.

In terms of future directions, improving the accuracy of the
semantic detectors will clearly increase the performance on
scene classification and should be monitored. As mentioned
earlier, another interesting direction for future work includes
encoding area and shape in the graphical model.

4)
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