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Abstract— In this paper, we propose a joint source-
rate/channel-code control scheme for streaming video over a
dynamic wireless channel. The scheme is designed to maximize
the achievable source rate while guaranteeing an upper bound
on the probability of starvation at the playback buffer. It can be
applied to both one-wayand interactive video communications.
Rate control is performed adaptively on aper-cycle basis, where
a cycle consists of a “good” (non-fading) channel period and the
ensuing “bad” (fading) period. This cycle-based approach has
two advantages. First, it reduces the fluctuations in the source
bit rate, ensuring smooth variations in video quality and avoiding
the “saw” effect that is typically observed in frame-based rate
control. Second, it makes it possible to derive simple expressions
for the starvation probability at the playback buffer, which we
use to determine the optimal source rate and channel code for
the good and bad periods of the subsequent cycle.

Keywords— Source rate control, wireless channels, channel-code
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I. I NTRODUCTION

Recent progress in wireless access technologies combined
with the advent of highly efficient, scalable, and error-resilient
video compression formats (e.g., MPEG-4, H.264) have made
it more possible than ever to stream real-time video over wire-
less channels. However, there are still some major obstacles
to overcome. On the one hand, video applications require
sustainable network throughput along with stringent delay-
jitter guarantees, particularly for interactive communications.
On the other hand, wireless channels are highly dynamic, with
a bit error rate (BER) that fluctuates by orders of magnitude
in less than a second. The situation is further aggravated
by the contention-based nature of common wireless access
techniques, which gives rise to radio interference and packet
collisions. Collisions can result in packet erasures, whose
impact on video quality extends to several frames (e.g., the
loss of a reference frame in MPEG impacts the reception of
all subsequent frames until the next reference frame).
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The aforementioned challenges inspired several potential
solutions, which can be employed separately or jointly. One
traditional yet effective class of solutions focuses on link-
layer reliability, i.e., forward error correction (FEC) and/or
automatic repeat request (ARQ). “Static” FEC can provide
sustained throughput and bounded delay, but when designed
for the worst channel conditions, it incurs some unnecessary
overhead. Adaptive FEC (code rate varies with channel con-
ditions) is more efficient for a dynamic channel. However,
tuning the FEC code rate according to the instantaneous BER
in an online fashion is not straightforward. ARQ techniques
have also been used, although their effectiveness in ensur-
ing strict delay guarantees is limited. Hybrid ARQ schemes
(e.g., [15], [9]) are believed to provide the best features of
ARQ and FEC, and will therefore be considered in our work.

Another class of solutions is based on source-rate control,
often performed at the frame level (e.g., [23], [17]) or the
macroblock level (e.g., [25], [21]). Such solutions exploit
the scalability offered by recently standardized compression
formats. Several of these rate-control solutions have been
targeted towards erroneous channels (e.g., [19], [7], [20],
[14], [3], [2]; see also [26], [27], [28] and the references
therein). The authors in [13] formulated an optimization
problem that considers as design parameters the end-to-end
delay, the policing constraints, and the encoder and decoder
buffer sizes. Although the proposed technique is capable of
finding the optimal operating points, due to its complexity, it
may not be suitable for real-time operation. In [14] the authors
introduced a rate-control scheme that aims at maximizing the
channel utilization subject to a constraint on the playback
buffer size. They suggested minimizing the probability of
buffer underflow by equating the effective input and output
rates of the playback buffer. The authors in [3] studied the
rate control problem from the sender’s point of view, and
proposed rate control schemes that avoid the degradation in
the peak signal to noise ratio (PSNR) due to the reduction
in the bit rate. A conditional retransmission and low-delay
interleaving scheme was proposed in [2], in which the encoder
buffer is used as part of the interleaving memory. In [5] the
authors introduced a rate control mechanism based on a priori
stochastic models of the source and the underlying channel.
In their problem formulation, they divided the optimization
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process into two stages. The first stage is done offline where
a set of operating points for the allowable system states are
precalculated using dynamic programming techniques. The
second stage is performed online, and is used to identify the
system state.

The vast majority of research on transporting video over
wireless channels has been aimed at optimizing the perfor-
mance of the source and/or channel encoders, with little
accommodation of the networking aspects. For instance, a
primary goal of many the previous studies was to optimize the
effective channel throughput, without taking into account the
impacts of the source and channel codes on the transport delay.
Furthermore, such studies often ignore the dynamics of the
playback buffer, which are critical to maintaining continuous
video playback. In addition, some of these schemes are
computationally intensive, making them unattractive for real-
time operation.

In this paper, we propose a joint source-rate/channel-code
control scheme for transporting variable-bit-rate (VBR) en-
coded video over wireless channels. The scheme is designed
to adapt the source bit rate and channel-code parameters on
a per-cycle basiswhile guaranteeing an upper bound on the
probability of starvation at the playback buffer. A cycle here
refers to the combination of a “good” (non-fading) channel
period and the following “bad” (fading) period. Our cycle-
based approach has two main advantages. First, it reduces the
fluctuations in the source rate, resulting in smooth variations
in video quality. Second, it allows us to derive simple ex-
pressions for the starvation probability at the playback buffer,
which we use in determining the optimal source rates for the
good and bad periods of the next cycle. Because of its low
computational complexity, the proposed scheme is attractive
for real-time operation. We apply this scheme to bothone-
way and interactivevideo. The main difference between the
two cases is in an additional constraint on the the end-to-end
delay for interactive video, which translates into a bound on
the probability of starvation at thetransmitter buffer.

II. SYSTEM MODEL

A. Framework

We consider the transport of VBR-coded video over a
dynamic wireless channel. Compression may be done in real
time or it may be performed offline (archived video). In the
former scenario, the frame encoding and playback rates are
both equal toRf frames/second, whereas in the latter case,
a video server may transport pre-encoded frames over the
channel at a rateRa (in frames/second) that may be different
from the playback rateRf . For both cases, we assume a
finely scalable compression format, whereby the size of the
compressed frame in bits can be reduced as needed at the
expense of lowering the frame’s spatial quality. At a fixed
frame generation rate, sayRf , scaling down the sizes of the
compressed frames amounts to adjusting the offered source
bit rateRs.

Without loss of generality, consider the case when frames
are generated in real time. According to the observed channel

state and the current occupancy of the playback buffer,the
receiverexecutes the rate-control and channel-code optimiza-
tion procedure described in the next section, and sends its
feedback to the transmitter. For simplicity, we assume that the
“feedback” channel is highly reliable, so that control messages
arrive at the transmitter free of errors. Such a simplification
is not so unrealistic, as these control messages tend to be
small (e.g., tens of bytes), and hence can be strongly protected
using a reasonable amount of error-correcting (FEC) code.
The receiver’s feedback is used by the transmitter to adjust the
size of the next generated frame and determine the appropriate
values for the channel-code parameters. The scaled frame is
then moved to the transmitter buffer. LetS be the size of this
frame in bits. When such a frame is to be transmitted over the
wireless link, it is first segmented intoN = dS/ke link-layer
(LL) packets, wherek is the number of information bits in
each LL packet. Each LL packet containsh error-correcting
bits, for a total ofn = k+h bits. We assume that the values of
k andh are fixed for all LL packets that belong to the same
video frame (in fact, and as explained in section IV, both
values depend on the observed channel state at the receiver).
For any given FEC coding scheme (e.g., BCH codes) and a
given pair(n, k), a maximum number of correctable bit errors
per packet (Emax = Emax(n, k)) can be easily determined. In
addition to the FEC code, each packet is assumed to include
a very strong error-detecting code (e.g., CRC-32). In the case
of an FEC decoding failure (e.g., packet contains more than
Emax bit errors), the CRC code will detect the presence
of a packet error and will trigger a packet retransmission.
We assume a stop-and-wait ARQ policy. This assumption is
justifiable when the round-trip time (RTT) is much smaller
than the packet transmission time, as is the case in typical
wireless LAN environments.

The wireless channel is modeled using a 2-state (good/bad)
continuous-time stochastic process in which the sojourn times
for the good (g) and bad (b) periods are gamma distributed.
Let Γg andΓb denote these sojourn times. Two-state channel
models, in general, have been widely used in the literature,
but often under Markovian assumptions (i.e., exponentially
distributed sojourn times). They are regarded as a reason-
able first-order approximation of slowly varying fading chan-
nels [6] (see [24] for a discussion of more general Markov
channel models). Recently, some studies (e.g., [1], [10],
[11]) have questioned the appropriateness of the Markovian
assumption in the two-state model and suggested the use of
lognormal and power-law distributions for the sojourn times.
For analytical tractability, we consider in our study a gamma
distribution for both the good and bad periods, which has
roughly the same shape as the lognormal distribution (note
also that the exponential distribution is a special case of the
gamma distribution). We emphasize here that while the use of
such a distribution is meant to provide a better representation
of the wireless medium, it has no bearing on our specific rate-
control design. Fori ∈ {g, b}, let pi be the BER during statei
(pg ¿ pb). Let α−1 andγ be, respectively, the scale and shape
parameters of the gamma distribution of the good period,
and let β−1 and δ be such parameters for the bad period
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(without loss of generality, we assume thatδ andγ take integer
values). These parameters, which correspond to the means and
variances of the good and bad periods, can be determined off-
line using representative channel measurements or they can be
estimated online at the receiver using, for example, time series
models. LetNi, ni, hi, andEmax,i be the correspondingN ,
n, h, andEmax values for theith channel state,i = g, b. The
optimization of these values is discussed in section IV.

Once all the LL packets of a particular frame have correctly
arrived at the receiver (possibly after several retransmission
attempts), the frame is assembled and moved to the playback
buffer. Let Rin be the inputframe rate into this buffer. In
general,Rin varies according to the channel conditions, the
FEC code, and the source rate. The playback buffer is drained
at a fixed rate ofRf (in frames/second).

We assume that the video session starts with a preloading
phase in which∆N frames are first prefetched and decoded
before playback commences. These frames correspond to
∆T = ∆N/Rf seconds of delay between the time the first
frame is generated and the time it is played back. We consider
two real-time communications scenarios: one-way and inter-
active. In the first scenario, there is no stringent constraints
on ∆T , while in the second scenario, the application imposes
a strick upper bound on∆T (∆T ≤ 150 ms). In the case
of archived video, there is no constraint on∆T , which can
be changed during the streaming by varyingRa. We treat
this scenario as a special case of the one-way real-time video
communication.

Figure 1 depicts the behavior of the transmission and
playback buffers. Because the frame generation and playback
rates are both equal toRf , we have

∆N = Qe(t) + Qp(t) ∀t (1)

whereQe(t) andQp(t) are the encoder and playback buffer
occupancies at timet. In other words, the number of frames
in the system is constant at any time, and what varies is
the distribution of∆N between the transmitter and playback
buffers.

Fig. 1. Qe(t) andQp(t) versus time.

B. Overview of the Proposed Scheme

The main goal of our joint rate-control/channel-code
scheme is to maintain the continuity of the playback process
by limiting the likelihood of playback-buffer starvation, while
simultaneously maximizing the spatial quality. To do that, we
allow the playback buffer to build up during the good state

and to shrink (and occasionally starve) during the bad states.
Infrequent events of buffer starvation (e.g., once every 10000
frames) will have negligible impact on video quality, and can
be easily compensated for by means of frame concealment.
By allowing for such events to occur, we are able to achieve
a significant improvement in the overall video quality by
maximizing the source rate.

Following the preloading phase, the receiver starts exe-
cuting the rate-control and channel-code-optimization proce-
dures. It continuously monitors the channel and accordingly
determines its state (g or b). Several channel-state-estimation
approaches are available in the literature (e.g., [16], [8], [18]),
and any of them can be used in our work. For example,
level-crossing analysis can be used to partition the continuous
SNR range into a discrete number of sets, each of which
corresponds to one channel state (see [12] and the references
therein). Once the partitioning is done, the receiver can
map the measured SNR into an appropriate channel state.
Another common channel-state estimation technique relies on
the observed number of bit errors in the packet and the last
observed channel state. Specifically, suppose that the channel
was previously determined to be in statei, i ∈ {g, b}. Let l
be the number bit errors observed in anNi-bit packet before
FEC decoding. Note that ifl ∈ [0, Emax,i], all bit errors in
the packet are correctable. The goal is to determine the most
likely channel state that the received packet has encountered.
To do that, the chi-squared test is applied to establish whether
the channel is still in statei (hypothesisH0) or has switched
to the other state (hypothesisH1). The receiver computes the
chi-squared value froml and the associated probabilityPχ2

of having a chi-squared value equal to or greater thanl by
chance only. The receiver then rejects hypothesisH0 if Pχ2

is lower than a given significance level and decides that the
channel has changed to the other state. The goodness of this
approximation technique can be assessed using the probability
of an erroneous detection. For example, if the channel was
previously in the good state, then the probability of making a
wrong detection decision is given by the sum of the probability
of false detection (Pg,f ) and that of omitted detection (Pg,o):

Pg,f =
∑

j≥Thg

(
ng

j

)
pj

g(1− pg)ng−j (2)

Pg,o =
∑

j≤Thg

(
ng

j

)
pj

b(1− pb)ng−j (3)

whereThg is the threshold for accepting or rejectingH0 (if
l ≤ Thg, the channel is determined to be in the good state;
otherwise, it is determined to be in the bad state). A similar
treatment is used if the channel was previously in the bad state
(a different threshold,Thb, is used in this case). In section VI
we provide numerical examples of the resulting probability of
error under this estimation approach.

Based on the continuously estimated channel state, the
receiver determines when the channel has switched from bad
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to good. This signals the start of a new cycle1. At that time, the
receiver computes the “optimal” values of the source rateRs

and the channel-code parameters that maximize the frame’s
spatial quality while simultaneously guaranteeing a boundε on
the starvation probability of the playback buffer. These values
are sent back to the transmitter, which uses them to adjust the
frame sizes and FEC code for the subsequent cycle. Note that
when frames are encoded on-the-fly, fixingRs over a cycle
implies that the quantization level will vary on a frame-by-
frame basis even during the same cycle. The impact of that
on video quality is examined in section VI.

III. A NALYSIS OF STARVATION PROBABILITY

In this section, we derive analytical expressions for the star-
vation probability of the playback buffer. Such expressions are
later used in optimizingRs and the channel-code parameters.
Consider an arbitrary cycle. To simplify the analysis, we treat
the frame arrival and playback processes as continuous-time
functions (i.e., we use a fluid approximation to characterize
the dynamics of the playback buffer). It is then reasonable
to assume thatQp(t) increases during the good period and
decreases during the bad period (see Figure 1). The validity of
this assumption will be experimentally verified in Section VI.
So if the playback buffer is to starve anytime during the cycle,
it must also starve by the end of the bad period of that cycle.
The continuity of the fluid-flow approximation implies that
only one starvation period (consisting of one or more frame
intervals) can occur in one cycle. If such starvation period is
to occur, it must include the end of the cycle. In other words,
a starvation interval occurs in a given cycle if and only if
such an interval includes the end of that cycle. LetΦ be the
probability of a starvation event at the end of an arbitrary
cycle. In our design, we require thatΦ ≤ ε, where0 < ε ¿ 1
is a predefined constraint.

A. One-Way Video Communication

In this scenario,∆T can be large enough to avoid starvation
of the transmissionbuffer. Consider an arbitrary cycle. LetQ0

be the number of frames in the playback buffer at the start of
the cycle. Starvation occurs ifQ0 plus the number of frames
transmitted during the cycle is less than the number of frames
played back during the same cycle. Formally, starvation occurs
if:

Q0 + ΓgR̄g + ΓbR̄b < (Γg + Γb)Rf (4)

whereR̄g and R̄b are the average ratesat which frames are
correctly received during the good and bad periods of the
underlying cycle, respectively. As explained later, these rates
can be controlled by appropriately setting the source rate and
channel-code parameters. The constraint on the probability of
starvation is then given by:

Φ def= Pr
[
Q0 + ΓgR̄g + ΓbR̄b < (Γg + Γb)Rf

] ≤ ε. (5)

1Without loss of generality, we assume that the cycle starts with the good
period and is followed by the bad period.

To simplify the analysis, we rewrite the condition in (4) as
(Rf−R̄b)Γb > (R̄g−Rf )Γg +Q0 and consider the following
possible cases:

• Case 1:R̄g ≥ Rf ≥ R̄b. This is the most common case.
Intuitively, in this case the playback buffer is expected
to build up during the good periods and to shrink during
the bad ones.

• Case 2:R̄g ≤ Rf and R̄b ≤ Rf . A solution is possible
in this case whenQ0 is considerably large. SincēRg and
R̄b are smaller thanRf , the playback buffer will shrink
throughout the entire cycle.

• Case 3:R̄g ≥ R̄b ≥ Rf . Since the average rates̄Rg and
R̄b are higher thanRf , the buffer occupancy is expected
to increase throughout the entire cycle. In this case,Φ
will be zero irrespective of the initial buffer occupancy.

Note that the case(R̄g − Rf ) < 0 and (Rf − R̄b) < 0
is an impossible one. Only the first and second cases are of
practical significance. So, we computeΦ for these two cases.
Let Γ̃g

def= (R̄g − Rf )Γg and Γ̃b
def= |Rf − R̄b|Γb. Consider

the first case. Starvation occurs whenΓ̃b > Γ̃g + Q0, which
corresponds to the gray area in Figure 2-a. The probability of
starvation in this case is given by:

Φ =
∫ ∞

0

(∫ ∞

Q0+x

fΓ̃b
(y)dy

)
fΓ̃g

(x)dx (6)

wherefΓ̃i
(.), i ∈ {g, b}, is the pdf ofΓ̃i and is easily obtained

from fΓi(.). By defining α̃ = |R̄g − Rf |α and β̃ = (Rf −
R̄b)β, Φ can be written as:

∫ ∞

0




∫ ∞

Q0+x

(
y

β̃

)δ−1

(δ − 1)!β̃
e
− y

β̃ dy




(
x
α̃

)γ−1

(γ − 1)!α̃
e−

x
α̃ dx. (7)

Solving this integral, we obtain (detailed solution is shown in
the appendix):

Φ =
e
−Q0

β̃

α̃




δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

i∑

j=0

(
i
j

)
Qi−j

0

(j + γ)!
θγ+j
1




(8)
whereθ1

def= 1
β̃

+ 1
α̃ . As for the second case, starvation occurs

whenΓ̃b > −Γ̃g+Q0, as shown in Figure 2-b. The probability
of starvation is given by:

Φ =
∫ Q0

0

(∫ ∞

Q0−x

fΓ̃b
(y)dy

)
fΓ̃g

(x)dx

+
∫ ∞

Q0

(∫ ∞

0

fΓ̃b
(y)dy

)
fΓ̃g

(x)dx. (9)

Solving this integral, we obtain (detailed solution is shown in
the appendix):

Φ =
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

×
i∑

j=0

(
i
j

)
(−1)i(−Q0)i−j (γ + j)!

θγ+j
2
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(a) (b) (c)

Fig. 2. Ranges of values that result in starvation: (a) Case 1 for one-way communications, (b) Case 2 for one-way and interactive communications, (c)
Case 1 for interactive communications.

× (γ + j − 1)!
θγ+j
2

(
1− e−θ2Q0

γ+j−1∑

k=0

(θ2Q0)k

k!

)

+ e−
Q0
α̃

γ−1∑

i=0

(Q0
α̃ )i

i!
(10)

whereθ2
def= 1

β̃
− 1

α̃ .

B. Interactive Video Communication

In this section, we compute the probability of starvation at
the playback buffer for the case of interactive video. In the
case when̄Rg ≥ Rf , it is possible for the transmitter buffer to
starve. Note that this happens only in case 1 of Section III-A.
To computeΦ for this case, we redefine (5) as follows:

Φ def=





Pr
[
Q0 + Γ̃g − Γ̃b < 0

]
, if Γ̃g + Q0 < ∆N

Pr
[
∆N − Γ̃b < 0

]
, otherwise

(11)
Accordingly,

Φ =
∫ ∆N−Q0

0

∫ ∞

Q0+x

fΓ̃b
(y)fΓ̃g

(x)dydx (12)

+
∫ ∞

∆N−Q0

∫ ∞

∆N

fΓ̃b
(y)fΓ̃g

(x)dydx.

Solving this integral, we obtain:

Φ =
e
−Q0

β̃

α̃γ(γ − 1)!

δ−1∑

i=0

1
i!β̃i

i∑

j=0

(
i
j

)
Qi−j

0

(γ + j − 1)!
θγ+j

×
[
1− e−θ(∆N−Q0)

γ+j−1∑

k=0

(−θ(∆N −Q0))k

k!

]

+ e
−∆N

β̃

δ−1∑

i=0

(∆N)i

i!β̃i

× e−
∆N−Q0

α̃

γ−1∑

j=0

(∆N −Q0)j

j!α̃j
. (13)

Note that this expression is similar to (8) but with an additional
term that is a function of∆N . As expected, as∆N increases
Φ decreases.

IV. A DAPTIVE COMPUTATION OF SOURCERATE AND

CHANNEL-CODE PARAMETERS

In the previous section,Φ was expressed as a function of
α̃ = |R̄g − Rf |α and β̃ = (Rf − R̄b)β. The parametersRf ,
α, andβ are fixed, soΦ is essentially a function of̄Rg and
R̄b. The parameters to be optimized are the source rateRs,
and the channel-code parametersng, hg, nb, andhb. So we
must first express̄Rg andR̄b in terms ofRs, ng, hg, nb, and
hb. This is done as follows. Conditioned on channel statei,
i ∈ {g, b}, the probability that a received LL packet contains
a correctable error is given by:

Pi =
Emax,i∑

j=0

(
n
j

)
pj

i (1− pi)n−j , i ∈ {g, b}. (14)

This quantity depends onni, hi, and the employed FEC
scheme. The average number of transmission attempts re-
quired to successfully transmit a packet is given by:

Li =
1
Pi

, i ∈ {g, b}. (15)

The time needed to transmit one LL packet is given by:

Ti =
ni

C
+ RTT, i ∈ {g, b}

whereC is the channel bit rate. Hence, the average number
of packetsNi per frame during statei is given by:

Ni =
Rs

(ni − hi)Rf
, i ∈ {g, b}. (16)

Accordingly,

R̄i =
1

NiLiTi
=

(ni − hi)Rf

LiTiRs
= ηi

Rf

Rs
, i ∈ {g, b} (17)

where

ηi
def=

ni − hi

LiTi
(18)

=
(ni − hi)

∑Emax,i

j=0

(
ni

j

)
pj

i (1− pi)ni−j

ni/C + RTT
(19)

To determine the optimal channel-code parameters and opti-
mal Rs, we exploit thedecomposabilityof the source/channel
sub-systems. First, note thatΦ is inversely proportional to
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R̄g and R̄b (the higher the frame arrival rate at the receiver,
the less likely that the playback buffer will starve), and
both parameters are inversely proportional toRs. In other
words, Φ is monotone inRs. This is shown in Figure 3
for different values ofQ0 (part (b) of the figure depicts the
trend whenΦ is below 10−4, which is typical for real-time
streaming applications). As for the channel-code parameters,
Φ depends on them exclusively throughηg and ηb. So one
can optimize the channel-code parameters by maximizing
ηi, i ∈ {g, b}, independent ofRs, subject to the constraint
(ni − hi)Rf ≤ Rs (which ensures that a frame consists of
at least one LL packet). This is done as follows. First, note
that ηi depends only on the BER, the transmission rate, the
amount of FEC, and the RTT. In typical streaming scenarios
over wireless links, where packet sizes range from 800 to 8000
bits, access bandwidth from 100 to 1000 kbps, and transmitter-
receiver separation is up to 1 Km, the RTT is quite negligible
compared to the packet transmission time. So we can safely
ignore it when computing the link throughputηi. Accordingly,
ηi ≈ C(ni − hi)/(Lini) = Cξi, whereξi

def= ni−hi

Lini
is called

the line efficiencyfor state i. Hence,ηi can be maximized
by maximizing ξi with respect toni and hi, which can be
done offline for a given FEC scheme and for several BER
values. For a given BER, the optimal values forng, hg, nb,
andhb can be obtained using a simple table-lookup. At these
optimal values,Rs can be maximized subject to satisfying
the given bound onΦ. Because of the (inverse) monotonic
relationship betweenRs andΦ, the optimalRs can be easily
found using a binary search conducted in logarithmic time.
Figure 4-a depicts the behavior ofηi as a function ofEmax,i

using a fixed packet size and BCH code. It is obvious that
there is an optimal point associated with each given BER.
Figure 4-b depictsηi versusni for a fixedEmax,i. The plot
can be used to maximizeηi with respect toni for a given
BER.

V. SELECTION OF∆T IN ONE-WAY V IDEO

COMMUNICATIONS

For real-time video,∆T is selected by the client before the
commencement of the video session and it remains constant
during the entire session. For one-way video, no stringent
constraints are imposed on∆T . In this scenario, the proposed
control scheme assumes that with an appropriate selection of
∆T it is possible to neglect the encoder buffer starvation. In
this section, we mathematically validate this assumption and
provide an expression for the minimum allowable value of
∆T . Note that a small∆T is desirable, as∆T is the time the
client has to wait before the video decoding starts.

Let Ψ(t, ∆N) denote the probability of buffer starvationat
the encoderat time t:

Ψ(t,∆N) def= Pr[Qp(t) ≥ ∆N ]. (20)

We are interested in computing a threshold (∆Nth) on ∆N
that results in a very low probability of starvation at the
encoder buffer:

Ψ(t,∆Nth) = Pr[Qp(t) ≥ ∆Nth] ≤ ν ∀ t, (21)

where 0 < ν ¿ 1 is a predefined constraint. It is obvious
that starvation at the transmitter can be encountered only
in channel cycles withR̄g ≥ Rf (case 1 in Section III-
A). In these cycles, the buffer occupancy decreases at the
encoder and increases at the receiver during the good period.
Accordingly, the highest value forΨ(t,∆N) is encountered
at the end of the good periods. LetΨ∗ be this probability:

Ψ∗ def= Pr[Q0 + (R̄g −Rf )Γg ≥ ∆N ]. (22)

It is computed as follows:

Ψ∗ =
∫ ∞

∆N−Q0

fΓ̃g
(x)dx = e−

∆N−Q0
α̃

γ−1∑

i=0

1
i!

(
∆N −Q0

α̃

)i

.

(23)
Using α̃ = |R̄g−Rf |α in the above equation and solving the
integral we obtain:

Ψ∗ = e
− ∆N−Q0

αRf (
ξgC

Rs
−1)

γ−1∑

i=0

1
i!

(
∆N −Q0

αRf ( ξgC
Rs

− 1)

)i

. (24)

Note that Ψ∗ is a function of Q0, which in this context
denotes the playback buffer occupancy at the beginning of
the underlying cycle. We now need to expressΨ∗ for every
cycle, independent ofQ0. This is required because∆N has
to be set at the beginning of the streaming session and is
kept constant afterwards. To this aim, we compute an upper
bound on this probability(Ψ̂). From (24),Ψ∗ increases as
Q0 increases and asRs decreases. An upper bound onΨ∗

is obtained by using the maximum buffer occupancy and the
minimum source coding bit rate within the range of values
allowed by Case 1. The minimum source bit rate isCξb. The
maximum Q0 value, denoted byQ0,max, is the value that
results inRs = Cξg. In fact, Rs is an increasing function of
Q0. Accordingly,Q0,max is obtained from (8) withΦ being
set to the target starvation constraintε andRs set toCξg. For
example, assuming that the sojourn times of the good and bad
states are exponentially distributed,ε is given by:

ε = e
− Q0,max

β(1−ξb/ξg)Rf ⇒ Q0,max = −β ln(ε)(1− ξb/ξg)Rf .
(25)

From which we obtain an expression forΨ̂:

Ψ̂ = e
−∆N+β ln(ε)(1−ξb/ξg)Rf

−α(ξg/ξb−1)Rf . (26)

In this case, the constraint in (21) can be satisfied by replacing
Ψ(t,∆Nth) with its upper bound̂Ψ. From this,∆Nth and the
corresponding∆Tth are obtained:

∆Nth = − ln(ν)α(ξg/ξb−1)Rf−ln(ε)β(1−ξb/ξg)Rf . (27)

∆Tth = − ln(ν)α(ξg/ξb − 1)− ln(ε)β(1− ξb/ξg). (28)

As an example, letν = 10−6. Using the default values
provided in Table I for the channel parameters, the expression
of ∆Tth becomes∆Tth = −0.208 + 0.0117 ln(ε). With ε in
the range of10−2 to 10−8, ∆Tth varies from 300 to 400 msec.
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Fig. 3. Probability of starvation versusRs for different initial buffer occupancy values (Q0).
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Fig. 4. Link throughput versus channel parameters.

VI. SIMULATION RESULTS

In this section, we simulate the proposed scheme and con-
trast its performance with other rate-control schemes. Every
simulation experiment was run for 100,000 channel cycles.
Table I summarizes the parameter values used in the simu-
lations (when not specified, the default values are used). For
the channel code, we use BCH codes with codeword lengths
ni in the range [255-4095] bits. This class of cyclic codes
is commonly used because of its low decoding complexity.
Within the chosen range of codewords, we consider every
possible positive integersm and t of the BCH scheme such
that ni = 2m − 1 and hi ≤ mt. The maximum number of
correctable bit errorsEmax,i is then set tot.

A. Validation of Channel Model

First, we evaluate the goodness of the 2-state channel
model. As discussed in section II-B, one approach to estimate
the channel state is based on the observed number of bit errors
in a packet. The estimation error using this technique was
expressed in (2) and (3) for a good-to-bad state transition.
Using the default parameter values in Table I and the corre-
sponding optimal packet sizesng = 511 bits andnb = 4095
bits (obtained from the channel-code optimization process),

TABLE I

VALUES OF PARAMETERS USED IN THE SIMULATIONS

Parameter Default value Range

α 100 msec 50-500 msec
β 30 msec 10− 100 msec
pg 10−5 10−6 − 10−4

pb 10−2 10−3 − 10−1

C 500 kbps 100-1000 kbps
Rf 25 frames/sec 20-30 frames/sec
ε 10−4 10−5 − 10−3

∆T 100 msec ≥ 80 msec

we apply the chi-squared test at a significance level of 0.001,
which results in threshold valuesThg = 2 andThb = 19 bit
errors. These values give rise to the following probabilities
of wrong detection:Pg,f = 2 × 10−5, Pg,o = 3 × 10−2,
Pb,f = 6×10−4, and Pb,o ≈ 0. Note that the effect of falsely
detecting the end of a cycle is more severe than that of missing
the start of a new cycle. In the first case, the receiver instructs
the transmitter to switch from a robust channel code that has
been used during the bad state to a lighter code to be used for
the wrongly detected good state. Clearly, this increases packet
losses and impacts the playback-buffer starvation probability.
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The other case results in an unnecessary reduction in the rate
Rs, as more-than-needed channel code is being applied, but
that has no effect on the starvation probability (it mainly
impacts the spatial quality of the displayed video). For the
default system parameters, the probability of falsely detecting
the start of a cycle (6× 10−4) is quite low. Additionally, the
resulting packet length during the good period is small, so the
negative impact of falsely detecting a new cycle lasts for only
a short time period. Note that the likelihood that the end of
a cycle is still falsely detected after two or more successive
packet transmissions is significantly small.

B. Evaluation of Rate-Control Scheme

To evaluate the efficacy of our scheme, we perform two
types of simulations. In the first type, we use a fluid approxi-
mation of the packet arrival process. In this case, the through-
put during the good and bad periods is set to its average value
for each of the two periods. This model reflects accurately our
starvation probability analysis. We then consider a “discrete”
model, in which we account for the packetization effect.
Table II shows the results for one-way video communications,
averaged over several runs. The observed starvation proba-
bility for the continuous model is very close to the target
ε = 10−4, confirming the goodness of our analysis. In the case
of the discrete model, the observed starvation probability is
slightly larger thanε, which can be attributed to the variability
of the channel throughput in this model (such variability
produces unaccounted for buffer starvation instances). Note
that the average value ofQ0 is quite small, indicating that
starvation can be prevented/controlled with only a small buffer
size. To evaluate the quality of the streamed video, we also
compute the average value ofRs. For both discrete and
continuous simulation models, the averageRs values are very
close to the mean channel throughput of 482.5 kbps. This is
expected, since streaming is never interrupted. The standard
deviations for the two types of simulations are very low.
Low variations inRs are highly desirable, as they reduce the
variations in the resulting video quality. To better evaluate
this aspect, we compute the absolute difference in the bit
rate between adjacent cycles (|∆Rs|). As shown in Table II,
the average value of|∆Rs| is even smaller than the standard
deviation ofRs.

TABLE II

SIMULATION RESULTS OF THE PROPOSED ALGORITHM FOR ONE-WAY

VIDEO COMMUNICATIONS

Parameter Continuous model Discrete model

Observed starvation probability 1.1× 10−4 2.8× 10−4

AverageQ0 0.64 frame 0.66 frame
Standard deviation ofQ0 0.21 frame 0.28 frame
AverageRs 479 kbps 480 kbps
Standard deviation ofRs 16 kbps 21 kbps
Average|∆Rs| 8 kbps 11 kbps

Figure 5 depicts the temporal behavior ofRs for 200
successive cycles. All the cycles in these simulations ended

without starving the buffer. Figure 6 shows the evolution of
the buffer within a cycle for several successive cycles. The
observed trend confirms our previous assertion in section II-B
that the buffer occupancy within a cycle reaches its lowest
value by the end of that cycle. The figure also shows that for
most cycles, the rate-control algorithm selects values forR̄g

and R̄b that are respectively higher and lower than the frame
playback rateRf . Infrequently, both values are lower thanRf

(e.g., 19th and 20th cycles), which happens when the buffer
occupancy at the start of a cycle is relatively large.
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Fig. 5. Source bit rate versus time.
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Fig. 6. Playback buffer occupancy evolutionduring a channel cycle (a ‘star’
indicates the start of a cycle).

Table III depicts the observed starvation probability for
various values ofα, β, pb, pg, C, Rf , and ε. When varying
the value for a given parameter, the other parameters are
set to their default values given in Table I. We observe a
slight mismatch between the target and measured values. The
mismatch decreases as the values ofα, β, andC increase.

Enforcing the constraintΦ ≤ ε on a per-cycle basis
sometimes leads to lowRs values, and subsequently high̄Rg

values. For interactive (two-way) video, too high̄Rg values
can result in starvation at thetransmitter buffer. Such an
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TABLE III

STARVATION PROBABILITY FOR VARIOUS VALUES OF THE SYSTEM PARAMETERS

Parameter Values Used Observed Starvation Probability at the Playback Buffer

α (50, 80, 100, 200, 500) msec 4.2× 10−4 3.4× 10−4 4× 10−4 2.4× 10−4 1.6× 10−4

β (10, 20, 30, 80, 100) msec 6.2× 10−4 4.6× 10−4 2.6× 10−4 3.8× 10−4 2.8× 10−4

pg (10−6,5× 10−6,10−5,5× 10−5,10−4) 2.8× 10−4 3.2× 10−4 2.4× 10−4 3.6× 10−4 3.4× 10−4

pb (10−3,5× 10−3,10−2,5× 10−2,10−1) 55.2× 10−4 7.6× 10−4 3.6× 10−4 3.4× 10−4 2.3× 10−4

C (102, 3× 102, 5× 102, 8× 102, 103) kbps 3× 10−4 2.4× 10−4 2.4× 10−4 3.8× 10−4 3× 10−4

Rf (20, 22, 25, 28, 30) frames/sec 1.6× 10−4 4.4× 10−4 2.4× 10−4 1.6× 10−4 2× 10−4

ε (10−5, 5× 10−5, 10−4, 5× 10−4, 10−3) 4× 10−5 18× 10−5 2.4× 10−4 8.6× 10−4 2.3× 10−3

∆T (80, 100, 120, 150, 1000) msec 4× 10−4 2.4× 10−4 2.8× 10−4 3× 10−4 2.6× 10−4

event is not as unsettling as playback buffer starvation. It
mainly impacts (rather slightly) the utilization of the channel.
Table IV shows the average number of starvation events per
cycle at the encoder for various channel parameters. Note that
more than one starvation event can occur during a cycle. A
transmitter-buffer starvation event ends when a new frame is
generated. During the good periodsR̄g > Rf (on average), so
once the newly generated frame is transmitted, the transmitter
buffer starves again. From this table, we observe that the
average number of starvation events per cycle increases as the
lengths of the good and bad periods increase. For the good
period, this trend can be justified through (24), which shows
that an increase inα leads to an increase inΨ. As for β, it
influences the selection ofRs; low values ofRs are selected
when β is large (see (8)). As mentioned before, a decrease
in Rs leads to an increase inΨ. Both C and Rf seem to
have little impact on the number of starvation events at the
encoder. In general, asRf increases, the frame generation
process becomes more continuous, reducing the resultantΨ.

Next, we study the performance of the cycle-based rate
control scheme when applied to Version JM 8.4 of the
emerging JVT/H.264 video coding standard. At the end of
each cycle, the value ofRs as determined by our rate-control
scheme is used to compute the quantization level (q) for the
next cycle. For this we need the relationship betweenRs and
q, i.e., Rs(q), which is difficult to quantify mathematically.
Moreover, different frames will require differentq values for
the sameRs (which is to be applied to all frames in the
next cycle). In our experiments, we empirically determine
Rs(q) based on the averageq value of the most recentN
frames (N = 10 in the experiments), each being encoded at
a quantization levelq. This is done for eachq value (i.e.,
the transform coefficients of every frame in the sequence
are quantized several times, each time using a differentq).
During the operation of the system, when a new frame is
to be encoded at rateR′, the the quantization level is set
to q∗, where Rs(q∗) < R′ < Rs(q∗ − 1) (note that the
higher the value ofq, the smaller is the resulting bit rate).
Other approaches such as those in [22] could also be used.
Tables V and VI depict the resulting performance for two
video sequences (“coastguard” and “foreman,” in CIF format),
each encoded at a rate ofRf = 30 frames per second.
The simulations were run for 100,000 cycles using different
values of∆T . It can be noted that∆T has a very negligible

impact on image quality, as measured by the PSNR. Also,
with ∆T = 80 msec (typical for interactive applications),
the difference in the PSNR between interactive and one-
way video is only 0.8 dB. In terms of the averageq, the
difference between the two cases is about 1.7 and 0.2 for the
“coastguard” and “foreman” video sequences, respectively.

In the proposed per-cycle scheme, the quantization level
q varies on aper-frame basis. To evaluate the impact of
such variability on video quality, we show in Figure 7 the
PSNR for 300 frames (“Foreman” sequence with∆T = 0.1
msec). We contrast the per-cycle scheme (variableq) with
a scheme that uses a fixed quantization level (q = 17) that
represents the averageq value in the per-cycle scheme. Note
that even whenq is fixed, the PSNR still varies from one
frame to another, depending on the scene dynamics and the
“richness” of the encoded frame. The two plots exhibit similar
temporal behaviors. Relative to a fixed-quantization approach,
the per-cycle scheme does not cause noticeably degradation
in the PSNR. In fact, the average absolute difference in PSNR
between two successive frames is 0.12 dB and 0.099 dB for
the cases of variableq and fixed q, respectively. The 300
frames correspond to about 15 channel cycles, so the depicted
PSNR values cover multiple cycles.
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Fig. 7. PSNR versus frame index (Foreman sequence).

Finally, we conduct simulation experiments in which we
compare the per-cycle scheme with the TMN8 model [4] as
well as with the DDP and SDP [5] algorithms. DDP and SDP
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TABLE IV

AVERAGE NUMBER OF STARVATION EVENTS PER CYCLE AT THE ENCODER FOR VARIOUS VALUES OF THE SYSTEM PARAMETERS

Parameter Values Used Observed Starvation Events per Cycle at the Encoder

α (50, 80, 100, 200, 500) msec 0.00086 0.00738 0.01962 0.11116 0.59206
β (10, 20, 30, 80, 100) msec 0.00112 0.00436 0.0188 1.501 1.7137
pg (10−6,5× 10−6,10−5,5× 10−5,10−4) 0.01636 0.01618 0.02 0.019 0.01724
pb (10−3,5× 10−3,10−2,5× 10−2,10−1) 0.0002 0.00034 0.01964 2.8015 2.712
C (102, 3× 102, 5× 102, 8× 102, 103) kbps 0.1373 0.0542 0.0195 0.01292 0.01216
Rf (20, 22, 25, 28, 30) frames/sec 0.23764 0.0236 0.0195 0.01788 0.01788
ε (10−5, 5× 10−5, 10−4, 5× 10−4, 10−3) 0.11386 0.0268 0.0195 0.01326 0.01112
∆T (80, 100, 120, 150, 1000) msec 0.82424 0.0195 0.00218 0.00038 0

TABLE V

PERFORMANCE RESULTS FOR THECOASTGUARD VIDEO SEQUENCE

∆T PSNR Average Channel Encoder Starvation Φ
q Utilization Events per Cycle

0.08 30.603 22.0598 0.95973 3.7109 0.0008
0.1 30.759 21.81 0.98432 3.576 0.00054
0.12 30.862 21.6517 0.93782 3.4258 0.0004
0.15 31.014 21.41 0.95689 2.98 0.00012
one-way 31.448 20.7085 1.0 0.0 4.0×10−5

TABLE VI

PERFORMANCE RESULTS FOR THEFOREMAN VIDEO SEQUENCE

∆T PSNR Average Channel Encoder Starvation Φ
q Utilization Events per Cycle

0.08 35.896 17.1842 0.94825 2.5337 0.0004
0.1 35.996 16.996 0.98927 0.39748 0.0012
0.12 36.062 16.8724 0.99734 0.09766 0.0011
0.15 36.145 16.7385 0.99923 0.02566 0.0007
one-way 36.674 16.9716 1.0 0.0 0.0005

are two important rate-control schemes that were developed
based on stochastic dynamic programming. To ensure a fair
comparison, we conduct our experiments under a comparable
setup to that of [5]. In particular, we setα = 110 msec,
β = 19 msec,pb = 8 × 10−2, C = 65.5 kbps, andRf = 6
frames/second. The other parameters are kept at their default
values in Table I. This results in the same average sojourn
times for the good and bad periods (550 msec and 150 msec,
respectively) and the same channel throughputs (ηg andηb) as
those in [5]. Table VII depicts the PSNR and probability of
starvation under various rate-control algorithms when applied
to the “mother& daughter” sequence (used in [5]). The table
reveals the following. In terms of the average PSNR, our
cycle-based approach achieves comparable performance to
that of the SDP and DDP algorithms, and a slightly better
performance than that of the TMN8 algorithm. However, in
terms of the observed probability of starvation, the cycle-based
approach achieves a much better performance (lower starva-
tion rate) than the three other algorithms. This is expected
given that the cycle-based algorithm aims at controlling the
starvation probability whereas the SDP and DDP algorithms
aim at finding the “optimal” balance between compression
and distortion. Note that “optimizing” the average PSNR by
itself is not enough to ensure satisfactory perceptual quality,
especially if it comes at the expense of frequent buffer

starvation instances (which cause undesirable video artifacts).

VII. C ONCLUSIONS

In this paper, we proposed a low-complexity source-channel
rate control scheme for video streaming over wireless chan-
nels. The coding rate is computed by introducing a constraint
on the probability of starvation at the playback buffer. We de-
rived an expression for the starvation probability as a function
of the coding parameters. To reduce quality variations among
neighboring frames, the computed source bit-rate is used by
the sender over a complete channel cycle. Experimental results
proved the efficacy of the proposed approach in controlling
the buffer underflow frequency in both cases of interactive
and one-way video communications. From the experiments,
we observed some starvation events at the encoder buffer in
case of interactive video communications. This is caused by
the constraint on the maximum end-to-end delay, resulting in a
waste of the channel capacity. However, our algorithm allowed
for obtaining channel utilization values lower than 90% only
in few scenarios. Slight mismatches are encountered in cases
of high variance in the channel throughput that increases with
the increase in packets length and a decrease in the expected
lengths of the good and bad periods. Replacing the constant-
throughput model with a more realistic one in our analysis
is expected to improve the performance of the proposed
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TABLE VII

COMPARISON OF VARIOUS RATE-CONTROL SCHEMES FOR SEVERAL VALUES OF∆T (mother& daughterSEQUENCE INQCIF FORMAT).

Scheme ∆T = 333 msec ∆T = 500 msec ∆T = 666 msec
PSNR Starvation Prob. PSNR Starvation Prob. PSNR Starvation Prob.

Cycle-based 31.02 7.0× 10−4 31.06 6.6× 10−4 31.08 5.710× 10−4

SDP 30.82 0.1019 30.99 0.0633 31.02 0.0429
DDP 30.84 0.1008 31.12 0.0666 30.85 0.0395

TMN8 27.13 0.4216 29.23 0.1699 30.09 0.0644

algorithm with only a slight increase in the computational
complexity.

APPENDIX

First, consider case 1:

Φ =
∫ ∞

0

(∫ ∞

Q0+x

fΓ̃b
(y)dy

)
fΓ̃g

(x)dx (29)

=
∫ ∞

0




∫ ∞

Q0+x

(
y

β̃

)δ−1

(δ − 1)!β̃
e
− y

β̃ dy


 ( x

α̃ )γ−1

(γ − 1)!α̃
e−

x
α̃ dx (30)

=
∫ ∞

0


e

− (x+Q0)
β̃

δ−1∑

i=0

(Q0+x

β̃
)i

i!




(
x
α̃

)γ−1

(γ − 1)!α̃
e−

x
α̃ dx (31)

=
e
−Q0

β̃

α̃




δ−1∑

i=0

∫ ∞

0

e
− x

β̃
− x

α̃ ( x
α̃ )γ−1(Q0+x

β̃
)i

i!(γ − 1)!
dx


 (32)

=
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

×
∫ ∞

0

e
−( 1

β̃
+ 1

α̃ )x
xγ−1(Q0 + x)idx (33)

=
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

×
i∑

j=0

(
i
j

)
Qi−j

0

∫ ∞

0

e−θ1xxj+γ−1dx (34)

whereθ1
def= 1

β̃
+ 1

α̃ . Thus,

Φ =
e
−Q0

β̃

α̃




δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!




i∑

j=0

(
i
j

)
Qi−j

0

(j + γ)!
θγ+j
1





 .

(35)
For case 2, we have
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α̃ dx (38)

=
e
−Q0

β̃

α̃




δ−1∑

i=0

∫ Q0

0

e
x

β̃
− x

α̃ ( x
α̃ )γ−1(Q0−x

β̃
)i

i!(γ − 1)!
dx


 (39)

=
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

×
∫ Q0

0

e
( 1

β̃
− 1

α̃ )x
xγ−1(Q0 − x)idx (40)

=
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

i∑

j=0

(
i
j

)
(−1)i(−Q0)i−j

×
∫ Q0

0

e−θ2xxj+γ−1dx (41)

where θ2
def= 1

β̃
− 1

α̃ . Note that
∫ Q0

0
e−θ2xxj+γ−1dx can

be written as(γ+j−1)!

θγ+j
2

∫ Q0

0
θ2(θ2x)γ+j−1

(γ+j−1)! dx which is equal to
(γ+j−1)!

θγ+j
2

[
1− e−θ2Q0

∑γ+j−1
k=0

(θ2Q0)
k

k!

]
. Thus,

I1 =
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

×
i∑

j=0

(
i
j

)
(−1)i(−Q0)i−j (γ + j)!

θγ+j
2

× (γ + j − 1)!
θγ+j
2

(
1− e−θ2Q0

γ+j−1∑

k=0

(θ2Q0)k

k!

)
.(42)

For I2, we have:

I2 =
∫ ∞

Q0

(∫ ∞

0

fΓ̃b
(y)dy

)
fΓ̃g

(x)dx (43)
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=
∫ ∞

Q0




∫ ∞

0

(
y

β̃

)δ−1

(δ − 1)!β̃
e
− y

β̃ dy




(
x
α̃

)γ−1

(γ − 1)!α̃
e−

x
α̃ dx (44)

=
∫ ∞

Q0

(
x
α̃

)γ−1

(γ − 1)!α̃
e−

x
α̃ dx (45)

= e−
Q0
α̃

γ−1∑

i=0

(Q0
α̃ )i

i!
. (46)

Hence, for case 2:

Φ =
e
−Q0

β̃

α̃

δ−1∑

i=0

( 1
α̃ )γ−1( 1

β̃
)i

i!(γ − 1)!

×
i∑

j=0

(
i
j

)
(−1)i(−Q0)i−j (γ + j)!

θγ+j
2

× (γ + j − 1)!
θγ+j
2

(
1− e−θ2Q0

γ+j−1∑

k=0

(θ2Q0)k

k!

)

+ e−
Q0
α̃

γ−1∑

i=0

(Q0
α̃ )i

i!
. (47)
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