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Abstract—In this paper, we argue to learn dissimilarity for in-
teractive search in content based image retrieval. In literature, dis-
similarity is often learned via the feature space by feature selection,
feature weighting or by adjusting the parameters of a function of
the features. Other than existing techniques, we use feedback to
adjust the dissimilarity space independent of feature space. This
has the great advantage that it manipulates dissimilarity directly.
To create a dissimilarity space, we use the method proposed by
Pekalska and Duin, selecting a set of images called prototypes and
computing distances to those prototypes for all images in the col-
lection. After the user gives feedback, we apply active learning with
a one-class support vector machine to decide the movement of im-
ages such that relevant images stay close together while irrelevant
ones are pushed away (the work of Guo et al.). The dissimilarity
space is then adjusted accordingly. Results on a Corel dataset of
10000 images and a TrecVid collection of 43907 keyframes show
that our proposed approach is not only intuitive, it also significantly
improves the retrieval performance.

Index Terms—Active learning, dissimilarity learning, interactive
image search, visualization.

I. INTRODUCTION

I NTERACTIVE search tasks in content-based image re-
trieval (CBIR) are classified into three types: association

search, target search, and category search [27]. In search by
association, the user starts with no specific aim other than
interesting findings. Target search aims at finding one specific
image. And category search ideally finds all images belonging
to a specific class or complying to a given information need.
In any of the three tasks, during the search process, the system
aims at finding relevant images while discarding irrelevant
ones. To do so, a (dis)similarity measure is needed to compare
images. As dissimilarity is the inverse of similarity they can be
mapped easily and in the following, we will just use the most
appropriate term.

Dissimilarity between images strongly depends on the con-
text of the search. Prior to the interaction, the system’s definition
of dissimilarity is based on the objective image content, whereas
during the interaction the user judges similarity based on a sub-
jective interpretation of the semantic content. This contrast is
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known as the semantic gap [27]. Imagine we have two sets of
pictures, one of “dogs” and the other of “birds”. In a search task
looking for images of the “animal” category, images in these
two sets are to be taken as members of the same class. How-
ever, if the task is searching images of “pets”, the pictures with
“dogs” are relevant, but the pictures with “birds” may not be rel-
evant as it depends on what type of bird appears in the pictures.
Only the user knows exactly what she is searching for and the
system needs to learn the dissimilarity based on the user’s rele-
vance feedback.

In literature, many different methods have been developed to
learn dissimilarity from relevance feedback. For an overview,
see [22] and [34]. When feedback is given, dissimilarity is com-
monly learned via feature space [1], [14], [12]. When a small set
of specific features is used, it works for a narrow domain only.
In contrast, a large set of generic features provides the possi-
bility to find dissimilarities among images of any kind. How-
ever, such a large set of features leads to a high computational
load, especially when the dimension of the feature space goes
to thousands of features. And what is more, a large set needs a
large set of training examples. For interactive search, immediate
response is important, hence for interactive search in broad do-
mains learning dissimilarity based on the feature space is not
ideal.

Let us reconsider the above example. It is difficult to define
effective features which would assign ”dogs” and ”birds” to the
“animal” group. However, if the user points out that target im-
ages are similar to an example picture of a “dog” and an example
of a “bird”, we might group them based on the observation that
they are close to either one of them. Defining concepts on the
basis of examples is far more intuitive for the user than defining
it in terms of the features of the images. In our approach, rather
than considering the feature space, we will focus on the dissim-
ilarity space, where images are represented by their relations to
other images.

A similar approach has been applied in [2]. In this reference,
the authors also consider dissimilarity space as a substitute for
the feature space. They create dissimilarity spaces following the
technique of Duin and Pekalska [7], [18] for different classes of
features such as color or texture. They first select a set of im-
ages, named prototypes. The dissimilarity space is created such
that images are represented by their relative dissimilarities to the
prototypes. They then explore the optimal way of fusing these
spaces over the feature spaces. Although the retrieval process is
done on the dissimilarity spaces, these spaces are not updated,
hence the interactive learning of dissimilarity still strongly de-
pends on the initial feature spaces. As indicated, this makes it
difficult to learn the semantic target classes.
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To let the user define similarity through interaction, a visual-
ization interface, we call the manipulation space, is necessary.
In such an interface, the user is able to manipulate and select
images to express his similarity definition via relevance feed-
back. In literature, there are different approaches for displaying
and browsing an image collection [3], [26], [6], [11]. The tradi-
tional approach for visualizing image collections in search sys-
tems is the ”page of thumbnails”. This visualization can show
the ranking of a set of images, but not the relations among them.
More advanced is [26] where the feature space is projected to
two dimensions and the interface allows users to give feedback
by changing the relative position of images. In this method re-
lations are only implicitly used in the visualization. Relations
are explicit in [3] and [11], where the existence of discrete rela-
tions between images are presented as a graph. The method in
[16] does not use discrete relations, but visualizes the similarity
among the images. More methods along this line can be found in
the reference. The user may interact in the space by labelling im-
ages as relevant and/or irrelevant, by giving dissimilarity scores,
or by moving relevant images close to one another. In this paper,
we consider the labelling of relevant and irrelevant images only.
By doing this, the user gives direct feedback to adjust the dissim-
ilarity among images. This visualization method is best suited
for our approach, as the visualization directly shows the current
interpretation of dissimilarity the system has. Interaction is very
intuitive as the user interacts with dissimilarity directly, which
is not possible in feature based approaches.

In this paper, we integrate the information available from in-
teraction as deep into the definition of (dis)similarity as one can.
We do not only learn class membership from the user’s inter-
action, but also iteratively update the dissimilarity space itself
using the technique in [9] with a small modification. This means
that when the user changes the layout of the image set displayed
in the manipulation space, the layout of images in the dissimi-
larity space is also adjusted to fit the feedback. Images are pre-
sented to the user with their relations reflecting the system’s def-
inition of dissimilarity. This definition is obtained from the dis-
similarity space. The user either agrees or disagrees with the cur-
rent relations. If not, he can give feedback to show his opinion
on how the relations should be. The changes on the manipula-
tion space will be directly mapped to update the dissimilarity
space.

The paper is organized as follows. In Section II, we will de-
scribe in more detail existing research in learning dissimilarity.
Next, in Section III, we present our approach to learn the dis-
similarity through updating the dissimilarity in manipulation
space. Results of the system for two different image collections
are shown in Section IV. Finally, conclusions are presented in
Section V.

II. BACKGROUND AND RELATED WORK

In this section, we introduce notation and give an overview of
the literature on learning dissimilarity.

A. Basic Notation

Given a collection of images , the -di-
mensional feature space is defined in which each image

is represented by a feature vector of length . Dissimilar-

ities are derived from the feature vectors. They are com-
puted between every pair of images and and stored in
a matrix . Furthermore, let

denote a set of values weighting the dimen-
sions in . Finally, let denote a set of parameters steering the
dissimilarity function.

When the user is interacting with the system he has a goal
which can be defined as a set of desired images to be
found. Given this goal, learning of dissimilarity can be viewed
as an iterative process where the system learns to identify the
set from feedback given by the user.

B. Methods for Learning Dissimilarity

In most existing methods, learning is done via feature space
either by feature selection [1], [14], feature weighing [12], [33],
or using a parameterized function of the features [24], [9].

In general, for existing methods, the learning of dissimilarity
in iteration from analyzing the feedback of the user in
iteration can be formulated as

(1)

where and are start values.
In general, not all features are equally important. Hence, in

the feature weighting approach weights are set for each feature.
Feature selection is a special case of feature weighting, where
the weights of the eliminated features are set to 0. As the update
changes only, (1) is rewritten as

(2)

In [33], the authors concentrate on exploring the distribution
of the data set. A subspace of the feature space is found, and a
quadratic similarity functions is learnt. From there, the dissim-
ilarity matrix between images is updated. A similar approach
is presented in [1], where the authors propose a weighted
Minkowski similarity that continuously learns the weight of
each feature based on positive and negative examples. The
dissimilarity matrix is adjusted on the basis of the new set of
weights. In [14], the similarity is recalculated by selecting a
subspace. Updating is based on the configuration of images
on the screen resulting from the user’s manipulation of the
position of images on the screen. The system re-estimates
the layout of the images, such that the similarity function
gets closer to the user’s desire. A similar approach but with
dynamic selection of the feature subspace is followed in [12].
In this reference, starting with a number of features, a dynamic
function is proposed which determines at each step the optimal
number of features. From there, the weighted and non-weighted
perceptual dynamic function is built based on the Minkowski
distance. In [8], the authors propose a system which allows
the user to score similarity between given pairs of images.
The system then learns the similarity coefficient from the user
feedback, predicting the similarity among the images which
were not displayed. Within the same school of thought, work
has been reported in [4], [10], [25], and [30]. In general, this ap-
proach requires a large set of features in order to select a subset
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best representing the semantic similarity between images. For
interactive search, the selection of a large number of features
leads to a high computational load, especially with complicated
dissimilarity functions. In addition, the need for a large number
of examples in learning leads to tedious interaction.

The parameter based approaches form another class of
methods. In these approaches, the set of vectors in feature space
does not change during learning, but rather a parameterized
function of the features is adjusted to fit the user’s feedback.
Equation (1) is specialized as

(3)

For example, in [24], the authors introduce an interface where
the user adjusts the similarity between images in the manipu-
lation space by moving them around. New positions of images
displayed are used as relevance feedback. Using Fuzzy Feature
Contrast and Tversky’s similarity measure, the authors define
a similarity function where contains around 100 different
parameter dimensions. Based on user feedback, the system
then adjusts the set of parameters in the dissimilarity function
such that the dissimilarity decreases between images which
according to the user are close. The large number of param-
eters requires a large number of training examples and thus
substantial user interaction. In [9], given a set of images as
query examples, a restricted similarity measure is formulated
which recalculates dissimilarity between all images and queries
depending on their positions compared to the classification
boundary. The boundary is characterized by a parameter set.
Given a set of positive and negative examples, SVM and
AdaBoost are used to learn a classification boundary. The
top ranked images are then labelled as positive or negative
examples to repeat the refinement of dissimilarity.

The parameter based approaches do not require a large set of
features. However, to effectively learn the dissimilarity matrix,
either the features should be well chosen or the system should
have a wide range of parameters.

The use of features in learning dissimilarity has a major lim-
itation as it strongly depends on the choice of features. With
the lack of efficient features for general search tasks, a new ap-
proach that learns dissimilarity with less dependence on features
should be considered.

III. DIRECT MANIPULATION OF DISSIMILARITY

In this section, we present our approach in learning dissimi-
larity by updating the dissimilarity space based on user’s rele-
vance feedback without going back to the feature space. Using
the same notation as in (1) our method can be described as

(4)
An overview of our proposed approach is in Fig. 1. First,

a dissimilarity matrix is obtained by comparing feature vec-
tors in the feature space . A projection from the high dimen-
sional space creates a manipulation space (to be discussed
in Section III-B). Images are presented in to the user for
interaction and feedback. A set of images, named the prototype

Fig. 1. Schematic overview of the proposed approach.

set , is selected. When sufficient prototypes have been found,
a dissimilarity space is created (Section III-A). This starts
the learning process. The manipulation space is now a di-
rect projection of . In this learning phase, is iteratively
adjusted using feedback and active learning. The adjustment is
presented in Section III-C. In each iteration, a set of most infor-
mative images is returned. The user then labels positive images
for another round of feedback. The learning phase finishes when
the user stops the search.

Clearly the above defines a complex system. Several of the
constituent components have been studied before in literature
and have their own merit in various search scenarios. However,
it is their complex interplay which yields ample opportunities
for fully supporting the user in complex search scenarios. In the
following sections, we elaborate on the components and their
relations.

A. Creation of the Dissimilarity Space

To create a prototype-based dissimilarity space, we employ
the method proposed by Pekalska [18]. In the reference, the goal
is classification of numeric data. They do not consider user in-
teraction or relevance feedback. We extend the methods to in-
teractive image search.

The first step is to select a set of prototype images

(5)

The role of the prototypes is to create a dissimilarity space
where relevant and irrelevant images are well separated. Hence,
careful selection of prototypes is important. The mapping from
dissimilarity matrix to dissimilarity space by selection of proto-
types is equivalent to choosing a set of columns (or rows) in the
dissimilarity matrix. With denoting the dissimilarity space,
and the mapping from a dissimilarity matrix to

(6)

This means that for each image , we have a -dimensional
vector

(7)
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Fig. 2. Example to illustrate the creation of a dissimilarity space. The stars and
circles represent the relevant and irrelevant classes, respectively. (a) For sim-
plicity, images are represented in a 2-D feature space F = fF ;F g, with
dissimilarities among them obtained by the unweighed Euclidean distance be-
tween feature vectors. Clearly, relevant images are clustered into different area,
which make the separation difficult. Two imagesP andP are selected as pro-
totypes. (b) Distances to I and I , define the 2-D dissimilarity space. In the
dissimilarity space, it becomes much easier to classify the two classes.

Therefore, dissimilarities between all images in to are
represented by a matrix with size . The collection then
builds up a -dimensional dissimilarity space , named pro-
totype-based dissimilarity space

...
...

(8)

An illustration of creating a dissimilarity space is shown in
Fig. 2.

In , the similarity of two images and is
defined by the Euclidean distance between and , where

and are -dimensional dissimilarity vectors of the two
images [see (7)].

Prototype selection is an important step in creating a dissim-
ilarity space. In [19], the authors compare different ways of se-
lecting sets of prototypes such as random selection, cluster anal-
ysis by K-centers, and clustering by mode seeking. They exper-
imented with different datasets. Conclusions are that a system-
atic selection of prototypes performs better than a random se-
lection and the K-center approach performs well in general. We
follow the same direction, and aim to find a set of prototypes
such that the mapping preserves the information in the simi-
larity matrix as good as possible.

The method in [18] aims for classification, where training set
and test set have been defined beforehand. In interactive search,
we are not able to select a set of prototypes as we do not know
which images the user will search for. In practice, there are cases
where the user starts the search with relevant and/or irrelevant
images, but in general this set of images is not a good set of
prototypes. For CBIR, a strategy is needed for finding a good
set of prototypes.

The browsing for prototypes is performed in manipulation
space, where the user directly interacts with images. The selec-
tion of relevant images as prototypes makes the learning on dis-
similarity space simpler [2] (see example on Fig. 2). We there-
fore focus on images selected as relevant by the user. In partic-
ular, the system shows a set of images to the user, who will select
relevant images when they appear. Because of the limitation of

the display screen, only a small set of images can be displayed
at a time. We denote the set of images displayed in iteration as

. This set should be carefully chosen as it affects the resulting
, most importantly should give an adequate overview of

the whole collection [16]. First, the collection is divided into a
set of clusters using a clustering algorithm. The
system selects an image from each cluster, which is called the
representative element of that cluster, for display. is chosen
such that the representatives are giving an overview of the col-
lection , while assuring that the images still fit the screen.
If a relevant image (i.e., an element of ) is present in , the
user will select that image as a prototype, i.e.,

(9)

Once images currently on display are inspected, the system will
choose a new set of representatives to display.

From a practical point of view, the size of the image collec-
tion is usually large. Hence, sequentially visiting all images is
a time consuming procedure and should be avoided when there
are clusters not containing any relevant image. To speed up the
process, we add a filter to the browsing. Rather than visiting all
elements in cluster , the cluster is divided into subclusters
using the same clustering algorithm. The value of is selected
such that

(10)

with the size of the cluster. For example, if the cluster
contains 100 elements and is set equal 20, the number of

sub-clusters is . Increasing the value of will give a finer
clustering and hence requires more browsing time. Coarse clus-
tering with a high value of increases the chance of missing
relevant images.

As in the above, centers of the sub-clusters are chosen as the
representatives for that cluster, i.e., one of the sub-centers is
sequentially selected to represent the cluster. Therefore, instead
of visiting all images, the user only considers representa-
tive images. For each cluster, when representatives have been
visited and no relevant image is found, the cluster has a high
probability of being irrelevant to the search. Hence, it is elim-
inated from the collection. On the contrary, if one of the rep-
resentatives is relevant, with the expectation that more relevant
images could be inside the corresponding cluster, the system
keeps the cluster.

When a cluster is removed, there is space for other representa-
tive images to go on display. The unexplored part of the collec-
tion contains images which are not in the removed clusters

and not in the kept clusters

(11)

In each iteration, the system needs to cluster . This step
cannot be done offline as it depends on the user actions. Hence,
a fast and computationally inexpensive clustering algorithm is
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used namely competitive learning [23]. With new clusters avail-
able, the browsing is continued until a predefined number of
prototypes has been found, denoted by iteration . It should be
noted here that the competitive learning has a random initial-
ization step and hence the prototypes may vary when different
starting points are chosen. In practice, we expect the difference
in their utility to cover the space limited.

At this point, we have found a set of prototypes and ef-
fectively reduced the collection to an active set

(12)

with increased chance of finding relevant images in a later stage.
For notational convenience the is dropped in the following
sections.

B. The Manipulation Space

To provide relevance feedback, the 2-D manipulation space
is needed in which the user interacts with the images. A

projection from the high dimensional space, being it feature
space or dissimilarity space, to two dimensions is needed. Sim-
ilarity-based visualization, [14], [21], [16], [20] works on dis-
similarity space directly:

(13)

With a matrix containing dissimilarities, which can be ei-
ther the original dissimilarity space or the prototype-based dis-
similarity space. In similarity-based visualization, the position
of images in is chosen such that distances reflect, as
faithfully as possible, the dissimilarities in dissimilarity space

. This makes these methods well suited for our task.
In [16], we have compared five different projection tech-

niques namely Isomap (Isometric mapping), Stochastic
Neighbor Embedding (SNE), Local Linear Embedding (LLE),
Multi-Dimensional scaling (MDS), and a new method ISOSNE
which replaces the MDS step used in Isomap by SNE. The
projection method giving the best performance in terms of
preserving original distances is ISOSNE, so this is used as
in this paper.

ISOSNE contains two main steps (see [16] for more details).
A nearest neighbor graph in is created first. Distances
between elements are then defined as the distance along the
shortest path in the graph which connects them. To find a
proper value for , we have tested with many different values
using a number of different artificial datasets. An appropriate
value for turned out to be ten neighbors. The second step is
to project the thus obtained distances to the 2-D manipulation
space. To preserve the distances, the algorithm optimizes a cost
function measuring the difference between the probabilities
of elements being at a certain distance in and the equiv-
alent probabilities in the original space, denoted as and

, respectively. Based on Kullback–Leibler distance, is
computed as

(14)

Fig. 3. Two examples of similarity-based visualization of images in the ma-
nipulation space. The layout of images is such that similar images are close.
This allows for efficient interaction as images of the same class are likely to be
grouped on the screen and can be selected by one user interaction.

where the probability distributions are calculated as follows:

(15)

with denoting similarity in the high-dimensional original
space, or a Euclidean distance in 2-D between image and
in .

To find the optimal placement of images in manipulation
space, they are first initialized at random positions. These
positions are then adjusted using gradient descent to reduce
the cost function . When is optimized, the distances are
optimally preserved, but images might overlap one another,
which makes interaction difficult. To reduce the overlap be-
tween images, we take the result obtained as the starting point
for a subsequent optimization, balancing preservation of the
original distances and the visibility of images. Fig. 3 shows
two examples of displaying images in manipulation space with
similarity preservation and overlap reduction.

C. Automatic Adjustment of Dissimilarity Space

At this point, the initial dissimilarity space is in place. The
user has selected the set of prototypes treated as query ex-
amples to start the search process. The search task is now to find
other relevant images using these examples.

Different learning strategies can be employed [34]. We se-
lect active learning with support vector machines (SVMs) for
its capability of boosting retrieval results [31], [34], [17]. As in
interactive search, there is an unbalance between the size of the
category searched for and the size of the collection, we follow
[13], [5], and [15] and use one-class SVM.

The prototypes are used as positive examples. The one-
class SVM defines a boundary covering as much as possible
the positive examples. The distance to the boundary is
taken as a measure of the probability that an images belongs,
or does not belong, to the search goal. Let us define:

• the set of images inside predicted to be relevant to
the search.

• the set of images outside predicted to be irrelevant
to the search.

• the set of images closest to according to distance
function .
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Fig. 4. (a) Example of images closest to the border, aiming at solving the search
task “images in the Card category”. (b) View of the full manipulation space, with
an indication of where the region displayed in (a) is located.

Fig. 5. Example of images inside the boundary, again looking for “images in
the Card category”.

In the next iterations, to improve the search, the system aims
at refining . The refinement is such that it eliminates irrelevant
images from and adds new irrelevant images to . To do
so, the images in are chosen as display set as they are
the ones for which classification is most uncertain. Feedback on
those yields the most information for improving the classifica-
tion boundary. This is known as the “close-to-boundary” feed-
back approach [31], [17]. Fig. 4 shows an example of images
closest to the boundary, and Fig. 5 shows images in .

The user will label relevant images if they exist. Unlabelled
images are treated as irrelevant and removed from the collection.
Or more formally defined

(16)

(17)

Based on the feedback given, the SVM is recomputed on the
new set of positive examples to update the boundary

(18)

The process is repeated until the user stops the search.
The above was applied to a fixed , the result of the projec-

tion of the dissimilarity matrix obtained in the feature space

Fig. 6. Illustration of similarity update. Assume a dissimilarity space created
from 2 prototypes I , I . Let image I be less similar to I when compared
to image I . After updating as indicated, image I will be more similar to I
than I . When simply using distance to the boundary, this is not the case. Images
I =2 B will be pushed away from I and I .

[(6)]. When more feedback from the user comes in, the sim-
ilarity itself might also have to be adjusted to better reflect the
user’s target similarity. To do so, we adapt the update method
from [9].

As indicated, defines the currently predicted class
boundary. For the dissimilarity update we make the assumption
that the prediction is correct. For all images the rep-
resentation is kept constant. In contrast, for ,
the representation is altered. In the ideal case where perfectly
covers all relevant images, all other irrelevant images should
be pushed away from the boundary. Of course, in practice,
relevant images can be misclassified. Pushing these images
far away from the boundary makes it difficult to retrieve them
later. Hence, as the likelihood of being relevant depends on the
distance to the boundary , we require that

(19)

and use this in the gradual change of the dissimilarity space
based on the user feedback.

The method in [9] (see Fig. 6) satisfies the above constraints
by using the following update function:

,
(20)

Hence, after learning with SVM and based on the new posi-
tions of images with respect to the boundary, their distances to
the prototypes are changed. This leads to the adjustment of the
dissimilarity space. These changes assure that irrelevant images
will be pushed away, while the system keeps relevant images in
the vicinity of the prototypes. In the next iteration the new sim-
ilarity helps in better classification. As in each interaction the
dissimilarity space adjusts itself without going back to feature
space, the further the learning process, the less the feature space
influences the characteristics of the dissimilarity space.

IV. EXPERIMENTS

A. Setup

We now present experiments to show the performance of our
proposed approach. In the introduction, three difference search
tasks are listed. Target search can be considered as a special case
of category search, where the size of the search category equals
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1. In that case, our approach can not be applied as there it is un-
necessary to find positive examples. Associative search is hard
to evaluate objectively as the user’s goals might fluctuate con-
siderably during the search. We therefore concentrate on cate-
gory search here.

The first experiment concentrates on the filtering component
in the browsing phase of the proposed system. We will evaluate
whether adding this component to the system will speed up the
search for relevant images.

The second experiment considers the creation of the dissim-
ilarity space. As described in Section III-A, to create we
need to determine the prototype set and the dissimilarity be-
tween images and prototypes . At the beginning of the
search, two spaces are available, namely the feature space and
the manipulation space .

To create a dissimilarity space, both spaces can be used.
We have the following two options for creating a dissimilarity
space:

(21)

(22)

where is the dissimilarity space based on -dimensional pro-
totypes, and the dissimilarity space based on 2-D prototypes
in manipulation space. This experiment leads to the choice of
the proper dissimilarity space .

In the final experiment, the goal is to compare the search per-
formance in the selected dissimilarity space against the feature
space. For a fair comparison, the starting points are the same for
both approaches.

In the experiments, objective evaluation is employed where
all user actions are simulated. To that end, we could use the ad-
vanced user actions defined in [16], where groups of images on
display are selected with one interaction step. For this paper,
however, we restrict ourselves to one-by-one selection of posi-
tive and negative examples displayed as this makes the compar-
ison to other methods easier.

We select two different image collections. The first one con-
tains images from a Corel collection. This collection includes
a large number of pre-categorized images, where the category
can be used as ground truth. We select 100 nonoverlapping cat-
egories that are not too abstract. For example, images in the
”Canada” category were not selected as images can range from
flags to landscapes, and famous people. Each of the categories
contains 100 images. In total, the selected set has 10000 images.

The second collection is obtained from the TrecVid 2005
benchmark [28]. This set contains 43 907 images, extracted
from news video archives. We take the 29 different categories
defined in [32] such as boat, basketball, car, and chair to classify
the collection . Other than the Corel collection, an image in this
collection may be in more than one category. The number of
images in each category varies from tens to thousands.

For these two image collections, we extract the contexture
feature set introduced in [32]. This feature set is evaluated as ef-
fective in learning the categorization of images. The authors de-
fine 15 proto-textures. They learn the probability that an image
contains the proto-textures. For the two collections in our exper-
iment, eight different parameter settings are used (spatial scale

, and different region sizes with ratios of 1/2 and
1/6 for the and dimensions of the image). For each image,
we extract a feature vector containing 15 probabilities for eight
parameter values leading to a feature space of 120 dimensions.
To obtain the manipulation space, ISOSNE is applied to project
the feature space to 2-D space. The Euclidean distance is used
for comparing two feature vectors.

For comparison we define a baseline, based on displaying
pictures without any dissimilarity (or feature) computation,
where the system in each iteration displays a set of ran-
domly chosen images. Relevant images are selected if they are
present in the displayed set. The baseline is calculated as the
number of relevant images likely to be found at iteration

. We have

(23)

where is the size of the collection and is the total number
of relevant images.

For the Corel collection, we have , ,
and the value for each category. At the first iteration,
the user will find one relevant image out of hundred on average.
For the TrecVid2005 collection we average over all categories
to obtain the baseline.

As the goal in category search is to find as many relevant im-
ages as possible, recall is the most important measure. There-
fore, we report recall values based on the top-ranked 100 im-
ages

(24)

where denotes the size of a set. From there, we calculate the
relative improvement measuring the improvement of a method
over the baseline. Let a method , in iteration , yield a recall
value , the baseline at the same iteration returns a recall .
Thus, the relative improvement is

(25)

In the following experiments, we perform the search for all
the queries, and finally average the results.

B. Experiments on Prototype Selection

To see the efficiency of the filtering, we test with the two given
collections above. We report at each iteration the number of im-
ages removed, number of images kept, and the number of rel-
evant images falling into removed clusters. Finally, we average
results over all categories, which is 100 for the Corel, and 29 for
the TrecVid. The comparisons are between browsing through
the collection with and without the filtering component. Selec-
tion of representative samples for a cluster by random selection
is also examined. For a fair comparison, we average 10 different
runs for the random approach.
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TABLE I
RESULTS FOR BROWSING THE COREL COLLECTION

TABLE II
RESULTS FOR BROWSING THE TRECVID COLLECTION

We select for our experiments. Tables I and II show
results, where “elements kept” represents the number of im-
ages in the collection after the filtering. “Relevant missed” is the
number of relevant images that are accidentally removed during
the filtering process.

Of course, browsing without filtering will not miss any rel-
evant image as all are visited. The drawback is that the total
number of iterations needed is 10 times higher than in the other
two approaches. On average, for the Corel collection, normal
browsing requires 184 iterations to check the whole collection,
while the proposed approach needs only 23 iterations. For the
TrecVid collection, the difference is even more significant with
the number of iterations reducing to 41 while without filtering
over 500 iterations are needed.

With the proposed approach, the number of missed relevant
images is always smaller than random selection of representa-
tives. Moreover, it is observed that the filtering can reduce the
size of the collection significantly without loosing many of the
relevant images. In the Corel collection, the size is reduced by
39%, while missing 5% of the relevant images. Reducing the
size of the collection will certainly speed up the search. Because
the collection is reduced by removing a number of irrelevant im-
ages, the chance of retrieving relevant images becomes higher,
hence an in increase in recall is expected. The same holds for
the TrecVid collection, with a reduction of 36% of the size of
the collection on average missing 8% of relevant images.

From this experiment, the conclusion is that adding filtering
during browsing does indeed support the search process by re-
ducing the size of the collection while keeping the chance of
missing any relevant images at an acceptable level. Moreover,
the clustering used in our experiments is sufficiently fast for in-
teraction. Even for the TRECVID collection with over 40 000
images the clustering step takes less than one second on a reg-
ular PC.

C. Experiment on the Creation of Dissimilarity Space

To create the projection of the 120-dimensional feature space
to , the 2-D manipulation space, we apply ISOSNE as

presented in Section III-B. We compute two dissimilarity spaces
and [see (21) and (22)]. To do so, first the prototype set

is selected. In principle the number of prototypes could be
taken quite large, but in practice users will typically be willing
to select a limited number. We therefore test with and

. Smaller values are not suited as then the prototypes
cannot cover the whole space.

On each dissimilarity space, prototypes are used as initial
positive examples. The SVM produces a ranked list based on
distances to the boundary. Recall values are reported based on
the 100 top-ranked images.

Figs. 7 and 8 show the performance on and . Based
on (25), for both collections, the performance of learning on
dissimilarity space is on average a 60% improvement over the
baseline.

Because of the projection of from 120 dimensions to two
dimensions for creating the manipulation space, distances be-
tween images cannot be kept perfectly even though the pro-
jection is optimal in keeping those. If the distance is not pre-
served on , performance of the will get worse compared
to . However, it is interesting to observe from the results
that the search performance on is always better than on

for both five or ten prototypes. These results show that the
ISOSNE performs very well in preserving distances between
images. Moreover, because ISOSNE extracts the structure of
the collection by first computing the graph-based distance, it
takes an advantage over the direct distance computation on the
feature space. In other words, dissimilarity between images in
the feature space is computed by directly comparing two fea-
ture vectors, whereas in the manipulation space, as a results of
ISOSNE, dissimilarity is obtained by preserving a graph-based
distance on the feature space. That explains why the perfor-
mance of learning on is better than learning on .

For the selection of a dissimilarity space, we prefer using ,
more so because it establishes a direct link between distances in
dissimilarity space and manipulation space.

Note that these figures consider a category search task and
not a typical websearch. For the later, the number of iterations
would be excessive, but in professional applications they are
quite acceptable. This is also reflected in the interactive search
task in TRECVID which allows users a maximum of 15 min of
search time for one information need.

D. Experiment on Direct Manipulation of Dissimilarity Space
vs. Indirectly via Feature Space

We compare two ways of updating the dissimilarity matrix,
via as we propose, or via feature space [1], [14], [12],
[33]. The baseline is defined in Section IV-A.

Results are shown in Figs. 9 and 10 for the Corel and TrecVid
dataset, respectively. The figures show that with a small number
of prototypes, the dissimilarity space is not able to maintain
the distances between images. Therefore, the improvement of
learning on the dissimilarity space is smaller than learning via
the feature space. With prototypes, the dissimilarity
space covers the image collection better. Hence, on average
it gives a higher improvement. Higher numbers of prototypes
might increase this further, but this would make the user effort
in creation of the initial dissimilarity space much higher.

With a smaller number of prototypes, i.e., a smaller number
of initial positive examples, the performance of the baseline is
worse than with a higher number of examples. From the figures,
it is observed that average performance of learning via feature
space will get worse when starting from more initial examples.
Because the prototype set is chosen such that it is distributed
over the collection when gets higher, this set better covers the
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Fig. 7. Using different dissimilarity spaces with the Corel collection averaged over 100 categories. (a) Dissimilarity space created by five prototypes. (b) Dissim-
ilarity space created by ten prototypes.

Fig. 8. Using different dissimilarity spaces with the TrecVid collection averaged over 29 categories. (a) Dissimilarity space created by five prototypes. (b) Dis-
similarity space created by ten prototypes.

collection. In the feature space, this means that the more proto-
types, the broader the boundary . This leads to a higher number
of irrelevant images inside . This is a main disadvantage of
using a feature space since they are not capable of capturing
a semantic categorization which might be composed of several
visual more low-level categories. When a dissimilarity space is
created from , the set of initial examples groups positive im-
ages together. Therefore, the performance of learning on dis-
similarity space is improved.

V. CONCLUSION

In this paper, we have proposed a new approach for interac-
tively learning dissimilarity. Our main motivation is that repre-
senting images by their relations to others is closer to the per-

ceptual meaning of those images, which is not always easy to
obtain using feature representations.

In our approach, different from existing techniques [1],
[14], [12], [33] we directly learn the dissimilarity space from
the user’s feedback using a set of prototypes. This means
that instead of collecting a large set of features or choosing
problem-specific features, only the relations between images
are used. The dimensionality of the dissimilarity space depends
on the number of selected prototypes. This number should
not be too many as they are provided as positive examples
( ). By doing so, we avoid the compu-
tational problem occurring for large sets of features and the
difficulty in selecting effective features in interactive category
search.
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Fig. 9. Comparison of direct learning on dissimilarity spaces and learning via feature space with the Corel collection averaged over 100 categories. The results
are evaluated by recall. (a) Dissimilarity space created by five prototypes. (b) and (d) Dissimilarity space created by ten prototypes.

Fig. 10. Comparison of direct learning on dissimilarity spaces and learning via feature space with the TrecVid collection averaged over 29 categories. The results
are evaluated by recall. (a) Dissimilarity space created by five prototypes. (b) Dissimilarity space created by ten prototypes.

We have demonstrated by experiment that learning in this dis-
similarity space in general gives a better performance than
learning in feature space , when a reasonable number of proto-
types is being used, which in our case is ten. With a smaller
number of prototypes, the dissimilarity space created will not
be able to represent the relations between images. Therefore, it
fails to improve over learning in the original feature space.

For the selection of prototypes, we present a browsing tech-
nique with hierarchical clustering and filtering components.
With large image collections, this browsing strategy can speed
up searching for relevant images, and in the mean time filter the
collection by removing irrelevant clusters. This means that we
are able to get a better chance of finding relevant images. In our
experiments, we showed that the number of iterations needed
to browse through the collection reduces by a factor of ten for
both the Corel and the TrecVid collection.

We present a method to update the dissimilarity space using
relevance feedback and active learning with one-class SVM. In
this adjustment, we aim for assuring the closeness of relevant
images to the classification boundary, while pushing away irrel-
evant ones. The results show that our proposed approach with
ten prototypes improves over the learning in feature space. After
50 iterations, we gain an average relative improvement over the
baseline of 60% for both the Corel and the TrecVid collection.

Finally, we have implemented an interactive search system,
based on the proposed methodology (part of the MediaMill
search system [29]). Fig. 11 shows a screenshot.

In conclusion, interactive learning in dissimilarity space
rather than via feature space has great potential. Instead of
the difficult task of defining a good feature space for general
search tasks, indication of a set of prototypical examples, i.e.,
prototypes, is sufficient. With a limited number of well selected
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Fig. 11. Screen shot of the system while searching the Corel collection. The
system contains four parts. The main window represents the part of manipu-
lation space displayed, where the user interacts with images. This screenshot
captures one step of the learning stage with displayed images being the ones
closest to the classification boundary. The top-right window gives an overview
of the whole manipulation space. The bottom-right corner window shows the
current image at full size. During the interaction, relevant images selected by
the user will be kept in the main window on the right side. For selection of
positive examples, the 2-D similarity-based visualization shows the advantage
over-the-grid based display. Instead of selecting one image at a time, in 2-D sim-
ilarity-based visualization similar images stay close together, therefore the user
can select a group of images at a time. Furthermore, as distances among images
on the screen have a direct relation to distances in the dissimilarity space, the
interaction is very intuitive.

prototypes, interactive retrieval performance on this space
improves over the performance in feature space in terms of
recall and the required number of interactions. Even more, as
the manipulation space reflects the structure of the collection
in the dissimilarity space, user interaction in the manipulation
space will directly influence the adjustment of the dissimilarity
space, allowing for intuitive interaction.
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