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Enabling Contribution Awareness in an
Overlay Broadcasting System
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Abstract—We consider the design of bandwidth-demanding
broadcasting applications using overlays in environments char-
acterized by hosts with limited and asymmetric bandwidth, and
significant heterogeneity in upload bandwidth. Such environments
are critical to consider to extend the applicability of overlay
multicast to mainstream Internet environments where insufficient
bandwidth exists to support all hosts, but have not received ad-
equate attention from the research community. We leverage the
multitree framework and design heuristics to enable it to consider
host contribution and operate in bandwidth-scarce environments.
Our extensions seek to simultaneously achieve good utilization of
system resources, performance to hosts commensurate to their
contributions, and consistent performance. We have implemented
the system and conducted an Internet evaluation on PlanetLab
using real traces from previous operational deployments of an
overlay broadcasting system. Our results indicate for these traces,
our heuristics can improve the performance of high contributors
by 10-240% and facilitate equitable bandwidth distribution
among hosts with similar contributions.

Index Terms—Bandwidth detection, incentive, multitree, overlay
multicast, NAT, saturation detection.

I. INTRODUCTION

N THE LAST FEW YEARS, a peer-to-peer approach has
I emerged as a key alternative to enabling video broadcasting
applications on the Internet [1]-[17]. The key aspect that makes
such an approach attractive is that a participant that tunes into
a broadcast is not only downloading a video stream, but also
uploading it to other participants watching the stream. Conse-
quently, such an approach has the potential to enable ubiquitous
Internet broadcasting, as greater demand also generates more
bandwidth resources.

While the self-sustaining nature of peer-to-peer systems
makes them attractive, it also presents a fundamental challenge.
In particular, the feasibility of the architecture requires that the
total upload bandwidth available from peers exceeds the down-
load bandwidth demand. In mainstream Internet environments
today, this is challenging given the majority of hosts are behind
asymmetric connections (download > upload) such as DSL
and cable modem. In addition, the upload bandwidth of peers
are highly heterogeneous due to different link technologies and
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different willingness to contribute. These factors have proved a
first-order challenge to peer-to-peer broadcasting as indicated
in a recent deployment experience [15], yet have received
surprisingly little attention in the community.

The mismatch between upload and download bandwidth
also impacts other peer-to-peer applications such as file down-
load applications [18], [19]. However, the key aspect that
distinguishes live broadcast applications from file download
applications, and makes the problem much more challenging,
is the stringent timeliness and real-time requirements. For
example, file download applications can cope with bandwidth
resource mismatch through longer download times. Further,
they can benefit by the presence of “seed” nodes that contain
the entire file, and upload but do not download data. These ap-
proaches are simply not feasible in live broadcast applications,
necessitating fundamentally different design approaches.

In this paper, we seek to enable broadcast applications in
bandwidth-scarce, heterogeneous operating environments by
addressing design challenges unique to live broadcasting. We
consider a contribution-aware framework where nodes receive
different levels of bandwidth based on the overall upload
bandwidth available in the system, and the contribution of the
node. Heterogeneity in node contribution may arise due to
both inherent variation in node upload capabilities (Ethernet
versus DSL), as well as their different willingness to contribute
bandwidth resources. To achieve these goals, we leverage the
multitree framework [7] to enable application-level adaptation.
While the multitree framework was originally proposed to im-
prove resiliency, we use it to enable application-level adaptation
and differential treatment.

A key element of the system is the distribution policy used
to determine the bandwidth a node is eligible to receive, given
its own contribution, and the overall system resource level. A
simplistic solution is “bit-for-bit” policies, where a node simply
receives as much bandwidth as it contributes. However, this
proves insufficient in today’s Internet environments, given there
may exist hosts behind Ethernet capable of contributing much
more than the source rate, while hosts behind asymmetric con-
nections such as DSL and cable modem are precluded from
receiving more than their upload capacities. We instead con-
sider more generic policies, that “tax” bandwidth-rich hosts to
offer better performance to bandwidth-poor hosts [20]. To sup-
port these policies in a distributed manner, we design distributed
heuristics for monitoring of overall system resources, differen-
tial and equitable distribution of bandwidth resources, and ap-
plication-level adaptation to changes in host contribution. While
our system framework is motivated by [7], [20], to our knowl-
edge this is one of the first and most comprehensive reports on
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TABLE 1
COMPARISON OF DESIGN DECISIONS BETWEEN FILE DOWNLOAD AND LIVE VIDEO BROADCAST APPLICATIONS

File Download

Live Video Broadcast

Application Requirements || Non-interactive, timeliness not critical.

Bandwidth demanding, stringent real-time requirements.

Handling bandwidth-
scarce regimes

and only upload.

Could cope through longer download time. Could
leverage seed nodes which already have entire file

Cannot compromise on delay requirements. Need a framework
for application degradation. Synchronous/simultaneous nature

implies no seed nodes that have entire content.

Incentive policies

other purely based on mutual benefit.

Tit-for-tat schemes possible, users reward each

Timeliness requirement poses difficulties to always arrange A
and B to both upload content to each other simultaneously.
Consider overall contribution made to system while rewarding

node.

Preventing saturation of

outgoing access link to slower transfer time but acceptable.

Saturation of parent’s outgoing access link may lead

Saturation of parent’s outgoing access link impacts video quality

all descendants see. May force users to quit.

design and implementation experience of overlay broadcasting
systems, explicitly targeted at heterogeneous and bandwidth-
scarce Internet environments.

We have conducted an evaluation of our contribution-aware
broadcasting system on PlanetLab using traces from real
overlay broadcast deployments. Our results show that our
heuristics offer differential and equitable resource distribution
when compared to a contribution-agnostic system. In particular,
the 10th-percentile performance of high contributors (nodes
contributing more than 175% of the source rate) is increased
by 10-240% and variation of bandwidth received among nodes
with similar contributions is reduced across our set of traces.
Achieving these improvements does incur a 20-38% decrease
in the time between quality changes seen by a host and a minor
increase in overhead, but achieves a 10-fold reduction in av-
erage time to recover from these changes for high contributors.

Section II describes the problem and challenges. Sections IIT
and IV present the design of contribution-aware heuristics.
Section V describes the process of incorporating the multitree
framework into the broadcasting system our implementation
is based on. Section VI discusses our evaluation methods
and metrics. Evaluation results are presented in Section VII.
Section VIII discusses open issues and related work, and we
conclude in Section IX.

II. DESIGN RATIONALE

We begin by presenting a more formal definition of the
problem being tackled (Section II-A). We then motivate the key
components that our system requires, given the unique nature
of broadcasting applications (Section II-B).

A. Broadcast User Model

A peer ¢ in the broadcast receives and simultaneously for-
wards data. We assume that all peers are capable of receiving
the full source rate S when the system is capable of providing
it to them. This is reasonable, given many “broadband” users
today have asymmetric connections with a reasonably large
downloading capacity. Most DSL hosts would easily be able
to receive S but not forward one full-rate video stream. In
academic or business environments, symmetric connections
(e.g., Ethernet) are more common. Such hosts often could
receive and forward many times more than S.

Each peer 7 may contribute a maximum upload bandwidth
of F;, the forwarding bound. F; is the minimum of i) the will-
ingness bound, which is the maximum upload bandwidth that
peer (user) ¢ is willing to contribute and ii) the transient upload
bandwidth capacity of ¢. The willingness bound is configured at
join time whereas the transient capacity bound changes based
on instantaneous network conditions and is unknown to the user.
Consequently, F; must be dynamically estimated, as described
in Section II-B. We assume that F; is nonzero—every peer will
contribute some bandwidth upon request. While F; is the max-
imum bandwidth that a peer ¢ may contribute, f;(< F;) is the
actual contribution of i at a given instant. f; may vary over the
course of ¢’s stay in the system due to changes in the number of
peers ¢ forwards data to. Our system determines the bandwidth
r; each peer is entitled to receive, based on its actual contribu-
tion f;. Given that bandwidth received by a peer must be for-
warded by other peers in the system, we have >, r; = 3. fi.
Further, in bandwidth-scarce environments, insufficient upload
bandwidth exists to supply every peer with the full source rate,
so Y, fi < N = .S, where N is the number of nodes. Lastly,
we assume hosts honestly report their f; and the bandwidth re-
ceived. However, we believe our system can be easily integrated
with recent research in distributed auditing and rating of nodes
[21]-[23] to verify the claimed contribution of nodes.

B. Key Design Elements Motivated by Unique Nature of
Broadcast Applications

Video broadcast applications impose stringent real-time
performance requirements, involving timely and continuous
delivery of streams of hundreds of kilobits per-second. These
stringent real-time requirements distinguish them from file
download applications such as BitTorrent [18] and Emule [19],
requiring us to adopt fundamentally different design approaches
to tackle the challenges of bandwidth-scarce and heterogeneous
Internet environments (Table I).

e Frameworks for application-level adaptation: File down-
load applications do not have a fixed “demand” for band-
width, and could cope with the bandwidth-scarce regimes
through slower download rate. Further, given that file down-
loads are not synchronous, it is possible to leverage “seed”
nodes that contain the entire file, and only upload but do not
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100 Kbps

DSL
Upload Capacity = 120 Kbps
Declared limit = 450 Kbps

Fig. 1. Misconfigured DSL node.

download. In contrast, in video broadcast applications, each
recipient needs a certain consistent download rate to obtain
good performance, and the “live” nature precludes the use of
seed nodes. This motivates us to consider frameworks where
nodes can gracefully adapt to the bandwidth availability
in the environment through receiving video of degraded
quality.

* Global versus Pairwise Incentive Decisions: File download
applications like BitTorrent adopt a tit-for-tat strategy to
incentivize peer contributions. In particular, a peer A which
uploads a file segment to a peer B also requires B to si-
multaneously upload another segment to A. The strategy
works well in peer-to-peer file download because there
are no real-time requirements, and the order in which seg-
ments are downloaded is not important. However, this ap-
proach does not trivially extend to video broadcast because
of the timeliness requirements involved, which means all
hosts are likely to require the same segments at the same
time. Thus, this leads us to explore an approach where the
amount of bandwidth a node uploads to the system is used
to decide the bandwidth it is eligible to receive, rather than
local pair-wise decisions.

* Preventing saturation of outgoing access link: Typically,
applications today rely on users to configure their upload
bandwidth limits (i.e., willingness bounds). While incen-
tive mechanisms encourage peers to allocate as much of
their upload bandwidth as possible, the converse problem
occurs when a peer advertises a willingness bound higher
than its transient capacity. This may occur due to a user
who overestimates his connection capability, or due to tran-
sient network conditions. For file download applications,
this problem is not critical, with nodes downstream of a
misconfigured peer experiencing longer transfer time. In
contrast, such degraded performance is not tolerable in live
video broadcast. Fig. 1 shows a DSL node with a upload
capacity of 120 kb/s declares a limit of 450 kb/s. With a
stream rate of 100 kb/s, it is over-saturated by supporting
4 nodes. Each downstream node receives a stream quality
much below the original stream, prompting the user to
leave the broadcast. To make matters worse, congestion on
the DSL node’s outgoing access link may ultimately im-
pact its own stream quality.
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Fig. 2. Multitree broadcast with two trees.

III. DESIGN OVERVIEW

In this section, we provide an overview of key components
leveraged to address the unique application requirement of
video broadcasting applications described in Sections II-B.

A. Multitree-Based Data Dissemination

In bandwidth-scarce environments, bandwidth available may
be insufficient for all peers to receive the full source rate so we
require a means by which hosts may receive and contribute grad-
uated levels of bandwidth and transition smoothly as available
bandwidth change. To realize these goals, we leverage the multi-
tree data delivery framework [7], [11]. In this framework, partici-
pants self-organize into a forest of T trees rooted at a source. The
source encodes video with arate of S evenly into 7 stripes of size
S/T, each distributed along one distinct tree. The quality a host
gets depends on the number of stripes itreceives. Typically, alay-
ered codec based on Multiple Description Coding (MDC) [24],
[25] is used to realize this goal. The trees are interior-disjoint;
that is, a host ¢ allocates F; to only one tree but attempts to con-
nect to all of the T trees. When Fj; is normalized by S, we call the
resulting value the degree of host 7. Forexample, if F; = 300kb/s
and S = 400 kb/s, i’s degree is 300/400 = 0.75. We also define
the tree-degree d; to be degreexT, which is the maximum number
of children a host can support in the tree it contributes. Fig. 2 il-
lustrates how the broadcast content is delivered with 7" = 2. Host
A and B both have a degree of 1 and allocate their bandwidth in
Tree2 and Treel, respectively, where each can support two chil-
dren (i.e., d; = 2). Creceives S/2 each from A and B to recon-
struct the original content. While this multitree framework was
originally proposed to improve resiliency [7], [11], we use it as
a convenient building block to address issues regarding hetero-
geneity and bandwidth distribution.

This framework meets our needs, because it allows nodes to
connect to a subset of trees and contribute in smaller bandwidth
increments (i.e., stripes). Any node with a degree greater or
equal to 1/7 (i.e., tree-degree >1) is able to contribute. By set-
ting 1" properly, we allow nodes with limited upload bandwidth
to contribute, thereby spreading the forwarding load across all
peers. Table II summarizes terminology introduced so far.

B. Bandwidth Distribution Policies

A key design consideration is the selection of policies for dis-
tributing bandwidth in the broadcast among participating hosts
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TABLE II
SUMMARY OF TERMINOLOGY

Source stream rate

N
T Number of overlay trees
N

Number of broadcast participants

F; || forwarding bound, max bandwidth that can be forwarded = min(transient capacity, user configured willingness bound)

fi instantaneous bandwidth forwarded

T; bandwidth i is entitled to receive

d; || tree-degree = max # of children that can be supported across all trees, computed as F;/(S/T)

based on their contributions. Assuming there are N hosts, and
host ¢ forwards bandwidth f;, our heuristics determine the band-
width r; each host is entitled to receive. Based on r;, the multi-
tree framework enables hosts to obtain different video qualities,
by connecting to a subset of trees at a high priority. However,
the granularity of distribution is limited by the number of trees,
T, in the forest. A larger T enables greater granularity but may
increase the control and coding overhead.

Our heuristics do not prescribe any particular bandwidth dis-
tribution policy; however, it is designed with the goal of pro-
viding a framework that can enable the implementation of a
range of policies. One simple bit-for-bit policy is to require each
node to forward as much as it receives, that is, 7; = f;. Under
this policy, it is straightforward for each node to determine the
bandwidth it should receive, as the decision is easy to compute
locally. However, this policy is restrictive in two ways. First,
it does not account for the fact that nodes may contribute less
bandwidth than the source rate. Further, it does not provide any
incentive to a node to donate more than the source rate even if
it is capable of doing so. This is an issue in Internet environ-
ments today. Consider the fact that Internet broadcasts typically
involve a source rate of 300—400 kb/s, with a majority of hosts
behind DSL and Ethernet. Hosts behind DSL can receive the
source rate, but are not capable of forwarding it. Hosts behind
Ethernet are capable of contributing much more than the source
rate, and a policy such as r; = f; neither utilizes the bandwidth,
nor incentivizes them to contribute more. On the other hand,
arbitrarily sophisticated policies may be extremely difficult to
implement in a distributed fashion.

Instead, we consider a generic cost function of the form pro-
posed in [20]

1 t—1 fi
r,_z*fl—i—T* i N

1

r; is the bandwidth peer i is entitled to receive, f; is the band-
width ¢ contributes to the system. N is the number of partic-
ipating peers. ¢ is the “tax rate,” which specifies a peer must
contribute ¢ * r; units of bandwidth to receive r; unit of enti-
tled bandwidth. ¢ must be greater than 1. If £ = 1, we have a
simple bit-for-bit policy. If ¢ < 1, no surplus exists and some
peers will not receive their entitled bandwidth. r; is the sum of
two terms. The first term represents the minimum bandwidth a
peer is entitled to receive by contributing f;, and the second term
is the average leftover bandwidth per node. By using a tax rate
greater than 1, we are assured extra bandwidth in the system.

For example, if ¢ is 2, a peer ¢ which contributes 2.5 will con-
sume S from the system. The leftover resource S contributed by
1 is excessive. We aim to distribute all such excessive resources
evenly among all peers, and this is represented by the second
term. Since every byte of bandwidth received by a peer must
be contributed by another peer(s), we can easily confirm that
bandwidth is conserved by summing up both side of (1) over all
nodes, leading to > iTi = > ; fi. For our later evaluation, we
pick a tax rate of 2.

We will focus on (1), as it lends itself to implementation in a
distributed fashion. Section IV-A1 describes a distributed way
to obtain system-wide estimates such as ) . f; and N.

C. Detecting and Preventing Saturation of Outgoing Access
Links

As discussed in Section II-B, overestimating the upload band-
width of a node could significantly impact the performance of its
downstream users. The upload bandwidth that a node is capable
of contributing at any time depends not only on its capacity,
but also on background traffic or transient network congestion.
Thus, we require mechanisms to dynamically estimate the max-
imum upload bandwidth that a node is capable of contributing,
which in turn helps determine F;. One potential approach in-
volves leveraging ongoing work [26], [27] to estimate the avail-
able bandwidth between a sender and receiver. Such tools are
designed for general scenarios, where the bottleneck link may
be anywhere inside the network. We instead focus on techniques
enabled by our specific context. In particular, we leverage the
fact that when multiple downstream receivers simultaneously
observe congestion, it is likely an indication that the parent’s
outgoing access link is saturated. We develop a technique where
a node dynamically searches for its optimal forwarding bound,
F;, by starting with a low value and gradually increasing it. If
the performance of all its children degrades, the node will as-
sume it has overextended its ability to contribute and congested
its outgoing access link. Upon such events, the node will reject
one or more of its children and reduce F;. Since congestion may
be transient, the node should periodically attempt to raise F;. To
avoid destabilizing the system, such increase must be subject to
a backoff—if an increase in F; impacts performance of children,
the node must wait for a longer period of time before making a
subsequent attempt. In summary, each eligible parent adapts its
F; in the following manner: i) increase F; to allow children to
use leftover upload capacity and ii) upon congestion on the ac-
cess link, drop a child and decrease F;. We refer to the above
technique as the saturation detector.
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IV. SYSTEM DESIGN

In putting together the design, we had several criteria. i) Con-
tribution-Awareness, in that nodes must receive performance
commensurate to their contribution. ii) Good utilization, in that
each node should contribute to the extent of its ability and will-
ingness, with ideally no untapped bandwidth. iii) Stability in
performance of nodes, without too much fluctuation in the band-
width received.

To differentially treat a node based on its contribution in a
forest, we consider the following problem: given a peer ¢, we
wish to obtain a direct mapping between the actual amount of
bandwidth, f;,7 contributes and the amount of bandwidth, r;,
the system should offer in return. Recall that 7 allocates its en-
tire bandwidth F; to only one tree, called ¢’s Contributor Tree,
but attempts to receive from all of the 7' trees. Extra bandwidth,
if any, should be distributed evenly among participants once all
of them get their deserved bandwidth. Equation (1) helps us ob-
tain such mapping in a distributed fashion. We refer to r; as
the Entitled Bandwidth of i. The natural solution is to have ¢
simply receive r; by subscribing to |r;/(S/T)| trees as an En-
titled Node. These trees are the Entitled Trees of 1. However,
there are two reasons why this may not suffice. First, each node
can only be entitled to an integral number of trees. If r; is not an
integral multiple of the stripe rate, S/T, the fractional portion of
|7i/(S/T)] becomes superfluous. Second, there may be nodes
whose r; is larger than S, and they will not consume all of r; en-
titled to them. Consequently, not all bandwidth is used by nodes
entitled to it, and there exists some additional bandwidth in the
system remained to be utilized. When a node’s Entitled band-
width is lower than the source rate S, it may utilize some of these
additional bandwidth available in trees they are not entitled to.
We refer to the additional bandwidth that nodes are not entitled
to but utilize to reach the source rate as Excess Bandwidth, and
nodes looking for or utilizing this bandwidth as Excess Nodes.

In summary, a broadcast participant may assume two “main”
classes in the forest: it may be an Entitled node in some trees
and an Excess node in some other trees. To treat different types
of nodes with a better granularity, our system further classifies
them and assigns them different priorities. When distributing
system resources, our goal is to favor Entitled nodes over Ex-
cess nodes and evenly distributes the Excess bandwidth among
all participants until they receive the source rate or no more re-
sources remain.

Before presenting our design details, we want to make an im-
portant distinction between two concepts used in our multitree
design: join/subscribe and receive/connect. A node joins/sub-
scribes to a tree if it is aware of its participation within the tree,
whether connected or disconnected, and a node connects to/re-
ceives in a tree if it has attached to a parent and is receiving the
data disseminated in the tree. We also define a slot as an allo-
cated bandwidth of size S/T by a parent. A slot can be in one
of three states: i) occupied by an Entitled node, ii) occupied by
an Excess node, or iii) unused.

A. Determining Number of Entitled Trees

To enable a node ¢ to compute its Entitled bandwidth r; using
(1), our system includes distributed mechanisms to periodically
approximate the total resources utilized (i.e., ), f;) and the
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number of peers N. However, these global parameters may
change any time due to group and network dynamics, leading
to fluctuation of r;. This may reduce the stability of the system
because hosts overreact to system states. Therefore, our system
includes a way to smooth out the impacts sudden changes in 7;
have on the number of Entitled trees.

1) Distributed System Sampling: Collection of various
system-wide parameters, for example, ZL fi and N, is neces-
sary to compute r; using (1). We accomplish this by having
each node in a tree periodically obtain the state of the subtree
rooted at it and passing such information up the tree to the
source. The source collects the state from each tree, generates
system-wide information by aggregation, and propagates it
down each tree to keep participating nodes informed about
the system states in order to make cooperative decisions. To
minimize message overhead while attempting to maintain a
reasonable estimate of the transient system states, we choose a
sampling period of 10 s.

Every 10 s, a node ¢ informs its parent in each tree: i) the
bandwidth it is currently receiving from the tree, ii) the total
bandwidth received by its descendants, and iii) the number of
its descendants in each node class. The parent assembles these
information from its children, aggregates with its own perfor-
mance, and continues the process of passing information further
up the tree. The source gathers the most recent updates from
its children in each tree every 10 s, processes them, and sends
down each tree a control update containing a monotonically in-
creasing sequence number and the following system states: i) the
total contribution of the forest, >, f;, by summing up the band-
width received by all nodes in the forest, ii) the total number
of participants, N, measured by the total number of Contribu-
tors in the system (since each peer contributes in exactly one
tree), and iii) the number of Excess nodes connected to each
tree. Since a host may receive control updates at different times
from different trees it connects to, it extracts data from the up-
date with the greatest sequence number.

2) Computing Number of Entitled Trees: After joining the
system, a host ¢ periodically (every 3 s) computes the number of
trees it should be entitled to using the three-step process below:

a) Determine: T; . :Ahosticomputes r; based on (1),
using the most recent sample of system states. To convert 7;
to a raw computation of Entitled trees T; for peer i, we
normalize it by the size of a single stripe

sample

ri

T = <
lsample S/T

The computation occurs more frequent (once every 3 s) than
sampling (once every 10 s) because f; is a transient value.
Keeping the computation frequent enough enables a node to
quickly adapt to the dynamics of its children and the system as
a whole.

b) Smoothing: T;_ . : Since r; can change abruptly at
any time with f; and N, itis advisable to smooth T} to pre-
vent the host from overreacting to peer and network dynamics.
Two transitions could occur: T;_ . may either increase or de-
crease. It will increase either if more resources are utilized per
node in the system, or if the node’s contribution has increased.
In either case, the change is likely to be relatively long-lived
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and should be quickly responded to. In contrast, the value will
decrease with a drop in system resources or with departures of
1’s children. Children departures may be considered transient,
as another child will be acquired quickly in bandwidth-scarce
environments. Thus, we have implemented a smoothing scheme
which tracks immediate increases in T;_ .., but only gradually
responds to decreases. To achieve this, 2 calculates its estimated
number of Entitled trees, T;__, , in the following way:

est ?

It Tisample < Tisample—old?
Tiesc = (1 - a) * Tiest—old + ok Tisample
Else, Ti.., = Ti, .. 2)

When the current sample, T;_, ., is less than its previous
sample, T;_ . _ ., we smooth using (2) where T;  is a
weighted sum of 7;_, _ ., the previous value of T;_,, and
ieample- 10 PUt more weights on recent samples than on old
samples, we set a to be 0.125, which from our experience has
worked well. In [28], we have evaluated and shown the benefit
of this smoothing heuristic.
c¢) Calculate T; . : To further ensure the number of trees
entitled to a node depends on the node’s immediate history, T;__,
is fed through a hysteresis processor, with a threshold of 0.1
around an integral tree value. The greater the threshold is, the
more damping is imposed on T;__, . The output of this processor
is the effective number of Entitled trees, T; .. For example, if
the last T;_, calculated was 2.8, the current 7;_, must exceed
3.1 to have a T;_, of 3. Finally, we restrict 1;_, to the range
[1,T] and the resulting value is the number of trees to which i is
entitled. It is lower-bounded by 1 since a host is always entitled
to its Contributor Tree and upper-bounded by 7" because when
T;., is greater than the total number of trees, 7 will simply be

entitled to all trees.

est?

B. Locating Excess Bandwidth

Since having a tax rate greater than 1 enforces each node to
contribute more than its Entitled bandwidth, there will be left-
over bandwidth in the system after nodes get their Entitled band-
width. However, given the system does not know the maximum
bandwidth F; a node ¢ will forward, it is difficult to determine
the amount of these leftover resources and where they are lo-
cated until they are found and utilized. Thus, we choose to have
a host ¢ periodically explore for free slots in trees where it is
not entitled, as an Excess node, until successfully connected.
We call these trees Excess Trees of ¢. Any successful connec-
tion represents a slot which is not currently used to satisfy de-
mands from Entitled nodes and becomes a part of system’s Ex-
cess bandwidth.

Having nodes actively probe for Excess bandwidth has an ad-
ditional benefit. When a node joins the system, its contribution
level is not known. A node cannot contribute without any de-
mand for resources, but in a steady state this demand would not
exist until it begins to contribute. In order to accelerate this boot-
strap process, there must be an ongoing demand for bandwidth
to enable under-utilized nodes to raise their actual contribution.
However, such aggressive probing by Excess nodes may not be
fruitful under bandwidth-scarce environments, as many of them
may often compete with other nodes, including Entitled nodes,
for the same slot, which may destabilize the tree structure. Thus,
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our system proposes a backoff scheme, in which an Excess node
adaptively adjusts the aggressiveness of probing based on feed-
backs received from the tree.

Backoff in Excess Trees: When an Excess node actively ex-
plores for Excess bandwidth, the attempt may fail due to i) an
inherent lack of resources (no free slots nor preemptable chil-
dren, will be clear later) in the tree or ii) resources exist but the
node is not able to locate them. In either case, the node pre-
sumes that the tree is saturated and will enter a phase of ex-
ponential backoff in which it waits for t,cxoft Seconds before
retry. Consecutive failures will result in an exponential increase
in the backoff timer, which is computed as follows:

tbackoff = tbase * rand(ﬁk + T’iexcess) (3)

where t,.50 1s the backoff base, [ is the backoff factor, k is the
number of consecutive failures, and 7;______ is node ¢’s overall
number of connected Excess trees. rand(z) returns a random
number in (0, z]. Currently, ¢, and 3 are set to 5 and 2, re-
spectively. Since our results show that the average reconnection
time for low-contributing nodes is around 1 min, these param-
eter values allow an Excess node to successfully connect in 3—4
attempts.

This backup algorithm improves system stability since there
is less contention for slots in a tree. A node attempts to con-
nect to its Excess trees at a low priority level, implying it may
take longer to connect to the tree, and even if it does, chances
are it will quickly be displaced by a higher priority node. In ad-
dition, the heuristic scales the backoff timer based on T;______
to improve stability further because it biases Excess nodes con-
necting to fewer Excess trees, which have a higher priority than
those connecting to more Excess trees. The prioritization policy
will be explained in detail in the next section. Finally, to pre-
vent nodes from repeatedly contending for the same slot(s) in
the future, we use a rand function to inject some randomness in
the backoff computation. In [28], we have evaluated the backoff
heuristic and shown it significantly improves system stability.

C. Contribution-Aware Node Prioritization

In order to provide differential treatment to nodes forwarding
at different levels, we introduce the notion of a class-based de-
sign. In this design, we further distinguish an Entitled node by
whether it contributes or not. A node in a given tree belongs to
one of three classes, in decreasing order of priority.

Entitled Contributor (Contributor): A node entitled to
the tree and contributes bandwidth of at most F;.
Entitled Non-Contributor (Entitled-NC): A node enti-
tled to the tree but contributes no bandwidth.

Excess: An Excess node is not entitled to the tree and con-
tributes no bandwidth. It actively explores for a slot in the
tree and is able to connect only if free slots or slots of lower
priorities are available.

A host subscribes to multiple trees but may assume a different
class in each tree. Nevertheless, a peer always joins exactly one
tree as a Contributor. This allows all hosts, regardless of its con-
tribution level, to be entitled to at least one stripe upon entering
the system, which in turn guarantees them with some minimum
quality.
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To assign priorities by class, we implement a class-based pri-
oritization scheme. In this scheme, when a disconnected node
of higher class cannot find an empty slot, it will displace/pre-
empt a node of a lower class. That is, when disconnected, high
Contributors may displace low Contributors, Contributors may
displace non-contributors, whether Entitled-NC or Excess, and
Entitled-NCs may displace an Excess node. This scheme pro-
vides incentives, since those who contribute more will reach the
full source rate faster, and achieves even distribution of Excess
bandwidth among hosts. In order to offer more stability/protec-
tion to nodes with higher priorities, when a node can not find an
empty slot, it will preempt, among nodes it knows, the one with
the lowest priority. Details of the scheme can be found in [28].

D. Multitree Join Management

Upon joining the multitree broadcast, a host ¢ contacts the
broadcast source and retrieves the following information about
the system: i) the number of trees 7', ii) the source rate S, iii)
the total number of participating hosts [V, iv) the total contri-
bution in the system » ; fi, and v) the number of Excess nodes
in each tree. ¢ will select, with higher probability, the tree con-
taining fewer Excess nodes as its Contributor Tree. Without any
knowledge of ¢’s willingness bound, balancing the non-enti-
tled resources (i.e., Excess and unused slots) across each tree
at join-time is difficult. Our join mechanism strives to keep
each tree balanced in resources by encouraging new hosts to
contribute in the tree with fewer Excess slots, which implies a
shortage of resources in the tree. At this point, ¢ does not know
how many trees it is entitled to since it has not begun to con-
tribute. An optimistic decision could provide the host with more
opportunities initially than it deserves. Thus, we permit the host
to initially join the remaining 7' — 1 trees as an Excess node.

Note that the effective number of Entitled trees T;_, com-
puted by a host 2 may change upon every computation period.
In case of an increase, among ¢’s Excess trees, it picks one with
the most Excess nodes and upgrades its class to Entitled-NC. On
the other hand, in case of an decrease, among trees in which ¢ is
an Entitled-NC, it picks one with the fewest Excess nodes and
downgrades its class to Excess. This process repeats until ¢ is

entitled to T;_,, trees.

E. Detecting and Preventing Node Saturation

To dynamically adapt a Contributor ©’s degree to network
conditions, ¢ must infer whether its current forwarding bound
F};, and therefore the tree-degree d; (recall d; = F;/(S/T)), ac-
curately reflects the capability of its outgoing access link. This
is achieved by i’s saturation detector. If d; is set too low, i’s
bandwidth resource is under-utilized and d; should be increased.
However, there is no explicit signal to indicate this case. In fact,
the transient amount of spare upload bandwidth is unknown
until it is used to forward data to a child. To deal with this, the
detector starts with a low d;. If no congestion event occurs at the
current level, the detector performs an adoption-experiment to
see if d; can be increased. The steps are as follows: before each
experiment, a parent ¢ launches an adoption-timer T'4. This is
how long the system must wait between completion of one ex-
periment and the preparation of a new experiment. The intuition
is to begin with a small T'4, to ensure a child can quickly ramp
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up to its limit until d; reaches the user defined limit. Therefore,
T4 is set initially to 6 s. Upon expiry of T4, ¢ prepares an ex-
periment by incrementing d; by 1. After a while, the experiment
starts when an “additional” child connects to ¢, at which point a
detection-timer T'p is launched. T is the estimate of the time
it takes for the impact of a traffic change to be detected by the
parent. The experiment is regarded successful if no congestion
occurs upon expiry of T'p, at which point the parent schedules
anew T4 and so on. When an experiment is successful, the de-
tector optimistically assumes that ¢ has plentiful capacity left,
in which case adoption experiments should be conducted more
frequently, by reducing T4 by 1/3.

On the other hand, if d; is too high, the parent’s outgoing
access link will be congested when adopting more children or
when cross traffic increases. To detect a congestion event, the
saturation detector running at the parent relies on periodic re-
ports from its children. A child periodically (every 3 s) reports
to its parent its received bandwidth in the tree, smoothed over
recent bandwidth samples, and an instantaneous per-hop loss
rate to indicate whether the overlay link between the parent and
the child experiences a high packet loss. The parent ¢ collects
reports from all children and infers whether the overlay link to a
child is congested. Specifically, if only one overlay link among
several is identified congested, the congestion is likely to be near
the child—the parent will not react to it. If all overlay links are
congested, it is likely all children are behind one or more shared
physical bottleneck links. In fact, a bottleneck is identified by
the parent if the instantaneous per-hop loss rates of all children
are above a certain threshold (20% in our implementation) and
no child’s bandwidth is above 80% of the parent’s bandwidth.
In this case, the parent conservatively assumes the bottleneck
is on its access link and signals a congestion event since it is
hard to distinguish between whether the bottleneck is near the
parent or near each child. In addition, the result of a conges-
tion event on the outgoing access link could also degrade the
parent’s downloading performance due to increasing protocol
control traffic. To handle this, if the parent’s performance is de-
graded significantly (40% in our design), it is also determined
that a congestion event occurs.

Fig. 3 illustrates the operation of the degree detector using a
state machine. There are 3 states represented by ovals: steady-
state(S), drop-state(D), and observation-state(O). Each arrow is
labeled with a corresponding event that triggers the state transi-
tion. Upon join time, a Contributor i starts from the S state and a
d; of 1. i performs repeated adoption-experiments, and reduces
T4 upon successful experiments as described previously. How-
ever, if at any time a congestion event occurs, the experiment is
considered failed, and there are two possible states we could go
to: D or O.

First, if no recent experiment succeeds at a level greater than
the current d;, the parent is likely over-extending its upload ca-
pability and we enter the D state, which involves the following
actions: drop the lowest-priority child, decrement d;, and double
the adoption-timer T'4. We double T4 because once closer to the
capacity of the parent, congestion events occur more frequently
and it is important to prevent oscillation between an acceptable
and unacceptable tree-degree value. In addition, it allows the
system to still probe for higher d; after longer periods of time.
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Fig. 3. State machine for the saturation detector.

If successive adoption-experiments increase d; over the parent’s
transient upload capacity, adoption-experiments will fail repeat-
edly, and T’y will become large. As a result, the parent will
conduct adoption-experiments only occasionally and is likely
to continue operating at the current degree level for most of its
lifetime.

On the other hand, if the current d; is smaller than the tree-de-
gree of a recently successful experiment, it may be caused by in-
creased transient background traffic. Hence, we transition to the
O state. In the O state, we start a detection-timer 7'p and record
the number of congestion events by taking active measurements
of the child states. Once the detection-timer expires, we assume
any transient increase in background traffic goes away and mon-
itor the fraction of congestion events. If it is greater than some
threshold (50% in our implementation), the parent enters the D
state. Otherwise, it goes back to the S state without reacting to
transient congestion periods.

Finally, in the D state, the parent starts the detection-timer
and ignores further congestion until the timer expires. This pre-
vents cascaded drop-actions from a single congestion event and
gives the network sufficient time to recover from the congestion
before further action is taken. At the end of the D state, we go
back to the S state, schedule a new adoption-timer and simulta-
neously look for further congestion.

V. IMPLEMENTATION

To evaluate our heuristics on a real system, we have chosen to
implement them on the ESM Broadcasting System [29]. ESM
is a peer-to-peer application that has been used to broadcast nu-
merous types of events, such as academic conferences and work-
shops. The ESM client code is approximately 43 000 lines. The
base ESM system uses a single-tree overlay to delivery broad-
cast content. This section summarizes ESM and describes how
we extend it to use multiple overlay trees.

The ESM protocol [15] relies on a gossip-based group mem-
bership process to create an overlay broadcast tree among par-
ticipating peers. Each node maintains knowledge about other
members and continuously monitors its own performance in the
tree. If a node’s parent leaves the broadcast, or the performance
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received from its parent is unsatisfactory, it switches to some
other parent. The reader is referred to [15] for further details.

We employ a minimalist approach in extending the code base
to the multitree framework. In our multitree implementation, we
add a layer called the Multitree Agent (MA) which contains an
array of Single-Tree Protocol Agents (SPA, the single-tree pro-
tocol is ESM in our case). Each SPA is associated with one tree
in the forest. The MA maintains global states, makes global de-
cisions, multiplexes and de-multiplexes outgoing and incoming
messages for a given tree to the associated SPA. Each tree oper-
ates independently and in parallel, interacting with the MA but
not with the other SPAs. Finally, we incorporate our contribu-
tion-aware heuristics introduced in Section IV into the multitree
ESM Broadcasting System.

VI. EXPERIMENTAL EVALUATION

We have evaluated our contribution-aware heuristics with a
view to answering the following questions.

* How effective are they in ensuring good overall perfor-
mance by utilizing the heterogeneous nature in the upload
bandwidth of nodes in the system?

* How effective are they in offering differential and equitable
performance to nodes based on their contributions?

* How stable is the resulting system, in terms of frequency
of changes in the number of connected trees?

* How effective is the mechanism to detect and prevent node
saturation?

To answer these questions, we have conducted experiments
on PlanetLab employing real traces of join/leave dynamics to
compare the following two systems.

Cont-Agnostic: This refers to multitree ESM without any
contribution-aware heuristics. Further, the only possible pre-
emption is that a Contributor can preempt an Entitled-NC or
Excess node. This system is very similar to SplitStream [7] and
CoopNet [11].

Cont-Aware: This refers to multitree ESM with the contribu-
tion-aware heuristics from Section IV.

A. Performance Metrics

We evaluate our system based on the following metrics.

* Bandwidth: For each node, we measure the mean applica-
tion throughput in kilobits per second over its lifetime. To
maximize quality of the received video, this metric should
be as close to the source rate as possible.

* Time Between Tree Reductions: This metric measures
the impact of our heuristics on the stability of the system
using the average time between reductions in the number
of connected trees a node experiences. The assumption is
that the user perceived quality is dictated by the number
of trees a node is connected to so a reduction degrades the
user perceived streaming quality. Reductions should not be
frequent so this metric should be as large as possible, or
application performance will be inconsistent. However, we
should be careful while interpreting this metric as it does
not distinguish different types of reductions. For example,
in a forest of four trees, a reduction from four to three trees
is treated the same as a reduction from one to zero trees.
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TABLE III
CONSTITUTION OF HOSTS IN A 20-MIN SEGMENT FOR FIVE REAL-WORLD TRACE

Broadcast Avg RI | Low Spd(100Kbps) | High Spd(10Mbps) | Avg Stay | Median Stay | Tot Nodes | Peak Grp Size | Joins | Leaves
SIGCOMM2002 1.32 34% 66% 1065 secs | 1200 secs 88 78 12 10
SOSP2003 1.31 47% 53% 672 secs 173 secs 95 51 54 38
Rally 0.96 73% 27% 682 secs 362 secs 401 239 214 154
Slashdot 0.87 66% 34% 593 secs 168 secs 328 156 185 160
GrandChallenge || 0.51 88% 12% 724 secs 412 secs 281 149 143 103

Thus, a reduction does not necessarily mean a user sees
bad quality.

* Reconnection Time: When a node is disconnected from a
tree, it should reconnect quickly. This implies preempting
nodes of lower priority or locating a unused slot. Time be-
tween tree reductions measures how frequently a user ex-
periences a dip in performance; this metric describes how
long such dip persists.

* Control Overhead: In additional to regular data traffic,
control messages are sent regularly to construct and main-
tain the overlay structure, as well as support various heuris-
tics. This metric measures the control traffic in kilobits per
second.

In addition to these metrics, we also considered the utiliza-

tion metric in [28].

B. Experimental Methodology

Our study of the two video broadcast systems is conducted
based on 20-min segments of real-world traces obtained from
previous operational deployments of the ESM Broadcasting
System [15]. Table III summarizes the characteristics of the
trace segments. The table shows the percentage of hosts behind
high-speed and low-speed connections (typically, Ethernet
and asymmetric DSL/cable connections, respectively), and the
Resource Index (RI) [15] for each trace. The RI is the ratio of
the total forwarding capacity in the system to the bandwidth
required for all hosts to receive the full source rate. We clas-
sify traces with an RI above one to be bandwidth-rich and
bandwidth-scarce otherwise. The table also shows the group
dynamics using the average and median stay time of nodes in
the traces, and the number of joins and leaves in the 20-min
segments.

The primary trace we use for evaluation is the Slashdot trace,
which is from a bandwidth-scarce broadcast to an interest-group
where the majority of hosts are behind DSL/cable, and has a
high churn rate with median stay times less than 180 s. SIG-
COMM?2002 and SOSP2003 are broadcasts of conferences, and
thus have a much larger fraction of hosts behind high bandwidth
university machines; as such, they represent bandwidth-rich en-
vironments for comparison. GrandChallenge is a broadcast of
a vehicular competition, and Rally refers to a broadcast of an
election campaign. These traces represent bandwidth-scarce en-
vironments. We focus our evaluation on the Slashdot trace and
use other traces to study how sensitive each system is to var-
ious operating environments. We emulate the traces by map-
ping each client to a PlanetLab host and use the same client

join/leave patterns as in the trace segments to drive the exper-
iment. Furthermore, we emulate DSL/cable and Ethernet hosts
with a degree of 0.25 and 2, respectively. Since PlanetLab hosts
are behind high-speed Ethernet connections and access link con-
gestion rarely occurs, we disable the saturation detector when
evaluating the two broadcasting systems from Sections VII-A
to VII-E. In Section VII-G, we evalute the saturation detector,
by setting up standalone experiments involving an actual DSL
host and several PlanetLab hosts.

For each experiment, four multicast trees are formed. Al-
though one could improve the granularity of bandwidth distribu-
tion by using more trees to produce smaller stripes, the network
and video-codec overheads increase with the number of trees.
We consider four trees small enough to be efficient, while large
enough to provide reasonable flexibility in varying the band-
width. We use a source data rate of 400 kb/s, a typical size
of streaming videos on the Internet [15]. The source streams a
stripe of 100 kb/s to each tree. The clients already present be-
fore the start of the segment join the broadcast in a burst and
begin contributing in the their respective Contributor trees. We
allow them 2 min to reach a steady state, after which the rest of
the clients follow the join/leave patterns in the trace for the next
20 min, and experimental data is collected over that period.

We consider hosts with mean contributions greater than
700 kb/s to be High Contributors (HC) and those with mean
contributions between 75 and 100 kb/s to be Low Contributors
(LC). This splits hosts with various contribution levels into two
groups and helps us evaluate them separately. Each result is
aggregated or averaged over three runs with a consistent set
of PlanetLab machines. When presenting results, we filter out
hosts which stay for less than 2 min. We will study the impact
of node stay time in Section VII-B.

VII. EXPERIMENTAL RESULTS

We begin by showing the behavior of a typical host under
the Cont-Aware system in a bandwidth-scarce environment
using the Slashdot trace in Section VII-A. Next, under the same
setting, we compare the performance and average time between
reductions in the number of trees of hosts in Cont-Aware to those
in Cont-Agnostic in Sections VII-B and VII-C. The overhead
of contribution-aware heuristics is studied in Section VII-D.
Section VII-E explores how Cont-Aware behaves in different
operating environments and tax rates ¢. Section VII-F studies
how Cont-Aware copes with hosts behind network address
translators (NAT's) and firewalls. The saturation detector is dis-
abled initially and is evaluated alone in Section VII-G. We have
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Fig. 4. Behavior of a typical high contributor under Cont-Aware. The top curve
shows the bandwidth contributed, the solid curve shows the Entitled bandwidth,
and the dashed line shows the actual bandwidth received.

also evaluated other system components such as smoothing,
backoff, and load balancing in [28].

A. Results With a Typical Run

Fig. 4 shows the performance of a typical high contributor
in our system. The node begins by making zero contribution
and connecting to its Contributor tree. Over the next minute, the
number of children the node supports goes from zero to eight.
As the number of adopted children increases, the number of suc-
cessfully connected trees also increases, as the node becomes
entitled to them. The actual performance fluctuates due to the
fact that ESM uses non-blocking TCP to transfer data across
each overlay link, leading to burstiness on the received band-
width. Note that because we smooth away transient drops in
contribution, the sudden loss of children between 255 and 300
s does not impact performance, and the node quickly acquires
new children. The node is briefly disconnected from one tree at
250 s as shown by a 100 kb/s dip of the solid line. This is due to
the departure of the node’s parent. However, because the node
is contributing significantly to the system, the recovery time is
very brief—the node finds a new location in the tree in under
6 s.

B. System Performance and Utilization

In this section, we want to evaluate how well Cont-Aware
leverages the system resources and distributes them based on
the contribution of each host as compared to Cont-Agnostic. In
particular, hosts with similar contributions should see similar
performance; hosts with higher contributions should see better
performance than those with lower contributions.

Fig. 5 plots the cumulative distribution of the mean ses-
sion bandwidth of high contributors for the two schemes:
Cont-Aware and Cont-Agnostic. There are two curves, each
corresponding to one scheme. The y axis is the CDF and the
x axis is the mean bandwidth ranging from O to 400 kb/s (i.e.,
source rate). The more a curve is toward the right, the better the
overall performance is. Cont-Aware significantly improves the
performance of high contributors with 80% of them receiving
the source rate of 400 kb/s. Cont-Agnostic however allows only
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Fig. 6. Cumulative distribution of average received bandwidth for low contrib-
utors.

20% of high contributors to receive the source rate. Further-
more, almost all high contributors under Cont-Aware obtain
bandwidth greater than 350 kb/s whereas Cont-Agnostic does
much worse, with only half of high contributors receiving more
than 350 kb/s. By prioritizing high contributors, Cont-Aware
allocates about two more stripes to each high contributor than
Cont-Agnostic.

While Fig. 5 plots the mean bandwidth CDF for high contrib-
utors alone, Fig. 6 plots the same type of graph, but for low con-
tributors. With Cont-Agnostic, almost all low contributors re-
ceive anywhere from 100 kb/s up to the source rate. Cont-Aware
reduces this spread to 200-350 kb/s, bringing the performance
of all low contributors toward the mean. This shows Cont-Aware
enables nodes contributing similarly to receive similar band-
width. To quantify this observation, we compute the mean and
standard deviation of both curves and find that although low
contributors in both schemes receive a mean bandwidth around
300 kb/s, with Cont-Aware, the standard deviation significantly
drops from 80.5 to 34.8.

When looking at Figs. 5 and 6 together, we see Cont-Ag-
nostic gives high and low contributors a similar allocation pat-
tern while Cont-Aware treat high contributors more favorably.
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Fig. 5 also suggests Cont-Aware reduces the performance spread
for high contributors. Furthermore, all low contributors under
Cont-Aware receive at least one stripe of 100 kb/s. Thus, we
conclude that our contribution-aware heuristics achieve equi-
table and differential distribution of bandwidth based on nodes’
contributions while offering some minimum guarantee on per-
formance for low contributors. This offers incentives to nodes
to contribute more and keep low contributors stay interested in
the broadcast.

One question is whether it is possible to make the distribution
among low contributors in Cont-Aware even more equitable, in
which case most of them should receive closer to the average
bandwidth of 300 kb/s—for example, 8% of the low contribu-
tors receive less than 250 kb/s. We see various reasons for this.
First, we are limited by the granularity imposed by the multi-
tree framework, and more equitability could result with more
trees. Second, some clients are limited by the bandwidth near
them—further, they could be artifacts of our experiments as sev-
eral clients may be mapped to the same PlanetLab machine and
compete for incoming bandwidth. Third, there are convergence
issues: short-lived low contributors do not remain in the system
long enough to connect to their Excess trees, and due to the dis-
tributed nature of the system, resources are not always quickly
located. In an extreme case, an Excess node which fails fre-
quently on consecutive connection attempts may work up to a
large backoff time, meaning they may make no further attempt
to acquire a parent before they leave the system.

Finally, we have considered the utilization metric in [28].
In bandwidth-scarce Slashdot environment, Cont-Agnostic uti-
lizes 95% of the resources in average, whereas the utilization
of Cont-Aware is about 93%, demonstrating that our heuristics
do not adversely impact the efficiency of ESM in locating and
leveraging the available resources despite with numerous back-
offs and preemptions taking place.

C. Time Between Tree Reductions

We wish to show a node’s received bandwidth is not fre-
quently interrupted by measuring the time between reductions in
the number of connected trees. Fig. 7 shows the CDF of time be-
tween reductions in the number of connected trees for all nodes.
We truncate the x axis at 600 s, since nodes with fewer than
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TABLE 1V
BREAKDOWN OF DIFFERENT TYPES OF REDUCTIONS
IN THE NUMBER OF CONNECTED TREES

Reduction Cont-Agnostic Cont-Aware
from—to Lc | HC Lc | HC

1 — 0 trees || 0.8% 0% 0% 0.1%
2 — 1 trees || 4.0% 3.1% 2.1% 0.3%
3 —2trees || 15.6% | 13.8% || 31.6% | 2.5%
4 — 3trees || 29.6% | 33.1% || 16.3% | 47.1%
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Fig. 8. Average post-preemption reconnection time in seconds for nodes in dif-
ferent contribution levels.

one reduction in 10 min are considered stable. The higher the
curve, the less stable the system is, since a greater percentage
of nodes experience a smaller time between reductions in the
number of connected tree. Although Cont-Aware appears to pro-
duce less consistent performance for all nodes, it does not nec-
essarily imply users see bad performance due to two reasons.

First, the curve does not distinguish between different types
of reductions. For example, a reduction from four to three
trees is treated the same as a reduction from two to one trees.
Table IV shows a breakdown of different types of reductions in
the number of connected trees. We see that for Cont-Aware, only
2.5% of reductions are from two to one trees and virtually none
from one to zero trees whereas for Cont-Agnostic, almost 8% of
reductions are of these types. We can also observe that almost
all reductions high contributors in Cont-Aware experience are
from four to three trees, which have very little impact on appli-
cation performance. In contrast, such preferential treatment for
high contributors is not obvious under Cont-Agnostic. Second,
we find that 90% of reductions result from preemptions rather
than from parent departures, and Cont-Aware allows preempted
nodes to reconnect much faster.

Fig. 8 shows a breakdown of average reconnection time after
a tree reduction. We see that by considering node contribution,
reconnection time for both high and low contributors are re-
duced, with a significant improvement for high contributors. In
particular, the reconnection time of high contributors in Cont-
Aware is only 1/11 of that in Cont-Agnostic. In Cont-Agnostic, a
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node which is preempted cannot preempt another node. In con-
trast, Cont-Aware establishes finer prioritization levels among
nodes, and a preempted node can often quickly find a new loca-
tion in the tree, reducing the cost of preemption. We also analyze
the number of preemptions by preemption types and the average
reconnection time following each type; the result can be found
in [28].

D. Overhead

Fig. 9 plots the average control overhead as a function of the
number of trees T'. There are four curves—the top two curves
are the overheads seen by the broadcast source in Cont-Aware
and Cont-Agnostic, while the lower two curves are the average
overheads seen by clients in Cont-Aware and Cont-Agnostic.
Overall, the additional overhead introduced by Cont-Aware
is low. The overhead itself does increase linearly with 71" for
both the Cont-Aware and Cont-Agnostic schemes. However,
the overall overhead for clients is about 30 kb/s which is less
than 10% of typical stream rates. Further, we believe several
optimizations are feasible to reduce the overhead of the base
ESM system itself, as well as the overhead introduced by using
multiple trees in ESM.

E. Sensitivity Study

In this section, we evaluate our contribution-aware heuristics
under environments with various resource levels and churn
rates by using five different traces. We include Slashdot among
these for comparison to results in previous sections. Fig. 10
shows the 10th-percentile performance of the entire set of
nodes and high contributors across each trace for Cont-Aware
and Cont-Agnostic. That is, 90% of all nodes see better per-
formance than the numbers presented by bars. The traces are
ordered based on their RIs, with the lowest RI at the very left.
The three traces on the left are bandwidth-scarce whereas the
two on the right are bandwidth-rich. Each trace has 4 bars,
with 2 bars for high contributors and 2 bars for all nodes in
Cont-Aware and Cont-Agnostic. For bandwidth-scarce traces,
Cont-Aware offers improved tail performance for all nodes and
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Fig. 11. Sensitivity of bandwidth received to tax rate(t).

high contributors alone. The significant improvement for high
contributors confirms that they are prioritized in Cont-Aware
whereas improvement for all nodes implies their received
bandwidth is pulled toward the mean. Among bandwidth-rich
traces, we see similar performance—everyone successfully
receives the source rate. We also study in [28] the sensitivity
of time between tree reductions and reconnection time to these
traces, which we omit here for brevity.

Sensitivity to tax-rate t: All our results thus far have as-
sumed a tax rate ¢ = 2. Fig. 11 studies sensitivity to ¢ for the
Slashdot trace. There are 3 curves, each corresponding to the en-
tire node set, high contributors and low contributors alone. Each
curve plots the average bandwidth seen by nodes in that class
against ¢. The average bandwidth seen by the entire node set re-
mains unaltered with ¢. However, the difference in performance
of the high and low contributors becomes more significant for
smaller ¢.

FE. Performance Under NATS and Firewalls

A practical aspect that complicates contribution-aware
heuristic design is that a large fraction of hosts today are
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Fig. 12. Performance with NATs and firewalls. Degree 0.25 and 2 indicate that

the maximum the nodes will contribute is 100 kb/s and 800 kb/s, respectively.

behind NATs (Network Address Translators) and firewalls. In
this section, we evaluate the performance of Cont-Aware in
such environments. We use the Slashdot trace as before, but
assume 55% of hosts are behind NATs. We emulate the effect
of NAT/firewall using a methodology as in [30]. The base ESM
system ensures nodes behind NATs support public hosts as
children, though nodes behind NAT's cannot be supported [15].

Fig. 12 studies the performance of Cont-Aware in the
presence of NATs. The nodes are in four classes depending
on whether they are behind NATs or not, and depending on
whether their degree is 0.25 or 2, i.e., whether the maximum
they will contribute is 100 kb/s or 800 kb/s. The graph has four
sets of bars corresponding to these node classes, with each
set containing two bars which show the average bandwidth
forwarded and received for nodes in that class. Overall, it shows
that the bandwidth resources contributed by nodes behind NAT's
is only slightly lower than public nodes, and consequently the
bandwidth received by the NATed nodes is not significantly
impacted. This result shows Cont-Aware works well in the pres-
ence of NATs. Further improvements may be possible based on
the type of NAT (full-cone or symmetric), and allowing public
hosts to prefer NATed nodes as parents during the selection
process [15], [30]. We defer such study to future work.

G. Dynamic Detection of Node Saturation

In this section, we evaluate the benefit of incorporating the
saturation detector into a parent. We want to show that when
the saturation detector is enabled for a misconfigured parent,
instead of adopting as many children as the user-defined will-
ingness bound allows, the parent will choose to support only at
a level where all children see decent performance. To show this,
we set up a testbed consisting of a machine directly connected to
the Internet via a DSL connection, and 9 PlanetLab hosts. The
outgoing bandwidth of the DSL host is 384 kb/s. We use one
PlanetLab node as the source to deliver a source stream of 400
kb/s to 4 trees (100 kb/s stripe to each). The DSL host is config-
ured with d; = 8, while it can only support at most 3 children
(1384/100] = 3). We set up a scenario where in the DSL host’s
Contributor tree, the other 8 PlanetLab hosts all try to connect to
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Fig. 14. Misconfigured DSL parent with saturation detector enabled.

the DSL host as Entitled-NCs initially and leave the system 17
min later. We run two experiments under this scenario, one with
the saturation detector disabled and the other with it enabled.

Fig. 13 shows the performance when the saturation detector is
disabled. The x-Axis is time since the start of the broadcast, the
left y axis is the bandwidth, and the right y axis is the number of
children. The figure shows (left y-axis) the bandwidth received
by the DSL parent (solid line in the middle) and average band-
width received by children (dotted line near the bottom) in the
parent’s Contributor tree over time. The thick and the dotted
lines on the top (right y-axis) show the tree-degree d; of the
DSL host and the number of children it adopts over time, re-
spectively. Since the saturation detector is disabled, d; remains
constant and all 8 children connect to the DSL parent. This re-
sults in the DSL node being over-saturated, which impacts its
own performance, and the performance of its children. None of
the children receive higher than 50 kb/s, and the average band-
width across children is less than 40 kb/s. This is far below the
expected 100 kb/s stripe rate.

Fig. 14 shows the performance when the saturation detector
is enabled. The DSL node starts with d; = 1 and gradually in-
creases d;, consequently acquiring more children. When the 4th
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child is adopted at the 75th second, a congestion event occurs
as shown by the sudden dip in the average children performance
from 100 kb/s to 60 kb/s. In response, d; is decremented by 1
and a child is dropped. After a while, the parent again raises d;
to 4 at the 150th second and the same sequence of events fol-
lows. In fact, the DSL node supports only 3 children most of
the time. d; is raised to 4 only occasionally, and the interval be-
tween successive experiments increases, due to the increase in
the adoption timer 74. As a result, the performance of the chil-
dren remains close to 100 kb/s most of the time.

VIII. DISCUSSION AND RELATED WORK

In this section, we discuss related work, and open issues.

Multitree versus Mesh: In this paper, we have focused on
tree-based approaches for video delivery. This approach has
been widely studied [15], [4], [6], [8], [2], [3], [10], [13], [11],
[7], with nodes in the structure having well-defined “parent-
child” relationships, and with each data packet being dissemi-
nated using the same structure. More recently, an alternate class
of approaches based on meshes has emerged [31], [32], [17],
[33]. Here, no explicit structure is maintained—instead each
node maintains a set of partners, and periodically exchanges
data availability information with the partners. A node may then
retrieve unavailable data from one or more partners, or supply
available data to partners. Both tree-based and mesh-based over-
lays have shown their success in practical deployments, and re-
searchers are studying trade-offs between the approaches [34],
as well as design of hybrid techniques [35]. We believe the no-
tion of contribution-awareness however has not received suffi-
cient attention in either class of approaches, and it would be
interesting to extend the techniques in the paper to mesh-based
designs.

Peer-to-Peer versus Hybrid Architectures: One approach
to address issues with bandwidth-scarce regimes is to adopt
hybrid architectures that seek to augment the bandwidth re-
sources of application end-points participating in the applica-
tion with infrastructure resources where available. In contrast,
our focus is on ubiquitous broadcasting involving a purely appli-
cation end-point architecture, which relies exclusively on band-
width resources at application end-points. Our approach may
also help hybrid architectures by allowing graceful degradation
of performance when infrastructure resources are unavailable or
insufficient.

Use of MDC: Our paper assumes the use of Multiple De-
scription Codes (MDC) for video streaming. MDC technology
is an active area of research [24], and still under active develop-
ment. Further experience with real MDC implementations, and
an understanding of the overheads they introduce is required be-
fore they may be used, and we defer this to future work. That
said, the focus of the paper is on contribution-awareness, and
the overhead associated with MDC applies both to the base
Cont-Agnostic system (adapted from [7], [11]), and our pro-
posed Cont-Aware heuristics.

Incentive Mechanisms: A wide body of work has looked at
incentive mechanisms in the context of file-sharing applications
(e.g., [36], [37], [21], [23], [22], [38]). These works do not di-
rectly apply to broadcasting applications given the real-time na-
ture of the applications, and do not consider issues such as appli-
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cation-level adaptation, prioritization in tree placement, band-
width distribution, and estimation of outgoing bandwidth which
are relevant in overlay multicast. With reputation algorithms
(e.g., [23]), nodes that tend to contribute more obtain higher
reputations and may be prioritized when they download data.
However, with streaming, the added challenge is that the instan-
taneous bandwidth demand and supply in the system need to be
balanced, and arbitrary discretization is not possible. Thus, there
is a need for mechanisms that compute overall instantaneous
system resources, and decide on an allocation policy at that in-
stant. In addition, subsidization is needed since some peers are
genuinely not capable of donating bandwidth. Similarly, as dis-
cussed in Section II-B, the timeliness requirements of broad-
casting precludes the use of tit-for-tat techniques used in appli-
cations like BitTorrent [18].

Recently, researchers have begun to investigate incentive
mechanisms for overlay multicast. An incentive mechanism
that provides service differentiation in peer selection based on
relative contribution of peers is proposed in [39]. An approach
to regularly rebuild multicast trees and require nodes to only
track their first-hand behavior to deny service to freeloaders
is considered in [40]. The impact of tree reconstruction on
application performance is unclear, and remains to be studied
in depth. [41] argues that the p2p streaming structure has a
natural inherent incentive for peers to contribute bandwidth to
the community, and propose a “bazaar” framework to leverage
this. The theory of mechanism design is applied to the overlay
multicast problem in [42]. A key difficulty involves computing
the value that a new node introduces to the rest of the system,
by comparing the performance of members before and after
the node joins. It is unclear how easily such computations may
be performed under group dynamics, network dynamics, and
the diversity in Internet path performance. Finally, none of
these approaches address issues with bandwidth-scarce envi-
ronments, the need for hosts behind DSL/cable connections
to be subsidized by hosts behind higher bandwidth Ethernet
connections, prioritization in tree placement, frameworks for
application-level degradation, and preventing over-estimation
of outgoing access bandwidth of nodes.

IX. SUMMARY

In this paper, we present the design and implementation ex-
perience of a contribution-aware overlay broadcasting system
targeted at environments where not all nodes can receive
the source rate and node contributions are heterogeneous.
The system leverages the multitree framework, and supports
bandwidth distribution policies which enable nodes to see
performance commensurate to their contribution. We have
conducted a detailed evaluation of the system on PlanetLab
using traces from real broadcasts, which helps demonstrate
the practical benefits of our heuristics. When compared with a
contribution-agnostic system, our results indicate that in band-
width-scarce environments, our contribution-aware system can
improve the 10th-percentile performance of all nodes and high
contributors alone by 2-35% and 10-240%, respectively. The
system also distributes the available bandwidth more equitably
among nodes of similar contributions. For example, in one
trace, bandwidth received by 90% of low contributors is within



SUNG et al.: ENABLING CONTRIBUTION AWARENESS

100 kb/s of the mean. Although nodes in our system suffer tree
reductions a little more frequently, they require only 70% as
much time to recover. We believe these results are promising
and display the potential to extend overlay broadcasting toward
ubiquitous deployment in mainstream Internet.
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