
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008 43

Implementing the 2-D Wavelet Transform on
SIMD-Enhanced General-Purpose Processors

Asadollah Shahbahrami, Student Member, IEEE, Ben Juurlink, Senior Member, IEEE, and
Stamatis Vassiliadis, Fellow, IEEE

Abstract—The 2-D Discrete Wavelet Transform (DWT) con-
sumes up to 68% of the JPEG2000 encoding time. In this paper,
we develop efficient implementations of this important kernel on
general-purpose processors (GPPs), in particular the Pentium 4
(P4). Efficient implementations of the 2-D DWT on the P4 must
address three issues. First, the P4 suffers from a problem known
as 64K aliasing, which can degrade performance by an order
of magnitude. We propose two techniques to avoid 64K aliasing
which improve performance by a factor of up to 4.20. Second, a
straightforward implementation of vertical filtering incurs many
cache misses. Cache performance can be improved by applying
loop interchange, but there will still be many conflict misses if
the filter length exceeds the cache associativity. Two methods are
proposed to reduce the number of conflict misses which provide
an additional performance improvement of up to 1.24. To show
that these methods are general, results for the P3 and Opteron are
also provided. Third, efficient implementations of the 2-D DWT
must exploit the SIMD instructions supported by most GPPs,
including the P4, and we present MMX and SSE implementations
of horizontal and vertical filtering which provide a maximum
speedup of 3.39 and 6.72, respectively.

Index Terms—Cache, Discrete Wavelet Transform, memory hi-
erarchy, multimedia extensions, SIMD.

I. INTRODUCTION

THE Discrete Wavelet Transform (DWT) is a highly effec-
tive tool in image and video compression standards such

as JPEG2000 and MPEG-4, since it achieves higher compres-
sion ratios than other transforms such as the DCT. A potential
problem, however, is the high computational complexity of the
DWT. We have measured the total execution time consumed by
the DWT using the JasPer software tool kit [1]. The results show
that the DWT consumes on average 46% of the total encoding
time for lossless compression and even 68% for lossy compres-
sion. Results presented by other researchers [2] also show that
the DWT consumes a significant fraction of the total JPEG2000
encoding time.

Manuscript received March 2, 2007; revised August 1, 2007. This work was
supported by the Netherlands Organization for Scientific Research (NWO). The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Anna Hac.

A. Shahbahrami is with the Computer Engineering Laboratory, EEMCS,
Delft University of Technology, 2628 CD Delft, The Netherlands, and also
with the Department of Electrical Engineering, Faculty of Engineering, The
University of Guilan, Rasht, Iran (e-mail: shahbahrami@ce.et.tudelft.nl).

B. Juurlink is with the Computer Engineering Laboratory, EEMCS, Delft
University of Technology, 2628 CD Delft, The Netherlands (e-mail: benj@ce.et.
tudelft.nl).

S. Vassiliadis, deceased, was with the Computer Engineering Laboratory,
EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands.

Digital Object Identifier 10.1109/TMM.2007.911195

In order to reduce complexity and improve performance,
several researchers [3], [4] have proposed hardware implemen-
tations of the DWT. Programmable processors, however, are
preferable to special-purpose hardware because they are more
flexible, enable different transforms to be employed, and allow
various filter bank lengths and various transform levels. Hence,
in this paper we focus on general-purpose, programmable
processors, in particular the Pentium 4 (P4).

A 2-D DWT consists of horizontal filtering along the rows
followed by vertical filtering along the columns. In order to de-
velop high-performance implementations of the 2-D DWT on
general-purpose processors (GPPs) in general and the P4 in par-
ticular, the following issues need to be addressed.

First, the P4 suffers from a problem known as 64K aliasing,
which can degrade performance by an order of magnitude. It
occurs when two data blocks need to be cached simultaneously
whose addresses differ by a multiple of 64K. In a straightfor-
ward implementation of the 2-D DWT, there is a 64K alias
between the low- and high-pass values when the image size
is a large power of two. We propose two techniques to avoid
64K aliasing. The first technique provides a speedup of up to
3.31, but for image sizes that do not suffer from 64K aliasing
it reduces performance by up to 20%. The second technique
achieves a speedup of up to 4.20 and incurs no performance
penalty for image sizes that do not suffer from 64K aliasing.

Second, a plain implementation of vertical filtering incurs
many cache misses. As shown in this paper, most of them can
be avoided by applying loop interchange, but there will still be
many conflict misses if the filter length exceeds the number of
cache ways, in particular if the image size is a multiple of the
cache size. We, therefore, propose two methods to reduce the
number of conflict misses. The first technique improves perfor-
mance by up to 80% and the second by up to 99%. For image
sizes that do not generate many conflict misses, both techniques
slightly decrease performance due to the overhead (loop over-
head, address calculations) introduced by applying these tech-
niques. Although 64K aliasing is a problem specific to the P4,
the conflict avoidance methods are general and can be applied to
other processors as well. To show this, results are also presented
for the P3 and AMD Opteron processors.

Third, high-performance implementations of the 2-D DWT
must exploit the data-level parallelism using the SIMD instruc-
tions supported by most GPPs. We describe how the 2-D DWT
can be vectorized using MMX and SSE instructions. Vertical fil-
tering is relatively straightforward to vectorize. Horizontal fil-
tering is more difficult to vectorize, since it requires the data
to be reorganized. The maximum speedups of the SIMD im-

1520-9210/$25.00 © 2008 IEEE

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

plementations of horizontal and vertical filtering over the corre-
sponding scalar versions are 3.39 and 6.72, respectively.

We make the following contributions. First, although imple-
mentations of the 2-D DWT on the P4 have been presented be-
fore, these works did not mention nor address 64K aliasing.
Second, previous work has focused mainly on improving the
spatial locality of vertical filtering. In contrast, our techniques
eliminate the conflicts that may exist between the input values
needed to compute one output value if the filter length is larger
than the number of cache ways. Third, while related works have
focused mainly on improving cache performance or on SIMD
vectorization, we address both these issues.

This paper is organized as follows. Section II describes the
discrete wavelet transform, the experimental environment, and
the evaluation methodology. Section III proposes and evalu-
ates two techniques to circumvent 64K aliasing. Section IV ad-
dresses the cache behavior of transforms with long filters and
presents two techniques to avoid conflict misses. The SIMD im-
plementations of the 2-D DWT are described in Section V. Fi-
nally, conclusions and future work are given in Section VI.

II. PRELIMINARIES

In this section we describe the discrete wavelet transform, the
experimental setup, and the reference implementation.

A. Discrete Wavelet Transform

A 2-D DWT consists of horizontal filtering along the rows
followed by vertical filtering along the columns. Traditionally,
both are implemented by convolution methods such as finite im-
pulse response (FIR) filters. In this paper we consider two con-
volution methods, namely Daubechies’ transform with four co-
efficients [5] (Daub-4), and the Cohen, Daubechies and Feau-
veau 9/7 filter [6] (CDF-9/7), and one lifting scheme, namely
the (5, 3) lifting scheme [7]. The (5, 3) lifting scheme is in-
cluded because it has low computational complexity and per-
forms reasonably well for lossy as well as lossless compression
compared to other filters [8]. We remark that the (5, 3) transform
and CDF-9/7 are included in Part 1 of the JPEG2000 standard.
Furthermore, these transforms have been considered in many re-
cent papers (e.g., [2]–[5]). Although we have used these three
transforms, the proposed techniques are general and equally ap-
plicable to other transforms.

B. Experimental Setup

Most programs were implemented in C and compiled using
gcc with optimization level -O2. As is usual in C, the matrices
are stored in row-major order. The SIMD implementations were
implemented in assembly using the MMX and SSE instruction
sets.

As experimental platforms we employed the Pentium 3, Pen-
tium 4, and AMD Opteron processors. The main architectural
parameters of our systems are summarized in Table I.

All programs were executed on a lightly loaded system. Per-
formance was measured using the IA-32 cycle counter [10],
which provides a very precise tool for measuring the time that
elapses between two different points in the execution of a pro-
gram. To eliminate the effects of context switching and com-
pulsory cache misses, the K-best measurement scheme and a

TABLE I
PARAMETERS OF THE EXPERIMENTAL PLATFORMS

warmed up cache have been used. That means that the function
is repeatedly (times) executed and the fastest time is recorded.
This minimizes the effects of both instruction and data cache
misses.

C. Reference Implementation

The straightforward way of performing vertical filtering is
by processing each column entirely before advancing to the
next column. This method, however, results in excessive cache
misses because it is unable to exploit spatial locality, since the
cache blocks corresponding to the first rows will have been
evicted from the cache when the algorithm advances to the next
column. In order to improve spatial locality we have applied
loop interchange, which is a well-known compiler technique.
Our results [11], [12] have clearly shown that this improves per-
formance significantly. For this reason we will compare the per-
formance of our methods to the performance attained by the al-
gorithms after loop interchange. In other words, the implemen-
tations with interchanged loops will be used as reference imple-
mentations.

To avoid a rearrangement step, our implementations employ
an auxiliary matrix as proposed in [2]. The horizontal filtering
phase reads from the input image img and stores the results in
the auxiliary matrix tmp. Thereafter, the vertical filtering phase
reads from tmp and stores the results back to img.

III. AVOIDING 64K ALIASING

In the Pentium 4 there is a phenomenon known as 64K
aliasing [13]. It occurs if two or more data blocks whose
addresses differ by a multiple of 64K need to be cached simul-
taneously. If it occurs, the associativity of the cache is useless
and the effectiveness of the cache is greatly reduced. The
reasons for the 64K aliasing problem are not well documented.
Some sources [14] say it is due to incomplete tag encoding.
More precisely, only 16 bits are used for the cache lookup: 6
for the block offset, 5 for the index, and bits 11 to 15 for the tag
[15]. The remaining tag bits come from the DTLB. Because of
this, references to addresses with the same 16 lower-order bits
(i.e., addresses that are bytes or a multiple thereof apart)
are not resolvable in the L1 data cache. According to Intel
documentation [13], the instruction that accesses the second
64K-aliasing data item has to wait until the first one is written
from the cache. This clearly obstructs out-of-order processing.

For some image sizes, the 2-D DWT suffers from 64K
aliasing. To illustrate this, Fig. 1 depicts the slowdown of the
reference implementation of vertical filtering over horizontal
filtering on the P4. Even though they perform the same number

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

SHAHBAHRAMI et al.: IMPLEMENTING THE 2-D WAVELET TRANSFORM 45

Fig. 1. Slowdown of vertical filtering over horizontal filtering on the P4.

Fig. 2. Ratio of the number of cache misses incurred by vertical filtering to
the number of cache misses incurred by horizontal filtering for an 8 KB 4-way
set-associative L1 data cache with a line size of 64 bytes.

Fig. 3. C implementation of vertical filtering using the (5, 3) lifting scheme.

of operations, for some image sizes vertical filtering is substan-
tially slower (up to a factor of 4.3) than horizontal filtering.
One reason for this could be the cache behavior. To analyze if
this is the case, Fig. 2 shows the ratio of the number of cache
misses incurred by vertical filtering to the number of cache
misses incurred by horizontal filtering. These results have been
obtained using a trace-driven cache simulator with the cache
configured as the L1 data cache of the P4.

It can be seen that the slowdown of vertical filtering over hor-
izontal filtering cannot be explained by the cache miss behavior.
For example, when the image size is 256 256, vertical filtering
is slower than horizontal filtering by a factor of 4.27 for the
lifting transform, and by a factor of 2.95 for the Daub-4 trans-
form. For both transforms, however, they incur about the same
number of cache misses. For the CDF-9/7 transform, on the
other hand, vertical filtering is slower by a factor of 1.82 but gen-
erates more than 39 times as many cache misses as horizontal
filtering. Similar behavior can be observed for other image sizes.
Hence, the large slowdown of vertical versus horizontal filtering
should not (only) be attributed to cache misses but mainly to
64K aliasing.

To further explain why and when 64K aliasing occurs, Fig. 3
depicts a C implementation of vertical filtering using the lifting
scheme. It can be seen that one iteration of the inner loop
accesses img[i][j] and img[i+N/2][j]. Hence, 64K
aliasing occurs if is a multiple of , where is the
number of bytes needed to represent one wavelet coefficient.
Since is 2 for the lifting and 4 for the Daub-4 and CDF-9/7

Fig. 4. Speedup of vertical filtering over the reference implementation achieved
by loop fission.

transforms, for square images 64K aliasing occurs if
(since), for powers of 2 larger than

256, and for (since). We
remark that although we focus on square images, 64K aliasing
may also occur for non-square images. For images, it
occurs when is a multiple of .

To circumvent 64K aliasing, we propose and evaluate two
techniques. The first idea is to split the inner loop so that the
low-pass (img[i][j]) and high-pass values (img[i+N/
2][j]) are calculated in separate loops. In this way the 64K
alias between them is removed. This is actually a well-known
compiler technique called loop fission. Loop fission, however,
is usually applied to enable other transformations such as loop
interchange and vectorization, while we apply it to avoid 64K
aliasing.

Fig. 4 depicts the speedup resulting from this program trans-
formation. For those image sizes that suffer from 64K aliasing
(as explained above, powers of two larger than 256 256 and
1280 1280), loop fission indeed improves performance signif-
icantly. In these cases the speedup ranges from 1.97 to 2.94 for
the lifting transform, from 2.36 to 3.31 for Daub-4, and from
1.27 to 1.75 for CDF-9/7. For CDF-9/7, the performance im-
provements are smaller than for the other two transforms, be-
cause it also suffers from many cache conflict misses. However,
for those image sizes that do not suffer from 64K aliasing, loop
fission reduces performance by up to 20%. This is due to the
following reasons. First and most importantly, loop fission re-
moves the temporal reuse that exists between the calculation of
the high-pass and low-pass values. As can be seen in Fig. 3, the
first statement in the loop body uses tmp[ii-1][j] and so
does the second statement. After loop fission has been applied,
the two statements are in different loops and this temporal reuse
has been removed. Second, loop fission increases loop overhead
but this overhead could be reduced by unrolling the loop.

The second technique we propose is to offset the memory
address of the high-pass value by one or two rows depending
on the transform. In other words, instead of storing the value
in img[i+N/2][j], it is stored in img[i+N/2+1][j].
By applying this offsetting technique, the distance between the
two addresses is no longer a multiple of 64K, but to apply this
method, the matrices have to be extended with one row.

Fig. 5 depicts the speedup achieved by the offsetting tech-
nique. For those image sizes that suffer from 64K aliasing, it
improves performance by a factor ranging from 3.07 to 4.20 for
the lifting transform, from 2.99 to 3.11 for Daub-4, and from
1.41 to 1.69 for CDF-9/7. Moreover, the offsetting technique
does not incur a performance penalty for image sizes that do

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

Fig. 5. Performance improvement achieved by the offsetting technique.

not suffer from 64K aliasing. This is because this technique does
not destroy the temporal locality between the calculation of the
low and high-pass values. Concluding, the offsetting technique
is better than loop fission.

IV. CACHE OPTIMIZATION

Fig. 2 shows that for small images (up to 128 128), vertical
filtering does not produce more cache misses than horizontal
filtering. For images larger than 800 800, however, vertical fil-
tering generates about 50% more misses than horizontal filtering
for the lifting and Daub-4 transforms. For the Daub-4 transform
this can be explained as follows. To compute row of img, it
uses rows of tmp. Hence, to compute
row , it uses rows . This im-
plies that rows and are reused, provided 4 rows can
be kept in cache. When , however, they cannot (since

), which is why vertical filtering generates
more misses than horizontal filtering. For the lifting transform
this actually already occurs for , because this trans-
form does not access four consecutive input rows.

More serious behavior, however, is exhibited by the CDF-9/7
transform. When is (a multiple of) a large power of two, ver-
tical filtering generates up to 72.4 times as many cache misses as
horizontal filtering. This can be explained as follows. As noted
before, the L1 data cache of the P4 is 4-way set associative.
Each block maps to a unique set and can be placed in any of
the four elements of that set. When or a multiple
thereof, however, the nine blocks that are needed to compute
one block of output data map to the same set and, hence, evict
each other from the cache. Because of this, many conflict misses
are generated and the reuse that exist between the computation
of img[i][j] and img[i][j+1] (provided they are in the
same cache block) is destroyed. When or ,
five input blocks map to the same set, causing also many cache
misses but fewer than when all nine blocks map to the same set.
For the lifting and Daub-4 transforms, this problem does not
exist because their filter lengths is equal to the number of cache
ways.

A. Proposed Techniques

The first method is referred to as associativity-conscious loop
fission (ACLF). The idea is to split the loop that computes one
row of wavelet output into multiple loops so that each loop ac-
cesses at most rows. Each loop computes the partial results
that can be computed by accessing the first rows of input data.
The remaining loops add their results to these partial results.

In the second scheme, which is called lookahead, the
rows are processed in a skewed manner. There is only

Fig. 6. Comparison of the speedups obtained by applying offsetting alone to
the speedups achieved by applying associativity-conscious loop fission or looka-
head in addition to offsetting for the CDF-9/7 transform.

one loop, as in the original algorithm. In iteration
we compute a partial results for the output

element img[i][j] but, in the same iteration, we compute
a partial result for the output element img[i][(j+B/c)
mod N] that is located columns ahead, for the element
img[i][(j+2*B/c) mod N], and so on. Here is the
cache line size in bytes and is the number of bytes per
wavelet coefficient, as before. To compute a partial result for
img[i][j], we process input elements tmp[ii][j],
tmp[ii+1][j]!, tmp[ii+n–1][j]!,. A par-
tial result for img[i][(j+B/c) mod N] is computed
using the elements tmp[ii+n][(j+B/c) mod N]!
tmp[ii+2n-1][(j+B/c) mod N], and so on. So in each
iteration, partial results are computed, where is the filter
length. In later iterations, partial results corresponding to the
same column are accumulated. This scheme ensures that no
more than input elements accessed in one loop iteration map
to the same cache set.

Fig. 6 compares the performance improvements obtained by
applying ACLF or lookahead in addition to offsetting to the
speedup achieved by applying offsetting alone. Results are pre-
sented only for CDF-9/7, since only this transform suffers from
both 64K aliasing as well as excessive cache misses. For image
sizes that experience many cache conflicts (and mul-
tiples thereof), avoiding them provides additional performance
improvements. For example, applying offsetting alone provides
a speedup of up to 1.69, while combining it with the lookahead
technique yields a speedup of up to 1.99. In general, the looka-
head technique performs slightly better than ACLF. This is be-
cause it incurs less loop overhead than ACLF. For image sizes
that do not generate many conflict misses, both schemes gener-
ally slightly decrease performance (by at most 7%), due to over-
head needed for managing loop and index variables and address
calculations.

As mentioned before, both ACLF and the lookahead tech-
nique are general and architecture independent. By this we mean
that, they can also be applied to other transforms and proces-
sors with different cache configurations. For example, for cer-
tain image sizes, the (5,3) lifting and Daub-4 transforms would
incur many cache conflict misses for a 2-way set-associative
cache. But in these cases the same techniques can be applied
with the parameters and . To validate this claim,
Fig. 7 depicts the speedup obtained by applying ACLF and the
lookahead techniques on the P3 and Opteron processors. Ana-
lytically it can be determined that on the P3 many conflict misses
occur when and on the Opteron when

and, to a lesser extent, for . Fig. 7

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

SHAHBAHRAMI et al.: IMPLEMENTING THE 2-D WAVELET TRANSFORM 47

Fig. 7. Speedups obtained by applying ACLF and the lookahead technique over
the reference implementation of the CDF-9/7 transform on the P3 and Opteron.

shows that for these image sizes ACLF provides a performance
improvement ranging from 20% to 25% on the P3 and from 10%
to 110% on the Opteron. On the other hand, the lookahead tech-
nique improves performance by 35% to 45% on the P3 and by
15% to 125% on the Opteron.

B. Related Work

Meerwald et al. [16] also observed that a straightforward
implementation of vertical filtering that processes the elements
along the columns can generate many cache misses and pro-
posed two techniques, row extension and aggregation, to avoid
this problem. Row extension adds some dummy elements to
each row so that the image width is no longer a power of two
but co-prime with the number of cache sets. According to [16],
a disadvantage of this method is that the final coded bitstream
is changed. Aggregation filters a number of adjacent columns
consecutively before moving to the next row. The number
of columns filtered consecutively is called the “aggregation
factor”. If the aggregation factor is equal to the image width,
aggregation is identical to loop interchange, which we have
used as the baseline implementation.

A potential advantage of aggregation over loop interchange
is that it can exploit the reuse between the rows of input values
needed to compute consecutive rows of output values, while
loop interchange cannot for large images. To investigate this,
we have also implemented aggregation. Contrary to our ini-
tial expectations, aggregation performs worse than loop inter-
change. This is due to three reasons. First, aggregation incurs
more loop overhead than loop interchange, since it consists of
three loop nests instead of two. Second, on a cache miss the P4
prefetches the next block. Loop interchange takes advantage of
this but aggregation does not when it reaches the end of a group
of columns. Third, cache performance is not critical in these
scalar implementations.

Chatterjee and Brooks [2] proposed two optimizations:
strip-mining (which is identical to aggregation) and recursive
data layout. The second optimization modifies the layout of the
image data so that each sub-band is stored contiguously. This
increases the locality for subsequent decomposition levels, but
only the execution time of the first level is reported. Further-
more, the first decomposition level takes more time than all
subsequent decomposition levels together.

Chaver et al. [17] combined aggregation with a line-based
approach [18], which starts vertical filtering as soon as a suf-
ficient number of rows (determined by the filter length) has
been filtered horizontally. This approach reduces the amount of
memory required. In addition, they considered different layouts.

Although they considered images with a width equal to a power
of two and measured performance on a P4 (as well as a P3), they
did not mention the 64K aliasing problem.

Komi et al. [19] as well as Lee et al. [20] proposed block-
based approaches to improve the cache efficiency for the 2-D
DWT. In [19] equations are presented which allow to find the
optimal block size, assuming a fully associative data cache. In
[20] the block size is equal to one way of the two-way set-asso-
ciative L1 data cache.

Andreopoulos et al. [21] identified three categories of
DWT implementations: strictly breadth-first (SBF), roughly
depth-first (RDF), and strictly depth-first (SDF). SBF im-
plementations filter all rows horizontally before filtering all
columns vertically. Our DWT implementations belong to this
category. RDF implementations interleave periods of horizontal
filtering with periods of vertical filtering. The line-based and
block-based approaches belong to this category. SDF corre-
sponds to RDF with minimal interleaving period. Andreopoulos
et al. have shown that RDF implementations incur fewer misses
than SBF implementations. However, from the exposition in
[21] it is unclear if loop interchange has been applied to the
presented SBF implementations. Furthermore, although they
have presented results for the Pentium, only cache miss rate
results are presented and no real execution times.

There are two main differences between these related works
and our work on improving the memory behavior of the 2-D
DWT. First, previous work did not mention nor address 64K
aliasing. Second, previous work did not remove the conflicts that
may exist between the input coefficients needed to compute one
output coefficient. As was shown in Section IV (cf. Fig. 2), if
the filter length is larger than the number of cache ways and the
image width is a large power of two, then many cache misses are
generated. The ACLF and lookahead techniques remove these
conflicts.

V. SIMD VECTORIZATION

An efficient implementation of the DWT on the P4 as well
as other GPPs must exploit the SIMD extensions provided
by these processors. In this section we present MMX/SSE
implementations of the DWT and present performance results
on the Intel P4 processor. This section is organized as follows.
In Section V-A we discuss the SIMD implementations of the
convolutional methods (Daub-4 and CDF-9/7). Thereafter, in
Section V-B we present an SIMD implementation of the lifting
scheme. Experimental results are provided in Section V-C.

A. SIMD Implementations of Convolutional Methods

The SIMD implementations of Daub-4 and CDF-9/7 are very
similar. Both process single-precision floating-point values and
apply filtering by multiplying the filter coefficients with the
input samples and accumulating the results. They will therefore
be discussed together.

Under a row-major image layout, it is relatively straightfor-
ward to vectorize vertical filtering using SSE instructions. This
is because the elements that can be processed simultaneously
are stored consecutively in memory. Consider, for example,
the Daub-4 transform and let be the input samples, let

denote the low-pass filter coefficients, and let

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

be the low-pass values. Then vertical filtering of the low-pass
values is given by

(1)

In this equation, the operator denotes elementwise vector
multiplication. Similar equations can be drawn for the high-pass
values and other convolutional filters. This equation can be
mapped almost one-to-one to SSE instructions. The only tech-
nical detail is that each coefficient needs to be replicated four
times. Some SIMD extensions provide instructions for this
(splat instructions), but since SSE does not, we have replicated
each coefficient four times in memory.

Horizontal filtering is more difficult to vectorize, however.
In this case, the low-pass values can be calculated using the
equation

(2)

To map this equation to SIMD instructions, a vector-vector mul-
tiplication (dot product) instruction would have been useful, but
since SSE does not provide such an instruction, we have to re-
arrange the elements so that, for example, the input samples

, and are stored consecutively in
an SSE register. Fig. 8 shows the SSE code that computes four
low-pass values. It can be seen that many overhead (unpack) in-
structions are needed.

B. MMX Implementation of the Lifting Scheme

The SIMD implementation of the (5, 3) lifting scheme is sig-
nificantly different from the SSE implementations of Daub-4
and CDF-9/7 for the following reasons. First, the (5, 3) lifting
transform uses integer arithmetic and hence its SIMD imple-
mentation employs MMX instructions. Second, in the MMX
implementation there are no multiplication operations, since the
input values need to be divided by powers of 2 which can be ac-
complished using shift operations. Third, because of its struc-
ture, the (5, 3) lifting scheme is vectorized in a completely dif-
ferent way than the convolutional transforms.

The lifting operation consists of several stages. First, the orig-
inal 1-D input signal is split into a subsequence consisting of the
even-numbered input values and a subsequence containing
the odd-numbered input values . Thereafter, the prediction
stage produces the high-pass output values and the update
stage generates the low-pass output values . Specifically,

Fig. 8. Computing four low-pass values for horizontal filtering using SSE in-
structions (Daub-4 transform).

Fig. 9. Part of the data flow graph of the forward integer-to-integer lifting trans-
form using the (5, 3) filter bank (Shr = Shift right).

the forward transform of the (5, 3) filter bank used in this paper
is given by [8]

(3)

(4)

Fig. 9 depicts a part of the data flow graph of the (5, 3) lifting
scheme based on (3) and (4). In order to vectorize horizontal
filtering we need to rearrange the data so that the even and odd
subsequences are placed in different registers. Furthermore, be-
cause and have to be added, two copies of the even sub-
sequence are required, one that starts with and one that starts

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

SHAHBAHRAMI et al.: IMPLEMENTING THE 2-D WAVELET TRANSFORM 49

Fig. 10. MMX instructions needed to rearrange the elements for the (5,3) lifting
scheme.

Fig. 11. Performance improvements achieved by applying the offsetting tech-
nique to the SIMD implementations of all three transforms and, in addition, the
lookahead technique to CDF-9/7.

with . Fig. 10 shows the MMX code that achieves this re-
arrangement. It can be seen that many unpack instructions are
required to achieve this. After the code has been executed, the
first four high-pass output values can be computed by adding
mm0 with mm3, shifting the results to the right by 1 bit position,
and adding these results to mm4.

As was the case for the convolutional transforms, vertical
filtering is easier to vectorize. In this case, the even and odd
subsequences do not have to be split because they correspond
to different rows. A drawback of vertical filtering compared
to horizontal filtering is, however, that the previous high-pass
output values which are needed for the update stage cannot be
kept in a register, while in horizontal filtering they can. For
example, in vertical filtering, after calculating the high-pass
values , the computation
of the low-pass values
should start. For this, access to the previous row to load the
four calculated high-pass values is
necessary. Consequently, the access pattern in vertical filtering
is more complex than the access pattern in horizontal filtering.

C. Performance Results

First, we have applied the offsetting technique to the SIMD
implementations of all three transforms and, in addition, the
lookahead technique to CDF-9/7. The resulting speedups are
depicted in Fig. 11. It can be seen that applying offsetting
to the MMX implementation of the (5,3) lifting transform
improves performance significantly. For those image sizes

Fig. 12. Speedup of the SIMD implementations of horizontal filtering over the
scalar versions.

that suffer from 64K aliasing, it improves performance by
factors ranging from 1.68 to 6.74. For the Daub-4 and CDF-9/7
transforms, however, the attained speedups are comparatively
small. Applying offsetting to Daub-4 provides a speedup of
1.78 for images of size 256 256. For the other image sizes that
suffer from 64K aliasing, the speedups are smaller than 1.10.
Applying both offsetting and lookahead to CDF-9/7 improves
performance by factors ranging from 1.14 to 1.45 when 64K
aliasing as well as excessive cache conflict misses occur. The
reason for this behavior is that vectorization already (partially)
eliminates 64K aliasing. The SSE implementations of the
convolutional methods, for example, load 32 bytes of data
(half a cache line) into registers before accessing a different
cache line that could conflict with the current one. The MMX
implementation of the (5,3) lifting scheme, on the other hand,
loads 16 bytes of data into registers before accessing a different
cache line (see the first two lines of the code given in Fig. 8).
Hence, in this implementation 64K aliasing still occurs, but to
a lesser extent than in the scalar version.

Fig. 12 depicts the speedups of the SIMD implementations of
horizontal filtering over the corresponding scalar version. The
largest speedups are obtained for the (5,3) lifting scheme. For
this transform the speedup ranges from 1.69 to 3.39, while the
speedups for Daub-4 and CDF-9/7 range from 1.10 to 1.79 and
from 1.25 to 1.44, respectively. There are three main reasons
why the speedups for the (5,3) lifting scheme are higher than
for the Daub-4 and CDF-9/7 transforms. First, there are no mis-
aligned memory accesses in the MMX implementation of hori-
zontal filtering using the (5,3) lifting scheme, while in the SSE
implementations there are. Although SSE permits misaligned
memory accesses, they are much slower than aligned memory
accesses. Second, there are more MMX execution units than
SSE units. This implies that more MMX instructions can be
executed in parallel. Third, the MMX implementation of the
(5,3) lifting scheme performs more arithmetic operations per
wavelet sample than the SSE implementations of Daub-4 and
CDF-9/7. Because SIMD vectorization significantly reduces the
CPU component of the execution time, horizontal filtering using
Daub-4 and CDF-9/7 has become memory-bound.

Two other important observations can be drawn from Fig. 12.
First, the speedups for the (5,3) lifting scheme are lower for
small images than for larger images, while for
Daub-4 the opposite behavior can be observed. Second, since
all SIMD implementations perform four operations in one in-
struction, the expected maximum speedup is 4, but the attained
speedups are smaller. The first behavior can be explained as fol-
lows. When , almost all reads hit the L1 data cache

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

Fig. 13. Speedup of the SIMD implementations of vertical filtering over scalar
versions.

(except for compulsory misses). Hence, the speedups obtained
for these image sizes are the speedups resulting from SIMD
vectorization. When , however, other factors start to
play a role. For (5,3) lifting, the speedup increases because the
MMX implementation incurs fewer cache conflicts and hence
fewer memory stall cycles than the scalar implementation. For
Daub-4, on the other hand, the speedup decreases because this
implementation has become memory-bound. The fact that the
obtained speedups are smaller than 4 even when is
mainly due to the overhead instructions required to vectorize
horizontal filtering.

Fig. 13 depicts the speedups for vertical filtering. As ex-
plained in the previous sections, vertical filtering is easier to
vectorize and incurs less overhead than horizontal filtering.
This explains why the obtained speedups are about the max-
imum speedup of 4 for images smaller than 256 256. For the
lifting and Daub-4 transforms the speedups for these image
sizes are even larger than 4 in all but one case due to reduction
of loop overhead. For CDF-9/7, the speedups are slightly
smaller (around 3.32), because due to the small number of
SSE registers, this implementation needs to spill registers to
memory. When , however, the obtained speedups
are smaller. For the lifting and CDF-9/7 transforms they are
around 2 in most cases, but for Daub-4 the average speedup for
images larger than 256 256 is only 1.26. Again this should be
attributed to a memory bandwidth bottleneck.

D. Related Work

SIMD vectorization of the 2-D DWT has been considered in
[17]–[22]. Chaver et al. [17] used SSE and the CDF-9/7 filter.
They focused on automatic vectorization and did not consider
assembly-level programming. The Intel compiler, however,
can only vectorize simple loops, and therefore some manual
code modifications had to be performed. Furthermore, only
horizontal filtering could be automatically vectorized (they as-
sumed column-major order). They also combined aggregation
with a line-based approach for their SIMD implementation. In
[9] they have vectorized vertical filtering of CDF-9/7 by hand
using built-in SSE functions. In order to do so, however, an
additional data transposition stage was required, which reduces
the benefits of SIMD vectorization.

Kutil [22] has implemented the (9,7) lifting scheme using
built-in SSE functions. He proposed a single loop approach to
SIMD vectorization. In this approach horizontal and vertical fil-
tering are combined into a single loop. This is called line-based
computation in [18] and pipeline computation in [17], where it
has been used to vectorize the CDF-9/7 transform. The single-

loop approach requires a buffer whose size is equal to 16 rows
of data. If this buffer does not fit in the cache, the temporal lo-
cality will be reduced.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have focused on developing efficient imple-
mentations of the 2-D DWT on general-purpose, programmable
processors, in particular the Pentium 4. Our contributions can be
summarized as follows.

First, a simple and effective technique to improve the cache
locality of vertical filtering is loop interchange. We have
identified, however, that for certain image sizes the resulting
implementation suffers from a phenomenon known as 64K
aliasing. To avoid this problem, two techniques have been
applied: loop fission and offsetting. For image sizes that suffer
from 64K aliasing, loop fission provides a speedup that ranges
from 1.27 to 3.31, depending on the applied transform, while
offsetting achieves speedups between 1.41 and 4.20. Loop fis-
sion, however, incurs more loop overhead and, more seriously,
destroys the temporal locality between the low- and high-pass
values. Consequently, for image sizes that do not suffer from
64K aliasing it reduces performance by up to 20%. Because
offsetting does not destroy the temporal reuse, we conclude
that it is better than loop fission.

We have also shown that for certain image sizes, vertical
filtering (with interchanged loops) still generates many more
misses than horizontal filtering. On the P4, this happens in
particular for the CDF-9/7 transform. The reason is that the
filter length exceeds the number of cache ways. Because of this,
conflicts occur if the input coefficients needed to compute one
output coefficient map to the same cache set. To avoid these
conflicts two techniques have been applied: associativity-con-
scious loop fission (ACLF) and lookahead. For image sizes
that experience many cache conflict misses ACLF improves
performance by a factor that ranges from 1.59 to 1.80, while
the lookahead technique provides a speedup between 1.71 and
1.99. For other image sizes, both schemes generally decrease
performance slightly, due to the increased loop overhead.
Except for two image sizes, the lookahead technique performs
slightly better than ACLF, because it incurs less loop overhead.
Both schemes are general because they can also be applied to
other cache organizations and/or filter lengths. To show this,
results for the P3 and Opteron have also been presented.

To further enhance performance, the SIMD instructions
provided by most general-purpose, programmable processors
must be exploited. We have presented MMX implementa-
tions of the lifting transform and SSE implementations of the
convolutional transforms. While vertical filtering is relatively
straightforward to vectorize, horizontal filtering requires to
rearrange the elements (sub-words) within a register. Mainly
because of this overhead, the speedups obtained for horizontal
filtering are relatively small, ranging from 1.69 to 3.39 for
the lifting transform and from 1.10 to 1.79 for the convolu-
tional transforms. Because vertical filtering does not incur this
overhead, the speedups approach the ideal speedup of 4 when
most reads hit the L1 data cache. For larger images, however,
the obtained speedups are smaller, because the computation
becomes memory-bound. This is especially the case for Daub-4

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

SHAHBAHRAMI et al.: IMPLEMENTING THE 2-D WAVELET TRANSFORM 51

which has a smaller computation-to-communication ratio than
the other two transforms.

Amongst others, our work has shown that it is difficult to ob-
tain a single implementation of the 2-D DWT that works well for
all image sizes, because most techniques incur some overhead.
This indicates that in order to obtain the fastest implementation
of this important kernel, a parameterizable implementation is
needed that takes into account factors such as the cache organ-
ization of the target processor, the image size, the filter length,
etc. Specifically, focusing on the cache conflict problem, if the
cache organization, image size, and filter length are such that
the number of input blocks needed to compute one output block
exceeds the number of cache ways, then the lookahead tech-
nique should be applied. Otherwise, the reference implementa-
tion should be called.

We remark that the proposed methods can also be applied to
other kernels and applications. For example, the convolutional
methods are similar to Finite Impulse Response (FIR) filters and
the proposed methods can also be used for FIR applications.

As future work we consider investigating (micro-)architec-
tural techniques to accelerate horizontal filtering. This phase of
the 2-D DWT is difficult to vectorize efficiently because the el-
ements within a register need to be rearranged, incurring sub-
stantial overhead. Techniques we are considering include pro-
viding support for packed multiply-accumulate instructions for
floating-point values (MMX/SSE provides such instructions but
only for integer data) and the matrix register file (MRF) [23],
which is a (micro-)architectural technique to efficiently support
matrix transposition.

REFERENCES

[1] M. D. Adams and R. K. Ward, “JasPer: A portable flexible open-source
software tool kit for image coding/processing,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., May 2004, vol. 5, pp. 241–244.

[2] S. Chatterjee and C. D. Brooks, “Cache-efficient wavelet lifting in
JPEG 2000,” in Proc. IEEE Int. Conf. Multimedia, Aug. 2002, pp.
797–800.

[3] P. P. Dang and P. M. Chau, “Reduce complexity hardware implemen-
tation of discrete wavelet transform for JPEG 2000 standard,” in Proc.
IEEE Int. Conf. Multimedia Expo, Aug. 2002, pp. 321–324.

[4] M. Ferretti and D. Rizzo, “A parallel architecture for the 2-D discrete
wavelet transform with integer lifting scheme,” J. VLSI Signal Process.,
vol. 28, pp. 165–185, 2001.

[5] M. A. Trenas, J. Lopez, E. L. Zapata, and F. Arguello, “A memory
system supporting the efficient SIMD computation of the two dimen-
sional DWT,” in Proc. 1998 IEEE Int. Conf. Acoustics, Speech, Signal
Process., Seattle, WA, May 1998, vol. 3, pp. 1521–1524.

[6] A. Cohen, I. Daubechies, and J. C. F. Eauveau, “Biorthogonal bases of
compactly supported wavelets,” Commun. Pure Appl. Math., vol. 45,
no. 5, pp. 485–560, Jun. 1992.

[7] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Appl. Comput. Harmon. Anal., vol. 3, no. 2,
pp. 186–200, Apr. 1996.

[8] D. M. Adams and F. Kossentini, “Reversible integer-to-integer wavelet
transforms for image compression: Performance evaluation and anal-
ysis,” IEEE Trans. Image Process., vol. 9, pp. 1010–1024, Jun. 2000.

[9] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado, “Vector-
ization of the 2-D wavelet lifting transform using SIMD extensions,” in
Proc. 17th IEEE Int. Symp. Parallel Distributed Image Process. Mul-
timedia, 2003.

[10] The IA-32 Intel architecture software developer’s Manual Volume 3
system programming guide 2004.

[11] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Performance compar-
ison of SIMD implementations of the discrete wavelet transform,” in
Proc. 16th IEEE Int. Conf. Applicat.-Specific Syst. Architectures Pro-
cessors, Jul. 2005.

[12] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Improving the
memory behavior of vertical filtering in the discrete wavelet trans-
form,” in Proc. 3rd ACM Int. Conf. Comput. Frontiers, May 2007, pp.
253–260.

[13] IA-32 Intel architecture optimization 2004.
[14] Does Hyperthreading Technol. Speed Up VirtualDub, [Online]. Avail-

able: http://www.virtualdub.org/blog/pivot/entry.php?id=18
[15] A. A. Lopez-Estrada, Reduction of address aliasing Aug. 25, 2005, U.S.

Patent 20050188172.
[16] P. Meerwald, R. Norcen, and A. Uhl, “Cache issues with JPEG2000

wavelet lifting,” Proc. Visual Commun. Image Process., Jan. 2002.
[17] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado, “2-D

wavelet transform enhancement on general-purpose microprocessors:
Memory hierarchy and SIMD parallelism exploitation,” in Proc. Int.
Conf. High Performance Comput., Dec. 2002.

[18] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet
image compression,” IEEE Trans. Image Process., vol. 9, no. 3, pp.
378–389, Mar. 2000.

[19] H. Komi and A. Ortega, “Analysis of cache efficiency in 2-D wavelet
transform,” in Proc. IEEE Int. Conf. Multimedia Expo, 2001, pp.
465–468.

[20] Y. D. Lee, B. D. Choi, J. K. Cho, and S. J. Ko, “Cache management
for wavelet lifting in JPEG 2000 running on DSP,” Electron. Lett., vol.
40, no. 6, Mar. 2004.

[21] Y. Andreopoulos, K. Masselos, P. Schelkens, G. Lafruit, and J. Cor-
nelis, “Cache misses and energy-dissipation results for JPEG-2000 fil-
tering,” in Proc. 14th IEEE Int. Conf. Digital Signal Process., 2002,
pp. 201–209.

[22] R. Kutil, “A single-loop approach to SIMD parallelization of 2-D
wavelet lifting,” in Proc. 14th Euromicro Int. Conf. Parallel, Dis-
tributed, Netwrok-Based Process., Feb. 2007, pp. 413–420.

[23] A. Shahbahrami, B. Juurlink, D. Borodin, and S. Vassiliadis, “Avoiding
conversion and rearrangement overhead in SIMD architectures,” Int. J.
Parallel Progr., vol. 34, no. 3, pp. 237–260, Jun. 2007.

Asadollah Shahbahrami (S’04) received the M.Sc.
degree in computer engineering/machine intelli-
gence from Shiraz University, Shiraz, Iran, in 1996.
In January 2004, he joined the Faculty of Electrical
Engineering, Mathematics, and Computer Science
(EEMCS), Delft University of Technology, Delft,
The Netherlands, as a full-time Ph.D. student under
advisors Prof. Stamatis Vassiliadis and Dr. Ben
Juurlink.

He was a Member of Faculty Staff in electrical en-
gineering with the University of Guilan, Guilan, Iran,

from 1996 to 2003. His research interests include computer architecture, image
and video processing, multimedia instructions set design, and SIMD program-
ming.

Ben Juurlink (M’01–SM’04) received the M.S.
degree in computer science from Utrecht University,
Utrecht, The Netherlands, in 1992, and the Ph.D.
degree in computer science from Leiden University,
Leiden, The Netherlands, in 1997.

In 1998, he joined the Faculty of EEMCS, Delft
University of Technology, Delft, The Netherlands,
where he is currently an Associate Professor. His
research interests include instruction-level parallel
processors, application-specific ISA extensions, low
power techniques, and hierarchical memory systems.

Stamatis Vassiliadis (M’87–SM’ 92–F’97) was born
in Samos, Greece, in 1951.

He was a Chair Professor in the Faculty of
EEMCS, Delft University of Technology, Delft,
The Netherlands. He was previously with Cornell
University, Ithaca, NY, and the State University of
New York, Binghamton. He was also with IBM,
where he was involved in a number of advanced
research and development projects.

Dr. Vassiliadis received numerous awards for his
work, including 24 publication awards, 15 invention

awards, and an outstanding innovation award for engineering/scientific hard-
ware design. His 72 U.S. patents rank him as the top all-time IBM inventor. He
passed away in April 2007.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:28:54 UTC from IEEE Xplore. Restrictions apply.

