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Abstract—A method that exploits an information theoretic
framework to extract optimized audio features using video infor-
mation is presented. A simple measure of mutual information (MI)
between the resulting audio and video features allows the detection
of the active speaker among different candidates. This method
involves the optimization of an MI-based objective function.
No approximation is needed to solve this optimization problem,
neither for the estimation of the probability density functions
(pdfs) of the features, nor for the cost function itself. The pdfs
are estimated from the samples using a nonparametric approach.
The challenging optimization problem is solved using a global
method: the differential evolution algorithm. Two information
theoretic optimization criteria are compared and their ability to
extract audio features specific to speech production is discussed.
Using these specific audio features, candidate video features are
then classified as member of the “speaker” or “non-speaker”
class, resulting in a speaker detection scheme. As a result, our
method achieves a speaker detection rate of 100% on in-house test
sequences, and of 85% on most commonly used sequences.

Index Terms—Audio features, differential evolution, multi-
modal, mutual information, speaker detection, speech.

I. INTRODUCTION

WITH the increasing capabilities of modern computers,
both auditive and visual modalities of the speech signal

may be used to improve speaker detection, leading to major
improvements in the user-friendliness of man-machine interac-
tions. Just consider, for example, a video-conference system.
The most interactive current solution requires an audio engineer
and a cameraman so that the speaking person can be emphasized
both on audio and video. An intelligent system able to detect
the speaker on the basis of sound and image information could
focus a moving camera on him/her. Another possible applica-
tion would be multimedia indexing.

Among the different methods that exploit the information
contained in each modality, a few are performing the fusion di-
rectly at the feature level, though using such an approach, the
detection of the current speaker on an audiovisual sequence can
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be done with only a camera and a single microphone. Moreover,
it has been pointed out, in [1] and [2] for example, that such a
fusion can greatly help the classification task: the richer and the
more representative the features, the more efficient the classi-
fier.

Some audio-video feature fusion approaches try to directly
evaluate the synchronism of the two signals [3], [4], [5]. As sug-
gested in [4], the synchronism is here the perceptive effect of
the causal relationship between the two signals. Other methods
map first the features onto a subspace where this relationship
is enhanced and can therefore be estimated [2], [6], [7]. All
the approaches rely on explicit or implicit use of mutual infor-
mation (MI). An estimation of the features’ probability density
functions (pdfs) is therefore required. There are two main ap-
proaches that may be taken: either a parametric or a nonpara-
metric one. In the first case, the pdfs are assumed to follow a
parametric law. Most of the time, a Gaussian distribution is con-
sidered, which is not necessarily valid. Fisher in [2], as well as
Butz in [1] and [8], estimate the probability density functions di-
rectly from the available samples during the feature extraction
process through Parzen windowing [9].

The problem addressed in this paper is the detection of the
current speaker in a given video sequence with two or more can-
didates. To this end, audio features specific to speech production
are extracted using the information content of both the audio and
video signals. Taking a similar approach to Butz and Thiran in
[1] and [8], as well as Fisher et al. in [10] and [2], the problem
is cast in an information theoretic framework to optimize the
audio features with respect to the video features. The cost func-
tion to be optimized is therefore based on MI, which leads to a
highly nonlinear optimization problem. Moreover, an analytical
formulation of the gradient of the cost function is difficult to ob-
tain without any parametric approximation of the pdf. For this
reason, it is preferable to have a method which does not require
such an analytical form of the gradient (gradient-free method).
In [2], Fisher and Darell use a second order Taylor approxima-
tion of the MI and the Parzen estimator to cast the optimization
problem into a convex one and to derive a closed form of the
gradient. However, our purpose here is to avoid such an approx-
imation and to directly solve our optimization problem using
a suitable optimization method. It turns out that the best solu-
tion for solving the optimization problem is differential evolu-
tion [11], an evolutionary algorithm.

Once these specific audio features are obtained, the MI be-
tween them and the video features of candidate mouth regions
is used as a classifier to determine the class of the mouth region
(“speaker” or “non-speaker’).

1520-9210/$25.00 © 2008 IEEE
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The rest of this paper is organized as follows: first, the use of
information theory to extract optimized features for classifica-
tion problems is presented. Then, the chosen representation for
the video and audio signals is described. In the third section, the
information theoretic optimization approach is applied to ob-
tain audio features optimized for the specific classification task,
regardless the classifier. Different optimization criteria based
on MI are defined. The fourth section exposes the optimization
problem as well as optimization methods used to solve it. The
last part of the paper deals with the experiments and discusses
the different optimization criteria used in the feature extraction,
the ability of the method to produce audio features specific to
speech production, and finally, the performance of the method
as a speaker detector.

II. THEORETICAL FRAMEWORK

A. Information Theoretic Feature Extraction

In the present work, the detection of the current speaker in an
audio-visual sequence is viewed as a classification problem. In
this classification problem, is a binary random variable (r.v.)
defined on a sample space which models the membership to
the “speaker” or “non-speaker” class with respect to an audio-
visual source, modelled by a r.v. defined on another sample
space .

The goal in a classification process is obviously to minimize
the probability of assigning some measurements performed on
the original signal to the wrong class. That is, to minimize the
classification error probability . This error
probability depends of course on the classifier and on its ability
to deal with the particular problem, but it also depends on all the
processing steps leading from to (where is the estimated
class).

In the problem at hand, the bimodal source is not directly
accessible but yields two observed signals of different physical
nature: audio and video signals and . For each of these sig-
nals, the unimodal classification process leading from the mea-
surements - respectively - to an estimate - respectively

- of the class, can be described through a first order Markov
chain [Fig. 1(a)]. Two associated classification error probabil-
ities and can be
defined. They correspond to the probability of committing an
error when estimating (audio Markov chain), or (video
Markov chain), from , or . However, they are also con-
ditioned by the probability of committing an error when esti-
mating or from . These errors are referred to as the
estimation error probabilities and

. The estimation of one r.v. from another can be
understood as a feature extraction step where some specific in-
formation must be recovered from the initial r.v. Therefore, the
information theoretic framework for extracting features devel-
oped in [10] can be applied.

Using Fano’s inequality, it is possible to relate the probability
of each error to the conditional entropies or
[12]. For the audio Markov chain, this inequality is defined as

(1)

where and are the entropy of and the MI be-
tween the r.v.’s and , respectively, and is the cardi-
nality of . A similar relationship can be established for the
video Markov chain, resulting in a lower bound on .

The inequality (1) does not help us directly to minimize the
error probability . It does indicate however that an efficient
minimization of is conditioned by the minimization of
the right hand side of the inequality. The minimization of this
term leads to an optimal source estimate . Implicitly, the
processing steps leading to this optimal are taken into account,
as stated before. A similar reasoning can be followed for the
video Markov chain.

B. Extension of the Information Theoretic Feature Extraction
To the Multimodal Case

A possibility is to firstly obtain optimal estimates and .
Then a fusion at the decision or at the classification level can be
performed in order to get a unique estimate of the class from
both unimodal processes. However, such an approach would not
take advantage of the discriminant information offered by the
bimodal nature of the source . A better approach would be to
use an extension of the previously described unimodal feature
extraction framework to the multimodal case. Such an exten-
sion has been proposed by Butz et al. in [1] and applied more
particularly to image registration. A similar multimodal feature
extraction framework is used here. It is extended to speaker de-
tection and the various processing steps are fully justified.

As already stated, the original source is accessible only
through the measurements and . But, as mentioned in [2],
these two measurements are affected by independent inter-
ference sources and . A good estimate of the source
should include a feature extraction step which discards this
noisy information present in each modality and recovers the
information coming from the common source , thus shared by
both modalities. Obviously, such a goal can only be reached by
considering the two modalities jointly. Let and be r.v.’s
modelling such audio and video features that contain only the
information coming from the source . Since they specifically
describe this common source, they are related by their joint
pdf . Thus an estimate of the feature related to
one modality can be inferred from the other modality with
transition probability or . These transition
probabilities can be obtained by joint probability estimation
since and

, and if and are correctly estimated
the approximation
can be assumed. These considerations lead to the definition of
the classification problem with the two Markov chains shown
in Fig. 1(b). Notice that the source estimates associated to
each chain are indexed by AV or VA, to stress that they have
been obtained using information present in both modalities, in
contrast with the previous case [Fig. 1(a)].

Of course, the estimation error probabilities and and
their associated lower bounds are still defined according to in-
equality (1). However, since each estimation can be viewed as
a feature-extraction step where the estimate r.v. is a function
of the previous r.v., the data processing inequality for Markov
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Fig. 1. (a) Graphical representation of the audio and video Markov chains
(leading to ^O and ^O , respectively) modelling the two unimodal classifica-
tion processes associated to each modality. (b) Graphical representation of the
related Markov chains modelling the multimodal classification process.

chains can be used to weaken the bounds on the error proba-
bilities. Inequality (1) for the audio and video Markov chains
becomes

(2)

(3)

As previously stated, .
Therefore . Introducing
this approximation in (2) and (3), a joint lower bound can finally
be defined as follows:

(4)

Minimizing the lower bound on then amounts to maxi-
mizing the MI between the extracted features and corre-
sponding to each modality. The feature sets resulting from the
maximization of the MI involved in these equations are expected
to compactly describe the relationship between the two modali-
ties. The extraction stage therefore produces optimized features.

However, to get a source estimate with a probability of es-
timation error close to this bound, a suitable estimator must be
found. If and are correctly estimated, they compactly de-
scribe the source . For this last statement to be true, not only the
MI between features extracted from each modality
must be increased, but also the conditional entropies
and must be minimized. Indeed, if the entropies in-
crease, they reduce the inter-feature dependencies. Dividing (4)
by the joint entropy , a feature efficiency coefficient
[1] can be defined as

(5)

This coefficient defines our estimator. Since
, maximizing still

minimizes the lower bound on the error probability defined in
(4) while constraining inter-feature independencies. In other
words, the extracted features and will tend to capture
just the information related to the common origin of and ,
while discarding the unrelated interferences coming from
and : they estimate the source .

C. Classifier Definition

Applying this framework to extract features, the estimation
error probability comes closer to its minimum. However, the
classification error probability must still be minimized: this
depends on the choice of a suitable classifier. Previous works in
the domain have shown that measuring the synchrony between
the audio and video measurements is a good way of classifying
them as originating from an audio-visual source or not [4]–[6].
In [4] in particular, the authors interpret synchrony as the degree
of between audio and video signals. MI also shows good per-
formance in detecting synchronized audio-video sources such
as speakers [2]–[4]. Moreover, the feature optimization pre-pro-
cessing also indicates the MI-based classifier as a good choice.
For these reasons, the chosen classifier consists in the evaluation
of the MI between candidate audio and video features. The fea-
tures that exhibit the largest MI are classified as “speaker”, while
the other ones are labelled as “non-speaker”, only one “speaker”
class label being authorized per estimation.

Notice that such a classifier has also the advantage of fusing
the information at the classification level in a straightforward
way, resulting in a unique class estimate .

III. SIGNAL REPRESENTATION

A. Video Representation

When applying this feature extraction framework in the con-
text of speaker detection, the first decision to be made is in the
choice of signal representation.

Physiologic evidences point out the motion in the mouth re-
gion as a visual evidence for speech. Therefore, the chosen video
features are the estimates of the optical flow in the mouth region.
In order to have a local pixel-based representation of these video
features, the Horn and Schunck’s gradient-based algorithm [13]
has been chosen. The method is implemented in a two-frame
simple forward difference scheme so that the temporal resolu-
tion is large enough to capture complex and quickly varying
mouth motions. First, a median pre-filtering is used on the raw
intensity images to reduce the noise level. The optical flow is
computed between each two consecutive frames over a region
of pixels including the lips and the chin of each can-
didate. These regions are referred to as mouth regions and are
estimated over the sequence either from a manual extraction on
the first frame, or using a face detector such as the one described
in [14]. In order to get reliable pdf estimates without using a very
large sample, only the magnitude of the optical flow and the sign
of the vertical component are kept, so that the video features are
one-dimensional (1-D).

Speakers are observed over a window of frames. Therefore,
a sample of the 1-D r.v. comprises ob-
servations which are the optical flow
norm values at each spatio-temporal point. These values are nor-
malized for the subsequent optimization (see [15] for details).
This approach implicitly considers the observations to be inde-
pendent, which is obviously a simplification of the real world.
Indeed, the neighboring pixels are correlated and cannot be truly
independent. This simplification is somewhat mitigated by es-
timating the pdf with the Parzen window approach [9], as we
shall see later.
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B. Audio Representation

The audio signal also needs to be represented in a tractable
way. This representation should describe salient aspects of the
speech signal, while being robust to variations in speaker or
acquisition conditions. Mel-cepstrum analysis is one of the
methods that fits best these requirements and as such, is widely
used in speech-processing research [16], [17]. Accordingly, the
speech signal is represented as a set of vectors, each
containing mel-cepstrum coefficients with

(the first coefficient has been discarded as
it pertains to the energy). Notice that the mel-cepstrogram is
downsampled to the video feature frame rate to get synchro-
nized audio and video representations.

IV. EXTRACTION OF OPTIMIZED SPEECH AUDIO FEATURES

A. Audio Feature Optimization

In principle, the information theoretic feature extraction
discussed in Section II can now be used for audio and video
features and . However, the audio representation is

-dimensional thus large samples are required for a correct pdf
estimation. The feature extraction framework is then applied
so as to decrease the dimensionality of the audio representa-
tion while keeping and emphasizing the information related
to the video content. Consequently, the 1-D audio features

composing the sample of the r.v. , are
built as the following linear combination of the Mel-fre-
quency cepstral coefficients (MFCCs):

(6)

where the weights are chosen such that
and . Thus, the -dimensional
audio observations reduces to 1-D observations .
The minimization of the estimation error given by (4) will lead
to the optimized vector . This optimization therefore requires
the availability of the joint probability density function as well
as of the marginal densities of the r.v. and . Since the
audio features are unknown before the optimization, their dis-
tribution is obviously unknown too. To avoid any restrictive as-
sumption, the pdfs are estimated using the nonparametric Parzen
windowing approach

(7)

where is a kernel function whose variance is controlled by
the parameter is the sample size, and an observation
of the r.v. . A 2-D Gaussian kernel of
mean and diagonal covariance matrix ;
is chosen in our case for its widespread validity. The variances

and are estimated from the audio and video data respec-
tively, in a robust way, as described in [18]

(8)

where denotes the median of the data points. Since the video
data remain the same during the optimization of the audio data,

the value for remains constant for a given set of video fea-
tures, while adapts itself to the audio features during the op-
timization process.

Using the Parzen window to estimate the densities in a non-
parametric way yields a better estimate than histogram-based
approaches, given the small size of the available samples (
for the random variable associated with the audio features).

B. Optimization Criteria

As discussed in Section II, minimizing the estimation error
probability is equivalent to maximizing the efficiency coeffi-
cient considering the audio and video features over a mouth
region. The set of weights to be optimized with respect to the
efficiency coefficient criterion (ECC) are defined as

(9)

Note that in our case, the normalization term for the MI involves
only the audio feature entropy since the video features remain
constant during the optimization process.

To verify the necessity of normalizing the MI by the entropy
during the optimization, ECC will be compared with a “simple”
mutual information criterion (MIC). The set of weights to be
optimized is then defined as

(10)

Finally, a more constraining criterion is introduced, which takes
into account a pair of mouth regions. This criterion, referred to
as , is the squared difference between the efficiency co-
efficient computed in each mouth region (referred to as
and ). This way, the differences between the marginal den-
sities of the video features in each region are taken into account.
Moreover, only one optimization is performed for two mouths.
If and denote the random variables associated to re-
gions and respectively, then the optimization problem
becomes

(11)

V. OPTIMIZATION METHOD

A. Definition of the Optimization Problem

The extraction of optimized audio features with respect to
our classification task requires finding the real-valued vector

, that minimizes the chosen cost function . This
function is defined as the negative value of one of the opti-
mization criteria defined in (9), (10), or (11). Moreover, to re-
strain the set of possible solutions, the weighting coefficients

must fulfill the following conditions:

(12)

(13)

This optimization problem is highly nonlinear and gradient-free.
Indeed, an analytical formulation of the gradient of the cost
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function is difficult to obtain due to the unknown form of the pdf
of the extracted audio features. In [2], Fisher and Darell use a
second order Taylor approximation of the MI and the Parzen es-
timator to cast the optimization problem into a convex one and to
derive the gradient in an analytical way. However, our purpose
here is to avoid such an approximation and to directly solve our
optimization problem using a proper optimization method.

Optimization methods can be classified as either local or
global. The first category includes steepest gradient descent
and gradient descent-based methods such as the Powell’s
direction set method. They mainly rely on the use of an exact
or estimated formulation of the gradient of the cost function
to find an optimum. They present the advantage of being fast
and easy to use but are very likely to fail to reach the global
optimum of the cost function if the latter is not convex.

The second category refers to algorithms which aim at finding
the globally best solution, in the possible presence of multiple
local minima. We find in this category stochastic and heuristic
methods such as simulated annealing (SA) [19], Tabu Search
(TS) [20], or evolutionary algorithms (EAs). These have proven
their ability to approach the global optimum of highly nonlinear
problems, possibly at a high computational cost. Both SA and
TS are more dedicated to solve combinatorial problems. EAs,
which include genetic algorithms (GAs), look more suitable for
our problem. Such optimization procedures, first introduced by
Holland in 1962 [21], are based on natural evolution principles:
starting from an initial candidate population of chromosomes
(or sets of parameters to be optimized), operators mimicking
the biological ones of crossover and mutation are used to select
and reproduce fittest solutions, the fitness of a solution being
given by a scoring function. Basically, mutation enables the al-
gorithm to explore new regions of the search space by randomly
altering some or all genes (components) of some chromosomes
in the population. On the other hand, crossover reinforce prior
successes by recombining parent-chromosomes so as to produce
the fittest offspring.

Although the underlying principles are relatively simple, EAs
algorithms have proven to be robust and powerful search tools,
owing to their remarkable flexibility and adaptability to a given
task [22]. As a matter of fact, their tuning relies on a proper se-
lection values for only a few parameters which make them very
attractive and easy-to-use. Furthermore, EAs do not try to pro-
vide an exact match but an approximation of the optimal solu-
tion within an acceptable tolerance, which improve their effec-
tiveness.

B. Multi-Resolution Approach

Whatever the optimization method, a pre-processing of the
cost function can be introduced to improve the efficiency of
the optimization. Indeed, the MI-based cost functions are a
priori nonconvex and are very likely to present rugged surfaces.
To limit the risk of getting trapped in a local minimum, it is
common to smooth the cost function. A trade-off has to be
found however between smoothness and loss of information
so there is still no guarantee of finding the global optimum.
The cost functions require the estimation of the pdfs: using the
nonparametric Parzen windowing approach, fine estimates of

the distributions are obtained with a small number of observa-
tions, but also the cost functions are smoother than what could
be expected with histograms. The smoothness of the density
estimates and thus the smoothness of the cost functions is
controlled by the parameter (see Section IV). This parameter
must therefore be carefully chosen: if it is too small, the cost
functions are likely to be highly irregular, with a negative
impact on the optimization algorithm. On the other hand, if it is
too large, the loss of information and in particular, the loss of
discrimination between the densities can be dramatic and may
lead to a wrong solution. The smoothing parameter defined in
(8) is a function of the data points . Therefore it varies during
the optimization process as the audio feature data points vary.
These audio feature data points tend to evolve so that their
distribution tends away from a uniform distribution. Indeed, the
optimization process looks for features which maximize the MI,
while possibly minimizing the joint entropy between the audio
and video features, and the entropy is maximal for r.v. with
uniform density. Roughly speaking, the smoothing parameter
evolves as follows: at the beginning of the optimization, the
audio features are scattered in the space and the smoothing
parameter is thus large: the pdf, thus implicitly the objective
function, is largely smoothed. Then, as the optimization pro-
ceeds, the distribution of the data points tend to concentrate
in the sample space and the smoothing parameter decreases:
fine structures of the pdf, thus of the objective function, ap-
pear. The use of an adaptive smoothing parameter as defined
by (8) induces then a multi-resolution approach for solving
the optimization problem. Multi-resolution schemes have been
shown to perform better in the context of optimization problems
involving MI, notably, in image registration problems (see, for
example, [23]).

C. Local Optimization: Powell’s Direction Set Method

In a first set of experiments, the deterministic Powell’s di-
rection set method [24] has been used. This local optimization
method is well-suited for problems where no analytical formu-
lation of the gradient is available. It presents the advantage of
being fast and easy to use, but, as a local optimization method,
it is very likely to fail to reach the global optimum of a non-
convex cost function.

Combining both smoothing and different initial guesses of
the solution, good results have been obtained, showing that the
proposed approach was able to extract audio features specific to
speech production and to detect the current speaking mouth in
simple audio-video sequences [25].

However, the solutions found by this method were strongly
dependent on the initial conditions, a sign that the cost func-
tion still exhibited too many local optima. To ensure that the
global optimum is reached, an exhaustive trial of all initial points
should be performed; an approach which is, obviously, unfea-
sible. Consequently, a global optimization strategy turned out
to be preferable. Moreover, to be efficient, this global optimiza-
tion method should fulfill the following requirements.

1) Efficiency for highly nonlinear problems without requiring
the cost function to be differentiable or even continuous
over the search space.
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2) Efficiency with cost functions that present a shallow, rough
error surface.

3) Ability to deal with real-valued parameters.
4) Ability to handle the two constraints defined by (12) and

(13) in the most efficient way.

D. Differential Evolution (DE)

As previously discussed, evolutionary approaches such as
GAs present flexibility and simplicity of use in a challenging
context and look therefore suitable to solve the problem at hand.

In order to deal with the four requirements expressed above,
the adaptation of the genetic algorithm in the continuous space
(GACS) developed in [26] and [27], was firstly used as a global
optimization approach. The GACS, first described in [28], is an
extension of the original GA scheme which uses real valued pa-
rameter vectors instead of bit strings for chromosomes. Thus,
the proximity between two points in both the representation and
the problem spaces is retained and the third requirement is ful-
filled. The adaptation of GACS used speeds up the convergence
of the algorithm by requiring the solution domain, or acceptance
domain [ for each in our case, as indicated by (12)], to
be convex. It also relates the genetic operators to the constraints
on the solution parameters.

Though better than with Powell, the results can still be
improved. A loss of population diversity was observed which
caused a notable difference between optima reached from one
run to another (premature convergence of the algorithm) due to
the difficulty of fixing the parameters as well as the difficulty
of reaching a solution when this one was located close to the
boundaries of the search space.

The choice of an evolutionary strategy (ES) seemed suitable
to alleviate the limits of GACS. As EAs, this kind of approaches
first developed by Rechenberg [29] and Schwefel [30], presents
the same advantages as GACS and operates according to
the same general scenario. But a strategy to exploit the local
topology of the search space is considered. Usually, this consists
of generating the variance of the perturbation distribution using
another a priori defined distribution. However, the problem of
choosing the right distribution as well as the right variance for
this new distribution still remains to be solved.

The differential evolution (DE) approach introduced in 1997
by Storn and Price [11] belongs to this category of EAs. How-
ever, rather than applying a perturbation generated by an a priori
defined distribution, the perturbation in DE corresponds to the
difference of chromosomes (termed vectors in this context) ran-
domly selected from the population. In this way, the distribution
of the perturbation is determined by the distribution of the vec-
tors themselves and no a priori defined distribution is required.
Since this distribution depends primarily on the response of the
population vectors to the topography of the cost function, the
biases introduced by DE in the random walk towards the solu-
tion match those implicit in the function it is optimizing [31]. In
other words, the requirement for an efficient mutation scheme is
more closely met: the generated increments move the existing
vectors with both suitable displacement magnitude and direc-
tion for the given generation.

The exact algorithm used is based on the so-called
DE/rand/1/bin algorithm [31]. An initial population of

vectors is first generated to lie within the convex acceptance
domain, as in the case of GACS optimization, by dividing
the search space in predefined quantization levels [32]. A
perturbed vector is then generated as a
counterpart for each vector of the current population ,
where refers to the current generation. This perturbed vector,
or child vector, results form the linear combination of three
parent vectors randomly picked up from
the population with (these conditions
ensure the DE mutation to be effective and not to simplify
towards a classical crossover scheme [31])

(14)

where is a scaling factor taking value on . A user-defined
crossover probability controls the number of child vector
element indices subject to perturbation: random numbers
belonging to are generated (i.e., one for each element of
the vector under consideration); each time one of these random
number is smaller than the corresponding vector element
index is subject to a perturbation. Thereafter, the child vector
differs from its parent by at least one element and at
most, by all of its elements .

Both the perturbed and the original populations are evaluated
by the cost function and pair competitions are performed be-
tween child and parent vectors (so the population size remains
constant). At the end of one iteration, a new population eventu-
ally emerges, composed by the winners of each local competi-
tion.

The constraints defined in (12) and (13) still hold. Therefore,
the validity of each vector of the perturbed, or child, population
should be verified before starting the decision process. If the el-
ement of a child vector does not belong to the acceptance do-
main, it is replaced by the mean between its pre-mutation value
and the bound that is violated [31]. This scheme is more effi-
cient than the simple rejection adopted with GACS. Indeed, it
allows the bounds to be asymptotically approached, thus cov-
ering efficiently the whole search space. To handle the second
constraint ((13)), a simple normalization is performed on each
child vector, as it was done with GACS.

A good introduction to DE as well as some rules to tune the
parameters in an adequate way can be found in [33] and [31].

Both the generation of the perturbation increment using the
population itself instead of a predefined probability density
function and the handling of the out-of-range values allow
the DE algorithm to achieve outstanding performance in the
context of our problem.

VI. AUDIOVISUAL SPEAKER DETECTION RESULTS

A. Experimental Protocol

Two different sets of test sequences have been used. The first
set of sequences is part of an in-house data set containing five
audio-video sequences of duration 4 s (labelled ),
each shot in PAL format (25 frames/second (fps), 44.1-kHz
stereo sound). In each sequence, two individuals are present,
only one of them speaks during the entire sequence. Notice
however that both are referred to as “speakers”, since either



BESSON et al.: EXTRACTION OF AUDIO FEATURES SPECIFIC TO SPEECH PRODUCTION 69

Fig. 2. Typical frame extracted from the in-house test sequences. White rect-
angles delimits the extracted mouth regions. (a) Frame extracted from sequence
5. (b) Frame extracted from the third sequence.

one of them may have uttered the recorded audio. These se-
quences are of increasing complexity, the fifth being the most
challenging with the nonspeaking individual moving randomly
his head and lips. Frames extracted from two sequences are
shown as an example in Fig. 2. These sequences, shot under
controlled conditions, are used to test the theoretical points
developed in this paper. For that purpose, the mouth regions are
extracted based on manual localization initialized on the first
frame. The duration of the sequences allows us to obtain a data
sample set large enough to correctly estimate the pdfs. It also
allows the speakers to remain still enough for the initial mouth
localization to be valid throughout the sequence.

The second set of sequences is part of the CUAVE database
[34]. The 11 two-speaker sequences considered, g11 to g22,1

are shot in the NTSC standard (29.97 fps, 44.1 kHz stereo
sound). On these sequences each speaker utters in turn two
series of digits. The final seconds of the video clips, where
both speakers read simultaneously different digit strings, have
not been used since signal separation is not in our goal. The
first seconds present challenging properties, making the detec-
tion task difficult: in some sequences the nonspeaking person
moves his lips and chin, sometimes even formulating the words
without sounding them. A tradeoff has to be found between
the sample size required for correctly estimating the pdf, and a
detection window offering enough flexibility to correctly deal
with the speaker changes. Thus, the optimization is done over
a temporal window, shifted in one second steps over the
whole sequence to make decisions once per second. The mouth
regions are tracked along the sequence using the face detector
described in [14].

For both sequence sets, the mouth regions are ex-
tracted, with and varying between 22 and 57 pixels, de-
pending on speakers’ characteristics and acquisition conditions.
Thus the video feature set (video sample) is composed of the

values of the optical flow norm at each pixel
location (T being the number of video frames within the anal-
ysis window, i.e., or frames).

From the audio signal, mel-cepstrum coefficients are
computed using 30 ms Hamming windows [16], [17].

Considering each mouth region and its associated video
features, the MFCCs are projected on a new 1-D subspace
as defined in Section IV. As a result of the optimization, two
sets of weights are obtained (one for each mouth region).

1g18 has been discarded as it exhibits strong noise due to the compression.

They give the optimal linear combination of mel-cepstrum
coefficients with respect to the optimization criterion (either
ECC or MIC). Let us denote them and , where the
indices and indicate whether these weights result from
the optimization performed on the first or second mouth region.
Two corresponding audio feature sets derive from these weight
sets: and .

Two pairs of MI values can then be evaluated between the
audio features and the video features in each mouth region. If

denotes the video features of the first mouth region and
those of the second, the two pairs of MI are given by

(15)

(16)

First, a comparison of both MIC and ECC criteria is per-
formed on the in-house sequences. As a result, ECC turned out
to be indeed more discriminative than MIC. Therefore, ECC
alone is then used on the same sequences to analyze the ability
of the method to extract audio features specific to speech pro-
duction and to perform speaker detection. Finally, the discussion
of the results leads to the definition of a more efficient criterion

given by (11) whose performance on both sequence sets
are presented and discussed in Section VI-D.

B. Comparison of Optimization Criteria MIC and ECC

The initial hypothesis is that ECC is more effective than the
simpler MIC. The first set of experiments, carried out on the
in-house sequence set, aims at testing this hypothesis. There-
fore, the knowledge of the active mouth region is introduced
a priori so that the optimization is only performed on this re-
gion, with each of the optimization criteria successively. Using
the resulting audio feature sets, the difference of MI between
the speaking mouth region and the nonspeaking one, normal-
ized by the speaking mouth region MI (i.e., the normalized dif-
ference of MI), is measured for each of the five test sequences.
Table I presents the results ( and refer to the nor-
malized difference of MI measured between the speaking and
the nonspeaking mouth regions when using optimization cri-
terion MIC and ECC, respectively). Two observations can be
made from these results. Firstly, the MI is always greater in the
active mouth region, regardless the optimization criterion used,
confirming that our scheme permits the detection of the current
speaker. Secondly, we see that in four cases out of five, the ECC
criterion leads to larger difference between MI in the two re-
gions. This indicates that the use of the ECC criterion gives rise
to more discriminative features. Consequently, normalizing the
MI by the entropy during the optimization allows to extract more
specific information than using simply the MI alone, as stated
in Section IV.

C. Performance Using ECC

From the first set of experiments, we may conclude that ECC
is more suitable as an optimization criterion for active speaker
detection. This is why in the following we will focus only on its
use and analyze its properties in detail. The purpose of the exper-
iments described here is to assess the ability of our algorithm to
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TABLE I
NORMALIZED DIFFERENCE OF MI MEASURED IN EACH MOUTH REGION

FOR EACH OF THE FIVE IN-HOUSE TEST SEQUENCES, CONSIDERING THE

AUDIO FEATURES EXTRACTED WITH OPTIMIZATION CRITERION MIC OR ECC,
ON THE SPEAKING MOUTH REGION

extract audio features specific to speech production and to per-
form speaker detection. The tests are carried out on the in-house
sequences.

The capacity of the proposed method to act as a speaker de-
tector is shown first. In contrast to the experiments described in
Section VI-B, no a priori knowledge of the active speaker is as-
sumed. Then the technique described in Section VI-A is applied.
Recall that the optimization is performed on each of the mouth
regions ( and ) and the MI between two pairs of audio
and video features is measured as stated by (15) and (16). If the
approach is correct, the highest MI value should be measured
between the video features of the speaking mouth and the audio
features resulting from the optimization on the active speaker.
The values of MI are plotted in Fig. 3. We note that for all se-
quences (including the challenging sequence 5), the MI mea-
sured on mouth with optimized on this same region is
always strikingly greater than all the other 3. Indeed, in all these
sequences, is the speaking mouth, which gives 100% cor-
rect detections, a rather encouraging result.

Another issue that it is necessary to investigate is whether the
features extracted from audio are specific to speech production.
For this, the difference between the normalized MI computed
on mouth regions and the corresponding audio is measured as
follows:

(17)

(18)

where .
The results are listed in Table II. It can be seen that

and for all the sequences. But is some-
times negative. In other words, when the audio features are ob-
tained on the nonspeaking mouth region, the difference of MI is
sometimes favoring the nonspeaking mouth (sequences 2, 4, and
5). So when optimizing on the nonspeaking region, the features
extracted cannot (and are not expected to) reflect any underlying
relationship between audio and video. This result also appears
in Fig. 3, since the MI measured between and is al-
ways smaller than the one measured between and .
Therefore, the audio features can be said to be specific to speech
production.

D. Results Obtained With on the In-House Data Set

Two optimizations were performed previously to decide who
is the current speaker. They are now combined in a single op-
timization problem, which aims at maximizing the discrepancy
between the two mouth regions. For this, the , given by
(11), is used. The result of the optimization is a vector
which generates a single audio feature vector. The latter is ex-
pected to maximize thereafter the MI with the video features of
the active mouth region. This new detection approach has firstly
been tested on the five in-house test sequences. Results are sum-
marized in Table III. The normalized difference of MI is always
in favor of the active speaker, i.e., the correct speaking mouth
region is always indicated. It is also interesting to note that the
difference of MI here is greater than what was obtained with the
previous ECC optimization scheme (Table I). This stresses the
benefit of using the video content related to each mouth region
during the optimization.

E. Results Obtained with on the CUAVE Database

To validate the results obtained with this simple detection
scheme using , experiments on the CUAVE database
have been performed. Recall that a two second analysis window
is shifted in one second steps over a given sequence. Due to
the resulting overlap between the windows, the evaluation is re-
stricted to the second half of each detection window, except for
the very first window one. The results are then evaluated based
on the experimental framework described in [35]: the ground
truth for the evaluation window takes the label that mainly oc-
curs over these 30 frames (speaker 1 or speaker 2). Since our
detector is not tuned to detect a silent state, the silent frames are
not considered. The results are listed in Table IV. As a compar-
ison, the average rate of correct detections over the 11 sequences
when using a simple motion-based detector (the highest power
value of the video features indicating the speaking mouth) is
60%. These results indicate that the use of both audio and video
information significantly improves the detection.

It is interesting to compare these results to those presented by
Nock et al. in [3]. They compute the MI at each pixel location,
considering the difference of pixel intensity as video features,
and MFCCs as audio features. In a first stage, the highest total
MI value in the left and right of the image is assumed to in-
dicate the current speaker (76% of correct detections in such a
scheme). In a second experiment, the highest concentration of
MI value in a region indicates the speaking mouth. It is
classified as correct if this region falls within a pixels
square centered around the true speaking mouth ( being equal
to 200). They obtain 70% of correct detection with this detec-
tion scheme, which is the most directly comparable to ours since
we also limit the MI measure to mouth regions. Our results are
significantly better, thus the optimization of the audio features
as presented in this work leads to better classification results.
A comparative study of the classification results obtained with
and without introducing the feature extraction step prior to the
classification has been performed in [36]. As a result, the per-
formance of the classification process is increased when audio
features at the input of the classifier are an optimized linear
combination of MFCCs instead of a simple average of the same
MFCCs.
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Fig. 3. MI measured between the M or M mouth region features and the audio featuresF and F obtained with optimization on mouth region M
or M [(15) and (16)] for the five in-house sequences. The normalized difference of MI between the best value found and the corresponding value found in the
opposite mouth is indicated.

TABLE II
NORMALIZED DIFFERENCE OF MI MEASURED BETWEEN THE M AND M

MOUTH REGIONS WITH THE AUDIO FEATURES OBTAINED WITH OPTIMIZATION

ON MOUTH REGIONS M (I ) AND M (I ). THE OPTIMIZATION

CRITERION USED IN BOTH CASE IS ECC

TABLE III
NORMALIZED DIFFERENCE OF MI MEASURED BETWEEN THE SPEAKING

AND THE NONSPEAKING MOUTH REGIONS WITH THE AUDIO FEATURES

OBTAINED USING �ECC AS COST FUNCTION (TESTS PERFORMED

ON THE IN-HOUSE DATABASE)

TABLE IV
RESULTS ON THE CUAVE SEQUENCES, USING THE EVALUATION FRAMEWORK

GIVEN IN [35] WITH EVALUATION ON THE LAST SECOND OF EACH DETECTION

WINDOW (SILENT WINDOWS ARE NOT CONSIDERED)

VII. CONCLUSION

We have presented a method that exploits the common
content of speech audio and video signals to detect the active
speaker among different candidates. This method uses the
information theoretic framework in a similar way to that in [1]
and [2] to derive optimized audio features with respect to the
video ones. No assumption is made about the distributions of
the features. They are rather estimated from the samples. More-
over, no approximation of the MI-based cost functions is used
but the optimization is performed in a straightforward manner
using a global method, the Differential Evolution algorithm.

A study of two optimization criteria that can be used in this
information theoretic framework has been carried out. Results
shown that the best performing criterion (namely, ECC) is
able to extract audio features that are specifically related to the
speaker video features. Using only these extracted features, the
algorithm performs detection of the current speaker with 100%
correct detection on five in-house test sequences.

In order to optimize the detection in the case of two-people
sequences, a third optimization criterion has been in-
troduced and tested on the same sequence set as before as well as
on the more widely used CUAVE database [34]. This criterion
aims at simplifying the detection scheme, as well as improving
the audio feature specificity by taking advantage of the video
information related to both mouth regions. Indeed, the resulting
audio features have been shown to be even more specific than
with the previous optimization criterion. A number of exper-
iments have therefore been carried out on 11 sequences of the
CUAVE database to assess and compare the performance of this

-based detection method to the results presented in [3].
In the latter, MFCCs are used as audio features, without any op-
timization. The better results achieved by our method show that
optimizing the features improves the classifier performance.
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Only two potential speakers are present in these test se-
quences but the method can easily be extended to sequences
containing more speaker candidates using ECC as the opti-
mization criterion. These speakers should remain face on to the
camera. However, it is not a problem if they move, provided the
mouth detector is able to deal with moving faces. In its actual
form, the computation time does not allow the algorithm to be
used in real-time applications. An example application would
be multimedia indexing.

Future work aims at extending this optimization process to
the video features, and introducing a silent state detection.

ACKNOWLEDGMENT

The authors would like to thank Prof. P. Vandergheynst, Prof.
P. Frossard, Prof. A.C. Davison, Dr. T. Butz, Dr. X. Bresson, G.
Monaci, and P. Berlin for fruitful discussions.

REFERENCES

[1] T. Butz and J.-P. Thiran, “From error probability to information the-
oretic (multi-modal) signal processing,” Signal Process., vol. 85, pp.
875–902, 2005.

[2] J. W. Fisher and T. Darrell, “Speaker association with signal-level au-
diovisual fusion,” IEEE Trans. Multimedia, vol. 6, no. 3, pp. 406–413,
Jun. 2004.

[3] H. J. Nock, G. lyengar, and C. Neti, “Speaker localisation using audio-
visual synchrony: An empirical study,” in Proc. Int. Conf. Image and
Video Retrieval (CIVR), Urbana, IL, Jul. 2003, pp. 488–499.

[4] J. Hershey and J. Movellan, “Audio-vision: Using audio-visual syn-
chrony to locate sounds,” in Proc. NIPS, Denver, CO, 1999, vol. 12,
pp. 813–819.

[5] G. Monaci, O. D. Escoda, and P. Vandergheynst, “Analysis of mul-
timodal signals using redundant representations,” in Proc. IEEE Int.
Conf. Image Processing (ICIP’05), Geneva, Italy, Sep. 2005, pp.
814–820.

[6] M. Slaney and M. Covell, “FaceSync: A linear operator for measuring
synchronisation of video facial images and audio tracks,” in Proc.
NIPS, 2001, vol. 13.

[7] P. Smaragdis and M. Casey, “Audio/visual independent components,”
in Proc. ICA, Nara, Japan, Apr. 2003, pp. 709–714.

[8] T. Butz and J.-P. Thiran, “Feature space mutual information in speech-
video sequences,” in Proc. ICME, Lausanne, Switzerland, 2002, vol. 2,
pp. 361–364.

[9] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Mathemat. Statist., vol. 33, pp. 1065–1076, 1962.

[10] J. W. Fisher and J. C. Principe, “A methodology for information the-
oretic feature extraction,” in Proc. Int. Joint Conf. Neural Networks,
Anchorage, AK, May 1998, vol. 3, pp. 1712–1716, ser. IEEE World
Congress on Computational Intelligence.

[11] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” J.
Global Optimiz., vol. 11, pp. 341–359, 1997.

[12] T. M. Cover and J. A. Thomas, , D. L. Schilling, Ed., Elements of In-
formation Theory. New York: Wiley, 1991.

[13] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif.
Intell., vol. 17, pp. 185–203, 1981.

[14] J. Meynet, V. Popovici, and J.-P. Thiran, Face Detection with Mixtures
of Boosted Discriminant Features, EPFL, 1015 Ecublens, Tech. Rep.
2005-35, Nov. 2005.

[15] P. Besson and M. Kunt, Information theoretic optimization of audio
features for multimodal speaker detection, Ecole Polytechnique Fed-
erale de Lausanne (EPFL), Lausanne, Switzerland, EPFL-ITS Tech.
Rep. 08/2005, Feb. 2005.

[16] B. Gold and N. Morgan, Speech and Audio Signal Processing. New
York: Wiley, 2000.

[17] J. W. Picone, “Signal modeling techniques in speech recognition,” in
Proceedings of the IEEE, Sept. 1993, vol. 81, no. 9.

[18] A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for
Data Analysis. New York: Oxford University Press, 1997.

[19] S. Kirkpatrick, C. D. Gelatt, and J. M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[20] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Comput. and Oper. Res., vol. 13, no. 5, pp. 533–549,
1986.

[21] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor: Univ. of Michigan Press, 1975.

[22] T. Spalek, P. Pietrzyk, and Z. Sojka, “Application of the genetic algo-
rithm joint with the Powell method to nonlinear least-squares fitting of
powder EPR spectra,” J. Chem. Inf. Model., vol. 45, pp. 18–29, 2005.

[23] A. A. Cole-Rhodes, K. L. Johnson, J. LeMoigne, and I. Zavorin, “Mul-
tiresolution registration of remote sensing imagery by optimization of
mutual information using a stochastic gradient,” IEEE Trans. Image
Process., vol. 12, no. 12, pp. 1495–1511, Dec. 2003.

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, 2nd ed. Cambridge, U.K.: Cambridge Uni-
versity Press, 1992.

[25] P. Besson, M. Kunt, T. Butz, and J.-P. Thiran, “A multimodal approach
to extract optimized audio features for speaker detection,” in Proc. Eu-
ropean Signal Processing Conf. (EUSIPCO), Antalya, Turkey, Sep.
2005.

[26] P. Schroeter, J.-M. Vesin, T. Langenberger, and R. Meuli, “Robust pa-
rameter estimation of intensity distributions for brain magnetic reso-
nance images,” IEEE Trans. Med. Imag., vol. 17, no. 2, pp. 172–186,
Apr. 1998.

[27] V. Vaerman, “Multi-dimensional object modeling with application to
medical image coding,” Ph.D. dissertation, Ecole Polytechnique Fed-
erale de Lausanne (EPFL), Lausanne, Switzerland, 1999.

[28] X. Qi and F. Palmieri, “Theoretical analysis of evolutionary algorithms
with an infinite population size in continuous space, Part I: Basic prop-
erties of selection and mutation. Part II: Analysis of the diversification
role of the crossover,” IEEE Trans. Neural Netw., vol. 5, no. 1, pp.
102–129, Jan. 1994.

[29] I. Rechenberg, Evolutionsstrategie - Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution 1973, Stuttgart: From-
mann-Holzboog.

[30] H.-P. Schwefel, Numerical Optimization of Computer Models.
Chichester, U.K.: Wiley, 1981.

[31] K. V. Price, New Ideas in Optimization. New York: McGraw-Hill,
1999, ch. 6, pp. 79–108, An Introduction to Differential Evolution.

[32] Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with
quantization for global numerical optimization,” IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 41–53, Feb. 2001.

[33] R. Joshi and A. C. Sanderson, “Minimal representation multisensor
fusion using differential evolution,” IEEE Trans. Syst., Man, Cybern.
A, Syst. Humans, vol. 29, no. 1, pp. 63–76, 1999.

[34] E. Patterson, S. Gurbuz, Z. Tufekci, and J. Gowdy, “CUAVE: A new
audio-visual database for multimodal human-computer interface re-
search,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Orlando, FL, May 2002, vol. 2, pp. 2017–2020.

[35] P. Besson, G. Monaci, P. Vandergheynst, and M. Kunt, Experimental
evalutation framework for speaker detection on the CUAVE data-
base, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne,
Switzerland, Tech. Rep. TR-ITS- 2006.003, Jan. 2006.

[36] P. Besson and M. Kunt, “Hypothesis testing as a performance evalua-
tion method for multimodal speaker detection,” in Proc. 2nd Int. Work-
shop on Biosignal Processing and Classification (BPC2006), ICINCO,
Setubal, Portugal, 2006, pp. 106–115.

Patricia Besson was born in Charenton-le-Pont,
France, in July 1977. She received the M.Sc. degree
in biomedical engineering from the University of
Lyon (UCBL), Lyon, France, in June 2001 and the
Ph.D. degree from the Signal Processing Institute
(ITS), Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, in June 2007.

She spent the 2000–2001 academic year as an ex-
change student at the University of Montreal (UdM),
Montreal, QC, Canada. In June 2002, she joined the
ITS, EPFL, where she started a thesis on the multi-

modal detection of the speaker in audiovisual sequences under the supervision
of Prof. Murat Kunt. In October 2007, she will integrate the Laboratory "Mo-
tion and Perception" at the National Center for Scientific Research (CNRS),
Marseille, France as a Postdoctoral Researcher. Her research will focus on the
modelization of the multisensorial perception and control of self-orientation in
space by humans.



BESSON et al.: EXTRACTION OF AUDIO FEATURES SPECIFIC TO SPEECH PRODUCTION 73

Vlad Popovici received the Eng. and M.Sc. degrees
in computer science from the Technical University
of Cluj-Napoca, Romania, in 1998 and 1999, respec-
tively, and the Ph.D. degree from the Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzer-
land, in 2004.

He is Researcher with the Swiss Institute of Bioin-
formatics (SIB), working on different, theoretical,
and applied aspects of statistical pattern recognition.
Before joining SIB, he was with the Digital Media
Institute, Tampere University of Technology, as Re-

search Scientist, and with the Signal Processing Institute, EPFL as an Assistant
Researcher and later as Postdoctoral Researcher. His current research focusses
on sparse classifiers andmultiple clsissifier systems, and their applications to
life sciences.

Jean-Marc Vesin (M’98) graduated from the Ecole
Nationale Superieure d’Ingenieurs Electricians de
Grenoble (ENSIEG), Grenoble, France, in 1980. He
received the M.Sc. degree from Laval University,
Quebec City, QC, Canada, in 1984, where he spent
four years on research projects. He received the
Ph.D. degree from the Signal Processing Institute
(ITS), Swiss Federal Institute of Technology (EPFL),
in 1992.

He was previously involved in research projects at
Laval University and later spent two years working in

industry. He is currently in charge of the activities in 1-D signal processing at
ITS, EPFL. His main interests are biomedical signal processing, adaptive signal
modelling and analysis, and the applications of genetic algorithms in signal pro-
cessing. He has authored or co-authored more than 30 publications in renowned
peer-reviewed journals, as well as several book chapters.

Jean-Philippe Thiran (M’93–SM’05) was born in
Namur, Belgium, in 1970. He received the Elect.Eng.
and Ph.D. degrees from the Universite catholique
de Louvain (UCL), Louvain-la-Neuve, Belgium, in
1993 and 1997, respectively.

He joined the Signal Processing Institute (ITS),
Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, in February 1998 as a Senior
Lecturer. Since January 2004, he has been an Assis-
tant Professor, responsible for the Image Analysis
Group. His current scientific interests include image

segmentation, prior knowledge integration in image analysis, partial differen-
tial equations and variational methods in image analysis, multimodal signal
processing, medical image analysis, including multimodal image registration,
segmentation, computer-assisted surgery, and diffusion MRI. He is author or
co-author of two book chapters, 51 journal papers, and some 90 peer-reviewed
papers published in proceedings of international conferences. He holds four
international patents.

Dr. Thiran was Co-Editor-in-Chief of Signal Processing (published by El-
sevier Science) from 2001 to 2005. He is currently an Associate Editor of the
International Journal of Image and Video Processing (published by Hindawi),
and member of the Editorial Board of Signal, Image and Video Processing (pub-
lished by Springer). He will be the General Chairman of the 2008 European
Signal Processing Conference (EUSIPCO 2008).

Murat Kunt (SM’70–M’74–SM’80–F’86) was born
in Ankara, Turkey, in 1945. He received the M.S. de-
gree in physics and the Ph.D. degree in electrical en-
gineering, both from the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, in 1969
and 1974, respectively.

From 1974 to 1976, he was a Visiting Scientist at
the Research Laboratory of Electronics, Massachu-
setts Institute of Technology, Cambridge, MA, where
he developed compression techniques for X-ray im-
ages and electronic image files. In 1976, he returned

to the EPFL where he is presently a Professor of Electrical Engineering and
Director of the Signal Processing Institute (ITS), one of the largest at EPFL.
He conducts teaching and research in digital signal and image processing with
applications to modeling, coding, pattern recognition, scene analysis, industrial
developments and biomedical engineering. His laboratory participates in a large
number of European projects under various programmes such as Esprit, Eureka,
Race, HCM, Commett and Cost. He is the author or the co-author of more than
200 research papers and 15 books, and holds seven patents. He supervised more
than 60 Ph.D. students, some of them being today university professors. He con-
sults for governmental offices, including the French General Assembly.

Dr. Kunt has been the Editor-in-Chief of Signal Processing for 28 years
and is a founding member of EURASIP, the European Association for Signal
Processing. He is now the Editor-in-Chief of Signal, Images and Video Pro-
cessing (Springer) and serves as a Chairman and/or a member of the Scientific
Committees of several international conferences and on the editorial boards of
the PROCEEDINGS OF THE IEEE, Pattern Recognition Letters, and Traitement
du Signal. He was the Co-Chairman of the first European Signal Processing
Conference held in Lausanne in 1980 and the General Chairman of the Inter-
national Image Processing Conference (ICIP’96) held in Lausanne in 1996. He
was the President of the Swiss Association for Pattern Recognition from its
creation until 1997. He received the Gold Medal of EURASIP for meritorious
services, the IEEE Acoustics, Speech, and Signal Processing’s Technical
Achievement Award, the IEEE Third Millennium Medal, an honorary doctorate
from the Catholic University of Louvain, the Technical Achievement Award of
EURASIP, and the Imaging Scientist of the Year Award of the IS&T and SPIE
in 1983, 1997, 2000, 2001, and 2003, respectively.


