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Abstract—This paper proposes a novel approach to quantifying transformed to aransmission rating scale (R scalelhe E-
the quality degradation of Voice over IP (VoIP) telephony in  Model was originally intended for NB speech quality estima-
the presence of codec and network-related impairments. Thbi tion. Recently, in [2], Méller et al. proposed an extensifn

approach differs from the baisc ITU-T E-Model for VoIP quali ty . . .
estimation [1] in that it addresses mixed narrowband/wideland the R scale to incorporate WB codecs into E-Model, while

scenarios. It makes novel use of instrumental models and sym €aving the original R scale for the NB case intact. Their
bolic regression via Genetic Programming (GP) to enable the main emphasis has been on derivieguipment impairment
evolution of degradation models from a modest set of initial factors (..wB), in a mixed NB/WB context, that represent
parameters. Here, a two-step approach has been used. First, i gegradation in thiistening qualityof speech in the wake

values of impairment factors are derived using WB-PESQ as . - . S
a reference model. Secondly, a GP based symbolic regressionOf pure codec related distortions. Their derivation is dase

approach has been utilized to automatically evolve the furtonal ~ Subjectivelistening onlytests [3] for a mixture of various NB
form of equipment impairment factors from a set of variables and WB codecs defined by ITU-T.

Very few a priori assumptions are made about the model |n the past several authors have taken different approaches

structure. The effectiveness of the approach is demonstrat by towards deriving effective equipment impairment factors
a number of generated models which compare favorably with

WB-PESQ and outperform the traditional E-Model in terms (Ieﬁff) for NB C‘_’O_'ecs- In th's paper we taI§e a novel perspec-
of prediction accuracy when Compared using WB_PESQ A tive tOWardS der|V|ng eﬁeC“Ve equment Impalrment fHSt
significant advantage of the approach is that new models are for the mixed NB/WBcase i.e.l. wp.fr¢. Here the novelty
easily generated to account for continuing evolution of the/olP s twofold. First, we propose to use instrumental models as a
standards. means to derive referendgw s s, as opposed to subjective
Index Terms—E-Model, genetic programming, symbolic re- tests. Secondly, the mapping between various quality tifiggc
gression, PESQ-WB.Ic,wB,cfy- parameters and referentey g . s s is achieved by employing
Genetic Programming (GP) based symbolic regression [4].
This approach is based on our past work reported in [5]
and [6] where we used GP to derive parsimonious speech
V olP is curently evolving rapidly towards wideband baseguality estimation models. GP employs artificial evolution
transmission. Wideband (WB) offers more natural soungytomatically induce mathematical models for an otherwise
ing speech than narrowband (NB), and IP networks allow th@explained data set. Since it takes a bottom up approach
transition to occur essentially by a simple change of cadeg¢gyards problem solving with minimum assumptions about
It is clear, however, that there will be a transitional pdfio the structure of the solution, the results can be innovative
with wideband and narrowband VoIP coexisting, leading to §yn-intuitive.
requirement for NB/WB interoperation. An important questi | this research we have employed a number of state-of-
that arises as a consequence is how is the quality of suckha-art VoIp telephony codecs proposed by ITU-T. We have
mixed NB/WB system to be estimated? used ITU-T P.862.2 (i.e.WB-PESQ), as reported in [7], as a
VoIP quality is affected by various factors such as packgiference system. We follow the methodology described]in [8

loss, end-to-end delay, jitter and codec bit-rate etc. A lb@m for deriving I, .;; and propose ours as an addendum to it for
of approaches and models exist that estimate speech gaslityieriving 1, 1y off-
a function of such impairments. Of particular interest agon  The rest of the paper is organised as follows. In section Il
these is ITU-T Recommendation G.107 [1], commonly knowge describe the E-model framework. There we highlight
as the E-Model, which is an instrumental model that wasast attempts by various researchers in deriving;; and
initially de5|g_ned for transmission plannlng purposesislt I.wn.rs and present our approach too. In section Il we
based on an impairment factqr principle that assumes tleat E_hscuss the factors that affedt .. Section IV gives
degradations induced by various sources have a cumula@v@rief introduction to GP and describes the advantages of
effect on speech quality and that they may accordingly Rgmbpolic regression compared to some other machine learnin
- . . , and numerical methods. Section V elucidates our methogolog
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I. INTRODUCTION



Il. THE E-MODEL is given by equation (3)

The E-Model, as defined by ITU-T G.107 [1], is a com- Ryow = a. (eRNB/WB/b _ 1) (3)

putational model used for assessing the combined effect of

various parameters on speech quality in a conversationaése wherea andb were found to be equal to 169.38 and 176.32

Initially it was designed for NB handset telephony, howeverespectively, andiy z,wp can be calculated via (2). This

its adaptation to the WB case is currently in progress. Tkxtensionis now an integral part of the E-Model (see Appendi

primary output of the model is th®ating Factor R. The Il of [1]), where the new default value fak, for the NB/WB

derivation of R is based on an impairment factor principlease is 129. Following thisl. wp (i.e. impairments solely

that assumes that factors affecting speech quality arediesldidue to various low bitrate NB/WB codecs) can be calculated

in nature. ThusR is computed according to equation (1): according to equation (4) as a difference between R-value of
the direct channel and R-value corresponding to the codec
under consideration.

R:RQ—IS—Id—Ieyeff—l-A (1)

whereR ranges from 0 (poor quality) to 100 (optimum quality) Tewn =129 = Reodec )

for the NB caseR, is the basic signal to noise ratio which, fowhereR..,4.. may be calculated from (3) and 129 corresponds

the NB case, defaults to 93.2, represents all the impairmentsto the value of R for the direct channel for the mixed NB/WB

which occur simultaneously with the voice including, foontext. The direct channel in this context is represented b

instance, overall loudness rating and non-optimum sidetora 16-bit linear PCM withf,=16 kHz (this also assumes that

I; marks the effect of delay related impairments such as ecingpairments due to other factors such as echo or delay are not

and too long end-to-end delay that may affect the call qualipresent).

in a conversational sensé. ;¢ depicts the impairments due

to low bit-rate codecs in the presence of packet lossesllfina

A is the advantage factor that compensates for the abc ' ‘ ‘ ‘ T T
impairment factors when there are other advantages of acc al
to the user depending on the nature of the underlying netwo ial
Thus, for instanced may be assigned a value of 0 for a wirec 3.50 ,/
network and 20 for a multi-hop satellite connection. In th R
case where values of one or more of these factors may not o 3f ,"‘,'
determined, default values are used from [1]. Q 2 /" TT

R can be converted tdlean Opinion Score (MOSand ' [/ ,!I "'(ﬁié_uer et al.
vice versa using corresponding transformations given ]n [! 2 [ K __R__=100
Since we have leveraged from these transformations in tl VR (E-model)
research we shall refer to them by an abstract notation giv 15 R ,=107.18)
by transformation (2). . e | _ (PESQye)

0 25 50 75 100 125

Transmission Rating Factor R
R <= MOS (2)

. . ig. 1. Transformation rules between R and MOS. Solid lin8: ¢hse of
where MOS varies on a scale ranging between 1 (bad) to @g E-Model, dashed line, NB/WB case (Mdller et al.) andhaasdotted line

(excellent), and it is a measure of human assessment offspeeaB-PESQ
quality. The relationship between MOS and R is shown in
Fig. 1 with the solid curve.

The above formulations hold for the case of NB codecs. § on Extending the R scale for WB-PESQ
[2] Moller et al. proposed a transformation of the R scaterfr
the NB case R p) to the mixed NB/WB caseHnp,w i)
based on subjective tests performed in [9]. The test res

Our work employs WB-PESQ as a reference for deriving
u{fsWB andl. wg.fr, as opposed to subjective tests. A WB

sugaest that for the scenario where onlv NB coded sam ersion of R scale does not exist in the literature for WB-
99 y P ESQ. There can be two approaches in principle to convert

were present, MOS scores were higher than those for the S%S—LQO (MOS-Listening Quality ObjectiveL0] obtained

samples evaluated in presence of additional, objectivetteh : .
WB coded stimuli. Moreover, since the MOS to R conversio?ry WB-PESQ to the R scale. Both of these are discussed in

. . this section.

represented by transformation (2)_ was applied, fheg, for 1) One approach may be to extend the R scale using
the NB context, turned out to be higher th&R z /1 5 for the . .

. . . MOS-LQO obtained by WB-PESQ using the methodology
mixed NB/WB context. This would have repercussions for the . 4 ) .

1 L : . .proposed in [2] by Moller et al; as has been previously
validity of the original R scale in a mixed NB/WB context a5|d. cussed. Based on this an experiment was performed to
would affect the NB usage of the scale. Thus, an extension orc! ' ! xpert was p
the R scale for the NB/WB case was proposed that leaves tth linear version of this extension also exists that has bééppsd for

original R scale for the NB context unaltered. This extensimrevity



see whether a meaningful extension of the R scale col

be made for WB-PESQ. Two test cases were prepared, e H
comprising 1328 pairs of reference anddedfile pairs of 100
experiments 1 and 3 of the ITU-T P-series supplement 23 [1 90
The coded files contain various NB scenarios with distortic

conditions such as low bit-rate coding, signal correlateide 80
codec tandeming, bit errors and frame erasures. Conditic , 70
representing direcfor clean) NB channel are also present. o 60
All the files are originally coded in 16-bit linear PCM format

fs=16 kHz. The file pairs in the first test case were evaluat 50
with WB-PESQ. This constitutes the WB (or NB/WB) contex 40
with WB coded references and NB coded and upsampl 30
test files. File pairs in the second test case were evalua

with NB-PESQ. To this end, all the reference and coded fils 205 20 20 60 80 100

were downsampled and low-pass filtered using [12] prior - R
evaluation. This corresponds to an NB test.
The resulting scatter plot fo and is dis- Fig- 2. Comparison between R-values obtained from a NB andxadm
. . 9 X RNB. RN.B/WB NB/WB context using PESQ.
played in Fig. 2. The data was fitted using least squares
regression where a linear relationship of the form of equnati
4.5

(5) was used. ’ EE \IOS-LQO
af I MOS-LQS 1

NB/WB

35
Ryp =a.Rnp/wp +b (5) 3
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where,a=0.82,0=25.46 andRM SE=4.12. .l
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According to this R, was found to be 107.18. This 15} } }
suggests a rather small extension of the R-scale; only a ° 1 | |
111

gain in quality due to WB coded speech. The new curve 0sF
drawn in Fig. 1 with a dashed-dotted line. 0 Codec

It is worth mentioning here that WB-PESQ has a number ui
limitations. First of all, the restricted set of trainingdatesting rig. 3. comparison between MOS-LQO and MOS-LQS for vario@sadd
databases limits the reliability of WB-PESQ in comparisowB codecs
with NB-PESQ. Language and codec dependence is another
limitation of the algorithm [13, pp-105] [14]. It was also
observed that WB-PESQ systematically underestimatesbpee . Iewp.ess AND ASSOCIATEDQUALITY ELEMENTS
quality in comparison with subjective tests. This was obsér ~ According to the E-Model [1]. ., for a given NB codec
from a comparison made between MOS-LQO obtained tay be computed from
WB-PESQ and MOS-LQYMOS-Listening Quality Subjec-

tive). The results of the comparison are shown in Fig. 3. Here Ieepr =1+ (95— 1) x PZL (7)
the MOS-LQS were obtained by performidgy g to MOS Burstr + BP
conversion for codecs under consideration using equaf®ns where, I, is the impairment factor for the codec under con-
(6)? and (2). Values of., 5 were taken from [15]. sideration in the case of no packet logy; is the packet loss
rate (%). BurstR is the Burst Ratio; discussed below. Bphés t
Roviy = In <Rnew + 169-38> < 176.32 (6) Packetloss robustness factor for the codec under consiotera
169.38 It describes the the robustness of the codec, including the

mployed packet loss concealment mechanism, againsttpacke

. e
2) The second approach is to convert the MOS-LQO to trI'(S'}ss. A similar formulation forl. wg cr¢ is given in [2] for

R scale using equations (2) and (3), in the order given. T?E?ndompacket loss.

is analogous to the methodology given in ITU-T P.834 [8]. ~. - -
; . o Given this, I, ef#, Or equivalentlyl. .r¢, depends on
As there are clear problems associated with reconcilingxhe WBeff d Yieess b

le in th ¢ subiecti d obiective test two quality elements, namelgacket lossand codec In the
scaie in the case of subjective and ODJEClVe 1ests, as s that follows various aspects of these two elements are
during the analysis of first approach, we have chosen t 2 : :
. . ussed in detail.
second approach. This is used to derive reference values ofc
I. wp,.ers in this research. We argue that our methodolog
would not be affected due to changes in the mathematiéal Packet Loss
form of any R scale extension; the experiments that follow Packet loss may either be random, where loss patterns
can be conveniently repeated for a néarget) R scale. follow a Bernoulli-like distribution, or bursty in naturdn
bursty loss, a lost packet tends to exhibit a temporal depen-
2Equation (6) is the inverse of equation (3) dency on its immediately preceding (lost or arrived) pacet



pastn packets [13][16] [17][18]. E-Model defines BurstkR C. Discussion

parameter Burst Ratig where burstiness is modeled using & The E-Model uses two predefined parameters to compute
two-state Markov model, with a loss and a no-loss state, apd . .- namelyr, and Bpl (packet loss robustness factor) along
with two transition probabilities associated with eachtesta \yith packet loss statistics as in equation (7). The signifiea
Another factor affecting quality impairment, and closelyf these parameters has been discussed in section I1I-B.
associated with packet loss, is the packetization intef@8l  Similarly, in [29] Cole and Rosenbluth and in [27] Sun and

(ms), i.e., the payload size of an IP packet. In order @eachor have proposed a logarithmic function of the form:
utilize the transmission bandwidth effectively, it is dasile to

increase the”I. However, larger values dPI result in larger

transmission delay and possibly lower spgech quality in théhere they tune:; to compute the codec specific..;; as a
event of a packet loss. Current VolP applications use valugfction of mean packet loss rafenlr). It may be argued that
of PI ranging between 10-60 ms as a compromise [13]. their formulation ofI, .;; depends orl, (i.e. when mir=0)

The problems associated with packet loss may be circugihd packet loss robustness, which translates into paresnete
vented to a certain extent with variopsicket loss recovery 4, andx;.

methods such as Forward Error Correction, Low-Bitrate Re- Janssen et al. have depicted a relationship between codec
dundancy and Packet Loss Concealment (PLC) [19]. specific I, .;; and packet loss rate in the form of quadratic
curves [30].
It follows that different codecs may have different curves
B. Codec for I. wg..ss. This effect may be seen in Fig. 4. Here, for
ﬂ{(ample,lengyeff for the Adaptive Multi-Rate-NB (AMR-
Blp) [31] codec (7.4 kbps) may be approximated with a

Iocps = o1+ 2 X In(l+ x5 x mir) (8)

I. wg.ft is a codec specific quantity and thus depende

on it. A speech codec may either belong to the class | ithmi ) h he best fit cliov
waveformcoders, parametric coders or hybrid coders i.e. /g9arithmic curve (equation (8)), whereas the best fit cdiove

combination of the first two. Waveform coders perform quar§'72_2'2 (19.85 kbps) was found tc_) bet'é o_rder polynomial.
tization of the speech signal and parametric coders emplo;}t is clear 'Fhat curren'FIy there is no widely accepted and
a suitable speech production model for reducing bandwicﬁ‘farly .superlorformulafuon for Ie.wp.ery- We suggest an
requirement for speech transmission [20]. For a given clad ernative, aItoge_ther d.'“‘?re”t' straFegy. Insteadm:iraach—

of coders the speech quality may further depend on factdPd the problem witha priori assumptions about the analytical
such as codec’s bitrate, frame size and coding algorithra. M Of le,wp.cr s, WE "?‘”OW the_ data to sp_eak for themselves.
codec’s transmission bandwidth (i.e. NB or WB) also affectd® Propose t@volvehigh-quality expressions foke. wp.c

the quality perceived by the user. Thus WB codecs deliviping GP, a brief introduction to which is given in the next
better quality than their NB counterparts mainly because gection.

the increased naturalness of speech due to the presencr -
higher order spectral components [2][13].

In the past various authors have tried to model spee
quality as a function of coding bitrate (in addition to los:
metrics) e.g. [21][22][23] and also by the authors in [5][8]
may be argued that although coding bitrate may be used a
quality defining parameter for general predictions, it may n
be able to give accurate predictions due to two main reaso

First, in the absence of any other impairments two differe -
codecs, with differing bitrates, may deliver the same dquali
to users; e.g. G.722[24] (64 kbps), G.722.1[25] (32 kbp

rd

e,WB,eff

G.722.2[26] (12.65 kbps) have their v equal to 13 [15]. e |
Secondly, a high degradation of quality may be associat sof, s

with a codec with lowZ, (or I.. 1) in the presence of packet » ‘ ‘ ‘ ‘ Lo -Gr2l@
0 5 10 35 40

loss. An example of this may be AMR-NB (12.2 kbps) an mean loss rate (M) %

iLBC (15.2 kbps); the former offers a better quality in the

absence of packet losses, whereas the latter outperforthe ingig 4. 1, ;. 1, .,/ as a function ofmir for various NB/WB codecs. values

presence of losses [27]. This behavior is due tortlistness for I, w ..y were computed using WB-PESQ with random packet loss and

of a codec against packet lossid may depend on several’!s equal to one speech frame of the respective codecs.

factors such as , loss distribution (random or bursty), tgpe

packet loss recovery algorithm employed by the codec and the

time taken by a decoder’s state to resynchronize with that of IV. GENETIC PROGRAMMING

the coder in the event of packet loss [28]. Genetic Programming (GP) [4] [32] is a biologically-
This reflects the interpretation that codec-related effect inspired machine learning technique. It seeks to genetate p

l..wnB.efr Mmay be due tal.wp and the robustness of thatsible approximate solutions to complex optimization peoi

codec against packet loss. by using concepts adopted, loosely, from natural evolution



It has the advantage that, unlike many other optimizatiamth data structures that are amenable to the carefullygdesl
techniques, it can generate solutions (or quasi-solutibms genetic operators. Abstract syntax trees are by far the most
problems in symbolic form. Although, the solution reprepopular choice, although linear structures are also bawmgpmi
sentation is problem specific, it is common to use matheemmon [36] [37]. Fig. 5 shows two example GP individuals
matical expressions or a subset of C/C++ for this purpossmdergoing crossover and the resulting offspring. Notéttiea

GP produces human comprehensible results; an advantagessover point is selected randomly in each individual and
when compared to approaches like Artificial Neural Networkbe subtrees rooted at those points are exchanged during the
(ANNs) where making sense out of a trained network cagrocess. During mutation, a new subtree is randomly geserat
be quite a challenge [32, pp-85]. Another crucial advantagé the selected point, subject to a user specifisakimum

is that GP is not merely restricted to tuning the parametetepthlimit. As a result of the genetic operations the resulting
of a pre-defined mathematical model like ANNs and oth@ffspring can be different in size and shape from their paren
numerical optimization techniques. Instead, as in thisepapas is the case in the present example. This allows GP to
it also discovers the model itself with the primary aim oéxplore a variable length solution space. However, to gtep t
optimizing a user defined error metric. GP does not rendeees growing arbitrarily large, again a maximum depth tlimi
numerical methods totally redundant, however. It has beenemployed. If the resulting offspring have larger depthey
used to advantage in conjunction with numerical optimaati are discarded.

techniques such as linear regression [33], gradient degn

and quasi-Newton [35]. It has been suggested that the hybridx * (fany + z) log (x +yz)

GP/numerical methods yield superior results by allowing GP
parents

to focus at the truly innovative aspect of the work, i.e., N o9
discovery of the model structure [33]. In this light a hybrid /\ J L
approach is used in this paper that combines GP with linear x +
regression.
GP is coarsely modelled on natural evolution. Biological
organisms aim to overcome environmental obstacles and com- z
pete for resources in a bid for survival and reproduction. GP
evolves digital populations in a similar way. The enviromtad
challenges are defined by an error metric that each member

of the population, aindividual or a candidate solution, seeks Q ver}

to minimise. subtrees selected randomly for crosso
Initially, the population is created by generating a set of

solutions randomly. To allow this, the syntactic constitiseof ‘

an individual are pre-specified in the form of two sdtmc-
tions and terminals Functions are exemplified by arithmetic Functions log

*
operators, trigonometric functions and boolean functiass
they require operands to produce an output. Terminals mequi /\ ‘

no arguments. They may be, inter alia, numeric constants, X T :

system variables and functions with constant inputs. Aaini /\ : tan.

population is generated by randomly picking from these, sets™ AR "z ‘ ;

although other methods exist [36]. /\ T r oy
Each individual is tested on the given problem to assign it ; e

a measure of quality which is called ifginess The fitness @ x * : )

of a GP individual determines the chances of an individual /\ offsprings

surviving to the nexgenerationor producing offspring. The

offspring result from introducing some variation into tee- ... . Y~ 4

lectedparent(s). Normally, there are two kinds of variation (o)r( * ( (x+yzm log (tan )

genetic) operatorgrossoveiandmutation Crossover involves
combining the genetic material of different (normally two)
individuals to produce new solutions. Sometimes compfetetig. 5. Depicted are the example abstract syntax trees foinGiFiduals

; N I ; ; ; nd the corresponding expressions. Functions are thenahteodes, while
new genetic material is introduced into the offspring, Ellbetahe terminals appear only as the leaves. The shaded poitiotise upper

with a small probability. This phenomenon is called mutatio yrees represent the subtrees to be exchanged during ceas3tre resulting
and it is observed to be useful in GP by helping the systesffispring are shown underneath with dotted boundaries imgitke exchanged

to work its way out of local minima (which are undesired, bufagments.
inevitable, artifacts of the objective function).

Clearly, the genetic operators of crossover and mutationWith this background we can now briefly describe the
must work in a manner so the resulting offspring obey theverall GP algorithm. The purpose is to breed better and
syntactic constraints of the language used to represent Hedter individuals as the evolution progresses througersév
solutions. To facilitate this, the GP-individuals are mained generations until some user specified criterion is met. iy ma

Terminals



be that some success criterion is fulfilled e.g. the squamed e loss rate, are calculated and the decoded speech signailtis se
is reduced below a threshold or a maximum number of genés- a viable instrumental model that may report its results
ations (a GP system parameter) have elapsed. Each generatioterms of human assessment of speech quality i.e. MOS-
typically entails the following steps (although variatioexist): LQO. Moreover, the model should be able to evaluate both
1) if it is the first generation, an initialisation procedise NB and WB coded speech. An example of such a model is
invoked [36, pp118-122] to produce the initial populaWB-PESQ, which has been used as a reference system in this
tion of a fixed size: research. The resulting MOS-LQO is converted i@y . csr
2) choose two parents through a process tersadction Using equations (2), (3) and eventually (4). We call this the
Different selection schemes exist e.g. tournament seldatget I wp..f¢. The process is repeated for a large number
tion randomly picks: individuals and the best of them isOf speech signals with varying degrees of network distortio
the winner, while in roulette wheel selection the chanc&®nditions. Once the targét w s s for all the speech signals
of getting picked are directly proportional to the fitnesave been computed and the values of corresponding VoIP
of an individual; network traffic parameters gathered, GP based evolution is
3) crossover is applied to yield two offspring which ar@erformed to derive a suitable mapping. More specificattig, t
then subjected to mutation. Typically crossover is usé@®!P network traffic parameters serve as the input domain
with a high probability (€.990%) while mutation is used variables during evolution and the correspondidgy .. s
sparingly ((%); values form thearget output values.
4) evaluate the fitness of the two offspring; A linear interpolation between thé, ;-5 obtained by the
5) if the number of offspring generated so far have reachawstrumental model (WB-PESQ) and subjective tests may be
a user specified limit, follow on to the next step. Otheperformed as suggested by [8, pp-9] to adjust the target
wise, go to step 2; I. wp,er¢- TO this end, interpolation was performed between
6) in this study, the offspring and parent populations ae - values for 20 (14 WB and 6 NB) codecs obtained
considered together to keep the best performers fosing WB-PESQ, and from subjective tests reported in [15].
the next generation. The rest of the individuals frorilere, for each coded, 5 corresponding to WB-PESQ was
either pool are discarded. Other schemes may keep aliitained by averaging the evaluations of 30 speech file .pairs
the offspring as the population members for the nexilean speech files were taken from experiment-1 of [11]. The
generation. slope and intercept were found to be equal to 0.6730 and

A number of generational cycles constitutes ai@R. Due 35.7881 respectively. It must be noted that a large intércep
to the stochastic nature of the evolutionary process, each indicates an experimental bias [38, pp12]. This is possilblky
of GP can produce individuals that are different from thod@ the fact that WB-PESQ underestimates the speech quality
of the other runs with the same system parameters and fitnaggompared with subjective tests, as discussed in settfan |
criteria. Therefore, it is a regular practice to conductesal
runs in order to have different results of competitive duyali
and also to have a statistical justification of the behavior ¢
GP. Detailed accounts of various aspects of GP can be found
in [4] [36]. mlr, PI and mean burst lengthimbl) were chosen as
the input domain variables related to packet ladssy 5 and
V. THE NEW METHODOLOGY a coarse estimate of loss robustness factor were computed

In what follows we first describe our methodology fofor €ach codec separately as other independent parameters.
deriving I wp..;s as a function of VoIP traffic parameters!t was expected of GP to make efficient use of these pa-
Next, we list the details of our data preparation procedunre arameters during evolution. It was discussed in sectiorCllI-
of the VoIP simulations undertaken. and shown in Fig. 4, that the functional form &f g ers

may vary for different schemes and codecs. Given this, the
A. Methodology gradient of I. wg,ers for mlr ranging between 0-0.3 was
computed according to equation (9) az@arseestimate of

Our me.thodology_is *?ased on our research present.e-d in Eﬂcket loss robustness factor, assuming that GP would use
and [6], with the main difference being that there the olyect i offoctively during evolution. This range ofilr is chosen

was to compute MOS for an NB context whereas here t'B%causeI Wh.ets varies the most fonnir=0.0-0.3. After

main focus is on deriving equipment impairment factorgyis the change is only gradual, as can be seen from Fig. 4.

lewB.ers f_or a mixed NB/WB context. The schematic inMoreover, the data presented by Sun and Ifeachor [27] imply
Fig. 6 depicts a conceptual diagram of our approach fr. < me for

. 2 ) . e.eff» Where maximumnlr=0.3.
deriving I. wg,ers for VoIP. An initial requirement is to '
have a database consisting of clean speech signals. These
sign_als are sgbjected to degradations typical of VolP traffi Lowp.erp(mir = 0.3) — L wp.ep s (mir = 0.0)
coding distortions and packet loss. The degraded VolPmtrea grad = 03
is eventually converted back to linear PCM format using a ’ (9)
decoder corresponding to the encoder. In the process ofjdoValues of I. wp and gradients of. wp sy With respect to
so the values of various VoIP traffic parameters, such asgbacklr for the codecs under consideration are listed in Table. |

Input Domain Variables
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By GP e,WB,eff
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Speech Signa| Extraction parameters
Fig. 6. Simulation system for derivation @f ywp cf
TABLE | . _— .
VALUES FORI, 1 5 AND COARSE ESTIMATES OF Loss rousTness 90, 60, 70 and_ 80%. It is worth mentioning that h|9he_r values
FACTOR of cIlp model higher degrees of loss burstiness and vice versa.
_ _ Moreover,PI (packetization interval) was varied between 10—
Codec bitrate | I. wp | gradient 60 ms
G721 |3 26.12 | 216.88 '
G.7221 | 24 29.04 | 208.36 Since the clean speech samples are coded at a 16 kHz
G.722.2 | 6.6 68.13 | 104.25 sampling rate, they were downsampled before encoding in the
g;ggg §'2825 ig'g‘l‘ 123'2; case of NB codecs. Subsequently, the corresponding decoded
C7555 11475 14119 | 196.13 speech samples were upsampled before evaluation by WB-
G.722.2 | 1585 | 39.59 | 201.50 PESQ.
g;ggg ig-gg gi-gg gg% In all, 2,820 combinations of network distortion conditson
G725 2305 3200 | 22527 were emulated. A given combination of network distortion
G.722.2 | 2385 | 33.88 | 221.27 conditions was applied to four speech samples. Moreover,
G.729 8 62.33 | 125.66 each speech sample under consideration was subjected to the
/f‘l'\;szNlB ?'i 22-37 igiég same combination of network distortion conditions 30 tirttes
ANMRNB T 122 5412 | 18748 produce as many test samples by pseudo-randomly generating

different loss patterns each time. This was done to negate
the effect of packet loss locations as in [27] by eventually
C. VoIP Simulation aggregating the MOS for all test samples corresponding¢o on

A simulation based approach was pursued in this researgﬂyrce sample. Thus, a total of 338,400 distorted speech file

where distortions typical of a VoIP network were induceere created. These distorted speech files were subseguentl

) evaluated by WB-PESQ on a Beowulf cluster with respect to
on a large number of clean speech signals before decodin . . .
responding reference files. Values of the network traffic

. . C
the corresponding coded bitstreams. Clean speech samples . .
from experiments 1-A and 1-D of ITU-T P-series suppl parameters for all files and the corresponding MOS were

ment 23 were used. The NB codecs include: ITU-T szrbveraged to form a total of 11,280 input/output patternat th

CS-ACELP (8 kbps) [39], ITU-T G.723.1 MP-MLQ/ACELP would later be utilised during symbolic regression.
(5.3/6.3 kbps) [40] and AMR-NB codec [31]. AMR-NB was

used in its 6.7 and 12.2 kbps modes whereas G.723.1 was V1. EXPERIMENTS AND RESULTS
used in its 6.3 kbps mode. The WB codecs include ITU-A. Experimental Details

G.722.1 [25] (24/32 kbps) and ITU-T G.722.2 [2@)daptive  Tywo GP experiments were performed to evolve models for
Multi-Rate (AMR-WB)codec. AMR-WB can operate in 97 . . .. ysing the input/output data patterns. The accumu-
different coding/decoding modes, each targeting a differ§ation of data patterns has already been discussed in sectio
bit-rate: all the coding modes were utilized in this resbarc \,.c. gpLab was used for evolution which is a GP toolbox
Various network traffic simulation conditions were chosg, Matlab developed by Sara Silvh Previously in [6] we
sen in the light of ITU-T Recommendation G.1050 [41l]performed four GP experiments with different maximum tree
which entails a model for evaluating multimedia transnaissi depths and error measures with different results. In thigwo
performance over an IP network. Bursty packet 10Ss Wgg chose the experimental conditions that produced superio
emulated using a 2-state Markov model; with probabiliies resyits in terms of quality to perform the two GP experiments
for transitioning from a no-loss state to a loss state @dr The common parameters of both experiments are listed in
the converse. It was assumed thatter also maps to packet Tapje 1.
loss and that it can be modeled using this 2-state model as i, poth experiments scaled mean squared eb§ 7,) was

[21]. Packet loss for twelve different values of (target)r sed as the fitness criterion and is given by equation (10).
was simulated; [0,2.5,..., 15, 20, ..., 40]%. For each value

mlr, conditional loss probability (clp) (i.e. 1-gkas set to 10, 3http:/gplab.sourceforge.net/



TABLE Il

COMMON GP BARAMETERS AMONG ALL EXPERIMENTS reduced to 7 in the second experiment to see if parsimonious

individuals with performance comparable to those of the firs

Parameter Value experiment can be obtained.

Initial Population Size 300

Initial Tree Depth 6

Selection LPP .

ToUmament Size > B. Results and analysis

Genetic Operators Crossover and Subtree Mutation Of 11,280 input/output patterns reported in section V-C,

Operators Probability Type | Adaptive

Thifial Operator probabiliies| 0.5 each 1,440 patterns corresponding to AMR-NB 7:4 kbps and
Survival Half Elitism G.722.1 32 kbps were separated for model validatioruon
Generation Gap 1 _ _ _ seencodecs. Of the remaining 9,840 patterns, 70% were used
Function Set plus, minus, multiply, divide,sin, for training and 30% for testing the evolved models. Various
c0s,log2, logio, loge, Sqrt, . . . .
power VoIP traffic parameters have been discussed in section V-C.
Terminal Set Random real-valued numbers More specifically, these includé, 5, mlr, PI, mean burst
between 0.0 and 1.0. Integers length nbl) andgrad, as in equation (9), as a coarse estimate

(2-10). mlr, mbl, PI, I. wp, grad

of codec specific loss robustness factor.
The statistics pertaining t&?M SE, (square root of the
scaled MSE) of training and testing data of both GP exper-

n ) iments are listed in Table Ili(a). The table also lists vaso
MSE(y,t) =1/n Y _ (ti — (a + by;)) (10) statistics related to the tree sizes of GP individuals, imgeof
i the number of nodes. The results of both experiments in the fi-

wherey is a GP evolved function of the input parameters inal generations were also treated to a Mann-Whitney Wilnoxo
this case (a mathematical expressian);epresents the outputtest to assay the significance of differences in variousesp
value produced by for the input casé andt,; represents the The significance analysis is reported in Table Ili(b) where
corresponding target value df w5 .rf. a and b adjust the a value of ‘1’ confirms a significant difference, at 5%
slope and y-intercept of the evolved expression to minimisenfidence level, whereas a ‘0’ implies otherwise. It was
the squared error. They are computed as follows: found that the overall results of the two experiments are not
cou(t, y) sig_ni_ficantly diffe_rent from each other in t(_erms of fit_nesselov
— (11) training and testing data. However, the difference in teais
var(y) tree size is significant, with experiment 2 having indivitbua
wheret andy represent the mean values of the correspondimgth smaller trees.
entities whereagar and cov are their variance and covari-
ance respectively. This is known &igear scalingand has In this paper we present three models resulting from the
been found to be beneficial for the symbolic regression witxperiments. Two of these correspond to individuals with
GP [33]. minimum RMSE; over the testing data in each of the
Tournament selection with Lexicographic Parsimony Presxperiments. These are represented by equations (12) apd (1
sure (LPP) [42] was used in both experiments. In this salectiand they belong to experiments 1 and 2 respectively. The
strategy a group of G (& 2) individuals is picked randomly third model, represented by equation (14) correspondseo th
from the current population. The individual with the higheamost parsimonious individual of both the experiments and
fitness in the group is selected as a parent. In the case df alerived from experiment 2. Th& M SE,; and Pearson’s
tie between two or more individuals, their expression saes product moment correlation coefficient)( corresponding to
compared with the smaller individual winning out. Moregvet, wp ¢ for these models are compared with each other
the selection criteria in both the experiments was alsotedapin Table 1li(c). The values ofRM SE; corresponding to
to the one proposed by Gustafson et al. in [43] for symbollOS-LQOare also listed as another comparison. These were
regression problems. This requires that when the two parenbmputed by converting the target values ofiy gy and
are selected through tournament selection, they should betliose obtained by the models under consideration to the
different fitness values. This discourages parents withlam MOS scale. This may be done by obtaining the valuegof
fitness and hence, possibly, of similar constitution praugic corresponding td. wg..¢s from equation (4). The result can
offspring identical to themselves. then be transformed to the original R scale for the NB-only
Whenever input values outside the domain of the functioesntext using equation (6); the inverse of equation (3). The
log, sqrt, divisionand pow are encountered, NaN (undefinedjesulting values of R can be converted to the MOS scale using
values are generated. This results in the individual cavezkr transformation (2). The significance of all of the models ban
being assigned the worst possible fithess value and mimgisjudged by observing that the values B/ SE, on the MOS
its chances of being selected as a parent. scale in all cases range between 0.098-0.12. This presents a
As mentioned in section IV, it is typical to conduct severatonsiderably minute difference for a human subject to detec
independent runs of GP. In this case, both experimentdetitai Equation (13) has the best statistics among all. Fig. 7
50 independent runs each spanniygenerations. shows the scatter plots of equation (13) versus WB-PESQ,
The only difference between the two experiments was thatwhere it can be seen that the data points produced by both
the first experiment the maximum tree depth was 17. This ware firmly glued to the 45 degrees reference line.

a=1t-by,b=



TABLE Il
STATISTICAL ANALYSIS OF THE GPEXPERIMENTS AND DERIVED MODELS

(a) M SE Statistics for Best Individuals of 50 Runs for Experiment& 2 (b) Results of Mann-Whitney-Wilcoxon Significance Test

FExperimentl Ezxperiment2 FExperimentl
Stats | RMSEy, | RMSEt | Size RMSE:y | RMSEte | Size RMSE:y | RMSEte | Size
Mean | 8.9478 32.5851 28.3617 | 8.9861 23.9743 19.02 Ezperiment2 | 0 0 1
Dev. 0.1890 113.2837 | 12.2144] 0.2740 105.2397 | 6.3326
Max. | 9.3624 655.5639 | 77 9.8275 753.2457 | 38
Min. 8.3941 8.5057 13 8.3552 8.4605 10
(c) Performance Statistics of the Proposed Models
Training Testing
Model RMSEpos RMSEs I. wB eff g Ie,WBAcff RMSEs MOS RMSEs I. wB eff g Ie,WBAcff
Equation (12) 0.0990 8.3941 0.9236 0.1007 8.5057 0.9240
Equation (13) 0.0975 8.3552 0.9243 0.0990 8.4605 0.9248
Equation (14) 0.1183 9.1749 0.9080 0.1207 9.3145 0.9080
140
120+ : : . -
@O
o oo .
P sl : : o -
Ie,WB,eff - (12) :‘E S
60- 1
{11 — mbl + In(grad) + grad x mir + I. ws 3
40- B
—2.loga(PI)} x 0.8619 + 9
20 B
0O 2‘0 4‘0 E:O 8‘0 160 1‘20 140
Ie‘WB’eﬁ—WB—PESQ

(@

IewBeff = (13)

{ln (9 X (Ie,WB + mlr x gr‘ad2)> bt Lo 140,

mbl® — mlir ’ 120

+grad x mir} x 0.8303 + 8.9977 o 1000

5

%: 60l

= 40

IewBerr = (14) 20/
(logio(logio(loga(Ie wp — 2 x mbl) + mlir))) % 20 20 | 60 —WB—SgESQ 100 120 140

x321.7017 4+ 95.3708 e WB,eff
(b)

A significance analysis of the various VoIP traffic parame-
ters, in terms of their appearance in the best individuals0of Fig, 7. Io.wp.es s predicted by equation (13) Vs target y .. s 4 for: (a)
runs of each of the two experiments, was done. The results gia@ing data (b) testing data
graphed in Fig. 8. According to thik wp andmir had the
highest utility, and appeared in 92—-94% of the individu@lse
third most sought-after parameter wasid, appearing in 36— C. Comparison with the E-Model
38% of the best individuals of both experimentshl appeared  Finally, a comparison of equation (13) was made with the
in between 24-26% wherea®,/ appeared in only 12% of E-Model's formulation of thel. wg..;s, as in [2]. This is
the best individuals. The last two observations have al&m beepresented by:
reported by other researchers, such as [44] [45], who note
that PESQ does not model the effect of burstiness on speech
quality. We reported similar results in [5]. Fig. 9 illusiea Lwerf=Iewp+ (129 - I.wg) X
similar behavior, but for WB-PESQ and a WB codec (AMR-
WB 23.85 kbps). It is obvious that a correlation betweefihe equation is similar to equation (7) differing in the ciams
I.wB.efr andmbl does not exist. A similar comparison forterm, 95, which is replaced with the neR,,,,=129. The
the case of G.729 is shown in Fig. 10 where absence of aByrstR parameter is also absent hei@pl values for this
correlation betweet, wp .rs andPI may also be observed.equation were computed separately for each of the codecs ove

Py

——— (15
P, + Bpl (15)
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Fig. 8. Percentage of the best individuals employing varioput parameters

in acceptable runs of each of the two experiments. P (ms.) . % Packet Loss
6

Fig. 10. Variation off v B, s againstmlr (%) andPI = [10, - - -, 60ms]
for G.729

TABLE IV
COMPARISON BETWEEN THEPREDICTIONACCURACIES OF THEE-MODEL
AND THE PROPOSEDMODEL

Ie,WB,eff

E-Model Equation (13)
Codec RMSE RMSE | RMSE | RMSE
(kbps) Bpl train test train test

G.722.1 (24) 20.32 | 8.6824 | 8.8958 | 8.1701 | 8.9118
G.722.2 (6.6) 40.75 | 9.6225 | 8.9933 | 8.0938 | 7.6603
G.722.2 (8.85) 28.74 | 10.0175| 9.9919 | 8.0185| 7.8304
G.722.2 (12.65) | 21.58 | 10.5538 | 10.4088 | 8.2188 | 8.0678
G.722.2 (14.25) | 21.03 | 10.4684 | 11.2854 | 8.3031 | 8.5836
G.722.2 (15.85) | 19.98 | 10.599 | 11.5020 | 8.3257 | 9.1166
G.722.2 (18.25) | 19.48 | 11.2017| 10.92 8.6862 | 9.0266

40

% Packet Loss

mbl G.722.2 (19.85) | 18.86 | 10.5502 | 11.3529 | 8.2338 | 8.7685

. G.722.2 (23.05) | 18.44 | 11.4079| 11.1663 | 9.1417 | 8.7729

0 G.722.2 (23.85) | 17.92 | 10.789 | 11.1948 | 8.6125 | 9.3168

. o . G.729 (8) 2843 | 895 9.1631 | 7.3888 | 7.4943
Fig. 9. Variation ofl. wp sy againstmlir (%) andmbl = [1,---, 5] for G.723.1 (6.3) 29.19 10.83 10.3630 | 8.8116 | 8.5259
AMR-WB 23.85 kbps,PI=1. AMR-NB (12.2) | 1350 | 8.0689 | 7.2947 | 9.4549 | 8.7322
G.722.1 (32) 18.93 | 8.9112 - - 8.4775

AMR-NB (7.4) | 15.71 | 7.1335 - - 8.6188

the training data, and the performance was analysed using {hAverage - 9.8527 | 10.1946| 8.42 | 85269
testing data. Loss distributions were assumed to be randonf PG - - - 1454 | 16.36

which may be thought to be a reasonable assumption since

it was shown in Figs. 9 and 10 that WB-PESQ estimates are

oblivious of the effect of burstiness and varyidls. The simulation study was performed in which speech files were
results are reported in Table IV for each codec. The tabte alubjected to random packet losses with loss rates ranging
shows the RMSE of equation (13) for AMR-NB (7.4 kbpspetween [0,2.5,..., 15, 20, ..., 40]% for each of the enapdin
and G.722.1 (32 kbps). These codecs were not representeddnditions. The results are reported in Table V. To this émel,

the training data during evolution. Percentdyediction Gain data was split into training and testing datasets as preliou
(PG) of 16.36 % was observed for unseen data in an RMSBp! values were recalculated for each of the codecs and the

sense. This is calculated according to equation (16) RMSE was noted with respect to WB-PESQ. The performance
of equation (13) was found to be inferior to the traditional
%PG = RMSE. — RMSE, 100 (16) E-model formulation initially. Since random loss condito
RMSE. were alien to the GP training conditions, the performance
where,RM SE. and RM SE, represent theRM SE of equa- degradation was not unexpected when compared to a retuned
tions (15) and (13) respectively. E-model.

However, equation (15) (i.e. the E-model formulation) does However, upon merely re-scaling equation (13) using train-
not account for bursty packet losses and alsoHd@rspanning ing data a prediction gain of approximately 36% was obtained
multiple speech frames. Moreover, all the models proposedThis shows the robustness of the model produced by GP as
this research (by equations (12)—(14)) are functionsndf. evolutionary re-training was not required. Linear re-sual
Given this, a comparison between E-model and the propogedulted in newslope and interceptterms which were found
models over datasets that include various degrees of hessti to be 0.5085 and 46.7468 respectively. Linear re-scaling wa
and Pls is somewhat unfair. To ensure fairness a differatine by treating equation (13) with equations (10) and (11).
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TABLE V
COMPARISON BETWEEN THEPREDICTIONACCURACIES OF THEE-MODEL AND THE PROPOSEDMODEL FORRANDOM LOSSCONDITIONS
E-Model Equation (13) Equation (13) after re-scaling
Codec RMSE RMSE RMSE RMSE RMSE RMSE
(kbps) Bpl train test train test train test
G.722.1 (24) 11.9699 | 12.2622 | 13.1168 | 14.9678 | 14.8504 | 6.6551 6.9227
G.722.2 (6.6) 24.0580 | 8.5488 8.5060 8.2690 7.8553 6.9593 7.2537
G.722.2 (8.85) 14.6072 | 9.7573 9.8179 | 11.2923 | 11.3162 | 5.9292 6.2118
G.722.2 (12.65) | 10.6167 | 11.2011 | 11.2734| 14.4629 | 14.7035 | 6.6388 6.7783
G.722.2 (14.25) | 10.0051 | 11.2489| 11.1616| 15.0003 | 14.8100 | 6.2532 6.5631
G.722.2 (15.85) | 9.8967 | 11.7606 | 12.1703 | 15.5678 | 15.6983 | 6.4557 6.9346
G.722.2 (18.25) | 9.3617 | 12.3315| 12.7594| 16.5918 | 17.0715 | 6.9336 7.3102
G.722.2 (19.85) | 9.0622 | 12.3594 | 12.1367 | 16.8570 | 16.8927 | 6.9994 6.9165
G.722.2 (23.05) | 8.3718 | 13.1165| 12.9824 | 18.1885 | 17.9847 | 7.1816 7.3181
G.722.2 (23.85) | 8.5254 | 12.6131| 12.4198| 17.7068 | 17.3806 | 7.0750 6.6818
G.729 (8) 16.8150 | 8.5228 8.7014 9.6080 9.7882 5.5697 5.5535
G.723.1 (6.3) 14.9484 | 9.5020 | 10.3181| 10.7527 | 11.1905 | 6.4791 6.6315
AMR-NB (12.2) | 5.7637 8.6698 8.3887 | 17.9201 | 18.4502 | 9.2798 9.6566
G.722.1 (32) 11.6870 | 14.0378 | 13.6078 | 16.3347 | 15.7470 | 7.4048 7.8482
AMR-NB (7.4) 7.5927 7.8755 8.5562 | 14.7356 | 14.7646 | 7.8499 7.7822
Average — 10.9205 | 11.0611 | 14.5504 | 14.5669 | 6.9109 7.0909
% PG — - — -33.2393 | -31.6949 | 36.7163 35.8934
14 14
— Reference Ling
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120 , [Equation 13 129
after rescalin 00 0 o e .
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Fig. 11. I. wn,ess predicted by equation(15) (i.e. the E-Model) and equatib) s target/. v p.cr s Obtained from WB-PESQ for random loss: (a)
training data (b) testing data.

A pictorial comparison similar to Fig. 7 is also dondor the network distortion conditions under observatiomr O
between equations (13) and (15) with respect to WB-PESproach utilizes WB-PESQ for deriving reference values of
in Fig. 11 for the case of ITU-T G.723.1 codec. It can bé. wg..rs as opposed to subjective tests. This is suitable for
observed that the points produced by equation (13) are mdéast and inexpensive derivation of referenteyp.rr. We
firmly glued to the 45% reference line as compared to thokave demonstrated the utility of our approach by generating

produced by equation (15). three models forl. wp..rs from different GP runs. The
proposed models were thoroughly tested on a wide variety
VII. CONCLUSIONS of VoIP traffic scenarios including a blend of modern IP

teleph decs.
In this paper we have proposed a novel methodology for dee_ep ony cocecs

termining NB/WB equipment impairment factork, wp.cs . A comparison of equation (13), which has the best per-
for a mixed NB/WB context. It is based on using GP téormance among the proposed models, with the E-Model,
perform symbolic regressions which generate simple formeguation (15), has also been done, where it is shown that
lae for I. wpers. It is advantageous in the sense that theur approach outperforms the E-Model with a significant
derived models do not result from human bias, but asnaargin in terms of prediction accuracy. Even though we have
direct consequence of program evolution. Moreover, patameused WB-PESQ in this research, the proposed methodology is
optimization is done in parallel with evolution for everyindependent of it and simply requires a generic instrumenta
model using linear scaling. The derived models are apgdkcalmodel of this kind. The methodology may also be augmented
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with subjective tests.
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