
1

Algorithms for Server Placement in
Multiple-Description-Based Media Streaming

Satyajeet Ahuja and Marwan Krunz
Dept. of ECE, The University of Arizona

{ahuja,krunz}@ece.arizona.edu

Abstract— Multiple description coding (MDC) has emerged as a
powerful technique for reliable real-time communications over lossy
packet networks. In its basic form, it involves encoding a media
stream into r substreams that are sent independently from a source
to a destination. Each substream (or description) can be decoded in-
dependent of the other r − 1 substreams. With every successful re-
ception of a substream, the quality of the decoded signal improves. In
this paper, we consider the problem of placing a set of servers in the
network such that a desired quality of service can be provided to a
community of clients that request MDC-coded traffic. We formulate
the server placement (SP) problem, with the goal of identifying the
minimum number of server locations that can provide r descriptions
to a set of clients such that the delay associated with each path from
a chosen server location to a given client is bounded by a given delay
constraint and the total “unreliability” associated with the group of
paths to a given client is also upper bounded. We show that the SP
problem belongs to the class of NP-complete problems. We propose
a mixed-integer linear programming (MILP) formulation and an effi-
cient heuristic solution for the SP problem. Simulations are conducted
to evaluate the performance of the proposed algorithm and compare
it with the optimal solution provided by the MILP solution.

Index Terms—Multiple description coding, path diversity.

I. INTRODUCTION

Content delivery networks (CDNs) have recently been the focus
of intensive research (e.g., [18], [13], [19]). The interest in these
networks stems from their ability to cope with various transport
problems associated with Internet delivery, including congestion
and server overload. CDNs significantly improve the performance
of a Web session by caching popular content on servers located
close to end-users, resulting in relatively shorter network paths.
This reduces response time, packet loss probability, and the overall
network resource usage. CDNs were originally designed for the
delivery of “offline” content, but recent efforts have also consid-
ered their application in media streaming [5].

Many approaches for media streaming have been proposed in
the literature. One recently popularized approach relies on multi-
ple description coding (MDC) combined with multi-path diversity
routing [4], [5], [18]. MDC is essentially a coding technique in
which an input signal (video/audio) is encoded into r bitstreams,
referred to as descriptions. Each description can be decoded inde-
pendent of the other descriptions and can alone provide a certain
level of video quality. Furthermore, by embedding complimentary

This research was supported in part by NSF (under grants CNS-0721935, CNS-
0627118, CNS-0325979, and CNS-0313234), Raytheon, and Connection One (an
I/UCRC NSF/industry/university consortium). Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those of the author(s) and
do not necessarily reflect the views of NSF. An abridged version of this paper was
presented at the IEEE Globecom 2006 Conference.

information in each description, any subset of the r descriptions
can be combined at the receiver, with the quality of the video/audio
stream improving as the number of successfully received descrip-
tions increases. The decodability of the individual descriptions and
their (approximately) equal importance makes MDC significantly
different from the well-known layered approach. In the layered
approach, the substreams (or layers) form a hierarchy. Packets
are differentiated according to their importance; the most impor-
tant packets (“base layer”) are given the highest transport prior-
ity, while less important packets (“enhancement layers”) are given
lower priority. High-priority packets are critically needed for the
reconstruction of the video signal.

Path diversity is a technique used in packet networks to deliver
data over multiple paths, which may or may not originate from
the same server. The use of multiple paths for streaming media
has been shown to reduce packet losses [4]. When applied to
MDC streaming, path diversity uses different paths to route differ-
ent descriptions to a client. Blackouts due to link or node failures
along the path of one of the descriptions are avoided. Architec-
turally, MDC content delivery is supported by a “front-end” server,
which receives requests for media and redirects them to several
“back-end” servers associated with different descriptions. These
back-end servers may or may not be geographically co-located.
Each back-end server serves one or more descriptions. Placing the
servers of different descriptions at different nodes (e.g., routers)
helps in finding diverse paths for multiple clients (see Figure 1).

Intermediate NodesCommon link for
descriptions Client

Diverse paths for different
descriptions

Server
Nodes

Fig. 1. CDN with MDC traffic and multi-path diversity.

The server placement (SP) problem has be extensively studied in
the literature (see [10], [6], [15] and the references therein), mainly
in the context of replicated data servers. The key goal in such stud-
ies is to minimize the overall cost of assigning servers and transfer-
ring data from them to various clients. In [15], a polynomial-time
approximation algorithm was presented to solve the SP problem,

considering the round-trip delays for data requests. In all previ-
ous formulations of the SP problem, content is replicated at all
locations, and clients choose the nearest server locations based on
delay, hop length, or some other criteria.

In this paper, we study the SP problem for supporting MDC-
media streaming over CDNs. Our goal is to find the minimum
number of server locations and corresponding client-server paths
such that the delays of the paths between a client and its associ-
ated servers are individually upper-bounded by a constant (delay
bound) and the total “unreliability” (to be defined later) associ-
ated with these paths is also upper-bounded by a constant (diver-
sity bound). We first prove that the SP problem is NP-complete.
Accordingly, we formulate it as a mixed-integer linear program
(MILP) and provide an efficient algorithmic solution to it. We also
provide a pseudo-polynomial-time approximation algorithm for a
special case of the SP problem (with one client and two descrip-
tions). Simulations are conducted to show the effectiveness of the
proposed algorithm and compare it with the MILP solution.

II. PATH DIVERSITY

Before formulating the SP problem, we first define a metric for
measuring path diversity in the context of MDC-media streaming.
A client that receives multiple descriptions from different servers
observes a blackout only if all corresponding descriptions of a
frame are lost or all of them arrive late. Hence, to maintain continu-
ous video playback, one should minimize the blackout probability.
Intuitively, the blackout probability for a client is mostly affected
by the packet loss rate over links that transport multiple descrip-
tions. To illustrate, consider two servers, s1 and s2, that provide
two distinct descriptions to a client c along two arbitrary paths P1

and P2 that possibly share some links. Without loss of generality,
for the purpose of calculating the packet loss rate, links along the
two paths can be rearranged such that all common links are con-
tiguous. For a given path, such rearrangement does not change the
overall packet loss rate observed over that path. An example of
two such paths is shown in Figure 2(a), with P1 = (e11 → e12 →
e13 → e31 → e32) and P2 = (e21 → e22 → e23 → e31 → e32). We
simplify the paths by creating “super-edges” e1 = (e11 → e12 →
e13), e2 = (e21 → e22 → e23), and e3 = (e31 → e32), as shown in
Figure 2(b). Let pi be the packet loss rate over super-edge ei, i =
1, 2, 3, i.e., the aggregate packet loss rate observed over the sub-
path represented by ei. We are interested in finding the probability
that at least one description is successfully received at client c. Let
L(P1,P2) denote such probability. Then,

L(P1,P2) = 1− [1− (1− p1)(1− p3)][1− (1− p2)(1− p3)]

= 1− [p1p2+p2p3+p1p3+p2
3−2p1p2p3−(p1+p2)p2

3+p1p2p
2
3].

We assume that all links in the network have reasonably small and
comparable packet loss rates. Such an assumption is valid for the
current Internet, and has been corroborated by several experimen-
tal studies (e.g., [1], [21]). Links with high packet loss rates can
be removed (by defining a policy constraint). Accordingly, it can
easily be shown that (p1 + p2)p2

3 � p2
3, p1p2p

2
3 � p1p2, and

2p1p2p3 � p1p2. The probability that at least one description is
received successfully at c can then be approximated by:

L(P1,P2) ' 1− [p1p2 + (p1 + p2 + p3)p3]. (1)

Probability of link failure

L(
P

 1
,P

 2)

(a)

(c) Impact of p1 and p3 on L(P1,P2).

(b)

Fig. 2. Impact of link loss rate on the blackout probability.

From (1), we make the following observations: (1) L(P1,P2) is
symmetric in p1 and p2; (2) L(P1,P2) is monotonically decreasing
in p1, p2, and p3. We now show that L(P1,P2) is more sensitive
to a change in p3 than to a change in p1 or p2 by computing the
partial derivative of L(P1,P2) w.r.t. p1 and p3:

∂L(P1,P2)
∂p1

= −(p2 + p3) (2)

∂L(P1,P2)
∂p3

= −(p1 + p2 + 2p3) (3)

Since p1, p2, and p3 are positive numbers, we have∣∣∣∣∂L(P1,P2)
∂p3

∣∣∣∣ >

∣∣∣∣∂L(P1,P2)
∂p1

∣∣∣∣. (4)

Hence, the rate of change in L(P1,P2) w.r.t. p3 is greater than
the rate of change in L(P1,P2) w.r.t. p1. Figure 2(c) depicts
L(P1,P2) as a function of p1 and p3. From (4) and Figure 2(c), we
conclude that the blackout probability is more sensitive to the loss
rate over a shared link between the multiple paths than to the loss
rate over an exclusive link. Our conclusion can be easily general-
ized to more than two paths. Hence, paths should be chosen such
that the loss rate over the common links is minimized.

The above analysis was conducted assuming that loss rates over
different links are i.i.d. A common link carries more MDC traffic
than a non-common link, so a change in its loss rate (e.g., an in-
crease in p3) has a more drastic effect on the blackout probability
than a non-common link. For this reason, common links with high
loss rates should be avoided as much as possible. The impact of the
common link on the blackout probability is even more significant
if packet losses are correlated. Based on the argument presented
above, we define the following measure of unreliability for a set of
paths:

Definition 1: For two paths Pi and Pj , their unreliability is de-
fined as: U(Pi,Pj)

def=
∑

`∈L p`1`(Pi,Pj), where L is the set of
links in the network, p` is the packet loss rate over link `, and
1`(Pi,Pj) is an indicator function that is equal to 1 if Pi and Pj

share link `1. For a set of paths R, their unreliability measure
U(R) is defined as

U(R) def=
∑
Pi∈R

∑
Pj∈R, Pj 6=Pi

U(Pi,Pj). (5)

1If the network provider wishes to use a multiplicative metric to represent the
unreliability measure, then this metric can be logarithmically transformed into an
additive metric.

2

The rationale behind using the metric U(R) as an indication of the
unreliability of the set R is to give equal importance to various
descriptions. If different MDC descriptions have different levels
of importance, then an appropriately weighted sum can be used in
defining the unreliability measure.

Other definitions of unreliability can also be used, for example
to handle pathological cases (e.g., high loss rates over a few links).
For instance, for a set of pathsR, their unreliability can be defined
as a linear combination of U(R) and the sum of loss rates of all
links inR. Such a definition discourages the use of links with high
loss rates.

III. SERVER PLACEMENT PROBLEM

In this section, we study the problem of placing a set of multiple
description (MD) servers in a CDN that supports a set of clients C.
Each server is assumed to have all the descriptions. However, we
assume for now that a client can get at most one description from
each server. Later on, we relax this assumption and allow multiple
descriptions to be streamed from the same server. Let the network
consist of a set of nodes N and a set of links L. We assume that
the MD servers are to be chosen from a subset S ⊆ N . We refer
to the nodes in S as potential server locations. Servers cannot be
placed in other locations because of geographical and/or security
reasons. Let r be the number of distinct descriptions and let D(P)
be the delay associated with a path P . We formally define the SP
problem as follows:

Problem 1: [Server Placement (SP)] Let G(N ,L) be a network
graph. Suppose that each link (u, v) ∈ L, where u and v are two
nodes in N , is associated with a delay value d(u, v) and a packet
loss rate p(u, v). The goal is to find the minimum set of server
locations SC ⊆ S and an associated sets of paths {Rc : c ∈ C},
where Rc is the set of paths from r servers in SC to a client c ∈ C,
such that:

D(P) def=
∑

(u,v)∈P

d(u, v) ≤ Breq, ∀P ∈ Rc and ∀c ∈ C (6)

U(Rc) ≤ Dreq, ∀c ∈ C (7)

where Breq and Dreq are positive constants.
The above formulation assumes that packet loss rates are known.
This can be done using various estimation techniques (e.g., [1],
[21]). Estimated loss rates can be advertised via link-state dissem-
ination approach (e.g., [9]).

The formulation in Problem 1 does not include a capacity metric.
This is because we assumed that the load incurred due to MDC
traffic is not significant relative to the overall traffic over a link.
This assumption is made to simplify the formulation, but is also in
line with realistic traffic profiles in the Internet. For cases where
this assumption is not valid, capacity constraints Creq(u, v) can be
used for each link (u, v) ∈ L to limit the total traffic over the link.

When Breq = ∞ and Dreq = 0, the SP problem reduces to find-
ing the minimum set of servers that can provide r disjoint paths to
each client c ∈ C. In this case, some descriptions may be exces-
sively delayed, increasing the starvation rate at the client’s buffer.
The other extreme is when Dreq = ∞ and Breq is set to an ar-
bitrarily small value. In this case, the optimal solution to the SP
problem will place the server locations such that the total delay as-
sociated with the multiple paths to a client is minimized. Such a

solution, however, ignores path diversity, and the traffic from dif-
ferent servers to a given client may be routed over many common
links. A failure of any of these links will result in missing several
descriptions, significantly degrading the playout performance.

While it is easy to obtain maximally disjoint paths by using a
variant of the maximum-flow algorithm [2], the inclusion of delay
constraint in (6) makes the problem significantly harder.

Theorem 1: The SP problem is NP-complete.
Proof: Consider the corresponding decision problem, where

the goal is to determine if there exists a set of k servers such that
the delay and diversity constraints are met for a given client set
C. First, we show that the SP problem belongs to the class of NP
problems. The certificate for the verification algorithm is chosen
as the set of servers in SC , the associated sets of paths {Rc : c ∈
C}, and a set of clients C. The verification algorithm affirms that
D(P) ≤ Breq, ∀P ∈ Rc and ∀c ∈ C. It also verifies the diversity
constraint for each client. This verification can be easily performed
in polynomial time because |C| is O(|N |).

Next, we prove that the SP problem is NP-hard by showing that
the NP-complete Min-Max Multicenter problem (also known as
the p-center problem) [8] can be reduced in polynomial time to
the SP problem. The decision problem for a variant of the p-center
problem is given as follows: Is there a set Sc of x (a known positive
integer) nodes inN such that the maximum distance of the shortest
path from any node inN to the closest node in Sc is less than Breq?

The reduction approach takes as input an instance of the p-center
problem {G(N ,L), Breq, x}. For the graph G(N ,L), set Dreq =
0 (the diversity bound), r = 1 (the number of MDs), and k = x (a
total of x server locations are required). The output of the reduction
algorithm is an instance of the SP problem. We now show that this
output is yes (positive) if and only if the output of the p-center
problem on {G(N ,L), Breq, x} is also yes (positive). The output
of the SP problem in this case is a set of servers SC and a path from
each client to one element in SC (because r = 1). For each client,
the delay associated with the path from this client to the server is
less than Breq. If this is not the shortest path from the client to its
closest server in SC , then Dijkstra’s algorithm can be used to find
the shortest path (the delay associated with the shortest path will
also be less than Breq). Hence, a solution to the SP problem is also
a solution to the p-center problem. The solution to the p-center
problem will satisfy the delay and diversity bounds with r = 1.
The reduction only requires fixing the values of Breq, Dreq, and r,
as well as the calculation of the shortest path from each client to
the elements in SC , which can be done in polynomial time.

A. MILP Formulation

Figure 3 depicts an MILP formulation of the SP problem. The
formulation assumes that each server provides at most one descrip-
tion to one or more clients. As we show later in this section, a slight
modification can be made to allow for streaming multiple descrip-
tions from one server location. The objective function of the MILP
is to minimize the total number of selected servers. Let si ∈ S be
one of the selected server locations and let P(si, cj) be the path
chosen to deliver the description from server si to client cj ∈ C.
The binary variable x(si, cj , u, v) is set to one if P(si, cj) contains
the edge (u, v); otherwise, it is set to 0. For each node si ∈ S, we
set z(si) = 1 if an MD server is placed at si, and we set it to zero
otherwise. Finally, y(si, sj , ck, u, v) is a binary variable that indi-
cates whether the paths taken by descriptions from two different

3

Objective function minimize
∑

si∈S
z(si)

Subject to the following constraints:
C1 :

∑
v:(u,v)∈L x(si, cj , u, v)−

∑
v:(v,u)∈L x(si, cj , v, u) ≤ 1, u = si

≥ −1, u = cj

= 0, otherwise (8)
∀si ∈ S, u ∈ N , and cj ∈ C.

C2 :
∑

si∈S

∑
u:(u,cj)∈L x(si, cj , u, cj) = r, ∀cj ∈ C. (9)

C3 :
∑

(si,u)∈L x(si, cj , si, u) ≤ 1, ∀cj ∈ C, ∀si ∈ S. (10)

C4 :
∑

(u,v)∈L{x(si, cj , u, v)d(u, v)} ≤ Breq, ∀cj ∈ C,∀si ∈ S. (11)

C5 : 2y(si, sj , ck, u, v)− x(si, ck, u, v)− x(sj , ck, u, v) ≤ 0 (12)
∀(u, v) ∈ L,∀ck ∈ C, and ∀(si, sj) ∈ S × S with si 6= sj .

C6 : y(si, sj , ck, u, v)− x(si, ck, u, v)− x(sj , ck, u, v) + 1 ≥ 0 (13)
∀(u, v) ∈ L,∀ck ∈ C, and ∀(si, sj) ∈ S × S with si 6= sj .

C7 :
∑

(si,sj)∈S×S

∑
(u,v)∈L{y(si, sj , ck, u, v)p(u, v)} ≤ Dreq, ∀ck ∈ C. (14)

C8 : z(sk) ≥ x(sk, cj , sk, u), ∀sk ∈ S, ∀(sk, u) ∈ L, cj ∈ C. (15)

Fig. 3. MILP formulation for the SP problem.

servers si and sj to a client ck have a common link (u, v) ∈ L.
Essentially,

y(si, sj , ck, u, v) = x(si, ck, u, v)x(sj , ck, u, v). (16)

Constraint C1 in Figure 3 is the flow conservation constraint for
client cj and server si. It limits the number of descriptions per
server-client pair to one. As shown in constraints C2 and C3, every
client needs to get r descriptions, one from each chosen server. C4

ensures that the delay associated with each description is less than
Breq. C5 and C6 transform (16) into an MILP. This transformation
is needed because for an MILP formulation the constraints should
be linear in the variables. C7 ensures that the set of paths associ-
ated with a client satisfies the diversity constraint Dreq. C8 ensures
that z(si) = 1 if si provides at least one description to at least one
client.
Incorporating multiple descriptions at a server location: Mul-
tiple descriptions can be supported at a server location by adding
auxiliary nodes to this location (see Figure 4). These auxiliary
nodes are then treated as potential server locations, with each loca-
tion providing at most a single description. The delay and packet
loss rate associated with the edge between the potential server lo-
cation and each auxiliary node are set to zero.

Incorporating capacity constraints: A capacity constraint on

Potential Server
Location

Auxiliary Node

Fig. 4. Supporting multiple descriptions at a single server location.

a link (u, v) can be added by bounding the total MDC traffic
passing over (u, v). Let J be the bandwidth consumed by a
description. Then, a capacity constraint on a link is given by:∑

si∈S, cj∈C x(si, cj , u, v)J ≤ Creq(u, v), ∀(u, v) ∈ L.
It should be noted that the MILP approach is essentially a brute-

force method. Its complexity grows exponentially with the num-

ber of variables in the problem. Despite this prohibitive complex-
ity, the MILP solution provides a reference point for assessing the
goodness of heuristic/approximation algorithms.

B. SP Algorithm

The exponential complexity of the MILP approach makes it im-
practical for large networks. Moreover, the set of clients who re-
quire content delivery may change frequently, necessitating fre-
quent recomputation of server locations and paths. Accordingly,
to ensure manageable computational complexity, we develop a
heuristic algorithmic solution to the SP problem which we sim-
ply refer to as the SP algorithm. In Appendix I, we also provide
a pseudo-polynomial-time approximation algorithm for a special
case of SP problem (with two descriptions and one client).

In the SP algorithm, we start with an initial set of server locations
and sequentially add more server locations to satisfy the delay and
diversity constraints for each client. The input to the algorithm
consists of G(N ,L), d(u, v) ∀(u, v) ∈ L, p(u, v) ∀(u, v) ∈ L,
S, C, r, Breq, and Dreq . Let δd(s, c) be the delay of the shortest
path between a server s and a client c, and let W be a |N | × |N |
matrix with elements W (i, j) = δd(i, j). For a given client
c ∈ C, let 4(c,S, Breq) be the number of nodes s in S for which
δd(s, c) ≤ Breq . A delay cover Dcov is a set of servers in S such
that for each client c ∈ C, 4(c,Dcov, Breq) ≥ r, i.e., for every
client c ∈ C, there is at least r servers in Dcov whose shortest path
delays to c is less than or equal to Breq . The procedure for finding
a delay cover is presented in Section III-D. Note that for the set S,
the delay cover is not unique. The placement algorithm starts by
computing Dcov . At any stage a client c ∈ C maintains the follow-
ing information:
1. fc: Number of descriptions destined to client c for which server
locations and feasible paths have already been found. Initially fc

is set to 0 for all c ∈ C.
2. The residual graph Gc for client c (described later), which deter-
mines the aggregate flow along various links in the network. Ini-
tially Gc is set to G.
3. The set of paths Rc from the chosen server locations to client c.
Initially Rc is empty.

4

For a given Dcov , the algorithm randomly picks a client that still
requires at least one more description, i.e., fc < r. For a client, the
algorithm picks server locations from Dcov in a random order such
that for a selected server s, δd(s, c) < Breq. The algorithm checks
if server s can provide a description without violating the delay and
diversity constraints by using the procedure CheckFlow, described
in Section III-E. If there exists a feasible flow, i.e., if the output of
CheckFlow is 0, the algorithm uses the procedure RouteFlow, de-
scribed in Section III-E, to update the residual graph Gc. Then, fc

and Rc are updated accordingly.
The algorithm recomputes the delay cover if at least one of the

clients still requires at least one description, i.e., if fc < r. When
the delay cover is recomputed, additional servers are added to the
existing delay cover such that for each client c there are r − fc

additional servers with δd(s, c) ≤ Breq . The algorithm terminates
if ∀c ∈ C, fc ≥ r or if Dcov = S. If the algorithm terminates
with Dcov = S and there is still a client c with fc < r, then
the algorithm cannot find a set of servers and associated paths that
can simultaneously satisfy the delay and diversity constraints for
all clients. The algorithm removes any server s from Dcov if this
server does not provide a description to any client. A pseudocode
for the SP algorithm is presented in Figure 5.

Procedure: SP
Input: G(N ,L), d(., .), p(., .),S, C, r, Breq, Dreq

Output: SC , Rc, c ∈ C
1) Initialize:

a) SC = φ, Dcov = φ, Gc = G, ∀c ∈ C.
b) ∀s ∈ S, Ws = Dijkstra(G(N ,L), d(., .), s).
c) Itr = 0, fc = 0, andRc = φ, ∀c ∈ C.

2) While Itr == 0,
a) Dcov = DelayCover(G, W (.),S, C, fc, Dcov)
b) For each c ∈ C s.t. fc < r,

For each s ∈ Dcov ,
If CheckFlow(s, c,Gc) == 0,
RouteFlow(s, c,Gc)
fc = fc + 1

c) If ∀c ∈ C, fc ≥ r
Itr = 1.

d) If Dcov == S and ∃ c : fc < r
Return: Infeasible solution

3) SC = Dcov .

Fig. 5. Pseudocode for the SP algorithm.

Note that the SP algorithm is a heuristic. It is not guaranteed
to find a solution even if one such solution exists. If the SP algo-
rithm fails to return a feasible solution, the network operator can
re-execute it with slightly modified Breq and Dreq values, and with
a modified set of potential server locations.

C. Residual Graph of a Client
The SP algorithm requires determining the residual graph Gc

for every client c ∈ C. In this section, we define Gc and explain
how it is determined. For a network G(N ,L), the residual graph
Gc(N ,L) for a client c is a graph of N nodes and L links. Each
link (u, v) in Gc is associated with two weights: f(u, v), which
represents the total number of descriptions (or total flow) passing
through link (u, v), and l(u, v), which represents a link metric used
for choosing the paths over the residual network. Initially, f(u, v)
is set to 0 and l(u, v) is set to d(u, v) ∀(u, v) ∈ L. At any stage in
the SP algorithm, if a path P is chosen from a server s to a client
c, then f(u, v) and l(u, v) are updated as follows:
• For every link (u, v) ∈ P , f(u, v) is set to f(u, v) + 1 and

f(v, u) is set to f(v, u)− 1.

– If f(u, v) = 0, then l(u, v) = d(u, v).
– If f(u, v) > 0, then l(u, v) = f(u, v)(Ω + p(u, v)),

where Ω is some large number.
– If f(u, v) < 0, then l(u, v) = −f(u, v)d(u, v).

A flow is then routed along the shortest path w.r.t. l(., .) between
a server s and a client c on the residual graph Gc of c. The above
setting of l(u, v) ensures the following:
• If the shortest path w.r.t. l(., .) from s to c has a link (u, v) with
f(u, v) > 0, then there can be no path P from s to c for which
f(u, v) = 0 ∀(u, v) ∈ P .
•Among all possible paths between any server s ∈ Dcov and client
c, path P has the fewest number of links with positive flow, i.e.,
f(u, v) > 0.
• If the chosen path P passes through links with positive f(., .)
values, then such links have the maximum total reliability, i.e., they
should have the minimum

∑
(u,v):f(u,v)>0,(u,v)∈P f(u, v)p(u, v)

value among all paths between any server s ∈ Dcov and client c.
An example of the residual graph along path P is given in Figure
6. In this example, f(u, v) is initially set to 0.

1 2 3 4 5

1 2 3 4 5

PFlow along path

d(1,2)
p(1,2)

d(2,3)

p(2,3)

d(3,4)

p(3,4)

d(4,5)

p(4,5)

-d(1,2)

+p(1,2)

-d(2,3)

+p(2,3)

-d(3,4)

+p(3,4)

-d(4,5)

+p(4,5)Ω Ω Ω Ω
Residual Graph

Fig. 6. Construction of the residual graph.

D. Computation of the Delay Cover

We use the following greedy approach to determine an initial
value for Dcov . For each potential server locations, we determine
Ns, which denotes the number of clients c ∈ C with r − fc >
0 and with δ(s, c) ≤ Breq. We sort the list of potential server
locations based on their Ns values. We pick the server sx from
the top of the sorted list. Then, we increment fc for all clients c
with δ(sx, c) ≤ Breq and re-sort the list based on the updated Ns

values. This process continues until each client c ∈ C satisfies
fc ≥ r or until there are no more server locations to consider. A
pseudocode for the DelayCover procedure is presented in Figure
7. In the pseudocode, 1[.] is the indicator function.

Notice that a delay cover is based purely on the delay of the
shortest path. It does not take into account path diversity. At any
point during the execution of the SP algorithm, if the current de-
lay cover cannot satisfy the delay and diversity constraints for all
clients, then the SP algorithm has to update Dcov for clients c ∈ C
for which fc < r and whose delay and diversity constraints cannot
be satisfied under the existing delay cover.

E. Check Flow and Route Flow Procedures

Check Flow: We now describe the CheckFlow procedure used
by the SP algorithm. The procedure is presented in Figure 7. It
takes as input a client c, a server location s, and a residual graph
Gc. It then finds the shortest path P on Gc from s to c w.r.t. l(., .).

5

Procedure: DelayCover (G(N ,L), W (.),S, Procedure CheckFlow (s, c, Gc)
C, fc, Dcov) Finds an augmenting path from s to
1. Tfc = fc, ∀c ∈ C c in the residual graph Gc and
2. Itr = 0 checks if each resultant path
3. While (Itr == 0) satisfies the delay constraint and
3a. Obtain Cr ⊂ C s.t. Tfc < r ∀ c ∈ Cr . the reliability constraint associated
3b. ∀s ∈ S −Dcov , with paths.

Rs =
∑

c∈Cr
1[δ(s,c)<Breq] Procedure RouteFlow

3c. Select sx : Rsx = maxs∈S−Dcov Rs Input: s, c, Gc

3d. Dcov = Dcov ∪ sx Output: Returns 1 if s→ c is a
3e. ∀ c ∈ Cr s.t. δ(sx, c) < Breq , feasible flow, and 0 otherwise.

Tfc = Tfc + 1 Routes unit flow from s to c on
3f. If ∀c ∈ C, Tfc ≥ r, Itr = 1. residual graph Gc and updates link
4. Return Dcov . weights in Gc.

Fig. 7. Pseudocodes for DelayCover, CheckFlow, and RouteFlow.

The procedure then routes a unit flow along P and updates the link
weights on Gc, as discussed in Section III-C. Finally, CheckFlow
checks if all resultant paths satisfy the delay and diversity bounds.
Note that even if all previously routed flows satisfy the delay and
diversity bounds, a new flow may alter these paths and the proce-
dure needs to check if the delay and diversity constraints are still
satisfied. If one path does not satisfy the delay bound or if the di-
versity bound is violated, the procedure returns a failure, indicating
the infeasibility of this flow. Finally, CheckFlow removes the unit
flow that is routed along path P . Note that CheckFlow requires
executing Dijkstra’s shortest path algorithm. Hence its worst-case
complexity is O(|N |2).

If a capacity constraint Creq(u, v) for a link (u, v) ∈ L is con-
sidered, then CheckFlow should verify that addition of a descrip-
tion (along any arbitrary path P) for any client does not violate
Creq(u, v) for any link (u, v) ∈ P . This can be done by main-
taining a count on the number of descriptions already routed along
each link (u, v) ∈ L.

Route Flow: The RouteFlow procedure (see Figure 7) is used to
update the residual graph of a client c by routing a unit flow from
s to c along the shortest path w.r.t. l(., .) on Gc. The complexity
associated with RouteFlow is O(|N |2).

F. Complexity

Step 1-b in Figure 5 requires |S| executions of Dijkstra’s al-
gorithm, which can be performed in O(|S||N |2) time. The
DelayCover procedure used in Step 2-a adds at least one server
to Dcov . Hence, the while loop in Step 2 is executed for a max-
imum of |S| times. Note that DelayCover requires O(|C|) com-
putations to add a server to Dcov . For each iteration inside the
while loop, Step 2-b calculates the feasible flow for each client.
The CheckFlow procedure is called |S| times for each client c ∈ C.
Step 2-b inside the while loop can be performed inO(|S|2|C||N |2)
time. Hence, Step 2 can be performed inO(|S|2|C||N |2) time. Al-
together, the overall worst-case complexity of the SP algorithm is
O(|N |2|S|+O(|S|2|C||N |2) + |S||C|) = O(|S|2|C||N |2).

IV. PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate the performance
of our algorithmic solutions presented in Section III. Our interest
here is not only to assess the goodness of these solutions, but to also
demonstrate the effectiveness of the MDC-based media streaming
approach in general.

A. Assessing the Goodness of the SP Algorithm

To evaluate the performance of the SP algorithm, we run simula-
tions on random topologies generated using the Waxman’s model
[20]. For each topology, the client set C and the set of potential
server locations S are randomly selected. In addition to Waxman’s
graphs, we also use the 21-node star topology shown in Figure 8,
which allows us to consider extreme scenarios (e.g., when S is rela-
tively large) without running into computational problems with the
MILP solution. For a given topology, each link (u, v) is assigned a

Client

Potential server location

Fig. 8. Star topology with 21 nodes and 20 links.

delay value d(u, v) and a packet loss rate p(u, v) that are randomly
sampled from the interval [0, 50 msec] and [0, 0.05], respectively.
The media stream is split into 3 descriptions. For different values
of Dreq and Breq , we obtain the number of server locations that
satisfy the delay and diversity constraints for a set of client nodes.
Recall that both the MILP and SP algorithms aim at minimizing
the number of server locations while meeting the given delay and
diversity bounds. For each client c ∈ C, we also determine the
minimum and maximum delays among the r generated paths. The
difference between the two reflects the amount of video buffer that
is required at the client. We report the averages of both quanti-
ties over all clients. Figure 9 shows the performance for Waxman
graphs of 50 and 25 nodes, and for the star topology. From this ta-
ble, we observe that the number of required server locations under
the SP algorithm is very close to that of the optimal (MILP) solu-
tion for all the cases considered. The average delays of the shortest
and longest paths to a client are also comparable with those of the
MILP solution.

B. MDC with Multiple Server Locations

Several previous studies (e.g., [16], [11]) compared MDC and
layered media streaming but without intelligent placement of con-
tent. We now use a packet-level simulator to evaluate the per-
formance of MDC streaming with multiple, intelligently placed
servers. For this set of simulations, we use a randomly generated
network of 50 nodes. The sets C and S are randomly generated.
The delay d(i, j) of a link (i, j) is randomly sampled from a uni-
form distribution in the range [10, 100]msec. The transmission ca-
pacity of each link is set to 10 Mbps. Each link is associated with
a two-state (good-bad) Markov model. The sojourn time of the
Markov chain in the good (bad) state is exponentially distributed
with mean Tg (Tb). A packet is successfully transmitted over the
link when the state is good, and is dropped otherwise. Each node
is modeled as an M/M/1 queue with a finite buffer of size B. A
node is associated with cross-traffic, which enters and exits at the
same node. Cross-traffic is used to control the average load ρ at a
node. Incoming traffic at a node (which includes cross-traffic and
traffic from adjacent links) enters the queuing system of a node if

6

Waxman’s graph of 50 nodes and 65 links, = 10, = 10

Breq
(msec)

Dreq

No. of required
server locations

Avg path delay
- short (msec)

Avg path delay
- long (msec)

MILP SP MILP SP MILP SP
200 1 3 3 53.39 53.98 147.9 126.74
140 1 4 4 53.83 52.04 124.45 116.1
130 1 Infeasible
150 0.75 4 4 53.39 56.14 126.15 117.92
150 0.5 4 4 53.39 56.14 126.15 117.92
150 0.1 4 7 53.84 53.30 123.23 116.07
150 0.05 Infeasible

|C| |S| Waxman’s graph of 25 nodes and 38 links, = 10, = 10

Breq
(msec)

Dreq

No. of required
server locations

Avg path delay
- short (msec)

Avg path delay
- long (msec)

MILP SP MILP SP MILP SP
200 1 3 4 36.09 48.32 103.27 118.33
120 1 4 6 36.09 38.99 92.82 93.14
110 1 5 Inf. 32.78 Inf. 77.42 Inf.
150 0.75 3 4 36.09 43.18 103.27 117.78
150 0.25 3 4 36.09 43.18 103.27 117.78
150 0.15 3 Inf. 36.09 Inf. 103.27 Inf.

|C| |S| Star topology of 21 nodes and 20 links, = 5, = 15

Breq
(msec)

Dreq

No. of required
server locations

Avg path delay
- short (msec)

Avg path delay
- long (msec)

MILP SP MILP SP MILP SP
100 1 3 3 25.32 34.52 68.05 62.58
50 1 3 4 21.95 16.21 36.03 35.32
35 1 7 7 8.38 8.38 29.97 31.66

100 0.1 3 7 19.65 31.10 51.94 59.61
100 0.01 9 10 8.38 13.35 53.59 55.84
100 0 10 11 13.01 13.70 44.06 59.63

|C| |S|

Fig. 9. Performance comparison of the SP algorithm and the MILP solution

2 4 6 8 10 12
10

−2

10
−1

10
0

Number of Clients

A
ve

ra
ge

 B
la

ck
ou

t P
ro

ba
bi

lit
y

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)
Raw

2 4 6 8 10 12
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Clients

A
ve

ra
ge

 B
la

ck
ou

t D
ur

at
io

n
(in

 fr
am

es
)

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)
Raw

(a) Average blackout rate vs. |C|. (b) Average blackout duration vs. |C|.

Fig. 10. Blackout performance vs. |C| for a Waxman’s network of 50 nodes (r = 3, |S| = 10, B = 20000 bytes, Tg = 100 msec, Tb = 10 msec, Breq = 2 sec,
Dreq = 1.0, and ρ = 0.9.)

enough buffer is available, and is discarded otherwise. In other
words a packet loss over a link occurs either when the Markov
chain associated with that link is in a “bad” state or if buffer over-
flow occurs at the node. Each media stream consists of a constant
bit rate (CBR) stream of 1000-byte packets streamed at the rate of
25 packets per second. We consider five different cases for media
distribution:
• MDC-coded streaming over multiple paths: Multiple descrip-
tions of MDC-coded traffic are routed from |SC | chosen server lo-
cations over multiple paths as determined by the SP algorithm.
• MDC-coded streaming over a single path: Similar to the first
case, but with all MDs that are destined to a client being routed
over the shortest path w.r.t. delay from the closest server in SC .
• Layered video streaming over multiple paths: Instead of MDC,
we use layered video with r layers. Multiple paths (determined
using the SP algorithm) are used to route the different layers, with
the shortest path used for the base layer and the remaining paths
for the enhancement layers based on their delay, i.e., shorter paths
are used for the more important enhancement layers.
• Layered video streaming over a single path: Same as case 3, but
with one path used for routing all the r layers to a given client c.
This path is selected as in case 2.
• Raw media streaming: A set of SC server locations are chosen
from S so as to minimize the delay of the shortest path for all the
clients. For a given client c, the closest server location in terms of
delay is chosen from SC . This location is used to route CBR traffic
to the client.
In generating MDC and layered video, appropriate relative over-
heads are added as indicated in [7] and [17]. Specifically, for lay-
ered video we add 5% overhead and for MDC with r = 3 we add

30% overhead. For MDC video, we define a “blackout” as a play-
back instance at which no portion of the required frame is available
for playout at the receiving node. For layered video, “blackout”
refers to the unavailability of the base layer of a frame at its play-
out instance.

Figure 10 depicts the performance of the five considered ap-
proaches as a function of the number of clients. Part(a) of the
figure shows the average blackout probability, defined as the frac-
tion of the playback instances at which blackout was encountered
(averaged over all clients). Part(b) depicts the average blackout du-
ration. Based on the two figures, we conclude the following:
• The average blackout probability increases with the number of
clients. This is due to the increase in the average network load.
• A significant reduction in the average blackout probability is ob-
served when MDC-coded streaming with multiple paths is used.
• The improvement observed in the average blackout duration un-
der MDC-coded streaming with multiple paths is due to the inde-
pendence of the packet loss rates over diverse paths.
• The performance of the layered scheme with multiple paths de-
pends on the loss rate of the path over which the base layer is trans-
mitted. The advantage of using diverse paths for different layers is
lost, because the enhancement layers alone cannot reconstruct a
frame.
Figure 11 depicts the performance of the five approaches as a func-
tion of Tb. As expected, the blackout probability and the average
blackout duration increase monotonically with Tb for all the con-
sidered schemes. When MDC streaming with multiple paths is
employed, a significant gain can be achieved in the blackout per-
formance.

We now investigate the performance of the various schemes in

7

0 5 10 15 20 25 30
10

−2

10
−1

10
0

Average Bad State Sojourn Time (in msec)

A
ve

ra
ge

 B
la

ck
ou

t P
ro

ba
bi

lit
y

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)
Raw

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Average Duration of Bad State

A
ve

ra
ge

 B
la

ck
ou

t D
ur

at
io

n
(in

 fr
am

es
)

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)
Raw

(a) Average blackout probability vs. Tb. (b) Average blackout duration vs. Tb.

Fig. 11. Blackout performance vs. |Tb| for a Waxman’s network of 50 nodes (r = 3, |S| = 10, |C| = 6, B = 20000 bytes, Tg = 100 msec, Breq = 2 sec,
Dreq = 1.0, and ρ = 0.9).

terms of the received PSNR values by using actual compressed me-
dia (motion JPEG2000). We consider 640×480 size frames from
the Batman movie, generated at 30 frames per second. MDC de-
scriptions are obtained by splitting the traffic such that if the jth
frame is part of the first description, then the (j + 1)th frame is
part of the second description, the (j + 2)th frame is part of the
third description, and so on. Lost descriptions are compensated for
using linear interpolation of the two most adjacent and success-
fully received frames within the playout deadline of the missing
packet. Each MDC frame is compressed such that the average
bits/pixel is 0.026, which results in 1000 bytes per frame. For a
meaningful comparison with MDC video, the splitting of the lay-
ered video is done such that the total PSNR values (averaged over
the whole Batman sequence) for MDC video with i descriptions
(where i = 1, 2, 3) and layered video with i layers are approxi-
mately the same2. Such a splitting results in 181-byte packets (on
average) for the base layer, 299 (552)-byte packets (on average) for
the first (second) enhancement layer.

Figure 12(a) shows the PSNR performance of the various
streaming approaches as a function of Tb with |C| = 6. When MDC
streaming with multiple paths is employed, a significant improve-
ment in the PSNR values is achieved at high values of Tb. Figure
12(b) shows the performance of different streaming approaches as
a function of |C| with Tb = 10 msec. A significant gain in the
PSNR is observed when MDC streaming using multiple paths is
employed. This is a direct consequence of using independently
decodeable descriptions.

Figure 13 depicts the percentage of descriptions that are re-
ceived before their playback deadlines. Although schemes involv-
ing single-path routing provide a higher percentage of frames when
all the descriptions/layers are received, they suffer from exces-
sively high percentage of frames when all the descriptions/layers
are lost. In the single-path case, all descriptions/layers are either
received or lost because of the correlated losses. MDC with mul-
tiple paths provide a significantly less blackout probability; with
high probability, at least two out of three descriptions are available
for reconstructing the video.

In Figure 14, we compare the SP algorithm with a random
placement scheme in which a specific number of server nodes are

2For layered video, the JPEG2000 encoder allows the creation of user-defined
base and enhancement layers by specifying the average bits per pixel per layer [17].

randomly chosen without knowledge of clients’ locations. For
fair comparison, the number of servers in the random placement
scheme is equal to the number of servers choosen by the SP algo-
rithm. For the random placement scheme, we use the shortest path
from the r closest servers to stream the MDC traffic. It is noted
that the SP algorithm performs significantly better than the random
placement scheme.

V. CONCLUSIONS

In this paper, we considered the problem of finding optimal lo-
cations for MDC servers that deliver to the client community us-
ing diverse path routing. We showed that for MDC-coded media
streams, the probability of blackout is significantly dependent on
the reliability of the common link. We considered the server place-
ment problem for a given client community, with the goal of to
minimizing the number of server locations such that MDC-coded
streams are routed along diverse paths with given delay and di-
versity constraints. We proposed an MILP and a highly efficient
placement algorithm to solve the server placement problem. Sim-
ulation results were used to compare the performance of the place-
ment algorithm with the optimal results obtained using MILP. The
effectiveness of the MDC-coded media streaming with path diver-
sity was demonstrated by using packet-level simulations.
Acknowledgement: The authors would like to thank Dr. Ali Bil-
gin for his help in simulations.

APPENDIX: APPROXIMATION ALGORITHM

We now present a pseudo-polynomial time approximation algo-
rithm for SP problem for a specific case of single client. First, we
define the α-approximate solution for r = 2.

Definition 2: Given an instance of the SP problem with a client
c and r = 2, an α-approximate solution to the SP problem is a
solution with two paths P ′1 ≡ s1 → c and P ′2 ≡ s2 → c, where
s1, s2 ∈ S, s.t. D(P ′1) + D(P ′2) ≤ 2αBreq and U(P ′1,P ′2) ≤
Dreq.
Before proceeding further, we state the well known restricted
shortest path problem [14]:

Problem 2: Restricted Shortest Path (RSP): Given a source
node s, a destination node t, and a delay constraint Breq, find an

8

0 5 10 15 20 25 30
0

10

20

30

40

Average Bad State Sojourn Time (in msec)

P
S

N
R

 (
dB

)

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)

2 4 6 8 10 12
10

15

20

25

30

35

Number of Clients

P
S

N
R

 (
dB

)

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)

(a) Average PSNR vs. Tb (b) Average PSNR vs. number of clients

Fig. 12. Decoded PSNR for different streaming approaches (r = 3, Tg = 100 msec, Breq = 2 sec, Dreq = 1.0, ρ = 0.9, |S| = 10, B = 20000 bytes).

0 1 2 3
0

10

20

30

40

50

60

70

80

Numbers of Descriptions/Layers Received

P
er

ce
nt

ag
e

of
 D

es
cr

ip
tio

ns
 R

ec
ei

ve
d

MDC (multi−path)
MDC (single−path)
Layered (multi−path)
Layered (single−path)

Fig. 13. Histogram of the average number of descriptions /layers received on time
for a Waxman’s network of 50 nodes (r = 3, |S| = 10, |C| = 6, B = 20000
bytes, Tg = 100 msec, Tb = 20 msec, Breq = 2 sec, Dreq = 1.0, and ρ = 0.9).

2 3 4 5 6 7 8 9 10 11 12
0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of Clients

A
ve

ra
ge

 B
la

ck
ou

t P
ro

ba
bi

lit
y

SP Algorithm
Random Placement (Average)

Fig. 14. Blackout probability vs. |C| for a Waxman’s network of 50 nodes (r = 3,
B = 20000 bytes, Tg = 100 msec, Tb = 10 msec, Breq = 2 sec, Dreq = 1.0,
and ρ = 0.9).

(s, t) path P such that D(P) ≤ Breq and C(P) ≤ C(P ′) for any
other (s, t) path P ′ that satisfies D(P) ≤ Breq.
RSP is known to be NP-hard [8]. Several approximation algo-
rithms have been proposed for it [12], [14]. An efficient scheme
presented in [12] has a computational complexity ofO(|L||N |(1

ε +
log log |N |)). It computes a path with delay of at most Breq

and cost of at most (1 + ε) times the optimum. We will refer
to this scheme as RSP algorithm. In [14], an approximation al-
gorithm was presented to solve the disjoint path problem using

the RSP algorithm. We employ a similar approach. We assume
r = 2 and equally reliable links (p(i, j) = p, ∀(i, j) ∈ L). In
this case, the unreliability constraint can be translated into a limit
on the number of common links H permitted between two paths,
H = Dreq/p(i, j). We use the link loss rate as the cost metric.

The basic idea of the algorithm is to identify a suitable flow f
between server locations and a client c such that |f | = 2 and then
decompose f into two paths P1 and P2. The algorithm employs
the path augmentation approach [2], which is a standard approach
for network flow and disjoint path problems. We assume that the
capacity of each link is two units.

The first step of the algorithm is to connect all server locations
s ∈ S to the super server S (a virtual node) using links (S, s).
Delay and packet loss rate for link (S, s) are set to zero (d(S, s)
= 0, p(S, s) = 0). The algorithm then computes a path P1

between S and c that satisfies Breq and minimizes the cost (link
unreliability). P1 is constructed by applying RSP algorithm on
(G, S, t, Breq, p(., .), ε). It defines a unit flow f . Let h(P1) be the
hop count of P1. In the next step, the algorithm augments this flow
in order to increase its value to 2 by adding another path. It first
constructs the residual network G(f) imposed by the flow f . Intu-
itively, the residual network consists of links that can admit more
flow. To address the diversity constraint, it manipulates the link
cost based on path P1.
Residual Network: Given a network G with each link associated
with two units of capacity and a flow f = {P1}, the residual net-
work G(f) is constructed as follows:
For each link (u, v) ∈ G for which f(u, v) = 0, we add a link
(u, v) to G(f) of zero cost and the same delay as in G. For each
link (u, v) ∈ G for which f(u, v) = 1, we add to G(f):

1) A link (u, v) of the same delay and cost as in G.
2) A reverse link (v, u) of zero cost and delay.

The augmenting flow f ′ in the residual network G(f) is a path from
S to c. f ′ can now be augmented on G(f) as follows:
• From f , remove each link (v, u) whose reverse link (u, v) ap-
pears in f ′. This will cancel the flow along the reverse direction.
• Add to f each link (v, u) ∈ f ′ whose reverse link (u, v) does not
appear in f .
Note that each link in G has two units of capacity. Hence, the
final flow f can have f(u, v) = 2 for some links after augment-
ing two units of flow. With the augmenting path approach, a
unit capacity flow f ′ is added to flow f . In particular, our al-

9

gorithm identifies an augmenting path P2 in G(f) that satisfies a
delay constraint 3Breq . To identify path P2, we apply the RSP
algorithm on (G(f), S, c, 3Breq, ε), for C(h(P1), (h(P1)−H)+)
(where C(n, r) = n!

(n−r)!r!) different graphs. In each graph, we
remove a combination of h(P1) −H links from path P1 and then
search for path from S to c. We show in Theorem 2 that among
all possible C(h(P1), (h(P1)−H)+) combinations, there exists
a combination for which a path between S to c exists.

After identifying the path, we augment the flow f along path
P2. For each link (u, v) that belongs to P2, we increment the flow
f(u, v) along the link. The value of the resulting flow f is 2.

Finally, the flow is decomposed into two paths P ′1 and P ′2 such
that D(P ′1) ≤ D(P ′2). For this purpose, we apply the flow de-
composition algorithm. We start at the source node S and select
a link (S, u) such that f(S, u) > 0. If u is the client node, we
stop; otherwise, there must be a link (u, v) for which f(u, v) > 0.
This process is repeated until the destination node is encountered.
For all traversed links (u, v), the flow f(u, v) is decremented. The
second path P ′2 is also identified using the same approach. The
pseudocode of the approximation algorithm is presented in Figure
15. We prove the correctness of the algorithm in the following

Procedure SP Approximate
Input: G(N ,L), p(., .), d(., .),S, c, Dreq, Breq

Output : P′1, P′2
1) Add super server S and connect it using links (S, s), ∀s ∈ S
2) Set d(S, c) = 0 and p(S, c) = 0
3) H = Breq/p(u, v)
4) Find path P1 in G such that D(P1) ≤ Dreq by using RSP algorithm
5) f ← {P1}
6) Construct the residual network G(f) of G imposed by f :

a) Add to G(f) each link in G that does not belong to path P1
b) For each link (u, v) ∈ P1

i) Add (v, u) to G(f) with delay d(v, u) = 0 and reliability p(v, u) = 0
ii) Add (u, v) to G(f) with delay d(u, v) and reliability p(u, v) as in G

7) For all possible link combinations C(h(P1), (h(P1)−H)+) from path P1

a) Remove the link combination from G(f)
b) Identify path P2 from S to c in the residual graph
c) Break, if P2 is obtained

8) Add P2 to flow f
9) Obtain path P′1 and P′2 by flow decomposition

Fig. 15. Pseudocode for the SP approximate algorithm.

theorem:
Theorem 2: For residual graph G(f) of G imposed by f =

{P1}, ∃ a path P2 ∈ G(f) such that D(P2) ≤ 3Breq and which
satisfies the diversity bound Dreq, i.e., U(P1,P2) ≤ Dreq.
Proof of Theorem 2 is presented in [3].

Complexity: A path on the residual graph G(f) is computed
using Dijkstra’s algorithm and can be done in O(|N |2). The ap-
proximation algorithm in the worst case executes C(|L|,H) + 1
instances of Dijkstra’s algorithm. Hence, the overall complexity of
the approximation algorithm is O(C(|L|,H)|N |2).

REFERENCES

[1] Felix: Independent monitoring for network survivability.
ftp://ftp.bellcore.com/pub/mwg/felix/index.html.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall Inc., 1993.

[3] S. S. Ahuja and M. Krunz. Technical report: Server placement in multiple-
description-based media streaming. University of Arizona, Department of
ECE, TR-UA-ECE-2008-1, 2008.

[4] J. Apostolopoulos. Reliable video communication over lossy packet networks
using multiple state encoding and path diversity. In Proceedings of the Inter-
national Workshop on Visual Communications and Image Processing, 2001.

[5] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. On multiple description
streaming media content delivery networks. In Proceedings of the IEEE IN-
FOCOM Conference, volume 3, pages 1736–1745, June 2002.

[6] Y. Chen, R. Katz, and J. Kubiatowicz. Dynamic replica placement for scalable
content delivery. In Proceedings of the 1st International Workshop on Peer-
to-Peer Systems, pages 306–318, Cambridge, Mar. 2002.

[7] F. H. Fitzek, B. Can, R. Prasad, and M. Katz. Overhead and quality measure-
ments for multiple description coding for video services. Wireless Personal
Multimedia Communications (WPMC), 2:524–528, Sept. 2004.

[8] M. Garey and D. Johnson. Computers and Intractability: Theory of NP-
Completeness. W. H. Freeman, 2000.

[9] T. Korkmaz and M. Krunz. Bandwidth-delay constrained path selection un-
der inaccurate state information. IEEE/ACM Transactions on Networking,
11(3):384–398, June 2003.

[10] R. Krishnan, D. Raz, and Y. Shavitt. The cache location problem. IEEE/ACM
Transactions on Networking, 8(5):568–582, Oct. 2000.

[11] Y. C. Lee, J. Kim, Y. Altunbasak, and R. M. Mersereau. Layered coded vs.
multiple description coded video over error-prone networks. Signal Process-
ing: Image Communication, 18(5):337–356, May 2003.

[12] D. Lorenz and D. Raz. A simple efficient approximation scheme for the re-
stricted shortest path problem. Operations Research Letters, 28(5):213–219,
June 2001.

[13] J. Ni, D. Tsang, I. Yeung, and X. Hei. Hierarchical content routing in large-
scale multimedia content delivery network. In Proceedings of the IEEE ICC
Conference, volume 2, pages 854–859, May 2003.

[14] A. Orda and A. Sprintson. Efficient algorithms for computing disjoint QoS
paths. In Proceedings of the IEEE INFOCOM Conference, Hong Kong, Mar.
2004.

[15] G. Rodolakis, S. Siachalou, and L. Georgiadis. Replicated server placement
with QoS constraints. In Proceedings of the International Workshop on QoS
in Multiservice IP Networks, Catania, Italy, Feb. 2005.

[16] R. Singh, A. Ortega, L. Perret, and W. Jiang. Comparison of multiple de-
scription coding and layered coding based on the network simulations. In
SPIE Image and Video Communications and Processing, San Jose, Jan. 2000.

[17] D. Taubman and M. Marcellin. JPEG2000: Image Compression Fundamen-
tals, Standards and Practice. Springer, 2001.

[18] A. Vakali and G. Pallis. Content delivery networks: Status and trends. In
Proceedings of the IEEE INFOCOM Conference, volume 7, pages 68–74,
San Francisco, Apr. 2003.

[19] L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection on
CDN robustness. SIGOPS Oper. Syst. Rev., 36(SI):345–360, 2002.

[20] B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected
Areas in Communications, 69:1617–1622, Dec. 1988.

[21] W. Zhu. A distributed approach to estimate link-level loss rates. In Pro-
ceedings of the International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP), LNCS, Distributed and Parallel Computing,
volume 3719, pages 386–395, Oct. 2005.

Satyajeet S. Ahuja received the B.E. (Hons.) degree
in Electronics and Communication Engineering from
Maulana Azad College of Technology (MACT), Bhopal,
India, in 1999. He received his M.E. (Hons.) degree in
Electrical and Communication Engineering (Telecommu-
nications) from Indian Institute of Science (IISc), Banga-
lore, India, in 2002. He also held research positions at
Google Inc. Kirkland WA; Tejas Networks, Bangalore,
India; and VSNL, Bangalore, India. He is currently work-
ing towards his Ph.D. degree at the University of Arizona,
Tucson, USA. His research interests include QoS routing,

design and analysis of algorithms, path selection, and network monitoring problems
for next generation optical networks.

Marwan M. Krunz is a professor of electrical and com-
puter engineering at the University of Arizona. He re-
ceived the Ph.D. degree in electrical engineering from
Michigan State University in 1995. From 1995 to 1997,
he was a postdoctoral research associate with the depart-
ment of computer science, University of Maryland, Col-
lege Park. His recent research interests include medium
access and routing protocols for mobile ad hoc net-
works, quality of service provisioning over wireless links,
constraint-based routing, traffic modeling, and media
streaming. He has published more than 120 journal ar-

ticles and refereed conference papers in these areas. He received the National Sci-
ence Foundation CAREER Award (1998-2002). He currently serves on the editorial
board for the IEEE/ACM Transactions on Networking and the IEEE transactions on
Mobile Computing, and the Computer Communications Journal. He served as the
technical program co-chair for the IEEE INFOCOM 2004 Conference.

10

