1444

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

Modeling and Optimization of Meta-Caching
Assisted Transcoding

Dongyu Liu, Songqing Chen, Member, IEEE, and Bo Shen, Senior Member, IEEE

Abstract—The increase of aggregate Internet bandwidth and
the rapid development of 3G wireless networks demand ef-
ficient delivery of multimedia objects to all types of wireless
devices. To handle requests from wireless devices at runtime, the
transcoding-enabled caching proxy has been proposed to save
transcoded versions to reduce the intensive computing demanded
by online transcoding. Constrained by available CPU and storage,
existing transcoding-enabled caching schemes always selectively
cache certain transcoded versions, expecting that many future
requests can be served from the cache. But such schemes treat
the transcoder as a black box, leaving no room for flexible control
of joint resource management between CPU and storage. In this
paper, we first introduce the idea of meta-caching by looking
into a transcoding procedure. Instead of caching certain selected
transcoded versions in full, meta-caching identifies intermediate
transcoding steps from which certain intermediate results (called
metadata) can be cached so that a fully transcoded version can
be easily produced from the metadata with a small amount of
CPU cycles. Achieving big saving in caching space with possibly
small sacrifice on CPU load, the proposed meta-caching scheme
provides a unique method to balance the utilization of CPU and
storage resources at the proxy. We further construct a model
to analyze the meta-caching scheme. Based on the analysis, we
propose AMTrac, Adaptive Meta-caching for Transcoding, which
adaptively applies meta-caching based on the client request pat-
terns and available resources. Experimental results show that
AMTrac can significantly improve the system throughput over
existing approaches.

Index Terms—Adaptation,
meta-caching, transcoding.

CPU intensive computing,

1. INTRODUCTION

ITH the increase of aggregate Internet bandwidth and
W the rapid development of wireless networks, Internet
accesses from portable devices, such as PDAs and cell phones,
are also growing rapidly. It is not uncommon that users listen
to the digital music or watch a football match through their
portable devices. However, the increase of these applications
[1], [2] also challenges the existing Internet infrastructure, par-
ticularly the existing Internet media delivery systems.

Manuscript received December 20, 2006; revised July 29, 2008. Current ver-
sion published December 10, 2008. The work was supported in part by the U.S.
National Science Foundation under Grants CNS-0509061, CNS-0621631, and
CNS-0746649. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. John R. Smith.

D. Liu and S. Chen are with the Department of Computer Science, George
Mason University, Fairfax, VA 22030 USA (e-mail: dliul @cs.gmu.edu;
sqchen@cs.gmu.edu).

B. Shen is with the vuclip.com team, vuclip.com, Milpitas, CA 95035 USA
(e-mail: bo.shen@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2008.2007312

Since portable devices generally have different screen sizes,
color depths or connection bandwidth from traditional desktop
computers, a media object (e.g., a movie) that is good for
desktop computers cannot be directly displayed on a PDA. It
must be customized appropriately beforehand or at runtime.
This type of customization for typical QoS support is often
referred to as content adaptation.

Two approaches are typically used for providing this type of
QoS support in the context of multimedia content delivery. The
first approach is called precoding. Given an object, this approach
either creates multiple provisioned versions or scalably encodes
the object with multiple layers or descriptions. All the object
versions/layers/descriptions are created before they are ever de-
livered. For example, many content hosts encode their video
clips at different bit rate versions, for example, 28/56 Kbps for
dial-up clients and 100-plus Kbps for broadband clients [15].
If considering all possible requirements of client devices (not
limited to various network speeds), precoding demands a huge
amount of storage for different versions. Scalably-coded content
requires less space than multiple individual versions, but it is
still not efficient in compression. In addition, content created by
this way can only satisfy certain coarse granular QoS requests.
It is less flexible when finer granular QoS is required. More im-
portantly, precoding does not scale to the vast variety of media
adaptation applications. It may be easy to previse possible bit
rate versions that are required for a streaming application, but
it would be difficult to precode content for more generic adap-
tation tasks such as personalization. In the case of overlaying
an end user’s logo on a video stream, the hosting server is not
likely to have the end user’s logo available. Thus precoding in
this case is impossible.

The second approach, referred here as transcoding, offers
online real-time adaptation support. Overall, transcoding is
not restricted to content customization for QoS support. Being
real-time and online, this approach offers more flexibility
and scales well with the variety of the applications. However,
transcoding is often computing intensive, especially for mul-
timedia content. Research on developing efficient real-time
transcoding algorithms has received much attention, espe-
cially on video transcoding [13]. From the system perspective,
caching is also a viable technique to achieve computing load
reduction. The transcoded result for a request can be cached so
that future identical requests can be served without transcoding.
This kind of transcoding-enabled caching designs has been
investigated and the focus has been on efficient utilization of
different resources (e.g., CPU, storage, bandwidth) to improve
the throughput of the transcoding proxy (see Section II). All of
the existing designs treat the transcoding unit - transcoder - as a
black box. The cached data is either the input and/or the output

1520-9210/$25.00 © 2008 IEEE

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

LIU et al.: MODELING AND OPTIMIZATION OF META-CACHING ASSISTED TRANSCODING

of the transcoder. Specifically, if a transcoded version is fully
cached (a full-caching scheme), identical future requests can
be directly served without additional transcoding. However,
to cache each transcoded version may quickly exhaust the
cache space. On the other hand, if a transcoded version is not
cached (a no-caching scheme), identical requests will result in
repetitive transcoding, consuming extensive CPU cycles.

In this paper, we propose a meta-caching scheme in which,
intermediate transcoding steps are studied and identified so
that appropriate intermediate results (called metadata) can be
cached. With the cached metadata, the fully transcoded object
can be easily produced with a small amount of CPU cycles.
Interested readers can refer to [18] regarding how to extract
metadata for different transcoding processes as well as how to
re-produce the final object with the extracted metadata. Since
only metadata is cached, the required cache space is greatly
reduced. The saved cache space can be used to store metadata
for other transcoding sessions so that, in certain conditions,
the overall computing load can be reduced. Note that the
meta-caching scheme allows the system to achieve a joint
control of the CPU and storage resources. It offers a tradeoff
point in between what can be achieved by the full-caching and
no-caching schemes.

To precisely characterize the meta-caching scheme, we con-
struct an analytical model and investigate the conditional ad-
vantages of meta-caching over full- or no-caching. Based on
the analysis, we propose a system called AMTrac, which stands
for Adaptive Meta-caching for Transcoding. In AMTrac, the
meta-caching scheme is adaptively used upon dynamic client
accesses and the available resources. Simulation-based exper-
iments show that AMTrac can effectively improve the system
throughput over existing schemes.

The rest of the paper is organized as follows. Section II de-
scribes some related work. We introduce the generalized meta-
caching concept in Section III, and present an analytical model
of it in Section IV. An adaptive meta-caching design based on
the model is provided in Section V and its performance is evalu-
ated in Section VI. We make concluding remarks in Section VII.

II. RELATED WORK

For scalably-coded content, caching schemes have been
investigated in [16]. Layers of precoded content is adaptively
cached for optimal server traffic reduction. The relative advan-
tages of caching precoded versions versus layers are evaluated
in [8], [11], [14]. In these studies, no online transcoding is
needed, the computing load on the proxy is not a concern.

In the online transcoding context, an application level
gateway is proposed to consider the transcoding [4]. Mid-
dleman also considers transcoding in cooperative proxy servers
[3]. Other existing approaches [5], [10], [12], [23] always
consider resource utilization of the CPU, storage, and the
network by proposing heuristic solutions. The TeC system [19]
has proposed strategies to selectively cache original and/or
transcoded objects. The adaptive solution proposed in [21]
can dynamically select an appropriate metric for changing
the management policy. Tu et al. [22] proposed an iterative
greedy algorithm to minimize utility loss in content distributing
systems. The energy-aware strategy has been considered by

1445

Fig. 1. Example processing flow.

storage A

D
-B
full cache
no cache

N

computing

Fig. 2. Mapping into the SC space.

modeling [20]. Transcoding and scheduling are considered
together in a network-attached disk architecture [17].

All of these existing designs treat transcoder as a black box.
The cached data is either the input and/or the output of the
transcoder. Work [18] has investigated the possibility of caching
intermediate results from transcoding processes. It has shown
for three specific transcoding cases the possibility of reducing
the aggregated computing load on the proxy. However, the work
is restricted to video transcoding applications and without a dy-
namic scheme that works for varying client access patterns.

III. PRINCIPLE OF META-CACHING

To illustrate the principle of meta-caching, we first define a
storage versus computing space. Then we discuss some practical
applications that can take advantage of this idea.

A. Storage-Computing (SC) Space

Given any media adaptation process, meta-caching is defined
as the caching of intermediate results that are created during the
course of the adaptation process. As an example, Fig. 1 defines
the flow graph of a certain media adaptation process composed
of four computing submodules. Caching the intermediate result
from each of the four submodules leads to skipping that sub-
module in the next identical session so that the computing of that
submodule is saved. However, some storage space is required
to store the intermediate result. In general, caching the output
of each submodule maps to one point in a space, called Storage
versus Computing space. Fig. 2 illustrates such a mapping for
this particular process. The vertical axis indicates the amount of
storage required to store the intermediate results from any of the
submodules, relative to storing the final processed results. The
horizontal axis indicates the amount of computing load required
to create the final result with the help of the intermediate results
from any of the submodules. This computing load is relative to
the computing load when the intermediate result is not available,
i.e., the computing load of the full adaptation process. Clearly,
if the intermediate result of any submodule is directly available
(from a cache, for example) instead of computing it from the
input, the computing load required to create the final output is
reduced.

Now we discuss some of the specific points within the SC
space. If nothing from the flow is cached, the point I (no cache)

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

1446

indicates no storage requirement. But 100% of the CPU is re-
quired when a final adapted output is requested. On the other
hand, if the final output is cached (full cache), 100% of the
storage is required while no computing is needed. Note that
point D and point I define a shaded area in this SC space. In
general, any point that falls outside the shaded area has no ad-
vantage over either D or I. For example, point A is outside the
shaded area, which indicates that storing the intermediate result
from A would cost more storage than storing the result from D.
Obviously, this is not as efficient as simply storing the final re-
sult.

Points B and C can introduce certain advantages since both
points indicate reduced storage requirement at a cost of certain
computing load. In general, the point closer to the origin of the
SC space presents better advantage since it indicates less com-
puting and less storage requirement to obtain the final result. In
this example, point C is clearly a better choice. In other words,
point C indicates that submodule C is more computing intensive
yet its intermediate result requires less storage.

Although we illustrate this principle through an arbitrary ex-
ample, it is clear that the principle is general. Once any media
adaptation process is defined, a map in the SC space that reflects
the storage and computing tradeoff is uniquely obtainable. We
will next discuss some real applications in this context.

B. Applications

The principle outlined above has many practical applications.
In particular, video transcoding is the most common type of
media adaptation applications.

Fig. 3 illustrates the processing flow of the bit rate reduction
of a MPEG video, a case of transcoding. With careful selection
of the intermediate points within a transcoding process pipeline,
meta-caching can be very useful in reducing the aggregated
computing load of an adapting server servicing a ground client
requests with different access patterns. In this case, caching
of the re-quantization scale factor (M) could achieve a good
tradeoff between storage and computing resource utilization.

The meta-caching principle is not just restricted to video
transcoding applications. To name a few other types of media
adaptation applications that can benefit from this principle, we
consider the following examples.

* Video to keyframe conversion. Instead of a full length
video, a sequence of representative keyframes from the
video can be delivered in situations when a client does not
have a video player available. This conversion consists of
a keyframe analysis process followed by the assembling of
the keyframes. Keyframe analysis detects scene changes
within a video sequence and identifies frames that are
representative of the scene. This can be very computing
intensive. However, if the intermediate result (e.g., the
frame index of the keyframes) of the keyframe analysis
module can be stored, which costs very little storage, the
computing load can be significantly reduced for future
sessions.

* Personalized logo insertion. With a customized logo in-
serted into each frame of a video, a client can personalize
his/her own content. In this process, the compressed video
is first adapted with the logo insertion area to be indepen-
dently coded. Then a logo is inserted. The adaptation from

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

. | —
mput entropy e entropy output
stream decoder quantization encoder stream

&

rate
controller

Fig. 3. Bit rate reduction.

metacache

dependently coded original video to independently coded
area can be computing intensive. If the converted indepen-
dent area can be stored, future sessions can be free of sig-
nificant computing load. On the other hand, an indepen-
dently coded area (for example, four significantly smaller
corner areas) costs less storage than the full logo inserted
video.

* Privacy protection. In this scenario, certain features from
content (e.g., certain faces in a video) are automatically
blocked to protect privacy. The intermediate results from
face detection (e.g., face location on each frame) can be
stored so that future sessions can be relieved from the com-
puting intensive face detection process.

For any real-time content processing service, if we can iden-
tify from its processing flow a point in the SC space that can
benefit from the meta-caching principle, it is possible to improve
the overall system performance by balancing the use of storage
and computing resources. Since overall system performance de-
pends on aggregated client access patterns, certain points in the
SC space can be more advantageous than others, given available
computing and storage resources.

IV. PERFORMANCE MODELING

In this section, we model the performance of the
meta-caching scheme by comparing it with full-caching
and no-caching schemes. Through the modeling, we aim to
precisely characterize the meta-caching scheme under the
available storage and CPU resources. For this purpose, in the
modeling, we compare the throughput of the meta-caching with
other two schemes and show that an appropriate scheme can be
selected to fully utilize the available CPU and storage resources.
The metric used for comparison is the system throughput. It is
represented by the number of concurrent sessions the proxy can
serve. Clearly, throughput is constrained by the available cache
space and CPU cycles.

In the analysis, we make the following assumptions about
client accesses and media objects in the proxy system.

1) The object popularity follows a Zipf-like distribution, and
the accessing probability of the k*" popular object is de-
noted as P, = (1/k%)/ Zf\il 1/i%; we further denote
A= (Zf\il 1/i%)~1, and thus P, = A/k?. 6 is the skew
factor in the Zipf-like distribution. For media objects ac-
cess, according to existing media workload characteriza-
tions and measurements [6], [7], [9], the value of 8 is be-
tween 0.47 and 0.73. In our analysis, we assume that pop-
ular objects are always cached more favorably than less
popular ones.

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

LIU et al.: MODELING AND OPTIMIZATION OF META-CACHING ASSISTED TRANSCODING

TABLE 1
NOTATIONS USED IN THE ANALYSIS

The total cache size
The total computing cycle

The total number of accesses to objects in the proxy system

N; The number of accesses to all versions of object i, N; = N x F;
The total number of multimedia objects in the proxy system

The number of versions of each object
Storage required to cache metadata (relative to full result)
/3 | CPU used to produce a fully-transcoded version from cached metadata

zlOw

o<« =Z

2) The inter-request arrival pattern follows a Poisson distribu-
tion p(z,\) = e *\%/x!, 2 = 0,1,2,..., X is the mean
arrival rate.

3) The storage space occupied by each original object is
one storage unit. Each object has v different versions
for portable devices and each version is accessed by
clients uniformly. The storage space needed for caching
different versions is different. From the highest quality
to the lowest quality, each version occupies space of
1,(v=1)/v,(v—2)/v,...,1/v. In practice, a system
can select an appropriate value of v and the corresponding
output version based on the physical conditions.

4) The CPU used for any transcoding that results in a fully
cached version is 1 unit. For meta-caching, we assume the
CPU consumed to produce the final versionis 5 (0 < 8 <
1). The storage space used to cache metadata is a fraction
a (0 < a < 1) of the fully cached object!.

The notations used in the following analysis are summarized
in Table 1.

First, we consider the number of sessions that can be sup-
ported by the available storage. We assume that among the total
M objects, only k£ most popular objects can be cached in S
storage and all their versions get accessed. Among the N ac-
cesses, the total number of sessions to the first £ objects is thus
Zf:l N;.

For full-caching, if we denote v, as the cache occupied by
the v versions of each object, these Zle N; sessions use k * v,
cache units. Since different versions of each object are accessed
uniformly, the total cache space usedisv, =1+ (v —1)/v +
(v=2)/v+---+1/v=(v+1)/2.

Thus the average storage requirement for each session is

v4+1
— k x 2

sp=— (IV.1)
> N
1=1

For meta-caching, since the average storage requirement is o
percentage of a unit, the average storage requirement s,,, is

« vtl
k72' (IV.2)
>

i=1

<

Sm = a X

=z

fao =1, meta-caching is the same as full-caching, where 3 = 0;if o =
0, meta-caching is the same as no-caching, where 3 = 1. For simplicity, we
assume the ratios between metadata and transcoded results for different object
versions are the same.

1447

For no-caching, only k units are needed to store original ob-
jects in the proxy. Thus these Zle N; sessions use k cache
units. The average storage requirement s,, for no-caching is

k

k b
> N
=1

Iv.3)

Spn =

in which Y% Ny =~ N« Ax k'=%/(1 - 6).

Given cache size S, the total number of sessions that can be
supported by full-caching, meta-caching and no-caching is de-
noted as zfs, Zms, and zp,, respectively. We have

S 25N A
e T A= B+ DR V4
S 285N A
== V.5
s = S =)0 + DR (IV.5)
and
S SNA
ns = — = —————. V.
e e T (L= 0)k? (-6)

Having considered the storage usage, we now consider the
CPU usage of full-, meta- and no-caching schemes.

For full-caching, if the full results of the transcoding of the
k' most popular object are cached, the computing load for ob-
taining all v versions of the k' object is v. Therefore, on av-
erage, the computing load for accesses to object 7 is v and the
average computing load for object ¢ is v/ N;. Since there are k
objects in the cache, the average computing load for each ses-
sion is

kv

(NL1+NL2++NL,‘>
¥ NA(+9)

Cf: k

aV.7)

where A = (33, 1/i4)~1.

Given the available CPU capacity C, the number of sessions
that can be supported by the full-caching scheme is denoted as
Zfc. We have

_C CAN(1+9)

- o (IV.8)

Zfe

Accordingly, we have z,,. and z,. for meta- and no-caching,
respectively.

e CAN(1+90)
Fme = L T vk (1—) + ANB(1 + 6) (Iv-9)
and
L _C _ _0ANO+H) 10,

cn kP +AN(1+6)

Now we consider both resource constraints jointly. If we use
SN ¢, SNy, and sn,, to denote the total session numbers for full
caching, meta-caching, and no-caching, we have

sny =min(zgs, 2fc), (IV.11)

STy = MiN(Zpms, Zme) (Iv.12)
and

SNy = min(zns, Zne)- (IV.13)

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

1448

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

TABLE II
FIELDS OF DATA STRUCTURE

Field name Field information
v Version number: the total number of versions of each object
ms(1..v] Meta_size: an array to record the metadata size of each version
fs[l.v] Full_size: an array to record the full data size of each version
r[1..v] References: an array to record the references to each version
s[1..v] Status: whether the object is currently being replaced (0) or being cached (1)
u[l..v] Utility value: the utility value of the object version
Py Storage utilization: current storage utilization (%)
P, CPU utilization: current CPU utilization (%)

6=0.60,0:=0.3,$=0.3, v=10, N=2000, M=50, S=50
2500 ——————— :
—o—full caching
——meta caching

20001 | - no caching

1500f 1

1000

System Throughput

500r

0 20 600 800

0 400
Available CPU Unit

Fig. 4. Comparisons between three methods: available CPU ranges up to 800.

6=0.60,0:=0.3,8=0.3, v=10, N=2000, M=50, S=50
7000 ; .

——full caching
*—meta caching
——no caching

6000}

5000

w B
o o
o o
o o

System Throughput

20001

—_
o
o
o

4000 6000

Available CPU Unit

0 2000 8000

Fig.5. Comparisons between three methods: available CPU ranges up to 8000.

Based on the above formulas, Figs. 4 and 5 show the compar-
ison results with some typical values for different parameters
when the available CPU varies. We omit their detailed compar-
isons for brevity. In these figures, we set # to be 0.6, and set «
and (3 as 0.3. We assume that there is a total of 50 objects and
a total of 2000 accesses. Each object has ten versions. The total
available CPU unit is varying.

In Fig. 4, the available CPU unit ranges up to 800. Fig. 5 ex-
tends the available CPU unit to 8000. The figures indicate that
under certain conditions, one of the three schemes may outper-
form the other two.

V. DESIGN OF AMTRAC

We have investigated conditional advantages of meta-caching
over other schemes. The result indicates that these three
schemes perform differently under different conditions and
each may outperform the others. Based on the model-driven
analytical result, a system aiming to maximize throughput
should thus adaptively use different schemes upon dynamic
client access patterns and resource availability. To this end, we
present the adaptive meta-caching design for transcoding-en-
abled proxy, called AMTrac. AMTrac should dynamically
select an appropriate scheme with close monitoring of the
available storage and CPU resources in the system and client
access patterns.

In AMTrac, the proxy provides v different versions of an
object to client requests. Each object version is either cached
with its metadata only or cached with its fully transcoded re-
sult. Thus, in AMTrac, the cache space is logically split into two
parts. One is for caching metadata of different object versions,
and the other is to cache the fully transcoded object versions.
The size of each part changes dynamically.

In AMTrac, the system keeps track of the requested object
version, even after an object version is evicted. The data struc-
ture for each object is summarized in Table II and we use these
data structures to record important runtime information to assist
the implementation of a proposed strategy.

In this structure, P; is calculated as the ratio of the active disk
size over the total disk size. The active disk size is the sum of the
size of all active (requested) cached objects at present. The fotal
disk size is the total available cache size. Based on these, the
following three policies work together to implement AMTrac.

A. Progressive Request Admission

Upon a client request for the 5 version of an object, there

are three cases as follows.

 Ifthe requested object version j is fully cached, the request
is directly served and the corresponding data item, 7[j], is
increased by 1.

* If the requested object version is cached with its metadata,
the request is served with the online meta-transcoding
(transcoding based on metadata). The transcoded result
is sent to the client. The corresponding data item, r[j],
is increased by 1. The reactive cache adjustment (see
Section V-C) is activated to determine whether this fully
transcoded object version should be cached or not.

 If the requested object version does not exist in the cache:
—If the object version is being accessed for the first

time, the proxy performs online transcoding to produce

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

LIU et al.: MODELING AND OPTIMIZATION OF META-CACHING ASSISTED TRANSCODING

the object version j. Correspondingly, the metadata is
cached. The corresponding data item, r[j], is increased
by 1. msl[j] gets updated. The status of this object ver-
sion s[j] is set to 1. If there is insufficient cache space,
the replacement policy (see Section V-B) is activated to
make room for its caching.

— If the object version has been accessed and its status is
replaced (s[j] = 0), the object version is transcoded
again and sent to the client. r[j], is increased by 1.
The reactive cache adjustment (see Section V-C) is acti-
vated to determine whether the corresponding metadata
should get cached.

B. Comprehensive Replacement Policy

When there is not enough cache space, replacement is acti-
vated. To maximize cache performance, it is important to select
the right victim.

In our design, the utility based policy is used to select the right
victim. The utility function is designed as follows:

=

. X a.ajg.7 lfP(’ Z Psa
Ui;) =4 5~ «th
(4) " b ifp <P,

O}|«

(V.14)

<

X
i ai+Bs?

n

In (V.14), S; indicates the occupied cache space of this ob-
ject version, where S; = max(ms[j], fs[j]); r; is the refer-
ence number to this object version; «; is the storage unit (in
percentage) used for caching the metadata of version j, while
B; is the CPU unit to transcode to the final version j; P, repre-
sents the current CPU utilization, and P, indicates the current
storage utilization. In this equation, r;/S; considers that if an
object version is more popular with a unit storage, the object
version should have a high utility value and has a better chance
to be cached. If P. > P, the current system is CPU constrained,
so the utilization of the storage is encouraged. If P, < Ps, the
system is storage constrained, and the utilization of the CPU is
encouraged.

Thus, the utility of an object version considers both the ob-
ject popularity and the current available resources to find the
least valuable object version. Each time the replacement policy
is activated, all cached object versions must refresh their utility.
Based on the utility function, we design the replacement policy
as follows.

When the replacement policy is activated, it compares all the
object versions in the cache based on their utility values. The
one with the minimum value is selected as the victim and the
following procedure loops until sufficient space is found.

 If the selected victim has its fully transcoded data cached

in the proxy, the system selects to evict its fully cached data
and caches its meta data (it consumes a bit more CPU and
it is done when the next time a request is received for this
object version). fs[j] is set to 0, while ms[j] is updated
accordingly.

 If the selected victim has only metadata cached, the meta-

data is evicted, ms[j] is set to 0. r[4] is set to 0. The cor-
responding object version status, s[7], is also set to be re-
placed.

1449

C. Reactive Cache Adjustment

According to our design, for each object version, there could
be three possible cases, namely replaced, with metadata cached,
or with fully transcoded result cached. To accommodate the dy-
namic client accesses and thus to maximize the system perfor-
mance, we design the reactive cache adjustment policy upon dif-
ferent situations. This adjustment is passive since it is always
invoked due to new client requests.

e If a currently replaced object version is accessed, the
system starts to evaluate whether the current utility of
this object version is increased and is large enough to
get cached. The new utility is calculated assuming the
object version consumes ms[j] for storage. If the utility
is larger than the utility of any cached one, the metadata
of this object version gets cached and ms[j] and wu[j] are
set accordingly. The replacement policy is activated if
needed.

* If an object version is cached with metadata, the system
starts to evaluate whether or not the fully transcoded data
of this object version should be cached. Assuming the
fully transcoded object version is cached using space
fs[j], its corresponding utility value is compared with
the current cached object versions. If the new utility of
this object version is higher than that of any cached one,
the fully transcoded object version gets cached. Its fs[j]
and u[j] are updated accordingly. Correspondingly, its
metadata gets evicted and ms[j] is set to 0. Additional
space is reclaimed with the assistance of the replacement
policy when necessary.

VI. PERFORMANCE EVALUATION

In this section, we first perform experiments on a specific
transcoding application to capture the practical values of o and
[to set up simulations (Section VI-A). Then we run simulations
to study the performance of different strategies for rate reduc-
tion. We also evaluate different strategies in a general context
when conditions vary (Section VI-B).

A. Experimental Parameter Capturing and Simulation Setup

As explained in Section III, bit rate reduction is a typical
transcoding process where meta-caching can be applied to cache
M. We first focus our experimental study on such an applica-
tion. To capture the real setup for the storage usage («) and CPU
(), we implemented a full transcoder and a meta transcoder
in C with no special optimizations. Through transcoding trail
runs on HP X4000 workstation with 2 GHz Intel Xeon CPU,
we compare the CPU time used by full transcoding and meta
transcoding on MPEG test sequences with spatial resolution
352 x 240 coded at 25 fps (frames per second). The original
video contains I-, P- and B-pictures and is coded at 512 Kbps.

Considering the bit rate reduction transcoding, caching M,
costs storage at 8250 bytes/s. Note that the scaling factor could
be represented by 5 bits in most cases. But when it is cached,
1 byte storage space is occupied. Thus, we use 8 bits for M,
and use different M, for different macroblocks. We believe this
setup gives a reasonable upper bound of the overhead incurred
by the meta-transcoding. Please refer to [18] for more details.
However, bypassing the rate control submodule enables the

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

1450

transcoder to get the final result with only 45% of the com-
puting load comparing to a full session. With a target bit rate at
128 Kbps, the selection of this meta-caching point represents
(a, B) as (0.5, 0.45). Note that in the rate reduction case, the
metadata size does not change with the bit rate reduction. Thus,
the corresponding « for version 1, 2, and 3 are 0.167, 0.25, and
0.5. The § values for different versions are the same.

Based on these parameters from a real transcoding applica-
tion, experiments are conducted when the cache size varies from
4% to 60% of the total unique object size and the total amount
of CPU capacity is 100 units. Correspondingly, 6 is set to 0.73.

In each workload, there is a total of 1000 objects. Each work-
load contains 20,000 client requests. The client arrival follows a
Poisson distribution with the mean arrival rate as 1 request per
10 s and the maximum arrival interval of 50 min. Clients depart
randomly after receiving the service for a duration ranging from
5 min to 40 min. For each object, there are four different ver-
sions, including the original best quality object — version 0. Ver-
sion 3 represents the lowest quality version. The storage for ver-
sion 1, 2, and 3 is 3/4, 2/4, 1/4 of the original object size (version
0), similar to what is used in our analytical model. Their corre-
sponding encoding rates are 512 Kbps, 384 Kbps, 256 Kbps, and
128 Kbps. We consider four bit rates in the system and thus there
are three adaptation parameters: 512 kbps to 384 kbps, 512 kbps
to 256 kbps, and 512 kbps to 128 kbps. The total unique original
object size amounts to 89.9 GB. The total traffic is 1205.8 GB
and the access duration lasts for about 34 h.

B. Experimental Results

We conduct experiments based on rate reduction applications.
The three major evaluation metrics used in these experiments
are Locally Completed Session, Throughput, and Average CPU
Load. Locally Completed Session represents overall system per-
formance and is the ratio of the number of accesses that are
served locally (on the proxy) over the total number of accesses.
Locally Completed Session consists of two parts. One is the
Locally Completed Session without Transcoding, which corre-
sponds to the scenario that the requested version is cached. The
other is the Locally Complete Session with Transcoding, which
indicates the scenario where the transcoding (full or metadata-
based) is necessary to serve the client request. Throughput rep-
resents the system throughput along the time line. It is calculated
as the number of sessions that the transcoding proxy can handle
per time unit. Average CPU Load is defined as the ratio of the
sum of current CPU load and the total CPU capacity. It can in-
dicate whether the CPU is saturated due to transcoding load.

1) Performance Overview: Figs. 6-8 show the Locally
Completed Session and its two components — with and without
transcoding, for four different methods when the cache size
increases. In these figures, No, Full, Meta represent the
no-caching, full-caching, and meta-caching methods we have
discussed. AMTrac represents our proposed scheme.

As shown in Fig. 6, when considering the total completed
sessions in the transcoding proxy, the performance of the four
methods is ordered in AMTrac, Meta, Full, and No. Fig. 7 shows
that the Locally Completed Session with Transcoding for dif-
ferent methods. The trend is similar to the Locally Complete
Session, indicating that the transcoding results for meta-caching

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

100
;\3 . 5 s
c BOW
kel
[
[%]
o
9D 60F
°
@
kS
[}
€ 401
e}
(6]
= No
§ 20¢ Full
| ——Meta
——AMTrac
o 1 1 1 It 1
10 20 30 40 50 60
Cache Size (%)
Fig. 6. Total.
X
; 70 T L I — e e
£ e
g
360 W
[2]
C
o
= 501]
=
S 40
[}
[%2]
330
°
@
© 207 No
Q.
g Full
o 107 ——Meta
> ——AMTrac
g ol — ' ‘ ‘ ’
9 10 20 30 40 50 60
Cache Size (%)
Fig. 7. With transcoding.
50
40
30r

Locally Completed Session w/o Transcoding (%)

No
101 Full 3
——Meta
——AMTrac
0 10 20 30 50 60

40
Cache Size (%)

Fig. 8. Without transcoding.

and AMTrac are dominant in the totally completed sessions. An
interesting variation is shown in Fig. 8 when considering the
Local Completed Session without Transcoding. As indicated in
the figure, when the cache size increases beyond 16%, Full out-
performs Meta and AMTrac. This is due to more cached objects
in Full when the cache size increases.

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

LIU et al.: MODELING AND OPTIMIZATION OF META-CACHING ASSISTED TRANSCODING

=
Q.
<
D
3
= 150¢
|_
100f No
Full
50¢ « Meta
RS e g R ngseal - AMTrac
2%00 4000 6000 8000 10000

Access series

Fig. 9. Throughput.

Having examined the overall performance in terms of the
total completed sessions in the transcoding proxy, now we ex-
amine the proxy’s performance at each time unit. Fig. 9 shows
the system throughput along the client accesses when the cache
size is 4%. Note in the figure, only the results between ac-
cess 2000 and access 10000 are shown. As indicated in the
figure, AMTrac outperforms all other methods. Among all the
four methods, no-caching achieves the worst performance as ex-
pected and full-caching also has worse performance than that of
meta-caching and AMTrac.

Fig. 10 shows the corresponding CPU load along the client
accesses (time). Apparently, besides full caching, the other
three methods always have a 100% CPU load or close to 100%.
To full-caching, since 4% cache space is far from sufficient,
its CPU is under utilized. Fig. 11 further shows the average
CPU load for the four methods when the available cache
size varies from 4% to 60%. As expected, the CPU load of
no-caching is not affected when the cache size increases. Since
full-caching is the most affected by the available cache space,
its average CPU load decreases after the cache size increases
beyond 28%. Before that, the limited cache space results in
frequent replacement upon new client requests, some of which
cannot happen because the selected victim objects are being
accessed. Thus, although there are spare CPU cycles, they are
not utilized. After the cache size is increased beyond 28%, this
situation is relieved. Since full-caching is storage constrained,
with larger cache space, more client requests could be served
from cache without repetitive transcoding. This is evidenced
by the decreasing order of CPU load of full-caching when
the cache size is beyond 28%. From another aspect, although
meta-caching and AMTrac have a higher CPU load with the
increase of cache size, throughput of these two approaches is
higher than that of full-caching.

2) Impact of Object Popularity (6): Existing research reveals
that the skew parameter in the Zipf-like distribution is in the
range of 0.47 and 0.73 for media objects [6], [7], [9]. In this
section, we evaluate the impact of # on different methods. Three
typical values of 0.47, 0.60, and 0.73 are tested while « and 3
are fixed as 0.5 and 0.45. For brevity, we only show the overall
system performance reflected by the Locally Completed Session
and its transcoding part.

1451

100 pommess

80

601

401

CPU Load (%)

20}

6000
Access series

2%00 4060 8000 10000

Fig. 10. CPU load.

100

T 7 T 7 T
P - S S S SRS S G S e

00— i —;

o]
o
L

(0]
o

N
o

No
Full
——Meta
——AMTrac
0 Il I 1

10 20 30 40 50 60
Cache Size (%)

Average CPU Load (%)

N
o

Fig. 11. Average CPU load.

Figs. 12—14 show the total completed sessions in the proxy for
the four strategies when 6 varies. In general, these figures indi-
cate 6 impacts all methods in terms of the Locally Completed
Session, and its impact is more pronounced on full-caching,
meta-caching, and AMTrac. This is reasonable since a larger
6 indicates more clustered client accesses, and more opportu-
nities for these methods to use cached data to serve incoming
requests.

3) Impact of Meta-Caching Parameters (« + (3): The meta-
caching parameter (3 is affected by the CPU clock rate and our
previous analysis showed that the system performance is related
to the sum of o and f. In this section, we further study how
the varying sum of « and (3 affects the performance of different
schemes. In the following experiments « is fixed at 0.5 and 6 is
fixed at 0.73 when (3 varies.

Figs. 15, 16 (the same as Fig. 14), and Fig. 17 show the
Locally Completed Session for the four strategies. When
varies from 0.3 to 0.6, meta-caching is significantly affected.
The larger the value of (3, the smaller of the Locally Com-
pleted Session. The impact on AMTrac is trivial. The reason
is that meta-caching consumes more CPU while AMTrac can
adaptively balance the usage of CPU and storage and thus it is
less affected. This confirms the effectiveness of our proposed
adaptive AMTrac scheme. Since full-caching and no-caching

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

1452

100
—_ /*—/“"H/*rgkek_a
I
= 80r 1
il
[}
%]
O]
9D 60
el
[0
°
Qo
€ 40r
o
(¢}
= No
§ 20r Full
4 ——Meta

——AMTrac
o L 1 1 1 1
10 20 30 40 50 60
Cache Size (%)
Fig. 12. Total — ¢ = 0.47.

100
’\o\ Ii*//*»——/*””’ ———
L oot
S /
[}
(%]
[0
7] 60+ -
el
[0)
°
[e %
£ 40r 1
[
o
= ; No
§ 20¢ Full
4 ——Meta

——AMTrac
¢ 10 20 30 40 50 60
Cache Size (%)
Fig. 13. Total - 6 = 0.60.
100

——
A

80/// 1

Locally Completed Session (%)

40t 1
No
20+ Full
——Meta
——AMTrac
g 10 20 30 40 50 60

Cache Size (%)

Fig. 14. Total -8 = 0.73.

schemes have nothing to do with g, the performance of these
two methods is not affected.

4) Impact of Total CPU: Since meta-caching and AMTrac
heavily rely on CPU, we study how the CPU resource affects the
performance of different methods. In this section, experiments
are run with the total CPU capacity varying from 80 to 120 units.
For this set of experiments, « is fixed at 0.5, [is fixed at 0.45
and 6 is fixed at 0.73.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

100
’*_/*_,*,_4—*———*—*——-)
. // o
= 8of
9
[}
%]
O]
@ 60
el
[0
°
Qo
€ 401
o
o
= No
§ 20 Full
3 ——Meta
——AMTrac
o L 1 1 1 1
10 20 30 40 50 60
Cache Size (%)
Fig. 15. Total - 3 = 0.3.
100
//*‘7*,77*/) f

80/

Locally Completed Session (%)

40r .
No
20¢ Full
——Meta
——AMTrac
¢ 10 20 30 40 50 60
Cache Size (%)
Fig. 16. Total - 8 = 0.45.
100

e d—X
NN W
N R

80/// a :
60/e/é/(k0%A,,<e/6/‘*/*”9’*’/6/j

Locally Completed Session (%)

40 1
No
20+ Full
——Meta
——AMTrac
g 10 20 30 40 50 60

Cache Size (%)

Fig. 17. Total - 3 = 0.6.

Figs. 18, 19 (the same as Fig. 14), and Fig. 20 show the cor-
responding Locally Completed Sessions for the four strategies
when the available CPU varies. When the available CPU units
increase, the performance of all methods gets improved. But
the improvement of meta-caching and no-caching is more pro-
nounced than the other two. The reason is that meta-caching and
no-caching are more dependent on the available CPU resources,
while full-caching demands more cache space. Only AMTrac is

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

LIU et al.: MODELING AND OPTIMIZATION OF META-CACHING ASSISTED TRANSCODING

100 "
2 ST U S
c 80/ _
kel
1]
[%]
[0
9 60r A
°
Q
°
Q.
£ 40r |
o]
(&]
] No
§ 1 Full 4
) ——Meta
——AMTrac
o— : . | .

10 20 30 40 50 60
Cache Size (%)

Fig. 18. Total - CPU = 80.
100 T " . - ,
= 80fA 1
s Y7
n
[%]
[0
(] 60- 4
o
Q
°
Q.
£ 401 i
3
= No
g 201 Full 1
= ——Meta
——AMTrac
0 1 L 1 1 1
10 20 30 40 50 60
Cache Size (%)
Fig. 19. Total - CPU = 100.
100
g il
E 8o 4
n
[%]
]
» 60- 1
e}
(9]
k]
Q.
£ 40r 1
S
= No
g 201 Full 1
a ——Meta
——AMTrac
0 Il I 1 Il 1

10 20 30 40 50 60
Cache Size (%)

Fig. 20. Total - CPU = 120.

the least affected, particularly when the cache space increases
beyond 16%.

These experiments demonstrate that when various conditions,
such as available resources and client access patterns, change,
our proposed AMTrac can always maintain a balance in using
the CPU and the storage to maximize system performance under
different conditions.

1453

VII. CONCLUSION

The Internet has witnessed the rapid increase of Internet
media contents and widespread use of portable devices in the
past a few years. While a transcoding proxy has been proposed
and researched extensively, existing strategies generally aim
to reduce the server load and the server traffic. No attention
has been paid to the transcoding procedure itself and that
leads to less flexibility in addressing the tradeoffs between
computing and storage constraints. By proposing to study
inside a transcoding process itself, we outline a new approach
for caching strategy designs with the main focus on computing
load reduction. A meta-caching scheme is proposed that offers
a new point of control in the computing and storage space. With
model-based analysis on the meta-caching scheme, we propose
an adaptive meta-caching system, called AMTrac, which can
adaptively use the meta-caching scheme based on client ac-
cesses and available resources in the system. Experiments show
that it significantly outperforms existing strategies.

ACKNOWLEDGMENT

The authors thank the anonymous referees for providing con-
structive comments.

REFERENCES
[1

—

Support Nationwide Delivery of Mobile Multimedia, [Online]. Avail-
able: http://www.qualcomm.com/press/releases/2004/041101_medi-
aflo_700mhz.html

Your Phone: Mobile Mickey Mouse?, [Online]. Available: http://www.

wired.com/news/wireless/0,1382,64009,00.html

[3] S. Acharya and B. C. Smith, “Middleman: A video caching proxy

server,” in Proceedings of ACM Workshop on Network and Operating

System Support for Digital Audio and Video (NOSSDAV), Chapel Hill,

NC, 2000.

E. Amir, S. McCanne, and H. Zhang, “An application level video

gateway,” in Proc. ACM Multimedia, San Francisco, CA, Nov. 1995.

[5] E. A. Brewer, R. H. Katz, Y. Chawathe, S. D. Gribble, T. Hodes, G.
Nguyen, M. Stemm, T. Henderson, E. Amir, H. Balakrishnan, A. Fox,
V. N. Padmanabhan, and S. Seshan, “A network architecture for het-
erogeneous mobile computing,” IEEE Pers. Commun., vol. 5, no. 5, pp.
8-24, Oct. 1998.

[6] L. Cherkasova and M. Gupta, “Characterizing locality, evolution, and
life span of accesses in enterprise media server workloads,” in Proc.
ACM Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), Miami, FL, May 2002.

[7] M. Chesire, A. Wolman, G. Voelker, and H. Levy, “Measurement and
analysis of a streaming media workload,” in Proc. 3rd USENIX Sympo-
sium on Internet Technologies and Systems, San Francisco, CA, Mar.
2001.

[8] P. D. Cuetos, D. Saparilla, and K. W. Ross, “Adaptive streaming of

stored video in a tcp-friendly context: Multiple versions or multiple

layers?,” in Proc. Packet Video Workshop, Kyongju, Korea, Apr. 2001.

L. Guo, S. Chen, Z. Xiao, and X. Zhang, “Disc: Dynamic interleaved

segment caching for interactive streaming,” in Proc. 25th Int. Conf.

Distributed Computing Systems, Columbus, OH, Jun. 2005.

[10] R.Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas,
“Dynamic adaption in an image transcoding proxy for mobile web
browsing,” IEEE Pers. Commun., vol. 5, no. 6, pp. 8—17, Dec. 1998.

[11] F. Hartanto, J. Kangasharju, M. Reisslein, and K. W. Ross, “Caching
video objects: layers vs versions?,” in IEEE Int. Conf. on Multimedia
and Expo, Lausanne, Switzerland, Aug. 2002.

[12] C. K. Hess, D. Raila, R. H. Campbell, and D. Mickunas, “Design and

performance of mpeg video streaming to palmtop computers,” in Proc.

SPIE/ACM MMCN, San Jose, CA, Jan. 2000.

C.-W. Lin, J. Xin, and M.-T. Sun, “Digital video transcoding,” Proc.

IEEE, vol. 93, no. 1, pp. 84-97, Jan. 2005.

[14] T. Kim and M. H. Ammar, “A comparison of layering and stream

replication video multicast schemes,” in Proc. ACM Workshop on

Network and Operating System Support for Digital Audio and Video

(NOSSDAV), Port Jefferson, NY, Jun. 2001.

[2

—

[4

=

[9

—

[13

[t

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

1454

[15] R. Mohan, J. R. Smith, and C. S. Li, “Adapting multimedia internet
content for universal access,” IEEE Trans. Multimedia, vol. 1, no. 1,
Mar. 1999.

[16] R. Rejaie and J. Kangasharju, “Mocha: A quality adaptive multimedia
proxy cache for internet streaming,” in Proc. ACM Workshop on
Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Port Jefferson, NY, Jun. 2001.

[17] N. Sarhan and C. Das, “Caching and scheduling in nad-based multi-
media servers,” IEEE Trans. Parallel Distrib. Syst., no. 10, 2004.

[18] B. Shen, “Meta-caching and meta-transcoding for server side service
proxy,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICMEO3),
Baltimore, MD, Jul. 2003, vol. 1.

[19] B. Shen, S. Lee, and S. Basu, “Caching strategies in transcoding-en-
abled proxy systems for streaming media distribution networks,” IEEE
Trans. Multimedia, vol. 6, no. 2, pp. 375-386, Apr. 2004.

[20] M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and M. Ito, “Energy-aware
video streaming with qos control for portable computing devices,” in
Proc. ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), Cork, Ireland, Jun.
2004.

[21] X. Tang, F. Zhang, and S. T. Chanson, “Streaming media caching algo-
rithms for transcoding proxies,” in Proc. 31st Int. Conf. Parallel Pro-
cessing (ICPP), Vancouver, BC, Canada, Aug. 2002.

[22] Y. Tu, J. Yan, and S. Prabharkar, “Quality-aware replication of multi-
media data,” in Proc. Int. Conf. Database and Expert Systems Applica-
tions (DEXA), 2005.

[23] T. Warabino, S. Ota, D. Morikawa, M. Ohashi, H. Nakamura, H.
Iwashita, and F. Watanabe, “Video transcoding proxy for 3g wireless
mobile internet access,” IEEE Commun. Mag., vol. 38, no. 10, pp.
66-71, Oct. 2000.

Dongyu Liu received the B.E. and M.E. degrees in
computer science from China University of Geo-
sciences in 1997 and 2000, respectively, and the M.S.
degree in computational science and informatics
from George Mason University (GMU), Fairfax, VA,
in 2003. He is currently pursuing the Ph.D. degree
in the Computer Science Department at GMU. His
research interests include Peer-to-Peer streaming,
overlay networks, and content distribution networks.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 8, DECEMBER 2008

Songqing Chen (M’03) received the Ph.D. in Com-
puter Science from the College of William and Mary,
Williamsburg, VA.

He is an Assistant Professor of Computer Science
at George Mason University, Fairfax, VA. His
research interests include Internet content delivery
systems, Internet measurement and modeling, op-
erating systems and system security, and distributed
systems and high performance computing.

Dr. Chen is arecipient of the NSF CAREER Award
2008.

Bo Shen (M’97-SM’04) received the B.S. degre in
computer science from Nanjing University of Aero-
nautics and Astronautics, China and the Ph.D. degree
in computer science from Wayne State University,
Detroit MI.

He is now a Senior Architect at a mobile
video startup, vuclip.com, Milpitas, CA. Before
that, he was a Senior Research Scientist with
Hewlett-Packard Laboratories. His research interests
include multimedia signal processing, multimedia
networking and content distribution systems. He has
published over 50 papers in prestigious technical journals and conferences. He
holds seven U.S. patents with many pending.

Dr. Shen has been on the Editorial Board for IEEE TRANSACTIONS ON
MULTIMEDIA from 2006 to 2008. He served as the Lead Guest Editor for
IEEE TMM Special Section on Multimedia Applications in Mobile/Wireless
Context. He also served on Program Committee for a number of technical
conferences including SIGMM.

Authorized licensed use limited to: George Mason University. Downloaded on March 17, 2009 at 14:49 from IEEE Xplore. Restrictions apply.

