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Cryptanalysis of Some Multimedia Encryption
Schemes

G. Jakimoski and K. P. Subbalakshmi

Abstract— Encryption is one of the fundamental technolo-
gies that is used in digital rights management. Unlike ordi-
nary computer applications, multimedia applications gener-
ate large amounts of data that has to be processed in real
time. So, a number of encryption schemes for multimedia
applications have been proposed in recent years.

We analyze the following proposed methods for multime-
dia encryption: key-based multiple Huffman tables (MHT),
arithmetic coding with key-based interval splitting (KSAC)
and randomized arithmetic coding (RAC). Our analysis
shows that MHT and KSAC are vulnerable to low complex-
ity known- and/or chosen-plaintext attacks. Although we
do not provide any attacks on RAC, we point out some dis-
advantages of RAC over the classical compress-then-encrypt
approach.

Keywords— multimedia encryption, cryptanalysis, multi-
ple Huffman tables, arithmetic coding, key-based interval
splitting, randomized arithmetic coding

I. Introduction

In the last decades, we have witnessed a rapid growth of
networking technologies that provide larger bandwidth and
computer technologies that provide greater computational
power to the end users. The ease of processing, distribut-
ing and storing data on the Internet gave rise to many
digital multimedia applications and services. However, the
existing wired and wireless IP networks are open networks,
and the data transmitted over these networks can be eas-
ily copied or modified. So, we have also witnessed the
emergence of digital rights management as an important
research area for multimedia applications [1]. The goals of
the digital rights management technologies include protec-
tion of copyrighted multimedia data, authentication, con-
ditional access, etc.

Encryption is one of the major digital rights management
enabling technologies. Usually, to provide confidentiality,
the data is encrypted using a stream cipher or a block ci-
pher (e.g., DES [2] or AES [3]) in some mode of operation
for encryption [4] (e.g., cipher block chaining, output feed-
back, cipher feedback, output feedback, etc.). However,
unlike the ordinary computer applications, multimedia ap-
plications generate large amounts of data that has to be
processed in real time. Hence, a number of techniques for
real-time encryption of multimedia data have been pro-
posed in the past years. Two common approaches to real-
time multimedia data encryption are selective encryption
[5–19] and entropy coding that provides encryption [20–28].

The design philosophy of selective encryption is to pro-
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vide faster encryption by encrypting only a small portion
of the multimedia data. Without the knowledge of the
encrypted data, the adversary will not be able to recover
the original data (e.g., image or video). Since traditional
schemes can be used for encryption, the issues related to se-
lective encryption are more signal processing than cryptog-
raphy related. The major issue is to select the important
information that will be encrypted, i.e., the information
whose encryption will guarantee that the adversary can-
not recover useful information about the original image or
video.

In the second approach, entropy coding that provides en-
cryption, the entropy coder has two functionalities: com-
pression and encryption. The goal is to improve the ef-
ficiency by doing both compression and encryption in a
single step. While the traditional entropy coders encode
the data in a fixed and public manner, the entropy coders
that provide encryption use secret keys to encode the data.
The adversary should not be able to decode the data with-
out the secret key. This approach is often combined with
selective encryption for greater efficiency.

We analyze the security and the efficiency of MHT
(Multiple Huffman Tables), KSAC (Arithmetic Coding
with Key-based interval Splitting) and RAC (Randomized
Arithmetic Coding). These encryption schemes follow the
second approach. That is, the compression and encryption
of the data is done in a single step. The encryption in MHT
[30] is achieved by using different Huffman tables for differ-
ent input symbols. The tables as well as the order in which
they are applied are kept secret. KSAC [31] is designed to
achieve both compression and confidentiality by using keys
to specify how the intervals will be partitioned in each it-
eration of an arithmetic code. The randomized arithmetic
coding approach [1] is similar to KSAC. The difference is
that the keys are used to specify the order of the intervals
instead of the positions where the intervals will be split.

Our analysis shows that both MHT and KSAC are vul-
nerable to known plaintext attacks. We do not provide any
attacks on RAC. However, we point out that the scheme
is expected to be less efficient than the standard approach
since a generation of one pseudorandom bit per input bi-
nary symbol is required.

The paper is organized as follows. Section II provides an
overview of the schemes that are analyzed here. Known-
plaintext attacks on MHT are presented in Section III. The
security and efficiency of KSAC and RAC are discussed in
Section IV. The paper ends with concluding remarks.
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II. Preliminaries

In this section, we give a brief description of the multi-
media encryption schemes analyzed in this paper.

A. Overview of MHT

MHT [30] (Multiple Huffman Tables) is a scheme that
performs both compression and encryption by using mul-
tiple statistical models (i.e., Huffman coding tables) in the
entropy encoder. The secret key which is used for encryp-
tion and decryption consists of m distinct Huffman coding
tables and an n-tuple (k0, . . . , kn−1). The m Huffman ta-
bles are selected randomly from some public pool of Huff-
man tables, and the adversary does not know which tables
have been selected. The n-tuple (k0, . . . , kn−1) specifies
which table will be used to encode a particular symbol.
Namely, the input stream is divided into blocks of n sym-
bols, and the i-th (0 ≤ i < n) symbol of each block is
encoded using the Huffman table specified by ki. A high
level description of the algorithm is given by the following
three steps:
1. Choose m different Huffman coding tables numbered
from 0 to m− 1. The authors suggest m = 8.
2. Generate a random vector (k0, . . . , kn−1), where each ki

is an integer in {0, 1, . . . ,m − 1}. The suggested value for
n is 128.
3. Encode the i-th symbol of the data stream using the
table specified by ki mod n.

The public pool of Huffman coding tables is generated
from four basic Huffman tables (see Fig. 1) by using Huff-
man tree mutation (a method introduced in [30]). The first
tree is the original Huffman coding tree used to encode
the DC coefficients in JPEG. The other trees are obtained
by using different training image sets. The Huffman tree
mutation process derives a new tree from an old one by
swapping the labels of any two branches that stem from a
common node. By applying this process, a pool of 214 (212

per basic tree) distinct trees is constructed. In the pro-
posed encoding scheme, the m distinct Huffman tables are
randomly and secretly selected from this pool. The code-
word lengths for each symbol encoded with the four basic
Huffman trees are given in Table I. Clearly, the Huffman
trees mutated from a basic tree will have equal codeword
lengths as the basic tree. However, a given symbol can be
encoded into codewords with different lengths when coding
trees mutated from different basic trees are used. This fact
is used as a basis for the security of the scheme against
known-plaintext attacks. That is, the authors make the
following assumption: “for an attacker who does not know
the order in which these trees are applied, synchronizing
between the symbol stream and the encoded bit stream
would be extremely difficult”.

B. KSAC and RAC

Arithmetic coding [32] encodes a sequence of symbols
with a number (position) in the range [0, 1). It is usually
implemented using a recursive procedure. We demonstrate
this by the following example that will be used through-
out the paper. A subinterval of [0, 1) is associated with
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Fig. 1. The four basic trees: (A) the original Huffman coding tree
for JPEG DC coefficient coding; (B), (C), (D) Huffman trees trained
from three image sets

TABLE I

Total number of different codeword lengths for each

symbol when the four Huffman trees of Fig.1 are used

together.

Symbol Tree A Tree B Tree C Tree D lengths
0 2 2 2 1 2
1 3 2 2 3 2
2 3 2 3 4 3
3 3 3 3 4 2
4 3 4 3 3 2
5 3 5 4 4 3
6 4 6 5 5 3
7 5 7 6 6 3
8 6 8 7 7 3
9 7 9 8 8 3
10 8 10 9 9 3
11 9 11 10 10 3
error 9 11 10 10 3

each symbol. The length of each subinterval is equal to
the probability of the corresponding symbol. Suppose that
there are only two possible symbols A and B with prob-
abilities Pr[A] = 2/3 and Pr[B] = 1/3. Then, a possible
partitioning would represent A by the range [0, 2/3) and
B by the range [2/3, 1). Suppose that the N -symbol se-
quence to be encoded is AB . . .. The first symbol in the
sequence, determines which of the two subintervals will be
selected. In our case, the first symbol is A, and we will
select the subinterval [0, 2/3). The subinterval [0, 2/3) is
partitioned into two subintervals whose lengths are equal
to the probabilities of A and B. The second symbol, which
is B in our case, determines which of the two subintervals
of [0, 2/3) will be selected. This procedure is repeated for
all N symbols. The encoding of the sequence is a number
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Fig. 2. Key-based interval splitting example: (a) Before split, (b)
After split.

in the interval that was selected after N iterations.
The subintervals corresponding to each symbol in the

traditional arithmetic coder are continuous and their order
is fixed and public. Binary arithmetic coding with key-
based interval splitting [31] (KSAC) is designed to achieve
both compression and confidentiality by splitting the in-
tervals according to a secret key. So, now we can have
more than one interval corresponding to a particular sym-
bol. The sum of the lengths of the intervals corresponding
to a particular symbol should be equal to the probability
of that symbol. While KSAC keeps the interval(s) corre-
sponding to a given symbol secret by using secret inter-
val splitting, the randomized arithmetic coding (RAC) ap-
proach [1] achieves confidentiality by changing the order of
the intervals corresponding to the symbols according to a
secret key. More details on these schemes are given below.

B.1 KSAC

The concept of key-based interval splitting is depicted in
Fig. 2. We use the binary system example that we discussed
above. The traditional partitioning of the interval [0, 1)
is depicted in Fig. 2(a). KSAC uses a key k0 to specify
where the interval corresponding to A will be split. The
interval [k0, 2/3) is “moved” to the right of the interval
corresponding to B, and the final partitioning is shown in
Fig. 2(b). The symbol A is represented by two intervals
[0, k0) and [k0 + 1/3, 1). The symbol B is represented by a
single interval [k0, k0 + 1/3).

When encoding a sequence of N symbols, one has to
select a vector of N keys k = (k0, . . . , kN−1) that will de-
termine where the interval corresponding to A is going to
be split. Fig. 3 depicts the key-based interval splitting for a
sequence of two symbols assuming that after the first iter-
ation we have the situation depicted in Fig. 2(b). Fig. 3(a)
shows the traditional partitioning and the positions de-
termined by the key k1 where the intervals will be split.
The situation after the key-based splitting is depicted in
Fig. 3(b). It is possible that for some key choices a given
sequence can be represented by more than two intervals.
One such situation is shown in Fig. 3(c). This is not de-
sirable since it further increases the number of bits needed
to represent a given sequence. To solve this problem, the
authors suggest imposing constraints on the keys [31].

AA BA ABAABB

k1 k1

AB AABB BA

AA BA

(c)

(b)

(a)

AA BA ABAABB

k1k1

AA AAAB ABBA BABB

Fig. 3. Interval splitting with two symbols: (a) Traditional partition-
ing in the second iteration, (b) Key-based partitioning in the second
iteration, (c) Inappropriate value for k1.

B.2 RAC

RAC encryption is based on a random order of the in-
tervals associated with the symbols. This order is secret,
and only a synchronized decoder will be able to correctly
decode.

The concept of randomized arithmetic coding is depicted
in Fig. 4. The traditional arithmetic encoding of the se-
quence AAB is depicted in Fig. 4(a). The encoding of
the same sequence using a randomized arithmetic coder
is shown in Fig. 4(b). The ordering of the intervals (i.e.,
whether the first interval is the interval corresponding to
the least probable symbol LPS or the most probable sym-
bol MPS) is determined according to a random and secret
bit.

In general, the interval swapping rule when encoding a
sequence of N binary symbols b0 . . . bN−1 is defined as fol-
lows. Initialize a pseudorandom bit generator with a ran-
dom seed S and generate N bits ri, i = 0, . . . , N − 1. The
ordering is selected as follows:

For i=0:N-1
If r_i=1 then

select the order [LPS,MPS] to encode b_i
else

select the order [MPS,LPS] to encode b_i

The decoder will use the same random seed to regenerate
each ri and correctly decode the sequence of symbols. The
pseudorandom bits ri are generated anew for each new se-
quence of N symbols.

III. Known-plaintext cryptanalysis of MHT

In this section, we present a known-plaintext attack on
MHT (multiple Huffman coding tables) [30]. We consider
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Fig. 4. Illustration of randomized arithmetic coding: (a) Traditional
arithmetic coder, (b) Randomized arithmetic coder.

two key lifetime possibilities for MHT: long-term keys and
per-message keys. In the first case, one key is used to
encrypt a large number of messages (plaintexts1). In the
second case, a new key is generated for each new message.
The attack on MHT with long-term keys can be trivially
avoided by generating a new (pseudorandom) key for each
new message2. However, the attack on MHT with per-
message keys makes use of the attack on MHT with long-
term keys. So, we present both attacks.

A. Cryptanalysis of MHT with long-term keys

In this section, we assume that the adversary has access
to many messages and the corresponding ciphertexts that
are obtained using the same key3. The following example
demonstrates how the adversary can recover the secret key.

Suppose that the adversary knows the following three
plaintext/ciphertext pairs:

53 . . . ← 11110101 . . . ,

26 . . . ← 0101011 . . . ,

13 . . . ← 10011 . . . .

Knowing the encoding of 5, the adversary labels the edges
of the path from the root to symbol 5 in the four basic trees.
Then, the adversary checks whether a branch is labeled. If
a branch is labeled 1, then he labels the other branch of
the pair with 0. If a branch is labeled 0, then he labels the
other branch of the pair with 1. The resultant labeling is
depicted in Fig. 5.

1We adhere to the standard terminology adopted in cryptology and
use the words message or plaintext for the data that will be encrypted.

2The authors of MHT do not explicitly specify that a fresh key
has to be generated for each message. However, we believe that they
tacitly make this assumption when stating that the security of the
scheme relies on the difficulty of synchronizing the symbol stream
and the encoded bit stream.

3Our attack works even if the adversary knows only many distinct
message headers and the corresponding ciphertexts. He doesn’t need
to know the complete messages.
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Fig. 5. The labeling of the four basic trees obtained from the encoding
of 5.
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Fig. 6. The labeling of the four basic trees obtained from the encod-
ings of 5 and 2.

Next, using the second message/ciphertext pair, the ad-
versary eliminates the trees C and D since the encoding of
2 begins with zero. This is not possible for the third and
the fourth tree. Furthermore, the adversary also labels the
branches on the path from the root to symbol 2 in Tree A
and Tree B. Finally, he checks whether a branch is newly
labeled. If the branch is labeled 1, then he labels the other
branch of the pair with 0. If the branch is labeled 0, then
he labels the other branch of the pair with 1. The resultant
labeling is depicted in Fig. 6.

Finally, using the third message/ciphertext pair, the ad-
versary eliminates the tree A since the encoding of 1 begins
with one. This is not possible for the first tree. The final
result is depicted in Fig. 7. Note that using only three
known message/ciphertext pairs the adversary has deter-
mined the correct basic tree and recovered the encoding of
the most frequently used symbols.

By using more known plaintext/ciphertext pairs, one can
easily recover the Huffman coding table that is used to
encode the first symbol of each message block. A general
description of the attack is given by the following steps:
1. Construct four unlabeled trees corresponding to the four
basic trees that are used in MHT.
2. Given the encoding of the first symbol of a message, la-
bel the branches on the path from the root to the particular
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Fig. 7. The labeling of the four basic trees obtained from the encod-
ings of 5, 2 and 1.
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symbol in each tree. If some of the branches are already
labeled and the existing labeling is not consistent with the
current labeling (i.e., symbol encoding), then discard that
tree as a possible tree.
3. For each newly labeled branch, label the corresponding
branch in the pair.
4. Repeat Step 2 and Step 3 for all known mes-
sage/ciphertext pairs.

The least probable symbol appears with probability
≈ 2−10. So, given about 1000 random and known mes-
sage/ciphertext pairs each symbol will appear at least once
on average and the Huffman table for the first symbol can
be recovered completely. Once the Huffman table for the
first symbol in the message is recovered, we can discard
the first symbols of the messages and their encodings from
the ciphertexts, and then repeat the same attack to recover
the Huffman table used to encode the second symbols of
the blocks, and so on. Note that one does not have to
recover the complete Huffman table to “attack” the subse-
quent symbols. It is sufficient to determine the basic tree,
and thus determine the codeword lengths.

The attack can be further optimized by using the follow-
ing techniques :
• Process the messages that start with least frequent sym-
bols first. The encodings of these symbols have largest
length and therefore reveal more information about the
structure of the Huffman coding tree.
• Use the codeword lengths given in Table I to eliminate
the possible basic trees. For example, if the encodings of
two messages that start with 5 differ in the fourth bit, then
the codeword length of the encoding of 5 is less than 4. This
is possible only if the coding tree A is used to encode 5.
• There are only m = 8 secret tables per key. Once, we
recover these tables, we can just check which one is used
to encode the i-th symbols of the blocks.

The complexity of the attack is low, and it can carried
out by hand although the key size is quite large 14 × 8 +
128× 3 = 496 bits.

B. Cryptanalysis of MHT with per-message keys

If the adversary knows where the encodings of the blocks
of the plaintext begin within the corresponding ciphertext,
then he can find the encoding of each block and apply the
attack described in Section III-A by viewing each block as
a new plaintext. So, the security of the scheme relies on
the assumption that it is hard to find where the encoding
of each block begins due to the different codeword lengths
when using different tables. However, as demonstrated in
this section, this assumption is not true. One can guess
which tables are used for the first few (the first four in our
case) symbols of each block. Then, he can use the guessed
tables to encode the first few symbols of the second block,
the third block, etc. If the guess is correct, then the re-
sultant encodings must appear within certain areas of the
ciphertext determined by the minimum and the maximum
possible codeword lengths. If the guess is wrong, then the
probability that the resultant encodings will appear within
these areas of the ciphertext becomes negligible when suf-
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Fig. 8. The pruned variants of the four basic trees. About 97% of
the plaintext is encoded using these pruned trees.

ficiently many (about 32) known blocks are used. Hence,
the adversary can find the right tables for the first few sym-
bols of each block, and then using these tables he can find
where the encoding of each block begins.

Before presenting the details of the attack, let us make
the following observations:
• Given a ciphertext and the encoding of the more frequent
symbols (0 – 6), one can easily recover the corresponding
plaintext. Indeed, the probability that a given symbol of
a plaintext is one of the symbols 7 – 11 or error is about
1/32. Hence, most of these symbols are “surrounded” by
relatively long sequences of the frequent symbols. Since we
know the encoding of the frequent symbols, we can easily
find the encoding length of the infrequent symbol. Given
the length of the symbol and the prefix (we know the en-
coding of 6), we can easily recover the encoded infrequent
symbol.
• The number of different encodings of the frequent sym-
bols is significantly smaller than the total number of dif-
ferent Huffman tables used in MHT. Fig. 8 depicts pruned
variants of the four basic trees. Each of these trees can be
labeled in 27 different ways. So, the total number of dif-
ferent encodings of the frequent symbols is 29 which is sig-
nificantly smaller than the number of Huffman tables 214.
The large number of different Huffman tables is due to the
large length of the encoding of the least frequent symbols.
However, as we previously mentioned, these symbols make
only a small portion of the plaintext. So, one does not have
to guess their encoding in order to mount an attack.

Suppose now that the adversary knows the first L blocks
B1 = s1,1| . . . |s1,n, . . ., BL = sL,1| . . . |sL,n of a message
M and the ciphertext C corresponding to M . A two-stage
attack that recovers the unknown part of the message is
described below. The first stage of the attack consists of
the following steps:
1. Guess4 which pruned trees are used to encode the first
four symbols of each block.

4Guessing a key in cryptanalysis means to try a possible value of a
key. In our case, we guess which pruned trees are used to encode the
first four symbols of the blocks (e.g., ACAD is a possible guess).
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2. Given the encodings of s1,1, s1,2, s1,3 and s1,4, label the
paths from the roots of the four trees assumed in the previ-
ous step to the corresponding symbol. Label the branches
corresponding to the branches that are already labeled as
in Section III-A.
3. Construct a list whose members are 4-tuples of fully
labeled pruned trees such that the labels of the trees are
consistent with the labels of the partially labeled trees con-
structed in Step 2. This list gives us the possible encodings
of the first four symbols of each block given the encoding
of s1,1| . . . |s1,4. Since each symbol is encoded using 3 bits
on average, this list will have (27−3)4 = 213 members on
average.
4. For each member of the list constructed in the previous
step and for each i = 2, . . . , L do the following:
• Find the encoding ci of si,1| . . . |si,4 using the current

member of the list. If some of the symbols si,1, . . . , si,4 is
one of the less frequent symbols, then encode it as ∗ ∗ . . . ∗︸ ︷︷ ︸

l

,

where l is its length which is known given a pruned tree.
In the following, we assume that ∗ matches both 0 and 1.
• Let p0 be the position of the first bit of the encoding

of si−1,1| . . . |si−1,4. Set ps = p0 + lm(Bi−1) and pe = p0 +
lM (Bi−1), where lm(Bi−1) is the minimal possible length of
the encoding of Bi−1 and lM (Bi−1) is the maximal possible
length of the encoding of Bi−1. Since each symbol has at
most three different codeword lengths, the difference pe−ps

cannot be greater than 256 (assuming n = 128).
• Starting at position ps and ending at position pe search

the ciphertext C for the appearance of the string ci. If ci

does not appear starting at some position between ps and
pe, then discard the currently considered member of the
list as a possible one and go on to the next member of the
list. Otherwise, check the current member of the list for
the next value of i.
5. Repeat Steps 1–4 until all possibilities for the four un-
labeled pruned trees (guessed in Step 1) are exhausted.

The first stage of the attack has two goals:
• Find the correct (pruned) encoding tables that are used
to encode the first four symbols of each block. This is
achieved by discarding the incorrect tables using the sub-
string test: the correct encodings ci must appear in the
ciphertext C.
• Find the beginning of the encodings of Bi (i = 2, . . . , L)
within the ciphertext C. This is also achieved by the sub-
string test: the position of ci within C marks the beginning
of the encoding of Bi.

Once these two goals are achieved, we can easily find the
(pruned) encoding tables used to encode the i-th (i > 4)
symbol of each block. For example, we can guess the coding
table that is used to encode the fifth symbol. Given the
table and the position of the encodings of the fifth symbol
within the ciphertext, we can easily check whether the table
is correct or not. The probability that a wrong guess will
be accepted as right is negligible even for relatively small
values of L. Once we find the table used for the fifth symbol
of the blocks, we can find the table for the sixth symbol,
and so on.

We now roughly estimate the time complexity and the
probability of success of the attack. We assume L = 32.
Let us analyze the first stage of the attack. Note that if
a given member of a list constructed in Steps 1–3 is the
right one, then it will pass all the substring tests, and it
will not be discarded from the list. Let us now estimate
the number of wrong guesses (i.e., wrong members of the
lists constructed in Steps 1–3) that will pass the first stage.
We consider two possible cases:
• A wrong guess for the (pruned) Huffman tables that en-
code the first four symbols leads to the same encodings of
each si,1| . . . |si,4 (i = 1, . . . , L) as the right guess. This is
possible if some of the more frequent symbols does not ap-
pear. For instance, let us say that symbol 6 does not appear
in {si,1}i=1,...,L. Then at least two guesses will “survive”
the substring tests. Only one of them is correct. However,
for L = 32, the more frequent symbols will appear at least
once on average, and we can uniquely determine the cor-
rect (pruned) table with “good” probability. For instance,
the probability that 6 will not appear in {si,1}i=1,...,L=32

is (1− 1/32)32 ≈ 0.36.
Note that we don’t need to know the complete labeling of
the trees to execute the second stage. We only need to
know which basic pruned trees are used to encode the first
four symbols and where each block encoding begins within
the ciphertext. So, even if we do not know the encoding
of 6 for the first and third symbol of each block, we can
still carry out the second stage. Also, we can obtain the
encoding of some symbols even if they do not appear. For
example, the encoding of 2 in Tree A uniquely determines
the encoding of 1, and so on. So, if 1 does not appear,
but 2 appears in {si,1}i=1,...,L=32, we can still obtain the
encoding of 1 knowing that Tree A is used to encode the
first symbol of each block.
• The second possibility is that a wrong guess encodes the
first four symbols of the blocks B1, . . . , BL differently than
the correct guess, but passes the tests since the incorrect
encodings can be found between the starting positions ps

and the ending positions pe. Suppose that ci is an incorrect
encoding of si,1| . . . |si,4. Each symbol is encoded using 3
bits on average. Hence, the average length of ci is 12 bits. If
we take into account that some of the symbols si,1, . . . , si,4

can be one of the less frequent symbols, the average number
of known bits of ci is somewhat less than 12. Hence, we
assume that the probability that ci will match an arbitrary
substring of C is 2−11, and the probability that ci will
match any substring of C starting between ps and pe is
1− (1− 2−11)256 ≈ 2−3. The probability that this is going
to happen for all i = 2, . . . , 32 is about 2−96. Since there
are 224 possible guesses, a rough estimation of the average
number of wrong guesses of the second type that will pass
the tests is 2−72.

In summary, after the first stage, we will know with high
probability which pruned trees (A, B, C or D) were used
to encode the first four symbols of each block. With good
probability, we will be able to completely label these pruned
trees. We also note that the success probability of the first
stage can be significantly improved by using larger L (e.g.,
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L = 64 or L = 96).
Since the beginning of the encoding of each Bi within the

ciphertext C was determined in the first stage, our task in
the second stage is much easier. The probability that two
different trees will encode 32 random symbols into equal
bit strings is negligible. So, we can determine with high
probability which of the trees A, B, C and D was used to
encode the fifth, the sixth, ... , the n-th symbol of each
block. Again, with good probability, we will be able to
completely label the recovered pruned trees. Now, we can
use the information deduced in the attack to recover most
of the message M .

The time complexity of the attack is relatively low. Most
of the work is done in the first stage. Even a pessimistic es-
timate assuming that no members of the lists are discarded
leads to time complexity of about 224×28×25 = 237. Here,
224 is the average number of different pruned tables that
can be used to encode the first four symbols given the en-
coding of s1,1| . . . |s1,4; 28 = 256 is the maximum distance
between ps and pe; and 25 is L.

C. Cryptanalysis of the MHT variants incorporating the
proposed security enhancements

The authors have proposed two methods to enhance the
security of the basic MHT scheme: selective random bit
insertion in the encrypted bit-stream and using different
keys for different segments of the plaintext.

As mentioned earlier, the authors assume that MHT is
secure against known-plaintext attacks since it is difficult
to synchronize the plaintext and the ciphertext due to the
different codeword lengths of a given symbol. The selective
random bit insertion tries to further increase the difficulty
of synchronization by randomly inserting bits at certain
positions of the ciphertext. This increases the length of the
ciphertext. So, the authors suggest that the bit insertion
should not increase the size of the ciphertext more than
1% on average. The effects of this method in the long-
term keys case will be negligible. For our per-message key
case, this will mean that the maximum distance pe − ps is
not 256, but 256+2.56. This will only slightly increase the
probability that a wrong value ci will pass the substring
test. We need to double the maximum distance pe − ps in
order to increase this probability twice. This amount of
redundancy is unacceptable in practice. Furthermore, one
can guess the tables that are used to encrypt the first five
or more symbols instead of guessing the tables used for
the first four symbols, and mount the same attack. The
complexity of the attack will increase 25 or more times,
but it is still low.

The second proposed method to enhance the security of
the scheme is to divide the plaintext into segments and use
different keys for each segment. The keys that are used for
the different segments are generated using a pseudorandom
number generator. The problem with this approach is that
we have been able to mount an attack using only 32 known
blocks of the plaintext. Furthermore, even with several
known blocks, one can deduce a significant amount of in-
formation about the encoding tables in use. That means

that the segments in this approach should be relatively
small (consisting of a few blocks). However, this will sig-
nificantly increase the time complexity of the scheme since
we have to generate tables that will be used to encrypt a
few blocks. The complexity of this scheme might be even
larger than the traditional encode-then-encrypt approach.
In addition, it might be vulnerable to chosen-plaintext at-
tacks while the traditional stream cipher approach is not.

IV. Analysis of KSAC and RAC

In this section, we point out some vulnerabilities of
KSAC and compare RAC to the standard approach where
one first compresses the data and then encrypts the result
using a stream cipher.

A. Attacks on KSAC

In KSAC, the number of keys that specify where to split
the intervals in each iteration is equal to the number of
symbols in the encoded block. That is, a new key should
be generated for each symbol making the scheme very in-
efficient. To solve this problem, the authors suggest two
techniques:
• Reuse of keys. A single key can be used to encode more
than one block of N symbols.
• Small keys. The number of positions where the intervals
are split should be relatively small. For a binary system,
it is suggested each of the keys ki to be 2 bits long. That
is, the number of positions where an interval can be split
in a given iteration is four.
We show that these techniques lead to schemes that are
vulnerable to known- and chosen-plaintext attacks.

Let us consider the binary system example of Section II-
B.1. There are two possible symbols A and B with prob-
abilities 2/3 and 1/3 respectively. Furthermore, assume
that there are four possible positions p0, . . . , p3 where
the interval corresponding to A can be split as shown in
Fig.9. The adversary knows the values p0, . . . , p3, but he
does not know which one will be selected by the key k0.
Now, suppose that the adversary also knows the encodings
E(S1), E(S2) of two input blocks S1 and S2 such that (i)
The first symbol of S1 is A and its encoding is in the in-
terval [p1, p2), and (ii) The first symbol of S2 is B and its
encoding is in the interval [p2, p3). Clearly, this can hap-
pen only if k0 = p2. So, given the previous knowledge,
the adversary can easily recover k0. Let us estimate the
probability ps that one can find at least two such blocks
given x blocks S1, . . . , Sx selected randomly according to
the source probability distribution and their encodings un-
der the same key. We assume that the distance between any
two consecutive positions pi, pi+1 is 1

5 · 2
3 and that the en-

codings are uniformly distributed in the interval [0, 1). The
probability that no two out of the x encodings satisfy the
aforementioned properties is equal to the probability that
the x encodings belong to [0, 1)− [p1, p2) or [0, 1)− [p2, p3),
i.e. at most 2(1− 2

3
1
5 )x. The probability that at least one

pair Si, Sj satisfies the aforementioned properties is

ps ≥ 1− 2
(

1− 2
3

1
5

)x

.
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A B

p0 p1 p2 p3

E(S1) E(S2)

ABA

Fig. 9. Recovering k0. S1 begins with A and its encoding is in the
interval [p1, p2). S2 begins with B and its encoding is in the interval
[p2, p3). Hence, k0 must be equal to p2.

So, given 10 known plaintexts encoded using the same key,
the adversary can recover k0 with probability ps ' 0.5,
and given 20 known plaintexts, the adversary can recover
k0 with probability ps ' 0.9.

The previously described procedure can be applied in
each iteration to recover the keys k1, . . . , kN . We simplify
our analysis and assume that the distance between two
consecutive positions where a split can occur decreases by
2/3 in each iteration, and that the probability of success in
the n-th iteration is

ps = 1− 2
(

1−
(

2
3

)n 1
5

)x

.

The number of required known plaintext to achieve a given
probability of success in the n-th iteration is

x =
ln (1−ps)

2

ln
(
1− (

2
3

)n 1
5

) .

According to the previous analysis, the number of required
known plaintexts to achieve a given success probability in-
creases rapidly with the number of iterations. So, one
might suggest using large blocks to counter this kinds of at-
tacks. However, there are several pitfalls in this approach:
• Given k0, . . . , kn−1 and the encoding of any unknown
block s0| . . . |sN−1, the adversary can recover the first n
symbols of the block. So, one does not have to recover all
the keys in order to recover some percentage of the plain-
text.
• The known-plaintext attack can be used in combination
with other attacks to recover the keys. For example, one
can find 10 out of the N keys using our method, and then
use exhaustive search to find the rest of the keys.
• The scheme will not be secure according to the defini-
tions used in cryptography. These definitions do not allow
recovery of even one unknown bit of the plaintext given the
ciphertext and a part of the plaintext. This is not the case
here. With a few known plaintext/ciphertext pairs we can
recover k0, and using k0 we can recover the first symbol of
any other message (block).
• We can significantly improve the attack by using cho-
sen plaintexts. The large number of plaintexts that we

need in the known-plaintext attack is due to the exponen-
tial decrease of the selected intervals with each iteration.
Since the considered intervals are very small we need a
large number of known plaintexts so that at least few of
the encodings fall in the considered interval. This problem
can be resolved by using chosen plaintexts. Namely, using
the previously recovered keys k0, . . . , kn−1, we can choose
x plaintexts whose encodings will belong to the considered
interval with probability 1. Now, to achieve a given success
probability ps in each iteration we need a fixed number of
chosen plaintext/ciphertext pairs. Applied to our binary
system example, a chosen-plaintext attack will recover a
key of length N = 1000 with 20% probability using x = 50
chosen plaintexts in each step or 50000 chosen plaintexts
in total.

B. Comments on the efficiency and security of RAC

Probably aware of the possible vulnerabilities when
reusing a key, the authors of RAC suggest using different
keys (i.e., different values of the (pseudo)random bits ri)
for different input blocks. The keys used for the different
blocks are generated using a pseudorandom bit generator
(PRBG). This approach is similar to the standard stream
cipher approach where one first compresses the input data
and then encrypts the result by XOR-ing it with the out-
put of a pseudorandom bit generator. Although there are
no apparent attacks on RAC, there are some disadvantages
of RAC over the standard approach:
• In the standard approach, one needs to generate one
pseudorandom bit per bit of the compressed data. In RAC,
one has to generate one pseudorandom bit per input binary
symbol. Since, it is expected that the input data is longer
than the compressed data, the RAC efficiency is expected
to be worse than that of the standard approach.
• Provably secure schemes are more appreciated than
heuristic scheme. The standard approach is proven secure
assuming that the PRBG is cryptographically secure. If
one can break the encryption scheme, then one can distin-
guish the output of the PRBG from a random sequence.
So far, such proof has not been provided for RAC.

V. Conclusion

We have analyzed the security and efficiency of some re-
cently proposed schemes for multimedia encryption: key-
based multiple Huffman tables (MHT), arithmetic cod-
ing with key-based interval splitting (KSAC) and random-
ized arithmetic coding (RAC). We showed that MHT and
KSAC are vulnerable to known-plaintext attacks. We also
compared RAC to the classical compress-then-encrypt ap-
proach, and argued that there are no advantages of using
RAC over the standard approach in terms of efficiency and
security.
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