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Abstract— This paper addresses the problem of representing
multimedia information under a compressed form that permits
efficient classification. The semantic coding problem starts from
a subspace method where dimensionality reduction is formulated
as a matrix factorization problem. Data samples are jointly
represented in a common subspace extracted from a redundant
dictionary of basis functions. We first build on greedy pursuit
algorithms for simultaneous sparse approximations to solve the
dimensionality reduction problem. The method is extended into
a supervised algorithm, which further encourages the class
separability in the extraction of the most relevant features. The
resulting supervised dimensionality reduction scheme provides
an interesting trade-off between approximation (or compression)
and discriminant feature extraction (or classification). The al-
gorithm provides a compressed signal representation that can
directly be used for multimedia data mining. The application of
the proposed algorithm to image recognition problems further
demonstrates classification performances that are competitive
with state-of-the-art solutions in handwritten digit or face
recognition. Semantic coding certainly represents an interesting
solution to the challenging problem of processing huge volumes
of multidimensional data in modern multimedia systems, where
compressed data have to be processed and analyzed with limited
computational complexity.

Index Terms— Multimedia Data Mining, Dimensionality Re-
duction, Redundant Dictionaries.

I. INTRODUCTION

Recent years have witnessed the creation of large volumes
of high dimensional multimedia data, which have strongly
motivated the development of media processing systems that
are effective for both content-based analysis, and efficient stor-
age or transmission of such data. Classical media coding for
pure compression performance is certainly sub-optimal in this
context for two main reasons: it can discard useful information
that may be crucial for the learning task, and it generally
requires a decompression step before feature extraction that
represents a computational bottleneck in large systems (see
Fig. 1). At the same time, typical feature extraction methods
seek for improved classification performance in the presence
of noise that can be attained by an efficient combination of
discriminative and generative information (see e.g. [1], [2] and
references therein). Hence, flexible representation methods that
typically address jointly the compression and feature extrac-
tion for data mining problems become of particular interest.
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They permit the efficient and robust analysis of multidimen-
sional signals directly in their compressed form, without the
need of decompression before feature extraction, as illustrated
in Fig. 2. We present in this paper a novel dimensionality
reduction algorithm that identifies relevant multidimensional
patterns in multimedia signals, which represent an effective
trade-off between approximation performance and discrimina-
tive power.

We formulate the dimensionality reduction problem as a
matrix factorization problem, where the basis vectors are
extracted from a redundant and structured dictionary of lo-
calized basis functions. The flexibility in the design of such
a dictionary provides direct control on the shape and the
properties of the basis functions, such as spatial locality and
sparse support. Spatial locality typically characterizes those
signals whose energy and support does not cover the whole
signal area, but it is rather concentrated around local regions.
It naturally permits to incorporate a priori and application-
driven knowledge into the learning process. In order to solve
the matrix factorization problem, we build on greedy pursuit
algorithms from simultaneous sparse approximations [3] that
have been previously proposed in the context of joint signal
compression. These algorithms proceed by selecting sequen-
tially the basis vectors from the dictionary in order to provide
the best match to the training data. In this paper, we extend
the simultaneous sparse approximations algorithms to relevant
features extraction in classification problems. We build on [4]
and design a greedy algorithm for supervised dimensionality
reduction, which exploits available class labels information
and uses the inter-class variance as a class separability cost
function. The selection of the basis functions from the dic-
tionary is thus driven by an interesting trade-off between
the approximation error (for efficient compression) and class
separability (for good classification). The convergence rate of
the supervised greedy decomposition algorithm is therefore
penalized by the class separability constraint, which however
permits to achieve efficient and robust classification.

The novel dimensionality reduction algorithm is eventually
applied to image classification problems, in the context of
handwritten digit and face recognition. The features selected
by the supervised algorithm are shown to provide jointly in-
teresting approximation and classification performance. When
combined with Linear Discriminant Analysis (LDA), the di-
mensionality reduction strategy even reaches classification
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Fig. 1. Analysis of a compressed media stream.

Feature Extraction C l a s s i ! c a t i o n
compressed
media data

Statistical and Semantic Dimensionality Reduction

Decodingmedia data Coding

Fig. 2. Joint feature extraction and coding for easier media stream processing.

performances that are competitive with the state-of-the-art
methods. At the same time, the extracted features can lead
to efficient compression strategies since they are chosen from
a pre-defined dictionary of functions. It certainly represents
one of the main advantages of the proposed method compared
to state-of-the-art subspace methods whose signal-specific
features can be as difficult to code as the original signal.
Compression and classification can be performed jointly, with-
out important performance penalty with respect to expensive
disjoint solutions. In summary, the contribution of this paper
amounts to: (i) formulating the joint approximation and feature
extraction problem as a supervised dimensionality reduction
algorithm based on simultaneous sparse approximation (ii)
designing a greedy dimensionality reduction algorithm which
reflects the trade-off between compression and feature ex-
traction, as desired in current media processing and mining
systems, and (iii) the application of the proposed solution to
image recognition problems.

The paper is organized as follows. In Section II we review
the related work about dimensionality reduction, with special
emphasis on low rank approximation methods that are the
most relevant to the framework proposed in this paper. In
Section III, we discuss our semantic coding framework for
dimensionality reduction using redundant dictionaries. The
supervised method that jointly targets efficient approximation
and classification is presented in Section IV, and its conver-
gence properties are discussed. Finally, Section V presents the
application of the dimensionality reduction scheme to image
recognition and shows that the classification performance is
competitive with state-of-the-art solutions, while it additionally
provides compact signal representation.

II. RELATED WORK

Dimensionality reduction is a very broad concept that en-
compasses numerous methods proposed in the literature. One
may mostly distinguish the following families of methods: (a)
linear methods (e.g., LPP [5], ONPP [6] etc), (b) nonlinear
methods (e.g., LLE [7], Laplacian Eigenmaps [8], Isomap [9]
etc) and (c) low rank approximation methods (e.g., PCA [10],

NMF [11], [12] etc). The first two categories employ a map-
ping from the high dimensional space to a low dimensional
space, which is linear in the former case and nonlinear in the
latter case. The third family that is the closest to the method
proposed in this paper, includes the methods that use a low
rank approximation of the data matrix. In other words, they
use only a small number of basis vectors to approximate the
high dimensional data of interest.

The most popular subspace method for dimensionality
reduction is Principal Component Analysis (PCA) [10]. In
PCA, a subspace is constructed from the eigenvectors of
the sample covariance matrix and dimensionality reduction is
accomplished by discarding the eigenvectors corresponding to
its smallest eigenvalues. The obtained basis vectors from PCA
are holistic and of global support. However, they generally fail
to identify features that are spatially localized. This represents
a clear drawback for applications that rely on parts-based
representations of data objects, or where the most relevant
information is contained in localized features.

Non-negative Matrix Factorization (NMF), introduced in
[11], [12], is another popular dimensionality reduction method
with empirical success in real life data sets. It certainly repre-
sents the closest solution to the strategy presented in this paper,
although it cannot be used easily for signal compression. It has
been proposed as a subspace method for a parts-based repre-
sentation of objects by imposing non-negativity constraints,
typical to digital imaging applications, for example. Given a
data matrix S ∈ Rm×n with non-negative entries, NMF seeks
two non-negative factors W ∈ Rm×r and H ∈ Rr×n such
that

S ≈ WH. (1)

The columns of the matrix W contain the basis vectors and the
matrix H contains the corresponding coefficients (or encoding)
vectors for the approximation of the columns of S. Consider
the generalized Kullback-Leibler (KL) divergence between X
and Y

D(X||Y ) =
n∑

i=1

m∑

j=1

[xij log
xij

yij
− xij + yij ]. (2)
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The KL divergence is the most popular objective function used
in NMF algorithms. The Standard NMF can be formulated as
the following optimization problem

Optimization problem: NMF
minW,H D(S||WH),
subject to

W,H ≥ 0,∑
i=1 wij = 1, ∀j.

A local minimum solution to the above problem can be ob-
tained by iterating the multiplicative rules introduced in [11].
The Local NMF (LNMF) [13] is a variant of NMF, which tries
to enforce the spatial locality of the basis vectors. In particular
it differs from the standard NMF by imposing three additional
constraints expressed by the following rules: (a) the number
of basis components should be minimized, (b) different basis
vectors should be as orthogonal as possible and (c) only the
most important components are retained. In particular, LNMF
can be formulated as the following optimization problem.

Optimization problem: LNMF
minW,H D(S||WH) + α

∑
i,j uij − β

∑
i zii,

subject to
W,H ≥ 0,
α, β > 0,
U = W>W ,
Z = HH>.

In the objective function we have introduced the scalars α and
β, which are the Lagrange multipliers corresponding to the
additional constraints on spatial locality of features. A local
minimum solution to the above problem can be obtained by
iterating the three multiplicative rules introduced in [13].

Other variants of NMF have also been proposed recently.
For example, a sparsity controlled NMF algorithm based on
a measure of sparsity that is a combination of the L1 and L2
norm, has been proposed in [14]. Along the same ideas of
controlling sparsity of the reduced subspaces, NMF variants
using convex programming have been proposed in [15], [16].
Yet another variant of NMF has been presented in [17],
where the authors describe an extension of standard NMF by
imposing smoothness constraints on the non-negative factors.
In particular, they apply their algorithm for the analysis of
non-negative spectral data generated from astronomical spec-
trometers. Finally, in [18], the NMF model is modified by
introducing a smoothing symmetric matrix which controls the
sparsity of both non-negative factors.

Although the NMF optimization problem is convex with
respect to W or H individually, it is however non-convex
with respect to both of them. Thus, all algorithms that have
been proposed in the literature are not guaranteed to converge
to the global minimum and they are prone to local minima.
Moreover, it has been observed that they are also sensitive
to the initializations of the two non-negative factors. If the
initialization is not good it may happen that the algorithm
gets trapped in a bad local minimum, which leads to clearly
suboptimal performances.

Finally, extension to classification problems have been pro-

posed with supervised variants of NMF, which takes into
account class labels information. The authors in [19] and [20]
independently propose a supervised NMF algorithm by incor-
porating the Fisher constraints into the objective function of
NMF and they propose multiplicative update rules. However,
NMF optimization problems generally require sophisticated
constraints, in order to shape the properties of the basis
functions (see e.g., [15], [16]). It represents a clear drawback
with respect to solutions based on flexible dictionaries of
functions, as presented in the next section. In addition, even
if NMF results in good signal approximation, it cannot lead
to efficient coding strategies as the resulting basis vectors
W are specifically tuned to the data S. Therefore, they are
as hard to code as the initial images themselves. On the
contrary, as we will show in the next sections, the basis
vectors in a flexible structured dictionary have a parametric
mathematical description and can be compactly represented
by a few parameters only.

Finally, several works have been proposed in the past few
years, where learning tasks are directly performed on the
compressed signal built by standard coding standards. (see
e.g., [21], [22] and references therein). The extracted features
are however not optimal since the compression does not target
any classification task, and the signal analysis becomes quite
sensitive to the coding rate and the testing conditions. In the
semantic coding framework proposed in this paper, compres-
sion is rather accomplished by a flexible dimensionality reduc-
tion method that is designed to be aware of the subsequent
learning task. Note also that combining discriminative and
approximation criteria in the signal representation have been
proposed recently in the machine learning community, where
feature extraction is modified to include generative information
in order to improve the robustness to noise in the learning
task [1], [2].

III. DIMENSIONALITY REDUCTION USING SIMULTANEOUS
SPARSE APPROXIMATIONS

We propose to formulate dimensionality reduction as a
matrix factorization problem, where the basis vectors are ex-
tracted from a generic dictionary of localized basis functions.
We assume the existence of a redundant dictionary D that
spans the Hilbert space H of the data of interest. Redundancy
offers flexibility in the construction of the dictionary, and in
general improves the approximation rate, especially for multi-
dimensional data. A redundant dictionary is an overcomplete
basis in the sense that it includes a number of vectors that is
larger than the dimension of the subspace. The elements of
the dictionary, which are indexed by γ ∈ Γ i.e.,

D = {φγ , γ ∈ Γ}, (3)

are usually called atoms. The atoms have unit norm i.e.,
‖φγ‖2 = 1, ∀γ ∈ Γ, where ‖ · ‖2 denotes the L2 norm. It is
important to note that we do not set any particular assumption
on the dictionary design, and that the following analysis holds
for any redundant dictionary. The only assumption that we
make is that the dictionary spans the input space H (i.e., the
basis is (at least) complete).
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Algorithm: SOMP
Input: Data matrix S ∈ Rm×n, tol:
approximation error tolerance and Na: number of
atoms
Output: Set of selected atoms Ψ,
approximation A and residual matrix R.
1. Initialize the residual R0 = S, Ψ = [], t = 1.
2. Find index γt which solves the optimization

problem
maxγ∈Γ ‖R>t φγ‖1

3. Augment Ψ = [Ψ, φγt ].
4. Compute an orthonormal basis

V = [v1, . . . , vt] of the span{Ψ}.
5. Compute the orthogonal projector

Pt = VtV >t on the span{Ψ}.
6. Compute the new approximation and

residual
At = PtS
Rt = (I − Pt)S

7. If ‖R‖F ≤ tol or t = Na, then stop.
Otherwise, increment iteration t = t + 1,
and go to step (2).

TABLE I
THE SOMP ALGORITHM.

Then, we consider a data sample si as an element of H ⊆
Rm. The training data forms a data matrix

S = [s1, s2, . . . , sn] ∈ Rm×n, (4)

where si denotes the i-th column of S. For dimensionality
reduction, our goal is to decompose S in the following form

S = ΨC, Ψ ∈ Rm×r, C ∈ Rr×n, (5)

where Ψ are the basis vectors drawn from the dictionary and
C are the corresponding coefficients. In other words, every
column of S is represented in the same set of basis functions Ψ
using different coefficients. This is a dimensionality reduction
step where each data sample (column of S) is represented in
the subspace spanned by the columns of Ψ, using only r ¿ m
coefficients.

If the columns of Ψ are spatially localized basis functions
then the decomposition given in Eq. (5) results in a parts-
based representation. Note that the design of the dictionary
determines the properties of Ψ. Therefore, one has direct
control on the shape and the properties of the basis functions
due to the flexible design of the dictionary. In the contrary,
one has only implicit control on the properties of the basis
functions in NMF methods and its variants, as discussed above.

If we denote by ‖·‖F the Frobenius norm, then we formulate
the above problem as the following optimization problem [4].

Optimization problem: OPT1
minΨ,C ‖S −ΨC‖2F
subject to

Ψ ⊆ D.

In order to solve OPT1 one may employ greedy algorithms
that have been proposed for simultaneous sparse signal ap-
proximations [3], [23], [24], [25] in the context of joint
signal compression. We have chosen to use the Simultaneous
Orthogonal Matching Pursuit (SOMP) algorithm [3], since

it lends itself as an efficient algorithm for solving OPT1 in
practice. SOMP is not prone to local minima and not sensitive
to initializations, contrarily to the NMF algorithms.

SOMP is a generalization of Matching Pursuit [26] to the
case of joint signal compression, and it can be extended
directly to dimensionality reduction. It is a greedy algorithm
that extracts a subset Ψ of the dictionary D, such that all
the columns of S are simultaneously approximated. Initially,
SOMP sets the residual matrix R = S. The atom from the
dictionary that best matches all the vectors, is selected. The
algorithm then updates the residual matrix by projection on its
orthogonal complement, i.e.,

R = (I − φγφ>γ )S,

where I−φγφ>γ is the projector on the orthogonal complement
of span{φγ}. The above step will remove the components of
φγ from R. The same procedure is repeated iteratively on the
updated residual matrix. Thus, it greedily selects in step t, the
best matching atom φγt by solving the simple optimization
problem

γt = max argγ∈Γ ‖R>φγ‖1, (6)

and includes the selected φγt
in Ψ. The residual matrix is

updated by R = (I−P )S, where P is the orthogonal projector
on the span{Ψ}. The main steps of the SOMP algorithm are
summarized in Table I. Note that the Orthogonal Matching
Pursuit (OMP) converges in a finite number of iterations [27,
Sec.9.5.3] since the norm of the residual is decreasing strictly
monotonically in each step. This can be generalized to the
case of SOMP [25].

Finally, it can be noted that other methods for simultaneous
approximation could be used alternatively for dimensionality
reduction with redundant dictionaries. Interestingly, an algo-
rithm called M-OMP, which is identical to SOMP, has been
independently proposed in [25]. However, for notational con-
venience we will keep using the term SOMP while referring
to any of these two algorithms.

IV. SUPERVISED DIMENSIONALITY REDUCTION

A. Supervised atom selection
We now extend the previous algorithm to classification prob-

lems, and we propose a supervised learning solution where
class labels are available a priori [28]. In order to develop
a supervised dimensionality reduction method, we modify
the objective function in OPT1 by including an additional
term that encourages the separability between different classes.
First, let us denote the number of classes by c and assume
without loss of generality that

S = [S(1), . . . , S(c)] ∈ Rm×n, (7)

where S(i) ∈ Rm×ni denotes the data samples that belong
to the i-th class of cardinality ni. Then we formulate a
supervised dimensionality reduction problem by modifying the
optimization problem OPT1 as follows.

Optimization problem: OPT2
minΨ,C ‖S −ΨC‖2F − λJ(Ψ)
subject to

Ψ ⊆ D.
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Algorithm: SAS
Input: Data matrix S ∈ Rm×n, tol:
approximation error tolerance and Na: number of
atoms.
Output: Set of selected atoms Ψ,
approximation A and residual matrix R.
1. Initialize the residual R0 = S, Ψ = [], t = 1.
2. Find index γt which solves the optimization

problem
γt = max argγ∈Γ ‖R>t φγ‖1 + λJ(φγ)

3. Augment Ψ = [Ψ, φγt ].
4. Compute an orthonormal basis

V = [v1, . . . , vt] of the span{Ψ}.
5. Compute the orthogonal projector

Pt = VtV >t on the span{Ψ}.
6. Compute the new approximation and

residual
At = PtS
Rt = (I − Pt)S

7. If ‖R‖F ≤ tol or t = Na, then stop.
Otherwise, increment iteration t = t + 1,
and go to step (2).

TABLE II
THE SUPERVISED ATOM SELECTION (SAS) ALGORITHM.

In the above optimization problem J(Ψ) denotes the cost
function that captures the separability of different classes. The
scalar λ drives the trade-off between the approximation error
and the class separability. In order to solve OPT2, we propose
a new algorithm where the atom selection step is modified
in order to include the class separability term. The intuition
is that in each step, the algorithm should select the atom that
best approximates all data and also discriminates between data
samples of different classes. We call the modified supervised
algorithm SAS (i.e., Supervised Atom Selection).

The separability cost function is chosen to capture the
projected between-class variance. By the projected class vari-
ance, we mean the restriction of the scatter matrix Sb, on the
candidate atom φ. This is given as φ>Sbφ, where the scatter
matrix Sb is defined as

Sb =
1
n

c∑

i=1

ni(µ(i) − µ)(µ(i) − µ)>. (8)

In the above formula we have introduced

µ(i) =
1
ni

ni∑

j=1

s
(i)
j (9)

which denotes the centroid of the i-th class and

µ =
1
n

n∑

j=1

sj (10)

which represents the global centroid. The notation s
(i)
j denotes

the j-th sample of the i-th class. Note that we can write Sb =
GbG

>
b , where Gb ∈ Rm×c is defined as

Gb =
1√
n

[
√

n1(µ
(1) − µ), . . . ,

√
nc(µ

(c) − µ)].

The above implies that the scatter matrix is symmetric and
positive semi-definite. We define the class separability term as

J(φ) = ‖G>b φ‖22 − κ‖Ψ>φ‖22. (11)

The first term captures the discriminant properties of the
chosen atom, and the second term ensures that the selected
atom is as orthogonal as possible with respect to Ψ, which
represents the previously selected atoms. The scalar κ > 0
determines the significance of the discriminant value of φ
relatively to its orthogonality level with respect to the previous
atoms. If κ = 0 then the algorithm selects an atom that is
certainly discriminant (due to the first term) but possibly very
similar to the previous one, depending on the value of λ. Thus,
the second term is necessitated by the greedy nature of the
expansion and the redundancy of the dictionary. The role of
κ however depends on the value of λ. In particular, if λ is
very small or zero, then the role of κ is deemphasized. The
selected basis vectors are therefore not exactly orthogonal but
semi-orthogonal and the level of their orthogonality is driven
by κ. Finally, we can write the optimization problem that we
solve in each step of the supervised SAS algorithm as,

γt = arg max
γ∈Γ

(‖R>φγ‖1 + λJ(φγ)
)
. (12)

Note that more complex cost functions could be proposed, but
this goes beyond the scope of the paper that rather focuses on
the semantic coding framework. Table II summarizes the main
steps of the SAS algorithm.

B. Analysis of SAS

The residual of SOMP has been shown to converge to
zero as the number of iteration increases [25]. In SAS, the
class separability is strengthened, which results in an effective
algorithm for classification tasks but also introduces a penalty
on the convergence rate of the SAS algorithm. In the extreme
case where the penalty term is very large, it can even cause
stagnation of the progress of the residual. This is explained
by the following proposition, which is rather intuitive but
provided here for the sake of completeness.

Proposition 1: The residual of the SAS algorithm decreases
strictly monotonically in each step t, if the following condition
is satisfied,

‖R>t φγt‖22 > 0, ∀t. (13)
Proof. Assume that in iteration t, the condition (13) is

violated and the selected atom φγt is orthogonal to all columns
of the residual matrix. In other words,

‖R>t φγt‖22 = 0. (14)

First, note that condition (14) implies that

‖R>t vt+1‖22 = 0. (15)

Indeed, it holds that

vt+1 = φγt −
t∑

i=1

ζivi, (16)

where ζi = v>i φγt are the weights of the linear combination
that make vt+1 orthogonal to v1, . . . , vt. Note that they can
be also computed using the Gram Schmidt orthogonalization
process [29]. In the same time Rt ⊥ span{v1, . . . , vt}, due to
the construction of the algorithm. Combined with Eq. (16), it
leads to the condition given in Eq. (15).
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Then, we call Vt+1 = [v1, . . . , vt+1] an orthogonal basis for
the span{Ψ ⋃

φγt
} obtained in the first t + 1 iterations. The

orthogonal projector on the span{Ψ⋃
φγt
} is

Pt+1 = Vt+1V
>
t+1 =

t+1∑

i=1

viv
>
i = Pt + vt+1v

>
t+1. (17)

Using the above formula, we observe that

Rt+1 = S − Pt+1S = (I − Pt+1)S
= (I − Pt − vt+1v

>
t+1)S

= Rt − vt+1v
>
t+1S. (18)

However it holds that vt+1v
>
t+1S = 0 because

vt+1v
>
t+1S = vt+1v

>
t+1(Rt + At)

= vt+1v
>
t+1Rt + vt+1v

>
t+1At

= 0, (19)

where the first term is zero because of Eq. (15). The second
term cancels out since At belongs to the span{Vt} and
vt+1 ⊥ span{Vt} (see also Eq. (16)). In this case we therefore
have Rt+1 = Rt due to Eqs. (18) and (19). We conclude that if
condition (13) is violated, the progress of the residual stops. ¤

In summary, SAS converges in a finite number of steps, and
is not sensitive to initializations. However, the approximation
rate is now driven by λ, which controls the trade-off between
approximation, and extraction of discriminative features. If one
wants to avoid the possibility of residual stagnation, the choice
of λ has to ensure that the condition given in Proposition 1, is
satisfied. In particular, the selected atoms have to participate to
the approximation of the signal. One could devise an automatic
way of tuning λ for avoidance of rare residual stagnation.
Starting with an initial value of λ, violation of condition (13)
is checked. If the condition is violated, λ is divided by 2 and
the same process is repeated until the condition is satisfied. In
the worst case, λ becomes 0 and the selected atom satisfies
(13) for sure. Such an atom certainly exists due to the fact
that the dictionary spans the signal space.

V. APPLICATION TO IMAGE CLASSIFICATION

A. Dictionary design
We first discuss in detail how one may build redundant

dictionaries for dimensionality reduction in the context of
digital images. Driven by the need for efficient compression,
we propose to use a structured dictionary D that is built by
applying geometric transformations to a generating mother
function φ. In such a case, efficient coding simply proceeds by
describing each basis vector or atom with the parameters of
these transformations [30]. The atom parameters are carefully
sampled such that the resulting dictionary consists an over-
complete basis of the image space. The sampling of the atom
parameters typically drives the dictionary size and therefore its
redundancy. A geometric transformation γ ∈ Γ is represented
by a unitary operator U(γ) and in the simplest case it may be
one of the following three types.
• Translation by ~b = [b1 b2]>. U(~b) moves the generating

function across the image

U(~b)φ(x, y) = φ(x− b1, y − b2).

• Rotation by θ. U(θ) rotates the generating function by
angle θ i.e.,

U(θ)φ(x, y) = φ(x′, y′).
x′ = cos(θ)x + sin(θ)y
y′ = cos(θ)y − sin(θ)x

• Anisotropic scaling by ~a = [a1 a2]>. U(~a) scales the
generating function anisotropically in the two directions
i.e.,

U(~a)φ(x, y) = φ(
x

a1
,

y

a2
).

Composing all the above transformations yields a transfor-
mation γ = {~b,~a, θ} ∈ Γ. Finally, an atom in the structured
dictionary

D = {U(γ)φ, γ ∈ Γ}

is built as

U(γ)φ(x, y) = φ(x′, y′),

x′ =
cos(θ)(x− b1) + sin(θ)(y − b2)

a1

y′ =
cos(θ)(y − b2)− sin(θ)(x− b1)

a2
.

According to the above, notice that if we know φ, then an
atom in a structured dictionary can be completely described
by its corresponding transformation parameters γ. It is exactly
this handy representation property that permits the use of
structured redundant dictionaries for efficient image coding.
This is to be contrasted to the basis vectors of NMF that are
as hard to compress as the initial images in S. Moreover, the
properties of φ completely determine the geometric properties
(e.g., shape) of the basis vectors. This flexibility in the design
of φ further permits to incorporate a-priori knowledge in the
learning process.

In image classification applications, we consider three dif-
ferent structured dictionaries generated by different φ, where
φ is

• Gaussian function:

φ(x, y) =
1√
π

exp(−(x2 + y2)). (20)

• Anisotropic refinement (AnR) function. This generating
function has an edge-like form and has been successfully
used for image coding [30]. It is Gaussian in one direction
and the second derivative of Gaussian in the orthogonal
direction. It can be mathematically expressed as,

φ(x, y) =
2√
3π

(4x2 − 2) exp(−(x2 + y2)). (21)

• Gabor function. This generating function is very popular
in face recognition. It consists of a Gaussian envelope
modulated by a complex exponential. We have used the
real part of a simplified version of the Gabor function,

φ(x, y) = cos(2πx) exp(−(x2 + y2)). (22)
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B. Implementation Issues

We discuss here the computational aspects of the proposed
methods. Note that one of the advantages of structured dic-
tionaries lies in the fact that they enable a fast FFT-based
implementation of the SOMP algorithm. Recall that in each
step of SOMP, we need to compute the inner product of
the candidate atom with the residual signals. In practice we
construct the atoms only in their centered position. The inner
product of a residual signal r with all translated versions of
an atom g, is computed via 2D convolution which can be
effectively computed using 2D FFT. Using this computational
trick the algorithm becomes more computationally efficient,
even in the context of high dimensional signals, like digital
images.

There is also another computational trick that can be em-
ployed in order to save significant computation time by trading
memory utilization. Observe that in SOMP the residual r

(i)
t of

the i-th data sample si in the t-th iteration, can be alternatively
expressed in the following form,

r
(i)
t = si −

t−1∑

k=1

αi
kφk, ∀i = 1, . . . , n.

The scalars αi
k in the above formula are determined by the

orthogonal projection process in order to minimize the residual
of approximating si from the span of φk’s. In the next iteration
t + 1, SOMP will need to compute the inner product of each
residual vector with each candidate atom φ from the dictionary.
It other words, it will compute

〈r(i)
t , φ〉 = 〈si, φ〉 −

t−1∑

k=1

αi
k〈φk, φ〉, ∀i = 1, . . . , n.

The above observation suggests that the computation of 〈si, φ〉
needs to be performed only once before the first iteration of the
algorithm (off-line), since it will be used in each subsequent
iteration. Furthermore, at the k-th iteration, the projection of
the selected atom φk on the dictionary (i.e., 〈φk, φ〉, ∀φ ∈ D)
can be computed only once, stored and then re-used for the
evaluation of all n residuals at the next iteration k + 1. Using
the above tricks, the SOMP methods become computationally
attractive since the main computational cost is reduced among
all n images.

Overall, we should note that the feature extraction part in
semantic coding is the most computationally intensive task.
Since the main operations involve FFTs and inner product
calculations, this task can become very efficient by careful
design. For instance, one may organize the data or the dic-
tionary in a more structured form in order to get a feature
extraction algorithm of reduced complexity (see for example
the tree-based pursuit algorithm [31] and references therein).
Alternatively, one may use specific generating functions (such
as Haar or box-like basis functions) that are known to result in
very efficient inner product calculations. Thus, the proposed
semantic coding principle is certainly applicable in media
system architectures.

VI. EXPERIMENTAL RESULTS

A. Setup

The construction of the atoms in each dictionary proceeds
by sampling uniformly 10 orientation angles in [0, π] and 5
logarithmically equi-distributed scales in [1, N/6] horizontally
and [1, N/4] vertically, where N is the image size. The
translation parameters are all possible pixel locations. For our
experimental comparisons, we use the provided implemen-
tations of NMF and LNMF in nmfpack [14] which is a
MATLAB software package developed by P. Hoyer.

In the learning stage that produces the matrix Ψ of basis
vectors, we use 5 samples per class. In all experiments that
follow, the parameter κ was set to 0.01. Recall that κ is the
parameter that determines the trade-off between discrimination
capability of each atom and its orthogonality towards the
previous atoms. We have observed experimentally that κ =
0.01 works reasonably well and we use the same value of κ
in all experiments.

For classification, each training signal si is projected using
the basis vectors Q, where Q denotes Ψ for the SOMP or
SAS methods and W for the NMF methods. In particular, we
project the samples in the reduced space using the transpose
of Q i.e.,

yi = Q>si, i = 1, . . . , n.

Then, classification is accomplished in the reduced space by
nearest neighbor (NN) classification. The test signal st is also
projected by yt = Q>st and then classified and assigned the
label of its nearest neighbor among all the training signals.
We measure performance in terms of classification error rate,
which is the percentage of the test samples that have been
misclassified. In our experiments, we use the following data
sets:
• Handwritten digit image collection We use the hand-

written digit collection that is publicly available at S.
Roweis web page1. This collection contains 20 × 16 bit
binary images of “0” through “9”, and each class contains
39 samples. We form the training set by a random subset
of 10 samples per class and the remaining 29 samples
are assigned in the test set.

• ORL face database The ORL (formerly Olivetti)
database [32] contains 40 individuals and 10 different
images for each individual including variation in facial
expression (smiling/non smiling) and pose. Figure 3 il-
lustrates two sample subjects of the ORL database along
with variations in facial expression and pose. The size
of each facial image is downsampled to 28 × 23 for
computational efficiency. We form the training set by a
random subset of 5 different facial expressions/poses per
subject and use the remaining 5 as a test set.

• CBCL face database The CBCL face database [33]
consists of 2,429 facial images of size 19 × 19. Note
that for this data set, there are no class labels available
for the individuals.

• XM2VTS face database The XM2VTS database con-
tains 295 individuals and 8 different images for each

1http://www.cs.toronto.edu/∼roweis/data/binaryalphadigs.mat
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Size of S ni

Handwritten digits 320× 390 39
ORL faces 644× 400 10
CBCL faces 361× 2429 -
XM2VTS faces 1280× 2360 8
AR faces 1728× 1008 8

TABLE III
THE DATA SETS USED IN THE EXPERIMENTAL EVALUATION, WHERE ni

DENOTES THE NUMBER OF SAMPLES PER CLASS.

Fig. 3. Sample face images from the ORL database. There are 10 available
facial expressions and poses for each subject.

individual including variation in lighting. The size of each
facial image has been downsampled to 32×40. Note that
the frontal faces have been extracted with respect to the
ground truth eye positions. We form the training set by
a random subset of 4 different facial images per subject
and use the remaining 4 as a test set.

• AR face database The AR face database contains 126
individuals and 8 different images for each individual
including variation in facial expression and lighting. The
size of each facial image has been downsampled to
36×48. We form the training set by a random subset of 4
different facial images per subject and use the remaining
4 as a test set.

All data sets that are used in the experimental evaluation along
with their main properties, are summarized in Table III.

B. Approximation and Classification trade-off
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Fig. 4. Approximation-classification trade-off with SAS algorithm on the
handwritten digit data set.

First, we demonstrate the approximation and classification
trade-off which is driven by the parameter λ in the SAS
algorithm. Figure 4 illustrates the classification error rate

versus the approximation error, for different values of λ, using
the handwritten digit data set. The approximation error is
measured by the Frobenius norm of the residual matrix i.e.,
‖S − ΨC‖F . In this experiment, the dimension of reduced
space was fixed to r = 40. Observe that when λ = 0,
SAS simplifies to SOMP and as λ increases, more emphasis
is given to the classification performance. This improves the
classification error rate but at the same time the approximation
quality deteriorates due to the fact that Ψ is not selected any
more by pure approximation criteria (see eq. (12)). This trade-
off is very important since it permits to build systems that are
efficient not only in the compression of the multimedia data,
but also in the desired data mining task.

C. Dictionary choice

In this experiment we investigate the impact of the dic-
tionary on the classification performance, by comparing the
effectiveness of the three generating functions presented ear-
lier. We run SOMP on both digit and ORL face data sets
and compare the classification performance with respect to
different dimensions r = [10 : 10 : 50] (in MATLAB notation)
of the reduced space. Sub-figures 5(a) and 5(b) depict the
classification error rates obtained via the different dictionaries,
for the digits and the face data set respectively. Note that for
each value of r we report the average classification error rate
across 100 random realizations of the training/test set.

Observe that for the digits data set the dictionary built
from Gaussian functions is the best performer among the
three candidates under test. However, for the face data set
the behavior is quite different and the AnR dictionary seems
to be competitive and even superior to the other dictionaries,
especially for large dimensions. This is likely due to the fact
that the AnR atoms can represent the edge-like fine details of
facial characteristics like the eyes or the mouth, for example.
In the following experiments, we have therefore chosen to use
the Gaussian dictionary for the digit data set and the AnR
dictionary for the face data sets.

We finally propose a simple comparison with orthogonal
dictionaries based on Discrete Cosine Transform (DCT) func-
tions, as they represent the most commonly used features in
methods that perform learning tasks in the compressed domain.
We compare Discrete Cosine Transform (DCT) features with
Gaussian features using the handwritten digits data set. We
extract the DCT features by dividing the image in blocks of
size 8-by-8 and using 2D-DCT in each block. Then, we keep
the most important coefficients which are those residing in the
left upper (square) part of the block of certain size, say nf .
We report the classification error rate and the approximation
error versus different number of features, produced by varying
nf from 1 up to 8. We measure the approximation error by
computing the Frobenius norm of the residual matrix i.e.,
‖S−Ŝ‖F , where Ŝ denotes the reconstructed data matrix from
the number of features that are available. Figure 8 illustrates
the classification error rates and the approximation errors for
both DCT and Gaussian features. Although DCT features work
nicely for compression purposes, they are not optimal for
classification purposes. Unsurprisingly, the features provided
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(a) Digits data set
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(b) ORL face data set

Fig. 5. Impact of different dictionaries on the classification performance.

(a) Gaussian atoms (b) AnR atoms (c) NMF (d) LNMF

Fig. 6. Recovered basis vectors from the handwritten digit collection.

by the standards may not be optimal for the application
at hand, since they have been optimized with respect to
compression performance. Note however that this example
is certainly not conclusive, and it does not exclude the use
of DCT features for all applications. Our generic semantic
coding methodology however revisits compression from the
viewpoint of the subsequent learning task, by performing both
compression and feature extraction jointly and flexibly.

D. Classification performances

We analyze and compare the classification performance
obtained by the proposed algorithms with several variants
of parts-based dimensionality reduction algorithms. The basis
functions obtained respectively from SOMP, NMF and LNMF
algorithms are given in Figures 6 and 7, for the digits and
faces data sets, respectively. The basis functions in sub-figures
6(a) and 7(a) are obtained from SOMP using the Gaussian
dictionary. Similarly, the basis function in panels 6(b) and
7(b) are obtained from SOMP using the AnR dictionary. The
figures also depict the recovered basis functions from NMF
and LNMF. Note that the features obtained from NMF are not
localized and seem to be of global support. On the contrary,
the features of LNMF are spatially localized and for the digits
data set they seem quite similar to the Gaussian atoms.

We now compare SOMP and SAS with NMF, LNMF and
PCA in terms of classification performance. We compare

with the above methods since they provide a low-rank ap-
proximation of the data and they are closely related to the
proposed algorithms. In both data sets, we experiment with
the dimension of the reduced space r = [10 : 10 : 50]
and in the classification experiments, for each value of r,
we report the classification performance in terms of average
error rate across 50 random realizations of the training/test
set. For the recognition experiments the emphasis is on the
classification performance. For that reason, in each step of the
SAS algorithm the best atom is selected by pure discrimination
criteria i.e., using only the right-hand side term J(φ) in
Eq. (11). This is equivalent to setting λ very big.

Figure 9(a) first depicts the average classification error rate
for various values of the dimension r of the reduced space, for
the handwritten digit image recognition task. The average is
computed over 50 random realizations of the training/test set,
where we use the Gaussian dictionary for SOMP and SAS.
We observe that both algorithms are superior to the NMF
algorithms. Furthermore, the SAS method seems to outperform
SOMP, mainly due to its supervised nature. Notice also that
PCA does not have satisfactory performance for this data set.
This is due to the fact that the basis vectors of PCA are holistic
and of global support. Hence, they have trouble to capture
the geometric structure of the handwritten digits that are of
localized and sparse support.

Then, Figure 9(b) depicts the average classification error
rate across 50 random realizations of the training/test set for
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(a) Gaussian atoms (b) AnR atoms

(c) NMF (d) LNMF

Fig. 7. Recovered basis vectors from the ORL face data set.

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

40

Number of features

C
la

ss
if

ic
at

io
n

 e
rr

o
r 

ra
te

 (
%

)

 

 

DCT
Gaussian

(a) Classification error rate

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Number of features

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

 

 

DCT
Gaussian

(b) Approximation error

Fig. 8. DCT vs Gaussian features on the digits data set.

the face recognition task, measured on the ORL data set.
Recall that for this data set we use the AnR dictionary, in
both proposed algorithms. Notice that SAS and SOMP with
PCA outperform the NMF methods. Observe also that for
small dimensions r of the reduced space, the performance of
SOMP is poor. However, as r increases the SOMP method
becomes more discriminant and finally superior to the NMF
methods. This can be explained by the greedy nature of SOMP.
In the first steps, SOMP usually select atoms of large scale
in order to reduce quickly the approximation error, but that
do not consist in highly discriminating functions. The large

scale atoms typically correspond to low frequency information
which may not contribute a lot to the classification task.

Note finally that the authors in [19, Fig. 5] report the
performance of their proposed Fisher NMF (FNMF) on the
ORL database with the same experimental setup as here (see
the ORL description in Sec. VI-A). Hence it is possible to
compare directly the performances of SOMP and SAS with
that of FNMF on this database. From their reported results,
one may observe that (i) SOMP and PCA compete with FNMF
and (ii) SAS seems to slightly outperform FNMF.
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(a) Digits data set
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(b) ORL face data set

Fig. 9. Image recognition experiments.

E. Face recognition

We show now that the proposed dimensionality reduction
methods can be used as preprocessing blocks in systems that
are optimized for specific classification applications. Let us
focus now on the particular problem of face recognition to
illustrate the potential of the proposed methodology. While
our aim is not to provide a novel face recognition system, we
provide experimental evidence that suggests that the proposed
methods can be combined with subsequent supervised methods
and yield effective hybrid methods. These are competitive
with the state-of-the-art in face recognition, while they provide
simultaneously efficient and flexible coding solutions. In par-
ticular, we combine SOMP and SAS with Linear Discriminant
Analysis [28, ch.4], and we denote the hybrid algorithms
respectively by SOMP-LDA, and SAS-LDA. We evaluate their
performances on the XM2VTS and the AR databases and
compare them with Eigenfaces (PCA) and Fisherfaces (LDA)
as well as with the corresponding hybrid solution of NMF,
denoted as NMF-LDA.

Figure 10(a) illustrates the classification performances for
all methods on the XM2VTS database. We report the average
error rate across 50 random realization of the training/test
set for different number of basis vectors r = [10 : 10 :
100] (in MATLAB notation). First, notice that the proposed
methods outperform NMF. The main observation though is
that combining SOMP and SAS with LDA yields effective
hybrid methods that have similar performance with Fisherfaces
(LDA) which is among the state-of-the-art for face recognition.

Figure 10(b) illustrates the same experiment using the AR
database. Notice that in this database SAS outperforms the
other methods and SOMP competes with PCA. We observe
again that the hybrid methods with SOMP and SAS compete
with Fisherfaces resulting in state-of-the-art performance. As
the proposed algorithms work directly in the compressed
domain, it certainly shows their potential in the design of more
efficient multimedia processing systems.

It is interesting to note that the hybrid methods have similar
performance in both databases. All hybrid methods use LDA
in their second step; if we call Q the basis vectors obtained

from each method in its first step (i.e., PCA, NMF, SOMP and
SAS respectively), then applying LDA on the second step is
equivalent to building a new set of basis vectors Q̃ = QZ,
by linear combinations of the previous basis vectors. The
weights Z of the linear combination are determined by the
Fisher criterion. Thus, the experiments in Fig. 10 suggest that
the basis vectors obtained from the different hybrids have
similar discriminant properties, since they use the same Fisher
criterion on their second step.

F. Approximation performance

This section presents a few results that illustrate the ap-
proximation performance of both NMF and SOMP algorithms.
Figure 11 illustrates facial images from the CBCL database
along with reconstructed images for the NMF solution (50
vectors), and the SOMP algorithm (50 Gaussian atoms). It
also represents the reconstructed images when the coefficients
of the vectors have been quantized uniformly with a step size
q, before reconstruction.

From Figures 11(b) and 11(c) it can be observed that the
approximation performances are quite similar in both cases,
even if NMF seems to provide slightly better visual results.
This is due to the fact that the vectors in NMF are specifically
adapted to the images under consideration, while atoms are
selected from a pre-defined, generic dictionary in the case of
SOMP. However, recall that NMF cannot lead to an effective
coding strategy, as the basis vectors are essentially images,
which are as difficult to compress as the initial images. On
the contrary, recall that the vectors selected by SOMP can be
efficiently described by the parameters of the corresponding
atoms in the redundant dictionary. It has been shown that such
a signal decomposition leads to effective image compression
schemes [30].

Finally, the quantization experiments, shown in Figures
11(d) and 11(e), hint that SOMP is more robust than NMF
to noise that can alter the representation of the images. In
particular, SOMP is shown to be more robust to coarse
uniform quantization of the vector coefficients. This is mostly
due to the non-uniform distribution of the magnitude of its
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Fig. 10. Face recognition experiments.

(a) Original (b) SOMP (c) NMF (d) SOMP, q = 0.3 (e) NMF, q = 0.3

Fig. 11. Approximation of facial images (CBCL dataset), using NMF and SOMP.

coefficients, where most of the signal energy is concentrated
on a few atoms only. These atoms are of large scale and
capture the main geometric characteristics of the facial shape.
Therefore, reconstructed images still appear like faces even
when coefficients of these atoms are coarsely quantized.

VII. CONCLUSIONS

Modern multimedia processing systems are facing the need
for processing enormous amounts of multidimensional mul-
timedia data in various applications. Motivated by this chal-
lenge, we have proposed a semantic coding framework where
supervised dimensionality reduction achieves an interesting
trade-off between compression and classification. First, we
have presented a subspace method that uses greedy algo-
rithms from simultaneous sparse approximations to extract
meaningful features from overcomplete dictionaries. Next, we
have extended these algorithms to classification problems with
supervised dimensionality reduction strategy. It includes a
class separability penalty term in the objective function of the
optimization problem, which improves on the classification
performance and provides the desired trade-off between the
two objectives. The proposed algorithm leads to performances
that are competitive with state-of-the-art methods in image
classification, with the additional advantage of enabling effi-
cient coding solutions. It certainly represents a promising so-
lution for multimedia data mining applications, where relevant

feature extraction, and signal compression are to be performed
jointly.
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