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Abstract—Community streaming is an enhanced form of joint
content viewing where a sense of community is reinforced by the
addition of interactive visual overlays, controlled in real-time by
viewers, on top of a shared video stream. As a concrete example,
we describe a community video system called ECHO, where
personalized avatars are overlaid on top of a real-time encoded
video stream of an Internet game for multicast consumption.
Recognizing that only the visual overlays are generated live, we
propose schemes that encode and schedule the live and non-live
portions of the overlaid video separately in order to exploit the
difference in delay sensitivity of the two, leading to video streams
that contain two sub-streams with different delay constraints. We
show that, in the known channel case, a low complexity “earliest
deadline first” packet scheduling algorithm minimizes receiver
buffer delay. We also analyze the case where multiple streams are
multiplexed, which allows us to quantify the potential gains of
allowing different delay constraints for different sub-streams. We
show that a “water filling” strategy maximizes the total number
of streams that can be supported. Simulation results show that the
bandwidth necessary to maintain low-latency for visual overlays is
reduced by about 40% when our proposed sub-stream approach
is used. For multiplexing of multiple streams, our approach can
increase the number of supported streams (e.g., a 30% increase
when around ten streams are multiplexed).

Index Terms—Video coding, video streaming.

I. INTRODUCTION

V IDEO conferencing and buffered playback of streaming
video are two important classes of networked video appli-

cations with different purposes. The goal of video conferencing
is interpersonal communication, while streaming playback ap-
plications typically involve passive consumption of non-inter-
active video content. Individual viewing of video with no inter-
personal interactivity is sometimes called individual streaming
[1]. While communicating to associates and viewing video are
distinct objectives, they are not mutually exclusive; in cases of
live sporting or gaming events, one may prefer to watch the
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same streaming video with other viewers while communicating
with them at the same time. We call such a model community
streaming. It is similar to watching TV with family members in
the living room and sharing comments on the viewed content,
except the viewers may not be in the same physical location. It
is unlike video conferencing in that the primary activity is con-
tent viewing.

There are many ways of creating an interactive community
streaming experience, e.g., enabling voice chat for viewers of
streaming video. In this paper we focus on techniques to enable
interactive visual overlays (IVOs) of text, images, or video on
top of the content being streamed, such that each overlay, con-
trolled by a viewer and visible to the entire streaming group,
is reflective of the viewer’s comments, mood or presence. We
believe that the general notion of supporting IVOs is of wide in-
terest and applicable to many applications. For example, while
watching a game show, viewers can share and compare their an-
swers with other group members. Another example is a shared
“whiteboard” on a background of streaming pre-encoded video,
where a viewer can control the playback and visually highlight
different parts of the video with an electronic pen.

While there are asynchronous means such as web-based
forum to enhance a sense of community, IVOs enable real-time
community-based inter-personal communication; IVOs are
often at-the-moment representations of viewers’ presence or
thoughts, and must be delivered in a timely manner for them to
be valuable. It is well known that the delay constraints are much
more stringent for interactive than for non-interactive videos,
and thus support of interactive video may require a more costly
transport infrastructure (e.g., higher bandwidth may be needed
to minimize end-to-end delay). Thus, a key technical challenge
is to support a high degree of interactivity, without significant
increases in system cost relative to a system that can only
support non-interactive streaming.

The primary focus of this paper is to develop a video
streaming system and optimization techniques to exploit the
heterogeneity in transmission delay constraints for the interac-
tive and non-interactive portions of the video content. There are
many other important aspects such as user interface design that
are essential to a successful community streaming application,
but are outside the scope of this paper.

One approach to enable interactive visual overlays for com-
munity streaming is to employ multiple video streams: one
stream for the main presentation, and one for each IVO. These
streams are encoded and delivered independently, and each user
is responsible for decoding, joint rendering and synchronizing
the streams. Clearly, the non-interactive main presentation can
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be treated appropriately and differently from the interactive
IVOs, since they belong to distinct streams. Clients with such
capabilities already exist, e.g., SMIL-capable clients. Nonethe-
less, this multiple-stream solution has several drawbacks. First,
it requires sophisticated clients capable of handling multiple
simultaneous video streams, which is beyond the capability of
many smartphones. Second, this approach may not be using
bandwidth efficiently, since visual information occluded by
overlays is also transmitted.

Instead, in this paper we consider a single-stream approach
where the interaction among the users leads to modifications in a
single shared stream. In so doing, community streaming can be
extended to simpler but ubiquitous clients that can only handle
single streams. This approach also avoids inefficiency in band-
width usage by transmission of occluded regions. Nevertheless,
treating each video frame in the shared stream with homoge-
neous delay requirement would require that all video data be
transmitted as interactive traffic. Instead, we present a system
optimized so as to accommodate different delay constraints for
different regions of the same video frame in the shared stream.
This allows us to exploit the inherent heterogeneity in transmis-
sion requirements of community streaming without resorting to
the use of multiple streams.

Generally, IVOs should be allowed to move only in regions
that do not significantly obscure the main presentation. In the
example of Fig. 3, the IVOs can only move horizontally in the
bottom of the frame, even though in general, the location can
change on a per scene basis. This locality of movement is impor-
tant, since it allows us to separate the video into regions with and
without IVOs and treat them separately. Specifically, the spatial
portion without IVOs can be prefetched or transmitted ahead of
time, while the portion with IVOs is generated live and trans-
mitted in a low-latency fashion. We need a compressed video
stream where part of a frame can be prefetched while the other
part may be modified later in unpredictable ways. To achieve
this we propose to separately encode the two regions with and
without IVOs so that there are no coding dependencies between
them. This way, one of them can be modified without affecting
the bit-rate and reconstruction quality of the other. We call such
video stream separable, and we will show that this kind of “sep-
arability” can be easily achieved within standard video codecs.

We also propose and evaluate packet scheduling algorithms
for streams containing two or more sub-streams with different
delay constraints. We distinguish between two different sce-
narios. For the deterministic case, where transmission is over
a dedicated channel with known bandwidth, e.g., an ISDN line,
we show that a low complexity earliest deadline first (EDF) al-
gorithm can guarantee minimum receiver buffer delay. Thus our
multiple sub-stream approach does not impose significant com-
plexity overhead on the servers. For the stochastic case, where
channel bandwidth is not known, or when multiple sessions are
multiplexed, we show that a “water-filling” strategy maximizes
the number of streams that can be supported.

To provide a practical system example of community
streaming, we describe a streaming system called ECHO
(Enabling Community of Hecklers and Observers) that can
efficiently support multiple communities of viewers with visual
overlays, with the primary streaming video being live Internet

games. (Here, the IVOs and their users are figuratively called
heckles and hecklers.) A fully functional prototype of ECHO
has been developed on top of HP’s OpenCall Media Platform
(OCMP) version 4.0, using a live game sequence from the
popular Counter-Strike [2] game as the streaming video source.
We have tested our prototype with standard video clients on
notebook and handheld devices in real network environments.

The outline of the paper is as follows. We first discuss re-
lated work in Section II. We then give an overview of the ECHO
system in Section III, which helps us highlight system architec-
ture and coding trade-offs. In Section IV, we derive and prove
the optimality of the EDF scheduling algorithm for transmis-
sion of a single-stream over a known channel. In Section V, we
discuss multiplexing gain using separable streams over non-sep-
arable streams, and prove that the optimal scheduling strategy
is “water-filling”. Results that quantify different trade-offs and
conclusions are provided in Sections VI and VII, respectively.

II. RELATED WORK

Advances have been made to improve consumption model of
streaming video. To address the heterogeneous capability of dif-
ferent handsets and preference of different users, the notion of
“collaborative streaming” has been introduced [1], where het-
erogeneous devices may each receive the stream in the same
playback time but in their own preferred resolution, bit-rate and
language. Device discovery, session initialization, and session
mobility are further discussed in [3]. Community streaming with
IVOs advances a different aspect of the traditional usage model
of streaming video by supporting personalized customization on
a per group basis.

Two popular arenas that can benefit from community
streaming are 3-D virtual worlds and network gaming. Recent
years have witnessed the growth of both 3-D virtual worlds
[4], [5] and network gaming [2], [6], particularly in Japan and
Korea. Along the way, notable players have developed large fol-
lowings, and virtual world observation—as opposed to active
participation—has become a popular pastime for many. Both
general video portals such as YouTube [7] and game-specific
portals such as Half-Life TV [8] and StreamMyGame [9] pro-
vide videos captured during game playing. This has motivated
our work on optimizations for graphics-to-video encoding and
streaming of virtual world observation for both single-view
[10], and multi-view video [11]. In the context of community
streaming with IVOs, our earlier work [12] proposed the use of
the separable video in the gaming context, and provided empir-
ical results for the case of a single stream over a known channel.
In this paper, we significantly extend the scope and generality
of our earlier work to include: 1) formal derivation of an
optimal scheduling algorithm for the single-separable-stream
case; and 2) consideration of multiplexing of multiple streams
with derivation of the optimal scheduling algorithm.

The advantages of variable bit rate (VBR) video encoding
are well known, but come at the cost of additional end-to-end
delay and/or bandwidth for delivery over networks [13]. Thus,
streams with low delay requirements need to be encoded under
low delay constraints (i.e., overall video quality) or require a
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VBR channel for transmission (or alternatively a higher band-
width CBR channel to accommodate rate variations without ad-
ditional delay). Analysis of delay-bandwidth-quality trade-offs
has been considered from a number of different perspectives, in-
cluding effective bandwidth [14], smoothing [15], and rate con-
trol [16]. For the most part this past work focuses on the proper-
ties of a single media source, for which bandwidth usage, quality
and end-to-end delay are evaluated. A key novelty of the present
work is to consider scenarios where different end-to-end delay
characteristics coexist within a given stream.

The concept of delay-cognizant video coding (DCVC) is pro-
posed in [17] and [18], where different delay constraints are
applied to different parts of an encoded video stream. DCVC
however differs from our approach in two fundamental aspects.
First, DCVC sub-streams are separated based on the video char-
acteristics, e.g., high delay blocks in the video are those where
video contents change slowly. Instead, our high delay segments
will contain non-interactive portions that are not modified to in-
corporate visual overlays. Second, DCVC data for a given frame
can be played back at different times (e.g., high delay packets
can be used even after the frame they correspond to has been dis-
played). Instead, we follow a more traditional delay constraint,
where packets for one frame have to be available before the
frame is decoded in order to be useful. Thus, in our case, larger
end-to-end delay is made possible by starting transmission of
the non-interactive video portions early, but both non-interactive
and interactive video portions are played back synchronously.
Our approach is also compatible with common video compres-
sion standards.

Towards determination of the number of streams that can be
supported at the same quality of service and bandwidth under
statistical multiplexing, many interesting results have been de-
veloped in the effective bandwidth literature [19]–[21]. These
works established a mathematical framework to study statistical
multiplexing when the offered traffic is given. Using these re-
sults, our contribution is to propose an optimal scheduling algo-
rithm that exploits the flexibility of transmission times associ-
ated with separable streams.

III. COMMUNITY STREAMING SYSTEMS

BASED ON SEPARABLE STREAMS

The exact details of different community streaming applica-
tions are likely to differ significantly. Nevertheless, we believe
that separable streams with multiple delay constraints can be
a key ingredient in designing efficient community streaming
for many applications. In this section, we first present a con-
crete community streaming system ECHO we have developed
for live game watching, and show how separable streams can
be supported based on common components in typical media
streaming architectures. We then describe specific coding tech-
niques that can be used to generate separable video.

A. ECHO System Overview

In our ECHO game watching prototype (see Fig. 1), a
networked game is hosted by a game server, and typically
involves two or more game players who control the game
clients. Game server and clients typically communicate in
proprietary protocols. To support game viewing for non-players

Fig. 1. ECHO system renders live game play for viewing by passive game “Ob-
servers” or active “Hecklers”.

Fig. 2. Component view and video coding of Observer View Generator. (a)
Component view of OVG. (b) Fixed and modifiable regions.

Fig. 3. Sample screenshots of interactive visual overlays on top of game con-
tent Counter-Strike.

over a wide range of devices, the game content is converted
to standard-compliant video streams by the observer view
generator (OVG) [10]. The ghost client inside OVG receives
real-time gaming data from the game server and renders frames
of the game from a chosen perspective. These frames are
then encoded in real-time by a “separable video encoder” (see
Section III-B). The real-time streaming protocol (RTSP) server
supports game observers without community-style interaction
by direct transmitting audio and video data to them using
real-time protocol (RTP). Alternatively, a group of hecklers
can contact a Heckling Coordinator (HC) to initiate a heckling
session. The HC in turn requests the live encoded stream from
OVG, composites personalized IVOs on top, as shown in Fig. 3,
and transmits the enriched media to members of the newly
formed community. Each user can control his/her heckles by
sending commands in real-time.

The HC receives real-time input from the users and con-
structs a new video with overlays corresponding to the heckles.
A straightforward implementation of HC would employ full
video decoding, compositing of heckles in pixel domain, follow
by full video encoding. Two unique characteristics of our
particular video content call for a different implementation.
First, IVOs tend to occupy only a small portion of the screen
as the primary activity is game observation. Re-encoding
parts of the video that are modified by the IVOs is wasteful
in computation resources, and leads to lower visual quality
in general. Instead, we employ partial transcoding to only
process the necessary part of a video stream. Second, the game
content is not dependent on user input, and can be buffered
or delayed at HC without increasing perceived latency at the
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Fig. 4. Heckling Coordinator employs partial transcoding in which indepen-
dent sub-streams are obtained from a separable video source. This allows dif-
ferential treatment in transport and avoids unnecessary re-encoding.

users. The user action, on the other hand, is interactive. To
exploit the difference in delay constraints for different parts of
the content, separable video is produced by OVG, which allows
easy separation of compressed bitstreams into independently
decodable regions (see Section III-B).

The heckles are controlled by dual-tone multi-frequency
(DTMF), which extends usage of the service to generic
video-streaming capable cellular phones. As shown in the
heckler overlay unit of Fig. 4, the overlay operation is per-
formed in the pixel domain in a portion of the video frames.
Pixel domain operations support a rich set of user actions such
as changes in avatar location, speed, size, and opacity.

Several characteristics of the ECHO system are worth noting.
First, encoding of the live game content is performed only once,
even with multiple spurred heckling sessions, each coordinated
by a different HC. This translates to large computation savings.
Second, only a game watching application is described, but the
system is generally applicable to other content such as sporting
broadcast. Third, no software download and installation is nec-
essary for client devices, as standard protocols are being used
for streaming and avatar control.

B. Coding for Separable Video Streams in ECHO

The video format for ECHO is H.263, selected over more
recent standards such as H.264/AVC [22] for two reasons. First,
most existing video handsets support H.263 while H.264 is only
supported by high-end devices. Second, encoding complexity
for H.264/AVC is drastically higher than H.263, limiting the
cost effectiveness of an H.264 implementation. However,
the techniques described here are applicable to H.264. Our
recent work [23] also suggests methods to reduce H.264/AVC
encoding complexity by taking advantage of available depth
information.

Since the primary goal of a user is game watching, with com-
munity interaction being a secondary objective, it is natural to
assume that the IVOs will occupy a relatively small portion of
the screen, as illustrated in Fig. 3. For ease of discussion, we
assume IVOs are overlaid on several bottom macroblock (MB)
rows of a video.1 The video content is encoded into two inde-

1In general the region reserved for overlays could be anywhere and indeed
could change over time. Clearly, our proposed technique will be more advanta-
geous when the overlay region is relatively small, so that most content can be
delivered under high latency conditions. This is likely to be the case in practice,
since enabling overlays throughout the frame would interfere with the viewing
of the main streaming content.

pendent or separable regions: a fixed region that is comprised
of the top several MB rows, and a modifiable region consisting
of the remaining MB rows. MBs in the fixed region are encoded
so that their motion vectors cannot cross into the modifiable re-
gion,2 as shown in Fig. 2(b). A Group of Block (GOB) header
(part of H.263 syntax) is inserted before the first MB row in
the modifiable region to facilitate identification of the region
during bitstream parsing. Doing so allows a downstream HC to
only search for and decode the modifiable region, without de-
coding the fixed region. The resulting stream is compliant to
baseline H.263, and can be properly decoded by any standard
clients without knowledge of the separable regions. It should
be noted that independently decodable regions in a single com-
pressed video stream is not a new concept. In particular, explicit
syntax support is provided by independent segment decoding in
Annex R of H.263 version 2, which is less commonly supported.

The HC, shown in Fig. 4, performs simple bitstream parsing
(without decoding) to split the compressed bitstream into the
fixed and modifiable regions. Decoding, rendering of IVOs,
and subsequent encoding are only performed on the modifiable
region, which reduces the computing load. Although the use
of separable video generally incurs a penalty in compression
efficiency, avoiding the re-encoding of the fixed region can
lead to overall higher video quality at the user (more details in
Section VI).

Note that there are alternative methods to realize separable
streams for community streaming. One example is object-based
encoding methods of MPEG-4. Another example is the redun-
dant slice feature of H.264 which allows multiple representa-
tions of a MB [22]. While redundant slices are mainly employed
for error resilience purposes, with matching decoder support, it
is theoretically possible to arrange the redundant slices to corre-
spond to the interactive visual overlays. The advantage of these
approaches is the flexibility that visual overlays can now be spa-
tially located anywhere in the frame. The disadvantage is high
encoding and decoding complexity, as well as potentially lower
compression efficiency due to the need to transmit occluded re-
gions.

IV. TRANSPORT SCHEDULING FOR A SINGLE

SEPARABLE VIDEO STREAM

Consider a separable video stream with two sub-streams with
different transmission delay requirements. Since the IVOs do
not affect the non-interactive portions, the non-interactive sub-
stream can begin transmission ahead of time during an initial
buffering period in high-latency mode. Even sizeable delay on
the order of seconds is acceptable, with the only limitation of
not introducing excessive start-up latency; we call this initial
delay before session startup for data buffering the initial buffer
delay. On the other hand, portions that are being modified in
response to actions by an active user need to be conveyed to all
active users quickly. We call response lag the delay between the
time of a user’s action and the time the affected visual overlay
is displayed on the user’s screen.

While separable video has advantages for cases where packet
losses occur (e.g., retransmissions are possible for the high

2These restrictions on the MVs can potentially reduce in coding performance.
This will be examined in Section VI.
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latency sub-stream), we focus here on the lossless case. As
noted in Section II, better video quality can be achieved when
operating the encoder in VBR mode [13]. For non-separable
streams, in order to transmit VBR encoded video over a known
constant bit-rate channel, one needs to enable rate averaging
by either: 1) averaging the rate needs over time using receiver
buffering, and/or 2) sharing the constant rate link with several
VBR streams, so as to achieve statistical multiplexing. For the
single-stream case, the receiver buffer required for averaging
VBR video can be sizable, which would lead to a large receiver
buffer delay and thus an undesirably long response lag for
visual overlays. Alternatively, increased interactivity could be
achieved by raising the channel bandwidth, which would in-
crease the overall system cost as compared to a non-interactive
system.

When separable streams are used, however, one can achieve
better performance (lower delay and/or reduced bandwidth for
the same video quality) by taking advantage of the different
delay requirements of the sub-streams. Buffering can be used
for smoothing the rate variations in the non-interactive stream,
i.e., transmission of this stream can start early with a large ini-
tial buffering period. Conversely, delay for the interactive sub-
stream can be kept low by allowing it to use a large percentage
of shared bandwidth during its high bit-rate periods.

While this is intuitively possible, it is less clear whether
achieving these multiplexing gains across sub-streams requires
complex scheduling algorithms. In this section, we derive an
optimal, low complexity scheduling algorithm called earliest
deadline first (EDF) for two sub-streams with different delay
requirements within the same separable stream over a known
channel. Using EDF, we can find the minimum response lag re-
quired given an initial buffer delay, thus optimizing the tradeoff
between the two. We will show in Section VI that the response
lag required for the separable-stream approach using EDF is
significantly smaller than the non-separable-stream approach.

A. Application Requirements

We first formally define the scheduling problem for sepa-
rable streams: given initial buffering delay and response lag,
how to schedule transmission of non-interactive and interac-
tive sub-streams (assuming a feasible schedule exists) so that
receiver buffer underflow is avoided? How can we determine
whether a feasible schedule exists? We show that EDF provides
definite answers to both questions. Thus, for a given pre-en-
coded stream, we can use EDF to find the optimal tradeoff be-
tween initial buffer delay and response lag.

In a general setting, we consider streaming from a sender two
sub-streams with heterogenous delay requirements that must be
played back synchronously at a receiver. More precisely, con-
sider non-interactive and interactive sub-streams and , with
bit-rate profiles and , respectively; i.e., the number
of bytes in frame in sub-stream , is .
To deterministically guarantee no receiver buffer underflow for
given initial buffer delay and response lag, we assume sender
knows entire profiles and prior to transmission. For
stored content, non-interactive profile is readily available.
We also observe that interactive profile (which changes in
real-time as users interact via IVOs) closely follows the original

Fig. 5. Receiver time-line of multiple sub-stream system.

Fig. 6. Three possible cases of sender buffers under EDF, where shaded,
striped, and white areas correspond to data transmitted earlier, data being trans-
mitted in current interval ���� �� � ��� �, and available data not transmitted
yet, respectively.

profile of the modifiable region without IVOs when the
same quantization parameters are used. Thus we can approxi-
mate by to determine appropriate choices of initial
buffer delay and response lag. After initial buffer delay and re-
sponse lag are determined a priori, scheduling will be based on

and actual during actual transmission.
To simplify discussion, in what follows we will refer to the

frames being delivered in each sub-stream, even though each of
these “frames” contains only part of the original video frame:
two corresponding frames (one per sub-stream) will be com-
bined to provide a single output video frame.

We develop our formulation from the perspective of the
sender’s clock, with the sender starting streaming video data
to the receiver at time . We first assume video frames are
captured and played back every seconds. We assume also
that the receiver starts decoding seconds after the sender
starts sending frames. is the initial buffering delay.

Suppose now that the time at which frame in sub-stream
is available for transmission at the sender, , is ;
i.e., at time the sender can access frames .
We call the read-ahead interval for sub-stream . Frames
in sub-stream have a tighter delay constraint; i.e., they are
available for transmission at sender later than the same frames
in , so that there is a shorter time interval available for de-
livery. More precisely, at time , the sender can access frames

of sub-stream , where .
Smaller means IVOs will be played back sooner. Thus,
while there are other factors that affect the response lag, we will
simply call the response lag. See Fig. 5 for an illustration
of the sender’s time-line.

Let the sender buffer of sub-stream , be the
amount of data in that sender has available but not delivered
yet at time . Let , be the amount of data in

sender decides to transmit in time interval ;
the selected data could be part of one frame, an entire
frame, or data from multiple frames. Similar quantities
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and are defined for sub-stream . We can then write the
respective sender buffer occupancies as the difference between
total available video data and the amount already transmitted:

where data transmitted at a given time interval cannot exceed
the amount of data available in the buffers.

At receiver, playback of both sub-streams starts after the ini-
tial buffer period at time before which data simply
accumulates in the receiver buffer. Assuming the transmission
channel has zero delay, the receiver buffer occupancies
and for the two sub-streams at time are obtained by
subtracting the total amount of data played back from the total
amount of data received as shown in the equation at the bottom
of the page. To avoid receiver buffer underflow—case where re-
ceiver experiences playback interruption due to late data arrival,
receiver buffer occupancy must be nonnegative at all times:

(1)

(2)

which also guarantees synchronous playback of both
sub-streams at the receiver.

B. Problem Definition

We now assume a VBR channel with average bandwidth
per time period , and where an instantaneous bandwidth of
bytes over time period is permitted for transmis-
sion of both sub-streams. The maximum available bandwidth

cannot be exceeded at any frame period:

(3)

We further assume the average bandwidth is no smaller than the
average bit-rate of both sub-streams:

(4)

is the special case of a CBR channel.
Given a VBR bandwidth , bit-rate profiles and

, read-ahead interval and initial buffer delay
and response lag , a feasible transmission schedule for
both sub-streams and is the set of scheduled transmissions

such that no receiver buffer underflows
according to (1) and (2), and that the bandwidth constraint (3)
is never violated. Our goal is to compute a feasible schedule (if
one exists) given the problem parameters.

C. Earliest Deadline First (EDF) Transmission Schedule

We present a transmission schedule named EDF that is guar-
anteed to be feasible as long as the space of feasible schedules
is non-empty. In other words, if EDF is infeasible, then no fea-
sible schedule exists for given problem parameters. We call this
property of EDF minimally feasible. EDF operates as follows.

Earliest Deadline First Schedule (EDF):

At each instant , send data of the available frame in
either sub-stream or with the earliest playback dead-
line (smallest frame index). If both sub-streams contain
frames of the same smallest index, select first data of frame
in sub-stream 3. Repeat until budget has run out.

Properties of EDF: We next discuss three properties of EDF
that provide insights into EDF and are needed in subsequent
proof of EDF’s minimal feasibility. Denote by and the
largest indices of complete frames that have been transmitted in
sub-streams and , respectively, under EDF by time interval

:

By definition, and
. If the first frame of sub-streams and has not

been completely delivered yet, we set, respectively,
and .

First, EDF has a work-conserving property at any time in-
terval , meaning it always transmits if there is
available data. As a corollary, EDF sends the maximum amount
of data possible over any time duration .

Second, under EDF, the largest transmitted frame index for
non-interactive sub-stream is always at least as large as that
for interactive sub-stream :

This follows directly from the fact that data for the same frame
are available earlier in than , and that the tie-breaking rule

3It can be shown that EDF is also minimally feasible if the tie breaking rule
is in favor of sub-stream � instead.

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on July 20, 2009 at 22:23 from IEEE Xplore.  Restrictions apply. 



992 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 11, NO. 5, AUGUST 2009

favors . More precisely, the sender can choose from
and

for and , respectively, where and .
Third, the three cases below, as illustrated in Fig. 6, com-

pletely describe the possible states EDF is in:
1) Case I: . Sender has transmitted all

available frames in sub-stream .
2) Case II: and . Sender

has available data in sub-stream , and largest transmitted
frame index in is within one plus largest transmitted
frame index in .

3) Case III: and . Sender
has available data in sub-stream , and largest transmitted
frame index in is strictly larger than one plus largest
transmitted frame index in .

It is obvious that the three cases partition the space of possible
states. Using these three properties, we now prove by contradic-
tion that EDF is indeed minimally feasible.

D. Proof of EDF’s Minimal Feasibility

Suppose EDF is not feasible and leads to its first receiver
buffer underflow at time . Let be a feasible schedule
that does not lead to underflow at . First, EDF cannot
be in case I at time . Under case I, EDF has transmitted all
available frames in sub-stream by interval .
Given , EDF has transmitted at least as many frames
in sub-stream , and hence receiver buffer underflows at time

(at least) in sub-stream . Since cannot transmit
more frames in than available, cannot avoid underflow of
sub-stream at .

Suppose EDF is in case II at time . Due to the work-con-
serving property of EDF, cannot transmit strictly more total
data than EDF, hence cannot avoid receiver buffer overflow
at time simply by sending more data than EDF. More-
over, case II means that the two largest trans-
mitted frame indices from two sub-streams, and , are
within one of each other. Due to the earliest deadline policy,
presence of available data in sub-stream for frame
means that no data corresponding to frame have been
transmitted for sub-stream . Thus, any reallocation of band-
width from one sub-stream to the other would not increase the
smaller of the two indices. That means that cannot avoid
reciever buffer overflow by scheduling data differently in sub-
streams for the same total amount of sent data. Hence will
also lead to receiver buffer underflow—a contradiction.

Finally, suppose EDF is in case III at time . Due to the ear-
liest deadline policy, and presence of available
data in sub-stream means that there is no transmission of data
in sub-stream during under EDF. Denote by

the time-slot when sub-stream is last transmitted. By
definition, . Thus, case III condi-
tion of means

(5)

That means at instant , EDF had no more available frames
in sub-stream to send before sending sub-stream data of
later deadlines. Moreover, since instant , EDF has used all

available bandwidth to send data from sub-stream . So another
schedule cannot possibly send more data from sub-stream
by time , and would necessarily underflow sub-stream ,
thereby the whole video. This is a contradiction to the assump-
tion of a feasible .

Since a contradiction is reached for all three cases, we can
conclude that if EDF schedule is not feasible, then no feasible
schedule exists. This completes the proof of EDF’s minimal fea-
sibility.

E. Tradeoffs of Initial Buffer Delay and Response Lag

Given EDF is minimally feasible, we can use EDF to find the
minimum response lag such that no receiver buffer under-
flow occurs given initial buffer delay —the best tradeoff
between and —using bisection search:

1) Initialize feasible lag and infeasible lag
. Let current lag and apply EDF

to check for feasibility given and . Let .
2) If EDF is infeasible given and , conclude that

there is no feasible schedule for . Stop.
3) If EDF is feasible given and , update feasible

lag . Go to step 5.
4) If EDF is infeasible given and , update infea-

sible lag .
5) Update current lag . If

, stop.
6) Apply EDF using . . Go to step 3.
Using the above procedure, we can find the optimal tradeoff

between initial buffer delay and response lag. In practice, is
selected a priori as the maximum initial buffering delay a user
can tolerate. The minimum response lag given can then
be found using the above procedure.

V. TRANSPORT SCHEDULING FOR MULTIPLE

SEPARABLE VIDEO STREAMS

In this section, we theoretically examine the improvement
in multiplexing gain of separable video over non-separable
video. When non-separable video is employed for community
streaming with interactive visual overlay, each compressed
video frame needs to be transmitted with low latency. In other
words, the demand for bandwidth is inelastic for non-separable
video. In contrast, separable video typically contains a small
interactive sub-stream that has inelastic demand for bandwidth,
and a non-interactive sub-stream that can be pre-fetched. The
demand for bandwidth is flexible or elastic for the non-interac-
tive stream. In this section, we develop scheduling methods for
separable video to exploit its inherent flexibility and quantify
the gain using an effective bandwidth formulation. Specifically,
under identical channel bandwidth and bound on probability of
resource overload, we seek to compare the number of streams
that can be supported when separable and non-separable video
is respectively employed. Such network dimensioning ques-
tion is of practical interest for network provisioning and call
admission control purposes.

A. Effective Bandwidth Background

Of particular relevance are existing effective bandwidth re-
sults on multiclass traffic [19], [20], [24]. Specifically, the goal
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is to compute effective bandwidths so that a network link can
carry streams of class if the following is satisfied:

(6)

where is the total capacity of a link, and streams of the same
class are assumed to be independent and with similar statistics.
A remarkable set of results have been obtained for cases where
the link buffer is zero (bufferless) [19], [21] or large (infinite)
[20], [24].

If the total traffic into a bufferless link of capacity is
stationary and ergodic, then the fraction of time exceeds
equals at any given time instant . As a result,
it suffices to consider as a random variable:

where the random variable is the offered traffic from a con-
stituent stream. Then, for any , the probability of resource
overflow can be bounded by [21], [19]

(7)

where is the log moment generating function for class , and
is defined as

(8)

Given a prescribed maximum overload probability of
(i.e., ), it is shown that an effective band-
width can be chosen for class as [19]

(9)

where minimizes the expression in (7). This choice satisfies
the prescribed error bound as long as (6) is satisfied and gives
an asymptotically tight error bound. The significance of (9) is
that it allows computation of an effective bandwidth which can
be used in conjunction with (6) for determining how many flows
of each class are admissible without violating a given overload
probability.

B. Scheduling of Separable Video Over Bufferless Link

Most works related to effective bandwidth assume the of-
fered traffic is inelastic or fixed, and of identical importance,
and study aggregate behavior under FIFO queuing. Extensions
to priority queuing with inelastic offered traffic are described in
[25], where it is found to be necessary to associate each traffic
class with multiple effective bandwidths, one for each priority
level. In contrast, in the context of separable video, differential
treatment of sub-streams is based on their elasticity. In other
words, the total traffic of a separable stream, , where and

are arbitrary indices, can be considered as the sum of an in-
elastic sub-stream and an elastic sub-stream :

(10)

with different choices of resulting in different traffic profiles
and effective bandwidths for . In the rest of this section, we
discuss how to design in order to maximize the number
of streams that can be supported under (6), and compare that
to the non-separable video case. When multiplexing multiple
separable video streams, the aggregate traffic is given by

(11)

where and denote the aggregate amount of inelastic and
elastic traffic, respectively. is given and cannot be modified,
but our ability to transmit fixed regions well ahead of delivery
deadlines affords us flexibility in the design space of .

1) Intra-Stream Optimization of Elastic Traffic: Consider the
case when separable video streams are multiplexed but trans-
mitted independently of each other, e.g., by different servers that
do not communicate. Then we need to first determine the op-
timal random variables that minimizes the effective band-
width of :

(12)

where is average bit-rate for the elastic traffic from class .
If , where is the average
bit-rate of inelastic traffic from class , it can be shown that

(13)

which is clearly nonnegative and has mean . This choice
guarantees that is a constant, which intuitively
minimizes effective bandwidth. More formally, since the expo-
nential function is convex, Jensen’s inequality establishes that

(14)

or that in (13) achieves the lowest effective bandwidth
among all random variables with the same mean. In other

words, the elastic traffic should be scheduled in a “water-filling”
manner to make the overall traffic constant. The formulation
above imposes no constraint that elastic traffic must be trans-
mitted before its deadline. In practice, for streaming of long
streams, this can be enforced by initially transmitting at a higher
rate to build up the buffer, which would have negligible effect
on overall behavior.

When cannot be rendered constant
with any choice of , and the optimal strategy is given by the
Kuhn–Tucker conditions and :

(15)

where is given by
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(16)

where is again performing a “water-filling” strategy to pro-
vide as constant a data rate as possible for . It should be noted
that (15) and (16) is the general solution that subsumes (13) as
a special case.

With the optimal strategy of elastic traffic determined, the
total traffic profile can then be computed, and standard ef-
fective bandwidth analysis discussed earlier in the section can
be applied to compute the maximum number of sessions that
can be supported. Numerical comparison will be given later in
Section VI-C.

2) Cross-Stream Optimization of Elastic Traffic: Generally,
when multiple separable streams are originating from a single
server, or if the servers coordinate, it is possible to further re-
duce effective bandwidth by jointly optimizing the elastic traffic
across multiple streams. Specifically, instead of (15) and (16)
that consider each stream in isolation, we consider the joint as-
signment of aggregate elastic traffic . Using similar methods
as before, the optimal assignment of elastic traffic, is given
by

(17)

where is given by

(18)

where is the average rate for aggregate elastic traffic. In-
tuitively, intra-stream optimization is trying to rearrange elastic
traffic to make individual stream as constant in bit-rate as pos-
sible. In contrast, cross-stream optimization treats the aggregate
traffic as a single stream, and attempts to rearrange aggregate
elastic traffic to make the overall traffic as constant as possible.
Clearly cross-stream optimization performs better due to further
flexibility to shift resources across streams. The performance
improvement is illustrated in the example in Section VI-C.

Note that the “water-filling” scheduler is different from the
EDF scheduler not only in strategy but in resulting traffic pro-
file as well. This is not a contradiction, since the two sched-
ulers are optimal in their respective goal and under their re-
spective assumption. Specifically, the “water-filling” scheduler
addresses the provisioning problem for statistical multiplexing
of independent streams with the assumption that the overall
traffic is stationary. In contrast, EDF is a server strategy to de-
terministically exploit channel bandwidth by a single stream
and generally produces non-stationary traffic profile. In addi-
tion, EDF assumes that a single stream has complete control of
the channel, while during multiplexing of multiple independent
streams, such assumption no longer holds, and the work-con-
serving property of EDF cannot be maintained.

VI. RESULTS

In this section, we first examine the effect of using separable
video on compression efficiency. This complements the discus-
sion in Section III on the computation savings associated with
separable video. We next compare the interactive delay nec-
essary to guarantee smooth video playback for separable and

Fig. 7. Loss in coding efficiency in PSNR when using separable video. (a)
Counter-Strike 1. (b) Foreman.

Fig. 8. Gain in coding efficiency in PSNR when separable video are subse-
quently re-encoded. (a) Counter-Strike 1. (b) Foreman.

non-separable video for different bandwidth capacities and ini-
tial buffering delay in Section VI-B. Finally, we examine the sta-
tistical gains of the “water-filling” scheduling in Section VI-C.
All test sequences are QCIF (176 144) at 10 fps, unless oth-
erwise noted.

A. Coding Efficiency of Separable Video

Generally, restricting motion vectors to create separable
video as discussed in Section III-B incurs a loss in coding effi-
ciency. Fig. 7(a) characterizes such loss for a video sequence
from game Counter-Strike. Sequences Mother and Daughter
and Mobile Calendar at 30 fps show similar characteristics (not
shown) with the rate-distortion curves of normal and separable
cases being virtually identical. For the Foreman sequence (30
fps), shown in Fig. 7(b), the PSNR loss is more pronounced at
about 0.2 dB.

One advantage of using separable video is the ability to selec-
tively process only the modifiable region of the video. For video
coded using normal methods, it is necessary to re-encode the
entire frame if any part of the frame is modified. This requires
additional computation and introduces regeneration loss com-
pared to the use of separable video, where the fixed region is not
re-encoded. Fig. 8 shows the PSNR gain when separable video
is employed rather than normal video encoding. We notice that
there is generally a 0.1 to 0.2 dB improvement at usable qualities
around 32 dB. Notice that for the Foreman sequence, the PSNR
gain is achieved over an initial loss in PSNR of Fig. 7(b). We
thus conclude that using separable video in our ECHO system
incurs no significant loss in compression efficiency.

The bit-rate profiles for two different scenes of Counter-
Strike produced by HC are shown in Fig. 9, with separate lines
for non-separable video, the modifiable region of separable
video, and total rate of separable video. First, we observe
that the bit-rate profiles of the non-separable video and the
separable video are very similar. This confirms our earlier ob-
servation that the coding cost of using separable video instead
of non-separable video is small. Second, we see that all three
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Fig. 9. Two scenes of Counter-Strike show large bit-rate variation over time.

bit-rate profiles of the same sequence have large variations as a
function of time. The largely VBR nature of the encoded video
has important consequences in terms of multiplexing, which
we will discuss shortly.

We find that the shape of the profile in Fig. 9 does not change
significantly when H.264 is employed in place of H.263. When
natural video is used instead of synthetic game content, we gen-
erally observe similar fluctuation in bit-rate profile, though at a
slower pace. This is probably due to the faster motion and more
frequent scene change in action games such as Counter-Strike
than natural video. The rate control scheme employed in all
comparison is constant quantization parameter.

B. Scheduling Single Video Stream Over Known Channel

In this section, we show experimentally the advantages of
separable video over non-separable video when scheduling a
single video stream over an idealized delivery channel with con-
stant bit-rate (CBR). We assume zero transmission delay and
zero transmission loss in the channel. For non-separable stream,
for a given channel capacity, we calculate the receiver buffer
delay required to avoid receiver buffer underflow during play-
back. This is equivalent to the response lag for the interactive vi-
sual overlay for the non-separable stream. For separable stream,
for a given channel capacity and initial buffering delay, we cal-
culate the response lag required to avoid interactive sub-stream
playback underflow. We accomplish that using the procedure in
Section IV-E that utilizes EDF to find the best tradeoff between
initial buffer delay and response lag. The results are shown in
Fig. 10. First, we observe that, as expected, the response lag
is inversely proportional to the channel capacity for all perfor-
mance curves. Second, we see that separable streaming out-
performs non-separable stream for the full range of channel
capacity, and for all values of initial buffer delay. In partic-
ular, separable streaming can reduce the response lag over non-
separable streaming by up to 5 and 11 s for Counter-Strike 1
and Counter-Strike 2, respectively. This validates experimen-
tally our claim that the separable-stream approach has signifi-
cant streaming benefits over non-separable streaming. Finally,
we see that as the amount of initial buffer delay increases, the
performance of separable streaming improves. Intuitively, larger
buffering yields better VBR rate averaging over a CBR channel,
as discussed in Section IV.

C. Statistical Multiplexing of Traffic With Poisson Distribution

We next consider the multiplexing of traffic streams with in-
stantaneous data rate that are independent and identically
distributed according to the Poisson distribution of parameter

, or . This distribution is chosen

Fig. 10. Response lag versus channel capacity for Counter-Strike sequences.
(a) Counter-Strike 1. (b) Counter-Strike 2.

for its nonnegative support that is suitable for representing data
rate, the existence of closed form expressions for various quan-
tities of interest, and having a shape that is a reasonable approx-
imation to compressed video frame sizes. Then, the effective
bandwidth is given by (9):

We assume the inelastic and elastic components of the cor-
responding separable stream are, respectively, given by

, and .
For average per-stream data rate of , and error rate
bound of , the effective bandwidth and bandwidth
utilization for separable and non-separable video are given in
Fig. 11(a) and (b), respectively. Curves labeled “Separable” are
obtained using only intra-stream optimization, while curves la-
beled “Separable-Cross” are obtained using cross-stream op-
timization. In Fig. 11(a), we observe generally that effective
bandwidth decreases as the fraction of inelastic traffic de-
creases due to more flexibility in traffic shaping. When

, where an order of streams are multiplexed,
we see that the effective bandwidth of non-separable video is
30% above the average rate of 10. For separable video with

(10% elastic traffic), the effective bandwidth needed
to guarantee the same error bound drops to 11.7 at the same
multiplexing level. Further increase in the ratio of elastic traffic
further decreases effective bandwidth, and with or
half elastic traffic, the effective bandwidth becomes virtually
10, which is the ideal value achieved by constant rate source.
We also observe that effective bandwidth generally decreases
as increases due to higher level of statistical multiplexing. In
particular, we see that the effective bandwidth of non-separable
video drops from 13 when ( stream) to 10.3
when ( streams). In contrast, lower effective
bandwidth can be achieved at with 25% elastic traffic
and at with 50% elastic traffic. This indicates that
the use of elastic traffic is an attractive alternative to increasing
the level of multiplexing to realizing multiplexing gain. The
maximum number of streams supported at different values
of are shown in Fig. 11(b) with a normalization factor of

, the ideal maximum. The quantity is
also the bandwidth utilization. We see that non-separable video
achieves utilization of 60% (six streams) to 94% (376 streams)
for equals 100 and 4000, respectively. In contrast, separable

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on July 20, 2009 at 22:23 from IEEE Xplore.  Restrictions apply. 



996 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 11, NO. 5, AUGUST 2009

Fig. 11. Comparison of multiplexing of separable and non-separable videos
with Poisson distributed data rate of � � ��, and different resource overflow
probability � . Only curve labeled “Separable-Cross” employs cross stream
optimization. Only intra-stream optimization is employed for other curves la-
beled “Separable”. (a) Eff. bw �� � ������. (b) Utilization �� � ������.
(c) Eff. bw �� � �����. (d) Utilization �� � �����.

Fig. 12. Comparison of streaming using separable and non-separable video
using compressed video trace. (a) Byte size distribution for two Counter Strike
sequences. (b) Effective bandwidth for Counter Strike sequences.

video with 50% elastic traffic achieves significantly higher uti-
lization of 90% (nine streams) to virtually 100% (399 streams)
for equals 100 and 4000, respectively. Corresponding results
for cross-stream optimization are shown in the “inelastic” curve
in Fig. 11(b). As expected, cross-stream optimization further
improves utilization compared to intra-streaming optimization
with the same fraction of elastic traffic.

Corresponding results for are given in Fig. 11(c)
and (d). Generally, higher tolerance of error corresponds to
lower effective bandwidth, but similar trends are observed as in
Fig. 11(a) and (b).

D. Statistical Multiplexing of Trace Traffic

We next consider the statistical multiplexing of empirical
traffic given in Fig. 9. The distribution of frame byte sizes
are given in Fig. 12(a) for the two Counter Strike sequences.
Unlike the Poisson distribution considered earlier, the empirical
distributions in Fig. 12(a) are each derived from only 100 s of
video and do not exhibit a long tail. With a peak-to-average
ratio of about 3, the streams multiplex very well, achieving an
effective bandwidth within 4% of the average bit-rate when

about ten streams are multiplexed [leftmost point in Fig. 12(b)].
Nevertheless, the multiplexing advantage of using separable
video is still clearly demonstrated, as the limiting effective
bandwidth is readily achieved when order of ten streams are
multiplexed. In contrast, the same limiting effective bandwidth
is not achieved with close to 400 streams multiplexed [rightmost
point in Fig. 12(b)] when non-separable video is employed.
The average elastic traffic for both sequences is about 40%.

VII. CONCLUSION

In this paper, we have presented a networked video system
that supports shared viewing of video with a sense of commu-
nity that is reinforced by user controlled interactive visual over-
lays. We believe this form of community streaming is applicable
to many applications and show specific ways to optimize such
system. We argue that it is advantageous to employ separable
video streams due to lower computation and transport require-
ments, as well as comparable coding efficiency. We also show
that the EDF scheduling algorithm is optimal when streaming a
single stream over a known channel, and that a “water-filling”
scheduling is optimal for multiplexing of many streams.
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