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Unifying Low-level and High-level Music

Similarity Measures
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Abstract

Measuring music similarity is essential for multimedia retrieval. For music items, this task can be regarded

as obtaining a suitable distance measurement between songs defined on a certain feature space. In this paper, we

propose three of such distance measures based on the audio content. First, a low-level measure based on tempo-related

description. Second, a high-level semantic measure based on the inference of different musical dimensions by support

vector machines. These dimensions include genre, culture, moods, instruments, rhythm, and tempo annotations. Third,

a hybrid measure which combines the above-mentioned distance measures with two existing low-level measures: a

Euclidean distance based on principal component analysis of timbral, temporal, and tonal descriptors, and a timbral

distance based on single Gaussian MFCC modeling. We evaluate our proposed measures against a number of baseline

measures. We do this objectively based on a comprehensive set of music collections, and subjectively based on

listeners’ ratings. Results show that the proposed methods achieve accuracies comparable to the baseline approaches

in the case of the tempo and classifier-based measures. The highest accuracies are obtained by the hybrid distance.

Furthermore, the proposed classifier-based approach opens up the possibility to explore distance measures that are

based on semantic notions.

Index Terms

Music, Information retrieval, Distance measurement, Knowledge acquisition, Multimedia databases, Multimedia

computing

I. INTRODUCTION

Rapid development of digital technologies, the Internet, and the multimedia industry have provoked a huge

excess of information. An increasingly growing amount of multimedia data complicates search, retrieval, and

recommendation of relevant information. For example, in the digital music industry, major Internet stores such
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as the iTunes Store contain up to 14 million songs1, adding thousands of new songs every month. In such

circumstances, fast and efficient retrieval approaches operating on large-scale multimedia databases are necessary [1].

Specifically, similarity search is a challenging scientific problem, which helps to facilitate advances in multimedia

knowledge, organization, and recommendation. Therefore, it can serve the user’s needs and satisfaction within

educative, explorative, social, and entertainment multimedia applications.

Studying the ways to search and recommend music to a user is a central task within the music information

retrieval (MIR) community [2]. From a simplistic point of view, this task can be regarded as obtaining a suitable

distance2 measurement between a query song and a set of potential candidates. This way, one maps these songs to

a certain feature space where a dissimilarity measure can be computed. Currently, researchers and practitioners fill

in this feature space with information extracted from the audio content3, context, or both. Contextual information,

in the form of user ratings [3] and social tags [4], is a powerful source for measuring music similarity. However, it

becomes problematic to obtain such data in a long-tail [5]. General lack of user ratings and social tags for unpopular

multimedia items complicate their sufficient characterization, as multimedia consumption is biased towards popular

items. Alternatively, information extracted from the audio content can help to overcome this problem [6].

The present work deals with content-based approaches to music similarity. We organize this paper into three

parts, dealing with the state-of-the-art, the proposal of two simple distance measurements, and the proposal of a

hybrid (non-simple) distance measurement, respectively.

In the first part (Sec. II), we review related state of the art, including current approaches to music similarity

(Sec. II-A) and low-level audio descriptors available to our research (Sec. II-B). Furthermore, we briefly explain a

number of existing simple approaches, which we use as a baseline for evaluating our proposed methods. Throughout

the paper, we assume simple approaches to be those which are not constituted by a number of distances4. More

concretely, as baseline approaches we consider Euclidean distances defined on sets of timbral, rhythmic, and tonal

descriptors (Secs. II-C1 and II-C2) and Kullback-Leibler divergence defined on Gaussian mixture models (GMMs)

of Mel-frequency cepstral coefficients (MFCCs, Sec. II-C3).

In the second part, which we partially presented in [7], we compare the aforementioned baseline approaches

against two novel distance measures (Sec. III). The first idea we explore consists of the use of tempo-related

musical aspects. We propose a distance based on two low-level rhythmic descriptors, namely beats per minute and

onset rate (Sec. III-A). The second idea we explore shifts the problem to a more high-level (semantic) domain as we

propose to use high-level semantic dimensions, including information about genre and musical culture, moods and

instruments, and rhythm and tempo. With regard to this aspect, we continue the research of [8]–[10] but, more in

the line of [10], we investigate the possibility of benefiting from results obtained in different classification tasks and

transferring this acquired knowledge to the context of music similarity (Sec. III-B). More specifically, as our first

1http://en.wikipedia.org/wiki/ITunes Store
2We here pragmatically use the term “distance” to refer to any dissimilarity measurement between songs.
3We pragmatically use the term “content” to refer to any information extracted from the audio signal.
4We have opted for the term “simple” instead of other appropriate terms, such as “non-hybrid” and “homogeneous”.

http://en.wikipedia.org/wiki/ITunes_Store
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main technical contribution, we infer different groups of musical dimensions by using support vector machines. and

use a high-level modular distance which combines these dimensions. Among the qualities of this classifier-based

distance we strive for high modularity, being able to easily append additional dimensions. Moreover, we strive for

descriptiveness, being able to explain similarity to a user.

We evaluate all the considered simple approaches with a uniform methodological basis, including an objective

evaluation on several comprehensive ground truth music collections (Sec. IV-A) and a subjective evaluation based

on ratings given by real listeners (Sec. IV-C). We show that, in spite of being conceptually different, the proposed

methods achieve comparable or even higher accuracies than the considered baseline approaches (Secs. IV-B and

IV-D). Finally, we illustrate the benefits of the proposed classifier-based distance for music similarity justification

to a user (Sec. V). In addition, we demonstrate an example of possible semantic explanation of similarity between

songs.

In the third part, we explore the possibility of creating a hybrid approach, based on the considered simple

approaches as potential components. As our second main technical contribution, we propose a new distance

measure that combines a low-level Euclidean distance based on principal component analysis (PCA), a timbral

distance based on single Gaussian MFCC modeling, and our proposed tempo-based and semantic classifier-based

distances (Sec. VI). These choices are motivated by the results obtained in the subjective evaluation of simple

approaches performed in the second part of the paper. We hypothesize that such combination of conceptually

different approaches, covering timbral, rhythmic, and semantic aspects of music similarity, is more appropriate

from the point of view of music cognition [11] and, thus, it could lead to a better performance from the point of

view of the listener. Indeed, a number of works support this idea though being limited by combining only timbral

and rhythmic aspects into a hybrid distance [12]–[17], and, alternatively, timbral and tonal, or timbral and semantic

ones [18]. To the best of the authors’ knowledge, more extended combinations of timbral, rhythmic, tonal and

semantic dimensions, providing a single hybrid distance, have not yet been studied.

We evaluate the hybrid approach against its component approaches objectively, performing a cross-collection

out-of-sample test on two large-scale music collections (Sec. VII-A), and subjectively, based on ratings of 21 real

listeners (Sec. VII-C). We find that the proposed hybrid method reaches a better performance than all considered

approaches, both objectively (Sec. VII-B) and subjectively (Sec. VII-D). We subjectively evaluate our classifier-based

and hybrid approaches against a number of state-of-the-art distance measures within the bounds of an international

evaluation framework (Sec. VIII-A). Notably, our hybrid approach is found to be one of the best performing

participants (Sec. VIII-B). We finally state general conclusions and discuss the possibility of further improvements

(Sec. IX).

II. SCIENTIFIC BACKGROUND

A. Music similarity

Focusing on audio content-based similarity, there exist a wide variety of approaches for providing a distance

measurement between songs. These approaches comprise both the selection of audio descriptors and the choice
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of an appropriate distance function. Representing the songs as points in a feature space with an Lp metric is

a straightforward approach. Cano et al. [19] demonstrate such an approach using a Euclidean metric after a

PCA transformation of a preliminary selected combination of timbral, temporal, and tonal descriptors. Similarly,

Slaney et al. [20] apply a Euclidean metric on loudness and temporal descriptors, and use a number of algorithms

to improve performance. These algorithms include whitening transformation, linear discriminant analysis (LDA),

relevant component analysis (RCA) [21], neighbourhood components analysis, and large-margin nearest neighbour

classification [22].

As well, specific timbral representations exist, the most prominent one being modeling the songs as clouds

of vectors of MFCCs, calculated on a frame basis. Logan and Salomon, [23] represent such clouds as cluster

models, comparing them with the Earth mover’s distance. Mandel and Ellis [24] compare means and covariances of

MFCCs applying the Mahalanobis distance. Furthermore, GMMs can be used to represent the clouds as probability

distributions, and then these distributions can be compared by the symmetrized Kullback-Leibler divergence.

However, in practice, approximations are required for the case of several Gaussian components in a mixture.

To this end, Aucouturier et al. [25], [26] compare GMMs by means of Monte Carlo sampling. In contrast, Mandel

and Ellis [24] and Flexer et al. [27] simplify the models to single Gaussian representations, for which a closed

form of the Kullback-Leibler divergence exists. Pampalk [13] gives a global overview of these approaches. As well,

Jensen et al. [28] provide an evaluation of different GMM configurations. Besides MFCCs, more descriptors can

be used for timbral distance measurement. For example, Li and Ogihara [29] apply a Euclidean metric on a set of

descriptors, including Daubechies wavelet coefficient histograms.

Temporal (or rhythmic) representation of the songs is another important aspect. A number of works propose

specific temporal distances in combination with timbral ones. For example, Pampalk et al. [12], [13] exploit

fluctuation patterns, which describe spectral fluctuations over time, together with several derivative descriptors,

modeling overall tempo and fluctuation information at specific frequencies. A hybrid distance is then defined as a

linear combination of a Euclidean distance on fluctuation patterns together with a timbral distance, based on GMMs

of MFCCs. Pohle et al. [14] follow this idea, but propose using a cosine similarity distance for fluctuation patterns

together with a specific distance measure related to cosine similarity for GMMs of MFCCs. Furthermore, they

propose an alternative temporal descriptor set, including a modification of fluctuation patterns (onset patterns and

onset coefficients), and additional timbral descriptors (spectral contrast coefficients, harmonicness, and attackness)

along with MFCCs for single Gaussian modeling [15], [16]. Song and Zhang [17] present a hybrid distance

measure, combining a timbral Earth mover’s distance on MFCC cluster models, a timbral Euclidean distance on

spectrum histograms, and a temporal Euclidean distance on fluctuation patterns.

Finally, some attempts to exploit tonal representation of songs exist. Ellis and Poliner [30], Marolt [31] and

Serrà et al. [32], present specific melodic and tonality distance measurements, not addressed to the task of music

similarity, but to version (cover) identification. In principle, their approaches are based on matching sequences of

pitch class profiles, or chroma feature vectors, representing the pitch class distributions (including the melody) for

different songs.
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Though common approaches for content-based music similarity may include a variety of perceptually relevant

descriptors related to different musical aspects, such descriptors are, in general, relatively low-level and not directly

associated with a semantic explanation [33]. In contrast, research on computing high-level semantic features from

low-level audio descriptors exists. In particular, in the context of MIR classification problems, genre classifica-

tion [34], mood detection [35], [36], and artist identification [24] have gathered much research attention.

Starting from the relative success of this research, we hypothesize that the combination of classification problem

outputs can be a relevant step to overcome the so-called semantic gap [33] between human judgements and low-

level machine learning inferences, specifically in the case of content-based music similarity. A number of works

support this hypothesis. Berenzweig et al. [9] propose to infer high-level semantic dimensions, such as genres and

“canonical” artists, from low-level timbral descriptors, such as MFCCs, by means of neural networks. The inference

is done on a frame basis, and the resulting clouds in high-level feature space are compared by centroids with a

Euclidean distance. Barrington et al. [8] train GMMs of MFCCs for a number of semantic concepts, such as genres,

moods, instrumentation, vocals, and rhythm. Thereafter, high-level descriptors can be obtained by computing the

probabilities of each concept on a frame basis. The resulting semantic clouds of songs can be represented by GMMs,

and compared with Kullback-Leibler divergence. McFree and Lanckriet [18] propose a hybrid low-dimensional

feature transformation embedding musical artists into Euclidean space subject to a partial order, based on a set of

manually annotated artist similarity triplets, over pairwise low-level and semantic distances. As such, the authors

consider low-level timbral distance, based on MFCCs, tonal distance, based on chroma descriptors, and the above-

mentioned semantic distance [8]. The evaluation includes the embeddings, which merge timbral and tonal distances,

and, alternatively, timbral and semantic distances. West and Lamere [10] apply classifiers to infer semantic features

of the songs. In their experiment, Mel-frequency spectral irregularities are used as an input for a genre classifier.

The output class probabilities form a new high-level feature space, and are compared with a Euclidean distance.

The authors propose to use classification and regression trees or LDA for classification.

In spite of having a variety of potential content-based approaches to music similarity, still there exist certain open

issues. The distances, operating solely on low-level audio descriptors, lack semantic explanation of similarity on a

level which human judgements operate. The majority of approaches, both low-level and high-level, focus mostly

on timbral descriptors, whereas other types of low-level descriptors, such as temporal and tonal, are potentially

useful as well. Furthermore, comparative evaluations are necessary, especially those carried out comprehensively

and uniformly on large music collections. In existing research, there is a lack of such comparative evaluations, taking

into consideration different approaches. Objective evaluation criteria of music similarity are generally reduced to

co-occurrences of genre, album, and artist labels, being tested on relatively small ground truth collections. In turn,

subjective evaluations with human raters are not common. We will focus on filling in these open issues, employing

comprehensive music collections, objective criteria for similarity, and human listeners for subjective evaluations.

As existing approaches still perform relatively poorly, we hypothesize that better performance may be achieved

by combining conceptually different distance measurements, which will help to jointly exploit different aspects of

music similarity.
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TABLE I

OVERVIEW OF MUSICAL DESCRIPTORS.

Descriptor group Descriptor class

Timbral Bark bands [35], [37]

MFCCs [13], [35], [37], [38]

Pitch [39], pitch centroid [40]

Spectral centroid, spread, kurtosis, rolloff, decrease, skewness [35], [37], [41]

High-frequency content [39], [41]

Spectral complexity [35]

Spectral crest, flatness, flux [37], [41]

Spectral energy, energy bands, strong peak, tristimulus [41]

Inharmonicity, odd to even harmonic energy ratio [37]

Rhythmic BPM, onset rate [35], [39], [41]

Beats loudness, beats loudness bass [40]

Tonal Transposed and untransposed harmonic pitch class profiles, key strength [35], [42]

Tuning frequency [42]

Dissonance [35], [43]

Chord change rate [35]

Chords histogram, equal tempered deviations, non-tempered/tempered energy ratio, diatonic strength [40]

Miscellaneous Average loudness [37]

Zero-crossing rate [13], [37]

B. Musical descriptors

In the present work, we characterize each song using an in-house audio analysis tool5. From this tool we use

59 descriptor classes in total, characterizing global properties of songs, and covering timbral, temporal, and tonal

aspects of musical audio. The majority of these descriptors are extracted on a frame-by-frame basis with a 46 ms

frame size, and 23 ms hop size, and then summarized by their means and variances across these frames. In the case

of multidimensional descriptors, covariances between components are also considered (e.g. with MFCCs). Since

it is not the objective of this paper to review existing methods for descriptor extraction, we just provide a brief

overview of the classes we use in Table I. The interested reader is referred to the cited literature for further details.

C. Baseline simple approaches

In this work, we consider a number of conceptually different simple approaches to music similarity. Among them

we indicate several baselines, which will be used in objective and subjective evaluations, and moreover will be

5http://mtg.upf.edu/technologies/essentia

http://mtg.upf.edu/technologies/essentia
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regarded as potential components of the hybrid approach.

1) Euclidean distance based on principal component analysis (L2-PCA): As a starting point, we follow the

ideas proposed by Cano et al. [19], and apply an unweighted Euclidean metric on a manually selected subset of

the descriptors outlined above6. This subset includes bark bands, pitch, spectral centroid, spread, kurtosis, rolloff,

decrease, skewness, high-frequency content, spectral complexity, spectral crest, flatness, flux, spectral energy, energy

bands, strong peak, tristimulus, inharmonicity, odd to even harmonic energy ratio, beats loudness, beats loudness

bass, untransposed harmonic pitch class profiles, key strength, average loudness, and zero-crossing rate.

Preliminary steps include descriptor normalization in the interval [0, 1] and principal component analysis (PCA) [44]

to reduce the dimension of the descriptor space to 25 variables. The choice of the number of target variables is

conditioned by a trade-off between target descriptiveness and the curse of high-dimensionality [45]–[47], typical

for Lp metrics, and is supported by research work on dimension reduction for music similarity [48]. Nevertheless,

through our PCA dimensionality reduction, an average of 78% of the information variance was preserved on our

music collections, reducing the number of 201 native descriptors by a factor of 8.

2) Euclidean distance based on relevant component analysis (L2-RCA-1 and L2-RCA-2): Along with the previous

measure, we consider more possibilities of descriptor selection. In particular, we perform relevant component analysis

(RCA) [21]. Similar to PCA, RCA gives a rescaling linear transformation of a descriptor space but is based on prelim-

inary training on a number of groups of similar songs. Having such training data, the transformation reduces irrele-

vant variability in the data while amplifying relevant variability. As in the

L2-PCA approach, the output dimensionality is chosen to be 25. We consider both the descriptor subset used

in L2-PCA and the full descriptor set of Table I (L2-RCA-1 and L2-RCA-2, respectively).

3) Kullback-Leibler divergence based on GMM of MFCCs (1G-MFCC): Alternatively, we consider timbre

modeling with GMM as another baseline approach [26]. We implement the simplification of this timbre model

using single Gaussian with full covariance matrix [24], [27], [49]. Comparative research of timbre distance measures

using GMMs indicates that such simplification can be used without significantly decreasing performance while being

computationally less complex [13], [28]. As a distance measure between single Gaussian models for songs X and

Y we use a closed form symmetric approximation of the Kullback-Leibler divergence,

d(X,Y ) =

Tr(Σ−1X ΣY ) + Tr(Σ−1Y ΣX) +

Tr((Σ−1X + Σ−1Y )(µX − µY )(µX − µY )T )−

2NMFCC , (1)

where µX and µY are MFCC means, ΣX and ΣY are MFCC covariance matrices, and NMFCC is the dimensionality

of the MFCCs. This dimensionality can vary from 10 to 20 [28], [35], [50]. To preserve robustness against different

audio encodings, the first 13 MFCC coefficients are taken [51].

6Specific details not included in the cited reference were consulted with P. Cano in personal communication.
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Fig. 1. General schema of CLAS distance. Given two songs X and Y, low-level audio descriptors are extracted, a number of SVM classifications

are run based on ground truth music collections, and high-level representations, containing probabilities of classes for each classifier, are obtained.

A distance between X and Y is calculated with correlation distances such as Pearson correlation distance.

III. PROPOSED SIMPLE APPROACHES

Concerning simple approaches to music similarity, here we propose two novel distance measures that are

conceptually different than what has been reviewed. We regard both approaches as potential components of the

hybrid approach.

A. Tempo-based distance (TEMPO)

The first approach we propose is related to the exploitation of tempo-related musical aspects with a simple

distance measure. This measure is based on two descriptors, beats per minute (BPM) and onset rate (OR), the latter

representing the number of onsets per second. These descriptors are fundamental for the temporal description of

music. Among different implementations, we opted for BPM and OR estimation algorithms presented in [39].

For two songs X and Y with BPMs XBPM and YBPM, and ORs XOR and YOR, respectively, we determine a

distance measure by a linear combination of two separate distance functions,

d(X,Y ) = wBPMdBPM(X,Y ) + wORdOR(X,Y ), (2)

defined for BPM as

dBPM(X,Y ) = min
i∈N

(
αi−1

BPM

∣∣∣∣max(XBPM, YBPM)

min(XBPM, YBPM)
− i

∣∣∣∣), (3)

and for OR as

dOR(X,Y ) = min
i∈N

(
αi−1

OR

∣∣∣∣max(XOR, YOR)

min(XOR, YOR)
− i

∣∣∣∣), (4)
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where XBPM, YBPM, XOR, YOR > 0, αBPM, αOR ≥ 1. The parameters wBPM and wOR of Eq. 2 define the weights

for each distance component. Eq. 3 (Eq. 4) is based on the assumption that songs with the same BPMs (ORs)

or multiples of the BPM (OR), e.g. XBPM = iYBPM, are more similar than songs with non-multiple BPMs (ORs).

For example, the songs X and Y with XBPM = 140 and YBPM = 70 should have a closer distance than the songs

X and Z with ZBPM = 100. Our assumption is motivated by research on the perceptual effects of double or half

tempo [52]. The strength of this assumption depends on the parameter αBPM (αOR). Moreover, such a distance can

be helpful in relation to the common problem of tempo duplication (or halving) in automated tempo estimation [53],

[54]. In the case of αBPM = 1, all multiple BPMs are treated equally, while in the case of αBPM > 1, preference

inversely decreases with i. In practice we use i = 1, 2, 4, 6.

Eqs. 2, 3, and 4 formulate the proposed distance in the general case. In a parameter-tuning phase we performed a

grid search with one of the ground truth music collections (RBL) under the objective evaluation criterion described

in Sec. IV-A. Using this collection, which is focused on rhythmic aspects and contains songs with various rhythmic

patterns, we found wBPM =wOR =0.5 and αBPM =αOR =30 to be the most plausible parameter configuration. Such

values reveal the fact that in reality both components are equally meaningful and that mainly a one-to-one relation

of BPMs (ORs) is relevant for for the music collection and descriptors we used to evaluate such rhythmic similarity.

When our BPM (OR) estimator has increased duplicity errors (e.g. a BPM of 80 was estimated as 160), we should

expect lower α values.

B. Classifier-based distance (CLAS)

The second approach we propose derives a distance measure from diverse classification tasks. In contrast to the

aforementioned methods, which directly operate on a low-level descriptor space, we first infer high-level semantic

descriptors using suitably trained classifiers and then define a distance measure operating on this newly formed

high-level semantic space. A schema of the approach is presented in Fig. 1

For the first step we choose standard multi-class support vector machines (SVMs) [44], which are shown to be an

effective tool for different classification tasks in MIR [24], [35], [36], [55], [56]. We apply SVMs to infer different

groups of musical dimensions such as (i) genre and musical culture, (ii) moods and instruments, and (iii) rhythm

and tempo. To this end, 14 classification tasks are run according to all available ground truth collections presented

in Table II. More concretely, we train one SVM per each ground truth collection, providing its annotated songs as

a training input. For each collection and the corresponding SVM, a preliminary correlation-based feature selection

(CFS) [44] over all available [0, 1]-normalized descriptors (Sec. II-B) is performed to optimize the descriptor

selection for this particular classification task. As an output, the classifier provides probability values of classes on

which it was trained. For example, a classifier using the G1 collection is trained on an optimized descriptor space,

according to the collection’s classes and the CFS process, and returns genre probabilities for the labels “alternative”,

“blues”, “electronic”, “folk/country”, etc. Altogether, the classification results form a high-level descriptor space,

which contains the probability values of each class for each SVM. Based on results in [35], we decided to use the
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libSVM7 implementation with the C-SVC method and a radial basis function kernel with default parameters.

For the second step, namely defining a distance operating on a formed high-level semantic space (i.e. the one of

the label probabilities), we consider different measures frequently used in collaborative filtering systems. Among

the standard ones, we select the cosine distance (CLAS-Cos), Pearson correlation distance (CLAS-Pears) [5], [57],

and Spearman’s rho correlation distance (CLAS-Spear) [58]. Moreover, we consider a number of more sophisticated

measures. In particular, the adjusted cosine distance (CLAS-Cos-A) [5], [57] is computed by taking into account

the average probability for each class, i.e. compensating distinction between classifiers with different numbers of

classes. Weighted cosine distance (CLAS-Cos-W) [59] and weighted Pearson correlation distance (CLAS-Pears-

W) [60] are both weighted manually (WM ) and also based on classification accuracy (WA). For WM , we split the

collections into 3 groups of musical dimensions, namely genre and musical culture, moods and instruments, and

rhythm and tempo. We empirically assign weights 0.50, 0.30, and 0.20 respectively. Our choice is supported by

research on the effect of genre in terms of music perception [11], [61] and the fact that genre is the most common

aspect of similarity used to evaluate distance measures in the MIR community [12]. For WA, we evaluate the

accuracy of each classifier, and assign proportional weights which sum to 1.

With this setup, the problem of content-based music similarity can be seen as a collaborative filtering problem of

item-to-item similarity [57]. Such a problem can generally be solved by calculating a correlation distance between

rows of a song/user rating matrix with the underlying idea that similar items should have similar ratings by certain

users. Transferring this idea to our context, we can state that similar songs should have similar probabilities of

certain classifier labels. To this extent, we compute song similarity on a song/user rating matrix with class labels

playing the role of users, and probabilities playing the role of user ratings, so that each N -class classifier corresponds

to N users.

IV. EVALUATION OF SIMPLE APPROACHES

We evaluated all considered approaches with a uniform methodological basis, including an objective evaluation

on comprehensive ground truths and a subjective evaluation based on ratings given by real listeners. As an initial

benchmark for the comparison of the considered approaches we used a random distance (RAND), i.e. we selected

a random number from the standard uniform distribution as the distance between two songs.

A. Objective evaluation methodology

In our evaluations we covered different musical dimensions such as genre, mood, artist, album, culture, rhythm, or

presence or absence of voice. A number of ground truth music collections (including both full songs and excerpts)

were employed for that purpose, and are presented in Table II. For some dimensions we used existing collections

in the MIR field [34], [36], [55], [62]–[64], while for other dimensions we created manually labeled in-house

collections. For each collection, we considered songs from the same class to be similar and songs from different

classes to be dissimilar, and assessed the relevance of the songs’ rankings returned by each approach.

7http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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TABLE II

GROUND TRUTH MUSIC COLLECTIONS EMPLOYED FOR OBJECTIVE EVALUATION OF THE SIMPLE APPROACHES. ALL PRESENTED

COLLECTIONS ARE USED FOR TRAINING CLAS-BASED DISTANCES, EXCEPT G3, ART, AND ALB COLLECTIONS DUE TO INSUFFICIENT

SIZE OF THEIR CLASS SAMPLES.

Acronym Category Classes (musical dimensions) Size Source

G1 Genre & Culture Alternative, blues, electronic, folk/country,

funk/soul/rnb, jazz, pop, rap/hiphop, rock

1820 song excerpts, 46 - 490 per genre [62]

G2 Genre & Culture Classical, dance, hip-hop, jazz, pop,

rhythm’n’blues, rock, speech

400 full songs, 50 per genre In-house

G3 Genre & Culture Alternative, blues, classical, country, elec-

tronica, folk, funk, heavy metal, hip-hop,

jazz, pop, religious, rock, soul

140 full songs, 10 per genre [63]

G4 Genre & Culture Blues, classical, country, disco, hip-hop,

jazz, metal, pop, reggae, rock

993 song excerpts, 100 per genre [34]

CUL Genre & Culture Western, non-western 1640 song excerpts, 1132/508 per class [55]

MHA Moods & Instruments Happy, non-happy 302 full songs + excerpts, 139/163 per class [36] + in-house

MSA Moods & Instruments Sad, non-sad 230 full songs + excerpts, 96/134 per class [36] + in-house

MAG Moods & Instruments Aggressive, non-aggressive 280 full songs + excerpts, 133/147 per class [36] + in-house

MRE Moods & Instruments Relaxed, non-relaxed 446 full songs + excerpts, 145/301 per class [36] + in-house

MPA Moods & Instruments Party, non-party 349 full songs + excerpts, 198/151 per class In-house

MAC Moods & Instruments Acoustic, non-acoustic 321 full songs + excerpts, 193/128 per class [36] + in-house

MEL Moods & Instruments Electronic, non-electronic 332 full songs + excerpts, 164/168 per class [36] + in-house

MVI Moods & Instruments Voice, instrumental 1000 song excerpts, 500 per class In-house

ART Artist 200 different artist names 2000 song excerpts, 10 per artist In-house

ALB Album 200 different album titles 2000 song excerpts, 10 per album In-house

RPS Rhythm & Tempo Perceptual speed: slow, medium, fast 3000 full songs, 1000 per class In-house

RBL Rhythm & Tempo Chachacha, jive, quickstep, rumba, samba,

tango, viennese waltz, waltz

683 song excerpts, 60 - 110 per class [64]

To assess the relevance of the songs’ rankings, we used the mean average precision (MAP) measure [65]. The

MAP is a standard information retrieval measure used in the evaluation of many query-by-example tasks. For

each approach and music collection, MAP was computed from the corresponding full distance matrix. The average

precision (AP) [65] was computed for each matrix row (for each song query) and the mean was calculated across

queries (columns).

For consistency, we applied the same procedure to each of the considered distances, whether they required training

or not: the results for RAND, L2-PCA, L2-RCA-1, L2-RCA-2, 1G-MFCC, TEMPO, and CLAS-based distances

were averaged over 5 iterations of 3-fold cross-validation. On each iteration, all 17 ground truth collections were
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TABLE III

OBJECTIVE EVALUATION RESULTS (MAP) OF THE SIMPLE APPROACHES FOR THE DIFFERENT MUSIC COLLECTIONS CONSIDERED. N.C.

STANDS FOR “NOT COMPUTED” DUE TO TECHNICAL DIFFICULTIES. FOR EACH COLLECTION, THE MAPS OF THE APPROACHES, WHICH

PERFORM BEST WITHOUT STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN THEM, ARE MARKED IN BOLD.

Method G1 G2 G3 G4 CUL MHA MSA MAG MRE MPA MAC MEL MVI ART ALB RPS RBL

RAND 0.17 0.16 0.20 0.12 0.58 0.53 0.55 0.53 0.58 0.53 0.54 0.52 0.51 0.02 0.02 0.34 0.15

L2-PCA 0.24 0.39 0.23 0.24 0.69 0.58 0.69 0.80 0.73 0.67 0.72 0.58 0.56 0.08 0.11 0.40 0.24

L2-RCA-1 0.23 0.34 0.13 0.26 0.73 0.53 0.54 0.55 0.59 0.56 0.57 0.54 0.60 0.10 0.16 0.38 0.21

L2-RCA-2 0.22 0.19 0.13 0.24 0.73 0.52 0.53 0.53 N.C. 0.54 0.54 0.53 0.58 0.09 0.15 0.38 0.20

1G-MFCC 0.29 0.43 0.26 0.29 0.85 0.58 0.68 0.84 0.74 0.69 0.70 0.58 0.61 0.15 0.24 0.39 0.25

TEMPO 0.22 0.36 0.19 0.17 0.60 0.56 0.59 0.53 0.58 0.61 0.56 0.56 0.52 0.03 0.02 0.38 0.44

CLAS-Pears 0.32 0.61 0.29 0.40 0.84 0.69 0.81 0.93 0.86 0.85 0.85 0.66 0.62 0.05 0.06 0.43 0.35

CLAS-Pears-WM 0.33 0.67 0.30 0.43 0.88 0.68 0.80 0.91 0.85 0.84 0.83 0.65 0.59 0.06 0.06 0.44 0.35

Fig. 2. Objective evaluation results (MAP) of the simple approaches for the different music collections considered.

split into training and testing sets. For each testing set, the CLAS-based distances were provided with 14 out of

17 training sets. The G3, ART, and ALB collections were not included as training sets due to the insufficient size

of their class samples. In contrast, for each testing set, L2-RCA-1, and L2-RCA-2 were provided with a single

complementary training set belonging to the same collection.

B. Objective evaluation results

The average MAP results are presented in Fig. 2 and Table III. Additionally, the approaches with statistically

non-significant difference in MAP performance according to the independent two-sample t-tests are presented in

Table IV. These t-tests were conducted to separately compare the performances for each music collection. In the
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cases that are not reported in Table IV, we found statistically significant differences in MAP performance (p < 0.05).

We first see that all considered distances outperform the random baseline (RAND) for most of the music

collections. When comparing baseline approaches (L2-PCA, L2-RCA-1, L2-RCA-2, 1G-MFCC), we find 1G-MFCC

to perform best on average. Still, L2-PCA performs similarly (MHA, MSA, MRE, and MEL) or slightly better for

some collections (MAC and RPS). With respect to tempo-related collections, TEMPO performs similarly (RPS)

or significantly better (RBL) than baseline approaches. Indeed, it is the best performing distance for the RBL

collection. Surprisingly, TEMPO yielded accuracies which are comparable to some of the baseline approaches for

music collections not strictly related to rhythm or tempo such as G2, MHA, and MEL. In contrast, no statistically

significant difference was found in comparison with the random baseline for the G3, MAG, MRE, and ALB

collections. Finally, we saw that classifier-based distances achieved the best accuracies for the majority of the

collections. Since all CLAS-based distances (CLAS-Cos, CLAS-Pears, CLAS-Spear, CLAS-Cos-W, CLAS-Pears-

W, CLAS-Cos-A) showed comparable accuracies, we only report two examples (CLAS-Pears, CLAS-Pears-WM ).

In particular, CLAS-based distances achieved large accuracy improvements with the G2, G4, MPA, MSA, and MAC

collections. In contrast, no improvement was achieved with the ART, ALB, and RBL collections. The distance 1G-

MFCC performed best for the ART and ALB collections. We hypothesize that the success of 1G-MFCC for the

ART and ALB collections might be due to the well known “album effect” [24]. This effect implies that, due to

production process, songs from the same album share much more timbral characteristics than songs from different

albums of the same artist, and, moreover, different artists.

C. Subjective evaluation methodology

In the light of the results of the objective evaluation (Sec. IV-B), we selected 4 conceptually different approaches

(L2-PCA, 1G-MFCC, TEMPO, and CLAS-Pears-WM ) together with the random baseline (RAND) for the listeners’

subjective evaluation. We designed a web-based survey where registered listeners performed a number of iterations

blindly voting for the considered distance measures, assessing the quality of how each distance reflects perceived

music similarity. In particular, we evaluated the resulting sets of most similar songs produced by the selected

approaches, hereafter referred as “playlists”. Such a scenario is a popular way to assess the quality of music

similarity measures [3], [6]. It increases discrimination between approaches in comparison with a pairwise song-to-

song evaluation. Moreover, it reflects the common applied context of music similarity measurement, which consists

of playlist generation.

During each iteration, the listener was presented with 5 different playlists (one for each measure) generated from

the same seed song (Fig. 3). Each playlist consisted of the 5 nearest-to-the-seed songs. The entire process used

an in-house collection of 300K music excerpts (30 sec.) by 60K artists (5 songs/artist) covering a wide range of

musical dimensions (different genres, styles, arrangements, geographic locations, and epochs). No playlist contained

more than one song from the same artist.

Independently for each playlist, we asked the listeners to provide (i) a playlist similarity rating and (ii) a playlist

inconsistency boolean answer. For playlist similarity ratings we used a 6-point Likert-type scale (0 corresponding to
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Fig. 3. A screenshot of the subjective evaluation web-based survey.

the lowest similarity, 5 to the highest) to evaluate the appropriateness of the playlist with respect to the seed. Likert-

type scales [66] are bipolar scales used as tools-of-the-trade in many disciplines to capture subjective information,

such as opinions, agreements, or disagreements with respect to a given issue or question. The two opposing positions

occupy the extreme ends of the scale (in our case, low-high similarity of the playlist to the seed), and several

ratings are allocated for intermediate positions. We explicitly avoided a “neutral” point in order to increase the

discrimination between positive and negative opinions. We did not present examples of playlist inconsistency but

they might comprise of speech mixed with music, extremely different tempos, completely opposite feelings or

emotions, distant musical genres, etc.

We divided the test into two phases: in the first, 12 seeds and corresponding playlists were shared between all

listeners; in the second one the seeds for each listener (up to a maximum of 21) were randomly selected. Listeners

were never informed of this distinction. Additionally, we asked each listener about his musical background, which

included musicianship and listening expertise information (each measured in 3 levels). Altogether we collected

playlist similarity ratings, playlist inconsistency indicators, and background information from 12 listeners8.

D. Subjective evaluation results

In any experimental situation such as our subjective evaluation, analysis of variance (ANOVA) is the usual

methodology employed to assess the effects of one variable (like the similarity computation approach) on another

one (such as the similarity rating obtained from listeners). ANOVA provides a statistical test of whether or not the

means of several groups (in our case, the ratings obtained using a specific similarity computation approach) are equal.

In addition to the effect of the different similarity computation methods, in our evaluation we wanted to know the

possible effect of the musicianship and listening experience of the participants. Furthermore, we also wanted to know

the effect produced by the two consecutive testing phases used (one presenting the same songs to all the listeners,

and the other using different songs for each of them). Therefore a mixed-design ANOVA with two between-subjects

8Due to confidential reasons, the survey was conducted on a limited closed set of participants, and was unavailable to general public.
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TABLE IV

THE APPROACHES WITH STATISTICALLY NON-SIGNIFICANT DIFFERENCE IN MAP PERFORMANCE ACCORDING TO THE INDEPENDENT

TWO-SAMPLE T-TESTS. THE L2-RCA-2 APPROACH WAS EXCLUDED FROM THE ANALYSIS DUE TO TECHNICAL DIFFICULTIES.

Collection Compared approaches P-value

G3 RAND, TEMPO 0.40

MHA RAND, L2-RCA-1 1.00

L2-PCA, 1G-MFCC 1.00

CLAS-Pears, CLAS-Pears-WM 0.37

MSA L2-PCA, 1G-MFCC 0.37

CLAS-Pears, CLAS-Pears-WM 0.50

MAG RAND, TEMPO 1.00

MRE RAND, TEMPO 0.33

L2-PCA, 1G-MFCC 0.09

CLAS-Pears, CLAS-Pears-WM 0.37

MPA CLAS-Pears, CLAS-Pears-WM 0.50

MAC CLAS-Pears, CLAS-Pears-WM 0.08

MEL L2-PCA, 1G-MFCC 1.00

CLAS-Pears, CLAS-Pears-WM 0.37

ALB RAND, TEMPO 0.33

CLAS-Pears, CLAS-Pears-WM 0.33

RPS L2-RCA-1, TEMPO 1.00

factors (musicianship and listening expertise) and two within-subjects factors (similarity computation approach and

testing phase) was required. Results from this analysis revealed that the effect of the similarity computation method

on the similarity ratings was statistically significant (Wilks Lambda = 0.005, F (4, 2) = 93.943, p < 0.05) and that

it separated the methods in 3 different groups: RANDOM and L2-PCA (which yielded the lowest similarity ratings)

versus TEMPO versus 1G-MFCC and CLAS-Pears-WM (which yielded the highest similarity ratings). The same

pattern was obtained for the effects on the inconsistency ratings. The effect of the testing phase, also found to be

significant, reveals that ratings yielded slightly lower values in the second phase. This could be due to the “tuning”

of the similarity ratings experienced by each subject as the experiment proceeded. Fortunately, the impact of phase

was uniform and did not depend on or interact with any other factor. Hence, the similarity ratings are only made

“finer” or more “selective” as the experiment progresses, but irrespective of the similarity computation approach.

On the other hand, the potential effects of musicianship and listening expertise revealed no impact on the similarity

ratings. Overall, we conclude that the L2-PCA and TEMPO distances, along with a random baseline, revealed poor

performance, tending to provide disruptive examples of playlist inconsistency. Contrastingly, CLAS-Pears-WM and
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Fig. 4. Average playlist similarity rating and proportion of inconsistent playlists for the subjective evaluation of the simple approaches. Error

bars indicate 1 Standard Error of the Mean.

1G-MFCC revealed acceptable performance with slightly positive user satisfaction. We have omitted for clarity the

specific results of the statistical tests which validated our concluding statements.

V. SEMANTIC EXPLANATION OF MUSIC SIMILARITY

Here we give some thoughts concerning the proposed CLAS distance and its semantic application. An interesting

aspect of this proposed approach is the ability to provide a user of the final system with a concrete motivation for

the retrieved songs starting from a purely audio content-based analysis. To the best of the authors’ knowledge,

this aspect is very rare among other music content-processing systems [67]. However, there is evidence that

retrieval or recommendation results perceived as transparent (getting an explanation of why a particular retrieval or

recommendation was made) are preferred by users, increasing there confidence in a system [68].

Remarkably, the proposed classifier-based distance gives the possibility of providing high-level semantic de-

scriptions for the similarity between a pair of songs along with the distance value itself. In a final system, such

annotations can be presented in terms of probability values of the considered dimensions that can be understood

by a user. Alternatively, automatic text generation can be employed to present the songs’ qualities in a textual way.

For a brief justification of similarity, a subset of dimensions with the highest impact on overall similarity can be

selected. A simple use-case example is shown in Fig 5. For a pair of songs and the CLAS-Pears-WM distance

measure, a subset of 15 dimensions was determined iteratively by greedy distance minimization. In each step the

best candidate for elimination was selected from different dimensions, and its weight was zeroed. Thereafter, the
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Fig. 5. A real example of a semantic explanation of the similarity between two songs retrieved from our music collection for the classifier-based

distance.

residual dimension probabilities that exceeded corresponding random baselines9 can be presented to a user. Notice

however that as random baselines differ for different dimensions depending on the number of output classes of

the corresponding classifier, the significance of dimension probabilities cannot be treated equally. For example, the

0.40 probability of a dimension regressed by an 8-class classifier is considerably more significant than the 0.125

random baseline. Though not presented, the dimensions with probabilities below random baselines also have an

impact on the distance measurement. Still, such negative statements (in the sense of a low probability of a regressed

dimension) are probably less suitable than positive ones for justification of music similarity to a user.

VI. PROPOSED HYBRID APPROACH (HYBRID)

Finally, we hypothesize that an important performance gain can be achieved by combining conceptually different

approaches, covering timbral, rhythmic, and semantic aspects of music similarity. We propose a hybrid distance

measure, consisting of a subset of the simple measures described above. We define the distance as a weighted linear

combination of L2-PCA, 1G-MFCC, TEMPO, and CLAS-Pears-WM distances. We select these 4 conceptually

different approaches relying on the results of the objective evaluation of potential components (Sec. IV-B). For each

selected component, we apply score normalization, following ideas in [69], [70]. More concretely, each original

distance variable di is equalized to a new variable di = Ei(di), uniformly distributed in [0, 1]. The equalizing

function Ei is given by the cumulative distribution function of di, which can be obtained from a distance matrix

on a given representative music collection. As such, we use an aggregate collection of 16K full songs and music

excerpts, composed from the ground truth collections previously used for objective evaluation of simple approaches

(Table II). The final hybrid distance is obtained by a weighted linear combination of component distances. The

weights are based on the results of the subjective evaluation (Sec. IV-D) and are set as follows: 0.7 for L2-PCA,

3.0 for 1G-MFCC, 1.2 for TEMPO, and 3.0 for CLAS-Pears-WM distances. Hence, for each component a weight

corresponds to an average playlist similarity rating given by listeners.

9Under the assumptions of the normal distribution of each classifier’s labels for a music collection.
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VII. EVALUATION OF HYBRID APPROACH

A. Objective evaluation methodology

Here we followed a different evaluation strategy than with the simple approaches. This strategy comes from

the fact that the ground truth music collections available to our evaluation, both in-house and public, can have

different biases (due to different collection creators, music availability, audio formats, covered musical dimensions,

how the collection was formed, etc.). Therefore, in order to minimize these effects, we carried out a large-scale

cross-collection evaluation of the hybrid approach against its component approaches, namely L2-PCA, 1G-MFCC,

TEMPO, and CLAS-Pears-WM , together with the random baseline (RAND). Cross-collection comparison implies

that the queries and their answers belong to different music collections (out-of-sample results), thus making

evaluation results more robust to possible biases.

Solely the genre musical dimension was covered in this experiment. Two large in-house ground truth music

collections were employed for that purpose: (i) a collection of 299K music excerpts (30 sec.) (G-C1), and (ii)

a collection of 73K full songs (G-C2). Both collections had a genre label associated with every song. In total,

218 genres and subgenres were covered. The size of these music collections is considerably large, which makes

evaluation conditions closer to a real world scenario. As queries, we randomly selected songs from the 10 most

common genres from both collections G-C1 and G-C2. The distribution of the selected genres among the collections

is presented in Table V. More concretely, for each genre, 790 songs from collection G-C1 were randomly selected

as queries. The number of queries per genre corresponds to a minimum number of genre occurrences among the

selected genres.

Each query was applied to the collection G-C2, forming a full row in a distance matrix. As with the objective

evaluation of simple approaches (Sec. IV-A), MAP was used as an evaluation measure, but was calculated with a

cutoff (similarly to pooling techniques in text retrieval [71]–[73]) equal to the 10 closest matches due to the large

dimensionality of the resulting distance matrix. The evaluation results were averaged over 5 iterations. In the same

manner, a reverse experiment was carried out, using songs from the G-C2 collection as queries, and applied to the

collection G-C1. As the evaluation was completely out-of-sample, the full ground truth collections were used to

train the CLAS approach.

B. Objective evaluation results

The results are presented in Table VI. In addition, we analyzed the obtained MAPs with a series of independent

two-sample t-tests. All the approaches were found to perform with statistically significant difference (p < 0.001).

We see that all considered distances outperform the random baseline (RAND). We found 1G-MFCC and CLAS-

Pears-WM to have comparable performance, being the best among the simple approaches. As well, the TEMPO

distance was found to perform similarly or slightly better than L2-PCA. Overall, the results for simple approaches

conform with our previous objective evaluation. Meanwhile, our proposed HYBRID distance achieved the best

accuracy in the cross-collection evaluation in both directions.
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TABLE V

NUMBER OF OCCURRENCES OF 10 MOST FREQUENT GENRES, COMMON FOR COLLECTIONS G-C1 AND G-C2.

Genre G-C1 G-C2

Reggae 2991 790

New Age 4294 1034

Blues 6229 2397

Country 8388 1699

Folk 10367 1774

Pop 15796 4523

Electronic 16050 4038

Jazz 22227 5440

Classical 43761 4802

Rock 49369 11486

TABLE VI

OBJECTIVE CROSS-COLLECTION EVALUATION RESULTS (MAP WITH CUTOFF AT 10) AVERAGED OVER 5 ITERATIONS.

Distance G-C1 → G-C2 G-C2 → G-C1

RANDOM 0.07 0.08

L2-PCA 0.09 0.11

1G-MFCC 0.23 0.22

TEMPO 0.11 0.12

CLAS-Pears-WM 0.21 0.23

HYBRID 0.25 0.28

C. Subjective evaluation methodology

We repeated the listening experiment, conducted for simple approaches (Sec. IV-C) to evaluate the hybrid approach

against its component approaches. The same music collection of 300K music excerpts (30 sec.) by 60K artists (5

songs/artist) was used for that purpose. Each listener was presented with a series of 24 iterations, which, according

to the separation of the experiment into two phases, included 12 iterations with seeds and corresponding playlists

shared between all listeners, and 12 iterations with randomly selected seeds, different for each listener. In total, we

collected playlist similarity ratings, playlist inconsistency indicators, and background information about musicianship

and listening expertise from 21 listeners.
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Fig. 6. Average playlist similarity rating and proportion of inconsistent playlists for the subjective evaluation of the hybrid approach. Error

bars indicate 1 Standard Error of the Mean.

D. Subjective evaluation results

An ANOVA with two between-subjects factors (musicianship and listening expertise) and two within-subjects

factors (similarity computation approach and testing phase) was used to test their effects on the similarity ratings and

on the inconsistency ratings given by the listeners (Fig. 6). The only clearly significant factor explaining the observed

variance in the similarity ratings was the similarity computation approach (Wilks lambda = 0.43, F (4, 11) = 9.158,

p < 0.005). The specific pattern of significant differences between the tested computation approaches makes the

HYBRID metric to clearly stand out from the rest, while L2-PCA and TEMPO score low (but without statistical

differences between them), and CLAS-Pears-WM and 1G-MFCC (again without statistically significant differences

between them) score between the two extremes. As we did not find any significant effect of musicianship and

listening expertise on the similarity ratings, it seems clear that the differences in similarity ratings can be attributed

only to the differences in the similarity computation approaches.

The same pattern and meaning was also found for the inconsistency ratings: they were dependent on the similarity

computation approach, and most of them were generated by the L2-PCA and TEMPO methods, whereas the

HYBRID method provided significantly lower inconsistency ratings. No other factor or interaction between factors

was found to be statistically significant, but a marginal interaction effect of similarity computation approach and

testing phase was found. This effect means that some similarity computation methods (but not all) lowered the

ratings as the evaluation progressed. The same pattern was obtained for the inconsistency ratings. In conclusion,

we found a similarity computation method (HYBRID) that was clearly preferred over the rest and no effect other

than the computation method was responsible for that preference.
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VIII. MIREX 2009 EVALUATION

A. Methodology

We submitted the HYBRID and CLAS-Pears-WM systems to the Music Information Retrieval Evaluation eX-

change (MIREX). MIREX is an international community-based framework for the formal evaluation of MIR systems

and algorithms [74], [75]. Among other tasks, MIREX allows for the comparison of different algorithms for artist

identification, genre classification, or music transcription. In particular, MIREX allows for a subjective human

assessment of the accuracy of different approaches to music similarity by community members, this being a central

task within the framework. For that purpose, participants can submit their algorithms as binary executables and the

MIREX organizers determine and publish the algorithms’ accuracies and runtimes. The underlying music collections

are never published or disclosed to the participants, neither before or after the contest. Therefore, participants cannot

tune their algorithms to the music collections used in the evaluation process.

In the MIREX’2009 edition, the evaluation of each submitted approach was performed on a music collection of

7000 songs (30 sec. excerpts), which were chosen from IMIRSEL’s10 collections [75] and pertained to 10 different

genres. For each participant’s approach, a 7000×7000 distance matrix was calculated. A query set of 100 songs

was randomly selected from the music collection, representing each of the 10 genres (10 songs per genre). For

each query and participant approach, the 5 nearest-to-the-query songs out of the 7000 were chosen as candidates

(after filtering out the query itself and all songs of the same artist). All candidates were evaluated by human

graders using the Evalutron 6000 grading system [76]. For each query, a single grader was assigned to evaluate

the derived candidates from all approaches. Thereby, the uniformity of scoring within each query was ensured. For

each query/candidate pair, a grader provided (i) a categorical broad score in the set {0, 1, 2} (corresponding to

“not similar”, “somewhat similar”, and “very similar” categories), and (ii) a fine score in the range from 0 (failure)

to 10 (perfection). The listening experiment was conducted with 50 graders, and each one of them evaluated 2

queries. As this evaluation was completely out-of-sample, our submitted systems were trained on the full ground

truth collections required for the CLAS distance.

B. Results

The overall evaluation results are reproduced in Table VII11. Our measures are noted as BSWH1 for CLAS-

Pears-WM , and BSWH2 for HYBRID. The results of the Friedman test against the summary data of fine scores

are presented in Fig. 7. First, and most importantly, we found the HYBRID measure to be one of the best

performing distances in the MIREX 2009 audio music similarity task. HYBRID was very close to PS1, but worse

than the leading PS2 distance [15]. However, no statistically significant difference between PS2, PS1 and our

HYBRID measure was found in the Friedman test. Second, the CLAS-Pears-WM measure revealed satisfactory

10http://www.music-ir.org/evaluation/
11Detailed results can be found on the official results webpage for MIREX’2009: http://www.music-ir.org/mirex/2009/index.php/Audio Music

Similarity and Retrieval Results

http://www.music-ir.org/evaluation/
http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_Retrieval_Results
http://www.music-ir.org/mirex/2009/index.php/Audio_Music_Similarity_and_Retrieval_Results
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TABLE VII

MIREX 2009 OVERALL SUMMARY RESULTS SORTED BY AVERAGE FINE SCORE. THE PROPOSED APPROACHES CLAS AND HYBRID ARE

HIGHLIGHTED IN GRAY (BSWH1 AND BSWH2, RESPECTIVELY).

Acronym Authors (measure) Average fine score Average broad score

PS2 Tim Pohle, Dominik Schnitzer (2009) 6.458 1.448

PS1 Tim Pohle, Dominik Schnitzer (2007) 5.751 1.262

BSWH2 Dmitry Bogdanov, Joan Serrà, Nicolas Wack, and Perfecto Herrera (HYBRID) 5.734 1.232

LR Thomas Lidy, Andreas Rauber 5.470 1.148

CL2 Chuan Cao, Ming Li 5.392 1.164

ANO Anonymous 5.391 1.126

GT George Tzanetakis 5.343 1.126

BSWH1 Dmitry Bogdanov, Joan Serrà, Nicolas Wack, and Perfecto Herrera (CLAS-Pears-WM ) 5.137 1.094

SH1 Stephan Hübler 5.042 1.012

SH2 Stephan Hübler 4.932 1.040

BF2 Benjamin Fields (mfcc10) 2.587 0.410

ME2 François Maillet, Douglas Eck (sda) 2.585 0.418

CL1 Chuan Cao, Ming Li 2.525 0.476

BF1 Benjamin Fields (chr12) 2.401 0.416

ME1 François Maillet, Douglas Eck (mlp) 2.331 0.356

average performance comparing to other distances with no statistically significant difference to the majority of the

participant approaches. Nevertheless, CLAS-Pears-WM outperformed a large group of poor performing distances

with a statistically significant difference. Finally, we state that despite the fact that we do not observe examples of

stable excellent performance among all participant distances, up to above-average user satisfaction was achieved by

the majority of the approaches, including our HYBRID and CLAS-Pears-WM distances.

IX. CONCLUSIONS

In the current work we presented, studied, and comprehensively evaluated, both objectively and subjectively, new

and existing content-based distance measures for music similarity. We studied a number of simple approaches, each

of which apply a uniform distance measure for overall similarity. We considered 5 baseline distances, including a

random one. We explored the potential of two new conceptually different distances not strictly operating on the

often exclusively used musical timbre aspects. More concretely, we presented a simple tempo-based distance which

can be especially useful for expressing music similarity in collections where rhythm aspects are predominant. Using

only two low-level temporal descriptors, BPM and OR, this distance is computationally inexpensive, yet effective

for such collections. As well, our subjective evaluation experiments revealed a slight preference by listeners of
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Fig. 7. MIREX 2009 Friedman’s test (fine scores). Figure obtained from the official results webpage for MIREX’2009.

tempo-based distance over a generic euclidean distance.

In addition, we investigated the possibility of benefiting from the results of classification problems and transferring

this gained knowledge to the context of music similarity. To this end, we presented a classifier-based distance which

makes use of high-level semantic descriptors inferred from low-level ones. This distance covers diverse groups of

musical dimensions such as genre and musical culture, moods and instruments, and rhythm and tempo. The classifier-

based distance outperformed all the considered simple approaches in most of the ground truth music collections

used for objective evaluation. Contrastingly, this performance improvement was not seen in the subjective evaluation

when compared with the best performing baseline distance considered. However, they were found to perform at

the same level and, therefore, no statistically significant differences were found between them. In general, the

classifier-based distance represents a semantically rich approach to music similarity. Thus, in spite of being based

solely on audio content information, this approach can overcome the so-called “semantic gap” in content-based

music similarity and provide a semantic explanation to justify the retrieval results to a user.
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We explored the possibility of creating a hybrid approach, based on the studied simple approaches as potential

components. We presented a new distance measure, which combines a low-level Euclidean distance based on

principal component analysis (PCA), a timbral distance based on single Gaussian MFCC modeling, our tempo-based

distance, and a high-level semantic classifier-based distance. This distance outperformed all previously considered

approaches in an objective large-scale cross-collection evaluation, and revealed the best performance for listeners

in a subjective evaluation. Moreover, we participated in a subjective evaluation against a number of state-of-the-art

distance measures, within the bounds of the MIREX’2009 audio music similarity and retrieval task. The results

revealed high performance of our hybrid measure, with no statistically significant difference from the best performing

method submitted. In general, the hybrid distance represents a combinative approach, benefiting from timbral,

rhythmic, and high-level semantic aspects of music similarity.

Further research will be devoted to improving the classifier-based distance with the addition of classifiers dealing

with musical dimensions such as tonality or instrument information. Given that several separate dimensions can be

straightforwardly combined with this distance, additional improvements are feasible and potentially beneficial. In

particular, contextual dimensions, in the form of user ratings or social tags, can be added to make possible a fusion

with collaborative filtering approaches. As well, to improve the classifier-based distance itself, we will consider a

better combination of classifiers’ output probabilities. Additionally, an enhancement of the tempo-based distance

component of the proposed hybrid approach is possible by using a richer representation for rhythm, such as the

fluctuation patterns.
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[36] C. Laurier, O. Meyers, J. Serrà, M. Blech, and P. Herrera, “Music mood annotator design and integration,” in International Workshop on

Content-Based Multimedia Indexing (CBMI’2009), 2009.

[37] G. Peeters, “A large set of audio features for sound description (similarity and classification) in the CUIDADO project,” CUIDADO Project

Report, 2004, http://recherche.ircam.fr/equipes/analyse-synthese/peeters/ARTICLES/.

[38] B. Logan, “Mel frequency cepstral coefficients for music modeling,” in International Symposium on Music Information Retrieval

(ISMIR’00), 2000.

[39] P. M. Brossier, “Automatic annotation of musical audio for interactive applications,” Ph.D. dissertation, QMUL, London, UK, 2007.
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[42] E. Gómez, “Tonal description of music audio signals,” Ph.D. dissertation, UPF, Barcelona, Spain, 2006.

[43] W. A. Sethares, Tuning, timbre, spectrum, scale. Springer Verlag, 2005.

[44] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2005.

[45] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is “Nearest neighbor” meaningful?” in Database Theory — ICDT’99, 1999,

pp. 217–235.

[46] F. Korn, B. Pagel, and C. Faloutsos, “On the ’dimensionality curse’ and the ’self-similarity blessing’,” IEEE Transactions on Knowledge

and Data Engineering, vol. 13, no. 1, pp. 96–111, 2001.

[47] C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” in International Conference on Very Large Data Bases (VLDB’05).

Trondheim, Norway: VLDB Endowment, 2005, pp. 901–909.

[48] N. Wack, P. Cano, B. de Jong, and R. Marxer, “A comparative study of dimensionality reduction methods: The case of music similarity,”

2006.

[49] T. Pohle, P. Knees, M. Schedl, and G. Widmer, “Automatically adapting the structure of audio similarity spaces,” in Workshop on Learning

the Semantics of Audio Signals (LSAS’06), 2006, pp. 66–75.

[50] E. Pampalk, S. Dixon, and G. Widmer, “On the evaluation of perceptual similarity measures for music,” in 6th International Conference

on Digital Audio Effects (DAFx’03), London, UK, 2003, p. 7–12.

[51] S. Sigurdsson, K. B. Petersen, and T. Lehn-Schiøler, “Mel frequency cepstral coefficients: An evaluation of robustness of mp3 encoded

music,” in International Conference on Music Information Retrieval (ISMIR’07), 2006, p. 286–289.

[52] M. F. McKinney and D. Moelants, “Ambiguity in tempo perception: What draws listeners to different metrical levels?” Music Perception,

vol. 24, no. 2, pp. 155–166, 2006.

[53] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano, “An experimental comparison of audio tempo induction

algorithms,” IEEE Transactions on Speech and Audio Processing, vol. 14, no. 5, p. 1832–1844, 2006.

[54] L. M. Smith, “Beat critic: Beat tracking octave error identification by metrical profile analysis,” in International Society for Music

Information Retrieval Conference (ISMIR’10), 2010.
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