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Abstract—To track targets across networked cameras with dis-
joint views, one of the major problems is to learn the spatio-tem-
poral relationship and the appearance relationship, where the ap-
pearance relationship is usually modeled as a brightness transfer
function. Traditional methods learning the relationships by using
either hand-labeled correspondence or batch-learning procedure
are applicable when the environment remains unchanged. How-
ever, in many situations such as lighting changes, the environment
varies seriously and hence traditional methods fail to work. In this
paper, we propose an unsupervised method which learns adap-
tively and can be applied to long-term monitoring. Furthermore,
we propose a method that can avoid weak links and discover the
true valid links among the entry/exit zones of cameras from the cor-
respondence. Experimental results demonstrate that our method
outperforms existing methods in learning both the spatio-temporal
and the appearance relationship, and can achieve high tracking ac-
curacy in both indoor and outdoor environment.

Index Terms—Brightness transfer function, camera network,
non-overlapping cameras, spatio-temporal relationship, visual
surveillance, visual tracking.

I. INTRODUCTION

C AMERA networks are extensively used in visual surveil-
lance because they can monitor the activities of targets

over a large area. One of the main challenges of camera net-
works is to track targets across cameras or find the correspon-
dence among cameras. Several studies [1], [5], [21], [34] have
discussed multi-camera tracking with overlapping field of views
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Fig. 1. Passage with three cameras and their FOVs.

(FOVs). However, it is difficult to always align the FOVs of cam-
eras in practice. Compared to single camera tracking or tracking
with overlapping FOVs, relatively little attention has been paid
to target tracking across non-overlapping views. Difficulties for
target tracking across disjoint views include 1) it is hard to cal-
ibrate the extrinsic parameters of cameras, 2) the target would
disappear in all views for a while, and 3) illumination of distinct
cameras could be highly different.

Two visual cues employed for tracking targets across non-
overlapping cameras are spatio-temporal cue and appearance
cue. Although other cues could be used, such as relative size
of target’s bounding box [14] and target’s moving speed [18],
their robustness relies highly on camera pose, image quality, and
image analysis error. The spatio-temporal relationship includes
the transition time probability between two entry/exit zones be-
longing to different cameras. The appearance relationship de-
scribes the change of target’s appearances taken by different
cameras, and is often modeled as a brightness transfer function
(BTF) that transfers the brightness distribution from one camera
to another. Therefore, a key problem of tracking targets across
multiple disjoint cameras is to learn both the spatio-temporal re-
lationship and the brightness transfer function.

A. Characteristics of Our Approach

To learn the spatio-temporal relationships, we introduce a
batch learning algorithm first, and extend it to update incremen-
tally. In addition, a novel algorithm for removing weak links is
proposed. Our method has two characteristics:

The first is to discover valid links (or remove weak links)
for a camera network whose topology is initially unknown. The
weak link is a link that does not exist in the real world, but it
would be mistaken as a valid link. As shown in Fig. 1, there
would be three valid links detected after learning from the traffic
among cameras, i.e., Cam 1 to Cam 2, Cam 2 to Cam 3, and
Cam 1 to Cam3. However, it is impossible for someone exiting
from Cam 1 and entering Cam 3 without passing the view of
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Cam 2, and so the link of Cam 1 to Cam 3 is a weak link. The
following problems resulted from weak links become critical as
the camera network becomes larger:

• Increasing computational complexity—When searching
targets in a camera network, the weak links increase the
searching space considerably.

• Increasing tracking error—The weak links cause much
false correspondence when tracking targets in a camera
network.

• Confusing users when monitoring—Some researches
[15] have developed user interfaces based on the activity
topology of cameras, so that a target can be followed
across cameras more easily. When weak links exist, users
will be confused as there might be multiple false candi-
dates of camera views where the target may appear after
a certain time interval.

To our knowledge, there are no previous works discussing the
problem of weak links, and we provide a solution to remove
them automatically.

The second characteristic is to learn the BTFs automatically
and adaptively, without needs to providing the correspondence
between cameras manually. We develop an unsupervised
learning method that can be adaptive to illumination changes.
The required training data is much less than that in Gilbert and
Bowden [14]. Our method is thus adaptive to handle sudden
illumination changes, a situation usually happens in the indoor
environment and is unavoidable for long-term monitoring, but
has not been handled by previous methods.

II. RELATED WORK

There have been some notable works in tracking across
non-overlapping cameras. Huang and Russell [17] first pre-
sented a probabilistic approach for object identification across
two non-overlapping cameras. Then Pasula et al. [27] extended
this approach for tracking through more than two sensors,
and proposed a polynomial-time approximation algorithm
based on Markov chain Monto Carlo simulation. Kettnaker and
Zabih [20] employed a Bayesian formulation of the problem to
reconstruct the paths of objects across multiple cameras, and
transformed it into a linear-programming problem to estab-
lish correspondence. Porikli and Divakaran [28] proposed an
inter-camera color calibration model to estimate the optimal
alignment function between the appearance histograms of the
objects in different views, and then combined spatio-temporal
and appearance cues to track objects. Dick and Brooks [11]
employed a stochastic transition matrix to describe the ob-
served pattern of people motion. Prosser et al. [29] proposed
a cumulative BTF for mapping colors between cameras. Javed
et al. [18] presented a system that learned the camera network
topology and path probabilities of objects using Parzen win-
dows with manual correspondence in an initial training phase.
They also proposed an appearance model, which showed that
all brightness transfer functions from one camera to another lie
in a low-dimensional subspace and learned the subspace for
computing appearance similarity.

The methods mentioned above either assumed that the camera
network topology and transition models are known, or fit them

with hand-labeled correspondence or obvious markers. In prac-
tice, they could be difficult to implement under the real-world
condition due to the complicated learning phase; in particular,
when the environment changes (such as illumination changes),
the above scenarios would fail to work.

Makris et al. [23] proposed a method which does not require
hand-labeled correspondence. The method automatically vali-
dates a camera network model using within-camera tracking
data. This approach has been extended by Stauffer [32] and Tieu
et al. [36] by providing a more rigorous definition of a transi-
tion based on statistical significance. Stauffer [32] handled the
nonstationary traffic processes resulted from traffic lights, ve-
hicle grouping, and other nonlinear vehicle-to-vehicle interac-
tions. The method of Tieu et al. [36] generalizes Makris et al.’s
approach more flexibly with multi-model transition time dis-
tributions, and explicitly handles correspondence. Gilbert and
Bowden [14] extended Makris et al.’s approach to incorporate
coarse-to-fine topology estimations, and further proposed an in-
cremental learning method to model the color variations, rela-
tive sizes, and posterior probability distributions of the spatio-
temporal links between cameras.

To learn the spatio-temporal relationship, some of the above
approaches [23], [32], [36] used batch learning procedures,
and estimated the entry/exit zones in advance. However, there
are some limitations with their methods. First, how much
training data is required in the batch-learning procedure re-
mains unclear. Second, if the environment changed, the only
solution is to reboot the whole system. Gilbert and Bowden
[14] learnt the spatio-temporal relationship incrementally, but
the spatio-temporal links are block based instead of entry/exit
zone based, while the later can usually be learnt from a single
image efficiently. The number of blocks may grow quickly
although a coarse-to-fine estimation method was proposed.
The coarse-to-fine strategy may also limit the adaptability. For
instance, if a camera is slightly moved or a new entry is opened,
their method would fail to work.

There were some works [10], [30], [38] focusing on online
camera topology learning, which is similar to our incremental
learning approach. Shafique et al. [30] estimated the relative
topology of overlapping cameras by employing the statistics
of co-occurring observations. Detmold et al. [10] determined
activity topology by using the exclusion algorithm, and Wang
et al. [38] clustered trajectories in multiple camera views and
learnt the common paths in the scene. These unsupervised
methods could be applied to non-overlapping cameras without
solving the correspondence problem. However, unlike the
spatio-temporal relationships estimated in this paper, they
found the camera topology only. That is, they only estimate
the connectivities among cameras, but overlook the expected
time (which usually reflects the relative distance) from one
camera to another. In addition, the weak link problem dis-
cussed in Section I-A could still exist when directly applying
these methods. In the experiments, we have demonstrated
that the approach using the spatio-temporal relationships (ST
only) can actually outperform the approach that uses camera
topology only (the baseline method) for tracking, where the
spatio-temporal relationships employ further the transition time
information of each connected link.
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To learn the BTF, to our best knowledge, Gilbert and Bowden
method [14] is the only one that learns it without hand-labeled
correspondence. It seems to be adaptive to illumination changes
due to the incremental learning procedure. However, the method
needs much learning data and learns without considering false
correspondence; therefore, it works well when there is none
or only slow illumination change. In the experiments, we have
shown that much less training data are required by our method,
and thus our method can be adaptive to even handling sudden
illumination changes.

Opposite to matching the global color information, some
works [12], [13], [19] employed local features or edge signa-
tures for person re-identification. However, such approaches
can only handle targets of similar poses observed with high
quality.

III. PROBLEM FORMULATION

Multi-camera tracking with disjoint views seeks to estab-
lish correspondence between observations of objects across
cameras. This is often termed as object “handover,” where one
camera transfers a tracked object or person to another camera.
The handover list is a set of observations having left from
one camera view within the maximum allowable reappearance
period . Suppose that a person enters the view of one
camera and denote this observation as , we could get from

the spatio-temporal cue and the appearance cue
. The includes the information of the arrival

camera , location , and time .
Let be an observation in the handover list. Denote the

probability of the observation belonging to in the han-
dover list as . The most likely correspondence
could be obtained as follows:

(1)

where is the handover list. If the probability does not exceed
a threshold, is considered the new person arriving in the mon-
itored environment. In the following section, for simplicity, we
denote that the matching probability of two targets and as
follows:

(2)

Assume equal priority, and the spatio-temporal cue and appear-
ance cue are independent. We take log likelihoods and merge
them by using a fusion weighting factor . From Bayes The-
orem, we have

(3)

In (3), the term is the proba-
bility of appearance similarity between person and , which

can be calculated as the histogram intersection or Bhattacharyya
coefficient [6] after color-histogram transformation that will be
detailed in Section VI.

The other term is the proba-
bility of spatio-temporal similarity. Suppose that the entry/exit
zones of and are and , respectively, and
is the transition time probability that someone takes a period
of time to transit from zone to zone . Then, we estimate

by assuming that it is composed of
two independent terms, the transition time probability (temporal
part) and the zone location probability (spatial part):

(4)

where is the transition time probability distribution
with , and is the zone location
probability of the observation entering or exiting from the
zone , which is a Gaussian mixture model (GMM) learnt for
the entry/exit zones as will be introduced in the following. The
probability of spatial temporal similarity will then be detailed
in Section IV.

IV. LEARNING SPATIO-TEMPORAL RELATIONSHIP

In our method, the spatio-temporal relationships are
entry/exit zone based [23], [32], [36], and the learning proce-
dures contain two phases: batch learning phase and incremental
learning phase. What we want to learn are the entry/exit zones
for each camera, the transition time probability distribution
between each pair of zones, and which pairs of zones are
connected, called valid links.

A. Batch Learning Phase

In the batch learning phase, we estimate the entry/exit zones
for each single image at first. We gather entry/exit points for
each camera view with the results of single camera tracking. In
each camera view, we model the entry/exit zones as a GMM
and use expectation maximization (EM) algorithm to estimate
the parameters of GMM [9], [22]. The number of clusters is de-
termined automatically according to Bayesian information cri-
terion (BIC).

After the estimations of entry/exit zones, we create possible
links for all pairs of zones belonging to different cameras. Then,
the transition time probability distribution is learnt for each pos-
sible link. Here, our approach is similar to that of [14], except
that it is entry/exit zone based instead of block based, where
the later is much more inefficient and difficult to be extended as
adaptive to environments. Suppose that there is a possible link
between two entry/exit zones, zone is in the view of camera 1
and zone is in the view of camera 2. Denote to be the
transition time probability that someone takes a period of time

to move from zone to zone , and to be the maximum
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allowable reappearance period. The object exits from the zone
at the time . The object enters the zone at the time .

is the appearance similarity between the objects and with
the detail being defined in Section VI. Then, the transition time
probability distribution is calculated as

if
otherwise

(5)
where is a normalization term.

After estimating the transition time probability distribution,
we measure the noise floor level for each link. The noise floor
level in our system is set as the double of the median value.
If sufficient evidence (set as 20 in our implementation) has
been accumulated and the maximum peak of the distribution
exceeds the noise floor level, the possible link is set initially as
a valid link between zones:

(6)

The rational of (6) is explained as follows. Since the time for a
person moving from one zone to another is not randomly dis-
tributed, most work assumes implicitly that the true correspon-
dence will lead to a highly structured distribution, and we sup-
pose that the variance is . A small variance enables the
true transition time distributing over fewer bins and makes the
maximum peak of the distribution exceed the noise floor level
more easily. This is the reason why (6) can be used to detect the
initial candidates of valid links. However, as we have described
in Section I, the weak links could be mistaken as valid links. In
Section V, we propose an algorithm to find the weak links au-
tomatically.

B. Incremental Learning Phase

A main characteristic of our approach is the incremental
adaptation of both spatio-temporal and appearance information,
so that our approach can be adaptive to environment changes.
In the following, we focus on the incremental adaptation of
spatio-temporal information, and the adaptation of appearance
similarity measurements will be introduced in Section VI.
In the incremental learning phase, we update the entry/exit
zones and transition time probability with time. According to
the definition of transition time probability between zones as
shown in (5), learning it incrementally is simple. It updates
with each time occurrence of someone entering the FOV of a
camera. Suppose that someone enters the FOV of a camera,
then we seek all possible candidates in the
handover list, satisfying that . Then, we
update all possible links of each pair of and by (5),
where and are the most possible entry/exit zones of
and , respectively, according to the probabilities of GMM.

There are some problems with the batch learnt entry/exit
zones [23], [32], [36]. First, it is likely to misclassify two zones
into one single zone when the two zones are adjacent in the
image, as shown in Fig. 2. On the other hand, it could possibly
divide a zone into several smaller zones. Second, the environ-
ment may change due to camera addition/removal. We may

Fig. 2. Example of entry/exit zone estimation for E2_Cam 3 in Fig. 5. (a) Gath-
ered entry/exit points. (b) Entry/exit zones, A, B, and C, after batch learning
phase. (c) Entry/exit zones, A, B, C, and D, after incremental learning phase.
Note that zones C and D are very close. The zone C in (b) is split and adapted
into zones C and D in (c) incrementally.

also lack the training data when there are no objects entering
a room or passing some passages during the data-collection
period of the batch learning phase. For solving the problem,
we update the entry/exit zones by using the online K-means
approximation principle [33] to update the Gaussian mixture
model with each time occurrence of someone entering the FOV
of a camera as well. In [33], the online K-means approximation
is a renowned method used for background modeling, where
the Gaussian models in the 3-D RGB color space are used. In
this work, we employ the same principle to the incremental
learning of the entry/exit zones, where the Gaussian models in
a 2-D x-y space are used as illustrated in Fig. 2. Suppose that
someone enters the FOV of a camera, are
all possible candidates in the handover list. The matched zones

and are selected by the following equation:

(7)
where [shown in Fig. 2(a)] is the coordinate of object

and is the probability that occurs at this
zone. Then the matched zones are updated with online K-means
approximation [33]. Assume the mean and covariance matrix
of a matched zone are and and the new observation is ,
where . The parameters of the distribution are updated
as follows:

(8)

where is the learning factor for adapting current distribution.
Notice that we update zones by using not only the location in-
formation but also the transition time information
in (7), and it improves the estimation of zones incrementally.

In addition, as the number of Gaussian models in GMM is
hard to determine in advance and could also be varying with
time, we propose two operators for learning zones incremen-
tally: Zone Merging and Zone Split. The Zone Merging merges
two Gaussian models in GMM [31]. In [31], Song et al. pro-
posed a clustering merging strategy to merge Gaussian models
for online data stream clustering. In our implementation, the
Zone Merging is applied when the distance of mean of two
zones are near enough (set as 32 pixels in our implementation)
and found to have similar distributions and valid links to other
zones. After each zone updating, we use Hotelling’s -square
test and statistic test for testing the mean equality and co-
variance equality, respectively, and then determine whether two
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Fig. 3. Node �, � , and � � �� �� � � � � � � � are entry/exit zones. The
red lines are true valid links, and the blue line is a weak link. � are all targets
within the time interval of ��� � and ��� �, where ���� is the number of
�� � in � .

zones are needed to be merged. Two zones are merged by the
following equations:

(9)

where and are the parameters of two merged
zones, and and are their weights in GMM, respectively.
The , , and are the parameters of the new zone after
merging.

The Zone Split is used for solving the problem of misclas-
sifying two zones into one single zone as shown in Fig. 2. It
is applied for a zone whose Gaussian model has a large vari-
ance value (set as 32 pixels in our implementation), and has two
valid links to different zones. A big zone can be separated into
two isolated zones when the zone links to two or more locations
in the environment. In most situations, the leaving position of
a target is usually related to where it will be. For instance, a
person leaves from the upper portion of the zone C in Fig. 2(b)
would more probably go to the upper place, i.e., the E2_Cam 1
in Fig. 5(b). For the zone to be split, we generate a new Gaussian
model with almost the same settings as the original one, except
the valid links. We assign these two zones with different valid
links and halve their mixture weights by assuming that they have
equal weights. Due to the different transition time probability
distributions, two Gaussians will be evolved to isolated zones
according to (7).

V. AUTOMATIC DISCOVERING AND REMOVING WEAK LINKS

In our algorithm, a link is initially considered as a valid
link if the maximum peak of the transition-time distribution
exceeds the noise floor level. Unfortunately, some of the valid
links are the weak links (as mentioned in Section I-A), because
there is also correlation between the departure and arrival
times belonging to the weak links. As shown in Fig. 3, sup-
pose nodes , , and are entry/exit
zones belonging to different cameras, and there are valid
links and one weak
link between and . For simplicity, we consider a
typical case where a target passing , , and in turn. For
each target entering , is the most possible corre-
sponding target in . are all targets in that
is within the time window between and , i.e.,

, for all and , where is the index

of targets in . The transition of the weak link is resulted
from the transitions of passing the valid links from to to

. From the characteristics of weak links, we give the following
two propositions that are useful in removing weak links. First,
the average transition time of a weak link is larger than the sum
of the average transition times of the corresponding valid links.
This can be formally stated as follows.

Proposition 1: Suppose a weak link is between node
and , and there are corresponding valid links between node
and , and and , and and . Then we
have

(10)

where is the expected value of transition time between
nodes and .

Proposition 1 is held simply because the passing time
through to shall contain further the passing times spent for
every single node, .

Second, if a target in node and a target in node
are the same, then there exists a target in the nodes of ,
which is the same as and .

Proposition 2: Consider the same condition of Proposition
1. Let denote that the target is an observation of node

, and means and are the same target.
For every corresponding observations and ,
i.e., , then

(11)

Proposition 2 is easily held since the target shall appear in
every single node. Note that there could be occlusions in some
nodes where the target disappears. To handle this problem, we
assume that the target could be occluded only in a few nodes. We
use dynamic programming to find a global-matching cost when
employing Proposition 2 for weak link removal as introduced
below, so that occlusions that happen in a limited number of
nodes can be tolerated.

A. Remove Weak Links—Batch Learning Phase

From the above propositions, we first introduce a batch
learning algorithm for removing the weak links in Section V-A.
Then we present an incremental learning algorithm that can
avoid building weak links in Section V-B. After learning the
spatio-temporal relationship, the entry/exit zones can be viewed
as nodes in an undirected graph with both true valid links
and weak links. The length of each link is assigned by the
expected value of transition time between two entry/exit zones.
In the batch learning phase, we first apply Proposition 1 to
find a candidate weak link which satisfies the following
conditions: 1) it is the longest link, 2) it belongs to a cycle, and
3) its length is larger than the sum of the length of the other
links in the cycle. To search candidate weak link , the
longest link can be found with time-complexity , where

is the number of links in the graph. To check whether the
candidate link belonging to a cycle has a length larger
than the sum of the lengths of the other links in the cycle, we
remove link and resulted in a subgraph . Then we find
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the shortest path from node to in and check whether
the length of is larger than that of the shortest path. Its
time-complexity is by Dijkstra’s algorithm,
where is the number of nodes in the graph.

We then employ Proposition 2 for further verification of
the valid-link candidates obtained above. We find a target
with maximal probability of defined in (2) for
each entering event in . If is larger than
a threshold, we choose a set of target in such that

is within the time interval between and .
Then, by Proposition 2, we consider a subgraph connected by

, , and only, and assign the weights of its links by
using the matching probabilities. To check whether the condi-
tion of Proposition 2 holds, we apply dynamic programming
(DP) [7] for finding a path from to with the maximal
probability :

(12)

From Proposition 2, if is a weak link, there must be such
a path of high probability.

After applying both Propositions 1 and 2, we obtain a set of
candidates that could be weak links. Considering a candidate
weak link , we use the matched targets between nodes A
and C to decide whether or not it is weak. For each matching
pair of targets , we vote for the link a weak link
with the weight , and record the accumulation score in the
variable if is larger than a threshold. On the other
hand, if is not a weak link, would be small or close
to zero. We then vote for the a valid link with the weight

to the accumulation score . After voting
for each matching pair of and , if the score is
much larger than , this link is deemed as a weak link and
removed. Then we repeat the steps until there are no possible
weak links. Details are shown in Algorithm 1.

Algorithm 1. Algorithm for removing weak links

1. loop for each valid link , and .

2. According to Proposition 1, find a candidate link
satisfying

3. 1) is maximal among unchecked links.

4. 2) Belong to a cycle.

5. 3)

6. loop for each arrival (or )

7. if (or ) s.t. then

8. From Proposition 2,

9. 1) Establish a weighted graph with nodes , ,
and and assign weight of each link by the matching
probability.

10. 2) Solve a path from to (or from to )
with maximal probability by DP.

11. 3) if then

12. .

13. else

14. .

15. end if

16. end if

17. end loop

18. if

19. Remove weak link

20. end if

21. end loop

B. Remove Weak Links—Incremental Learning Phase

Although the computation of the batch learning algorithm in-
troduced above is practically affordable, we use the batch algo-
rithm for only a short period of time and rely mostly on the incre-
mental learning introduced below to avoid weak links. Hence,
the computation required can be further reduced. In the batch
learning, a graph containing both valid and weak links has al-
ready been built, and then we seek to remove the weak links.
This is much different to our incremental learning by which we
avoid producing weak links and build the valid-link graph di-
rectly. Our incremental learning algorithm mainly relies on the
Proposition 3 below, which shows that if is a weak link, it
will be learnt later than all of the corresponding true valid links

by using (6).
Unlike Propositions 1 and 2 that hold generally, Proposition

3 holds with some conditions often satisfied in practice. Denote
the transition time from to to be a random variable

with variance , and that of the internal
links to be a random variable . To
simplify the notations, and are denoted as and
below, respectively. Then we have

(13)

where is the staying time of target at node for
to . Considering one of the true valid links from nodes to

(14)
where

(15)

is the sum of the other random variables and is also a random
variable with variance . Hence, we have

(16)
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where stands for the covariance between two random
variables.

Proposition 3: Consider the same condition of Proposi-
tion 1. As long as the covariance is
larger than or equal to zero for all , the weak link will
be learnt later than all of the corresponding true valid links

, and by using the decision
criterion (6).

To explain Proposition 3, let us re-investigate the rational of
(6). Remember that a smaller variance enables the true transition
time distributing over fewer bins and makes the maximum peak
of the distribution exceed the noise floor level more easily, and
thus (6) can be used to detect the initial valid links. According
to (16), since , we have

(17)

That is, the variance of transition time distribution of a weak link
is larger than that of every corresponding true valid link. Hence,
weak links will be learnt later than all of the corresponding true
valid links via (6).

In the following, we explain why the condition
holds quite often in practice.

Because and represent the transition times
of a target moving across different locations, the covariance
depends on the variation of velocity during the transition
period. When the covariance of and is positive,
the velocities of a target passing through and the
other links are positively correlated. That is, when considering
the mean speed of all the targets passing
through and the mean speed of all the
targets passing through the other links, we assume that most
people who walk from and faster than the mean speed

will pass through the other links faster than
the mean speed , too. Similarly, most people who
walk slower than mean from and will pass through
the other links slower than the mean. This is the most common
traffic condition. The case of the covariance of and

being negative is unusual. It happens when sufficiently
many targets pass through faster than the average
speed of persons but pass across the other
links slower than the average speed of persons ;
simultaneously, there should also be sufficient many targets
move slower than for but faster
than for the other links, or the means cannot be
maintained as the assumed values. This situation could happen
but is rare in general. Furthermore, even when the targets just
walk around randomly (e.g., he/she may see around in the
scene), the covariance of and is zero that still
satisfies our assumption. The above examples thus explain why
the assumption holds very often in practical situations.

According to Proposition 3, if we verify whether a new link
is weak before creating it, then the links which have been cre-
ated must be true valid links. Verifying each new link is similar
to that of the batch learning algorithm, but we need to test only
one candidate link (i.e., the newly formed link) without needing
to test the other links. If the newly formed link satisfying the
conditions of candidate weak link (in lines 3–5 of Algorithm 1),

it will be verified before creating (by using lines 6–20). Other-
wise, it is created directly. The newly added link will be con-
sidered a true valid link or a weak link after sufficient evidence
(set as 50 in our implementation) has been accumulated.

VI. LEARNING BRIGHTNESS TRANSFER FUNCTION

In Section III, the term is the
probability of appearance similarity between person and
after appearance transformation by the BTF. The appearance

is modeled as a normalized histogram, because it is rel-
atively robust to changes in object pose [35]. In this section, we
introduce an automatic method for learning a low-dimensional
subspace of BTFs [18]. Notice that although the model of BTF
is the same as that used by Javed et al. [18], their work learnt
it with hand-labeled correspondence. On the contrary, we have
proposed a new framework to learn it automatically [4].

A. Brightness Transfer Functions—A Review

Let be the BTF for every pair of observations and in
the training set, and denote the collection of all the bright-
ness transfer functions. Assume that the percentage of image
points in with brightness less than or equal to is equal to
the percentage of image points in with brightness less than
or equal to . If and are normalized cumulative his-
tograms of and , respectively, we can obtain the BTF
as follows:

(18)

where is the inverted cumulative histogram. Javed et al.
[18] have presented a celebrated property: Giving a set of corre-
sponding pairs of correct matches, their BTFs obtained via (18)
will lie in a low-dimensional subspace. For learning the low-di-
mensional subspace, they use the probabilistic principal com-
ponent analysis (PPCA) [18], [37]. Then, a -dimensional BTF,

, can be written as

(19)

where is a normally distributed -dimensional subspace vari-
able, , and is a dimensional projection matrix.
is the mean of collection of BTFs, and is isotropic Gaussian
noise, i.e., . Given that and are normally
distributed, the distribution of is

(20)

where . More details can be found in [18]
and [37].

We also verify this property by giving an example below.
Considering the link between E2_Cam 1 and E2_Cam 3 in
Fig. 5(b), we label 136 pairs of correspondence manually and
then divide them into two classes: 36 pairs for training and 100
pairs for testing. A correct subspace of BTFs is learnt from the
36 pairs of correct correspondence. An incorrect subspace of
BTFs is leant from 36 pairs of incorrect correspondence, which
are produced by matching the correspondence randomly. The
dimension of the subspace is fixed as 15 in both cases. Then,
we estimate the reconstruction error distribution by testing
the data that comes from the 100 pairs of correspondence
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Fig. 4. Example of the reconstruction error distribution estimated by testing
the hand-labeled correspondence with 50% matching accuracy.

with 50% matching accuracy. As shown in Fig. 4, a correct
subspace of BTFs would have a more diverse reconstruction
error distribution and lower errors than the one learnt by using
incorrect correspondence.

B. Criterion for BTF Estimation

To estimate the BTF, the most critical part is to find the corre-
spondence between two views. While Javed et al. [18] provided
the correspondence manually, we find the correspondence au-
tomatically. The main principle we employed is that the BTFs
lie in a low-dimensional space that can be represented by PPCA
as observed in [18]. As shown above, when given correct corre-
spondence, a correct low-dimensional subspace of BTFs can be
learnt. Then, if a new pair of observations and belong to
the same object, the reconstruction error of and would be
small. On the contrary, if the observations and belong to
different objects, the reconstruction error would be large.

Given pairs of samples , we can learn the PPCA sub-
space based on pairs of subsamples , and obtain
the reconstruction error of each pair. We then propose a crite-
rion for BTF estimation, where is the sampled learning
data set for BTF. We denote to be the simi-
larity score of the th corresponding pair, which is calculated by

. Then, the criterion is

(21)
where is a threshold decided by Otsu’s thresholding algo-
rithm [26].

C. Spatio-Temporal Information and MCMC Sampling

Our method finds the correspondence by constructing the
low-dimensional subspace of the BTFs. If the correspondence
is correct, the learnt subspace is expected to represent the
BTFs well, and the reconstruction errors shall be smaller.
The subspace of BTFs with fixed dimension (set as 15 in our
implementation) is thus learnt without hand-labeled corre-
spondence by sampling the training data set and choosing the
best subspace of BTFs according to the criterion described
in Section VI-B. However, it is not practical to sample all of
the permutations directly. If there are observations in both
cameras, the number of matching permutations are , but
the correct correspondences are at most pairs. To solve this

problem by more efficient searching, we use the spatio-tem-
poral information and Metropolis-Hastings algorithm [16] for
Markov chain Monte Carlo (MCMC) sampling.

We get pairs of target correspondence and their corre-
sponding probability by using the spatio-temporal relationship.
According to the experiments, the ratio of correct match is more
than 60% by using the spatio-temporal cue only, which means
that more than half of the pairs are correctly matched. Then,
we can sample pairs , denoted by , for learning
the subspace of BTFs, where is the number of corre-
sponding pairs needed for learning. By sampling times and

pairs per time, we choose the best one based on the crite-
rion, (21), to test the remainder data . We sample the
learning pairs by using MCMC [8], [36] and use Metropolis-
Hastings algorithm (Algorithm 2) [16], [36]. To our knowledge,
the MCMC-sampling of correspondence was used by Tieu et al.
[36] in estimating transition delay distributions (the temporal re-
lationship between cameras) for determining the statistical de-
pendence between two cameras, but it has not been used for
finding the appearance relationship before.

Alogirthm 2. Metropolis-Hastings algorithm

1. Initialize ; .

2. loop

3. Sample from .

4. Sample from .

5. Let

6. if then

7. .

8. else

9. .

10. end if

11. .

12. end loop

In detail, the initial sample is based on the corresponding
probability. New samples are obtained given the current one

via a proposal distribution , where is the th
rounds of sampling results. We employ four types of proposals
for . First, swap a pair, and this swaps one of the
pairs chosen in the last time for one of the other pairs.
Second, jump, and this re-samples the whole pairs. Third, add
a pair, i.e., incrementing by 1. Fourth, subtract a pair, i.e.,
subtracting by 1. The third and fourth proposals are used for
avoiding being decided incorrectly. The new sample is ac-
cepted with a probability proportional to the relative likelihood
of the new sample versus the current one. The likelihood is pro-
portional to the criterion (21). After executing the algorithm,
the best sampling result recorded is chosen for learning the sub-
space of BTFs.
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Fig. 5. Three experimental environments. (a) Parking lot. (b) Building. (c) Campus.

D. Adaptively Learning BTF

To make the BTF adaptive to illumination changes of the envi-
ronment,weupdate thesubspaceofBTFsadaptively.Whengath-
ering a constantperiod of data, we learn the low-dimensional sub-
space of BTFs by the method introduced in Sections VI-A–VI-C,
and gather the correct matching data, which is used for learning
the subspace of BTF. We then update the old PPCA with the new
arrival data by incremental PPCA [25]. In Fig. 9, it shows that the
reconstruction error decreases with more data collected. Further-
more, it is adaptive to gradual illumination changes.

E. Handling Sudden Illumination Change

The weighting factor , described in (3), indicates the con-
fidence of learnt spatio-temporal relationship and BTF. It is
adaptive to the changes of environments and can be used for
handling sudden illumination changes. In our implementation,
we employ the method introduced in [39] for handling sudden
lighting changes. Once the sudden illumination change is de-
tected, we set the weighting factor to a higher value, which
is set as 0.95 in our approach, i.e., the spatio-temporal cue is
more reliable than the appearance cue. The BTF is initialized
as an identity matrix. The weighting factor will decrease to a
stable value, which is set as 0.6 and 0.4 for outdoor and indoor
environments, respectively, in our approach, with respect to our

adaptive learning procedure. The weighting factor could also be
determined by the method in [3], which learns the weighting
factor unsupervisedly and can be applied even when the testing
environments are unknown. Note that our method learns a BTF
by using a few data only, and so it adapts to illumination changes
soon.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our learning
algorithm in three environments with no prior knowledge of
camera network topology given in advance [4]. We compare our
method with the state-of-the-art methods first, and demonstrate
the superiority of our method. Then, four approaches are used
to show that both relationships will improve the performance
of tracking. Finally, we discuss the results and some difficulties
encountered in real applications.

A. Experimental Setup

We perform the single camera tracking by using the method
[33]. The same tracking results of single camera are used for all
the experiments. We record the following information for each
target in each camera view: entering time, entering location, ex-
iting time, exiting location, and appearance histogram. The ap-
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pearance histogram is extracted from the foreground pixels and
256-bin is used for each RGB color channels.

The implementation of our learning algorithm consists of
a batch learning phase and an incremental learning phase.
At bootup, the system collects observation data for a period
of time. Then, the entry/exit zones of each camera view are
learnt first. Next, we learn the transition time probability of
possible links. After that, we apply the proposed method for
removing weak links. Finally, we learn the low-dimensional
subspace of BTFs for each pair of cameras, which depends on
the spatio-temporal relationships.

When tracking targets across multiple cameras as described in
Section III, the system simultaneously updates both the spatio-
temporal relationships and appearance relationships. The tran-
sition time probability distribution and entry/exit zones are up-
dated for each arrival event. The subspaces of BTFs are updated
after collecting matching data of a predefined interval.

We evaluate our method in three different environments. The
first experimental environment is shown in Fig. 5(a). It is an out-
doorparking lotandcontains twocameras.Werecorda2-hperiod
during the rush hour in the morning, and set and , where

is thequantizedtimeintervalof thetransitiontimeprobability
distribution, as 30 and 3 s, respectively. There is a property de-
serving notice in this environment: the transition time is varied
in different situations. When the parking lot is empty or nearly
empty, the transition time between cameras is small, about 7.6 s.
However, if the parking lot is almost full, the transition time be-
tweencameraswillbecomelarge,about15.1s.This isbecause the
purposeofvehiclespassing in thisenvironment is tofindanempty
stall. In our testing sequences, the parking lot is nearly empty in
the beginning, and it becomes almost full after 30 min.

The second environment is shown in Fig. 5(b). It is an indoor
environment containing five cameras. We record a 6-h period
in the daytime and set and as 15 and 2 s, respec-
tively. The main properties of this environment are 1) unlike the
outdoor environment that the major targets tracked are vehicles
which usually keep the distance, the persons tracked in an indoor
environment are likely to walk together, and 2) the illumination
condition is more stable than that of the outdoor environment.
Therefore, the appearance cue is more distinguishable than the
spatio-temporal cue for target tracking.

The third environment is shown in Fig. 5(c). We installed
eight cameras beside the roads of campus. We record a 7-h pe-
riod in the daytime and set and as 40 and 2 s, respec-
tively. This environment is the most complex one, where the
weak link problem is serious and difficult to be avoided simply
by threshold selection.

Note that although first two environments have been also used
in our early work[4], the true valid links were assumed to be given
in [4]. In this study, the valid links are not given in advance and
the weak links can be automatically discovered and removed.

B. Experiment on Learning Spatio-Temporal Relationship

In this section, we demonstrate the learning results and com-
pare our method with that proposed by Makris et al. [23] for
learning the spatio-temporal relationships. Notice that, although
there are other methods [14], [32], [36] learning the spatio-tem-
poral relationships automatically, the basic concept is based on
Makris et al.’s method also.

Fig. 6. Estimated entry/exit zones and valid links of the first environment.

Fig. 7. Valid links and entry/exit zones of the second environment estimated by
using (a) Makris et al. method and (c) our method. The corresponding camera
topology estimated by using (b) Makris et al. method and (d) our method. The
red lines represent the correct valid links, and the blue lines are weak links es-
timated.

In the first environment, both methods learn the correct valid
links, and we show our result in Fig. 6 only. It demonstrates
that both methods can work well in a simple environment.
Fig. 7(a) and (b) shows the results of the second environment
by using the method of [23] with 6-h batch training data. There
are three weak links estimated. Fig. 7(c) and (d) shows the
results estimated by our method, and we use the data during
the first hour for batch learning and the other 5-h data for
learning incrementally. The correct valid links and entry/exit
zones without clustering fault are learnt. The incremental
learning process is shown in the video sequence found at
http://www.youtube.com/watch?v=VSIAQcMi3Nk. In this
video, we use various lines to represent the strength of links,
and the thick and red line means the valid links. It demonstrates
that: 1) even lacking data when conducting batch learning, the
truly valid links are estimated gradually by our incremental
learning procedure, 2) it solves the clustering fault of entry/exit
zones incrementally, and 3) it avoids the weak link problem. In
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Fig. 8. Valid links and entry/exit zones of the thrid environment estimated by using (a) Makris et al. method and (b) our method. The corresponding camera
topology estimated by using (c) Makris et al. method and (d) our method. The red lines represent the correct valid links, and the blue lines are weak links estimated.

Fig. 9. Learning results of Gilbert and Bowden’s method and our method. (a) Testing the camera pair of E1_Cam 1 and E1_Cam 2 in the first environment. (b)
Testing the camera pair of E2_Cam 3 and E2_Cam 4 in the second environment. (c) Testing the camera pair of E3_Cam 1 and E3_Cam 2 in the third environment.

particular, in our early results [4] for the same environments,
we avoid the weak link by assuming the true camera network
topology has been provided manually in advance. Here, the
weak link problem is overcome by the algorithm in Section V.

Then, both methods are applied to the video sequence of
the third environment, as shown in Fig. 8. The method in [23]
[Fig. 8(a) and (c)], with 7-h data for batch learning, suffers from
the problem of weak links, where totally 14 weak links are mis-
taken for correct valid links. Fig. 8(b) and (d) shows the results
estimated by our method with 1-h data for batch learning and
6-h data for increment learning. Our method learns all correct
valid links and no weak links are misestimated.

C. Experiment on Learning Brightness Transfer Function

We compared our method with the method proposed by
Gilbert and Bowden [14] for learning the appearance relation-

ships. The appearance is modeled as a 256-bin histogram in this
experiment. Their BTF is therefore a 256 256 matrix learnt
by using the incremental learning procedure. Our BTF is learnt
by the adaptive learning method described in Section VI with
the dimension equal to 15. We tested on each camera pair
connected with a valid link, where the same correspondence
determined by our spatio-temporal relationship is used for
learning. We evaluated the learning results of BTF by calcu-
lating the average reconstruction error of hand-labeled ground
truth data.

Fig. 9 shows some learning results, which belong to the
camera pairs with the most different illumination in three
environments. In Fig. 9(a), we show the result of the camera
pair of E1_Cam 1 and E1_Cam 2 in the first environment. The
results of both methods are similar, because the illuminations
of both views of cameras are almost the same. In Fig. 9(b), we
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show the result of the camera pair of E2_Cam 3 and E2_Cam
4, and the period of passing 100 pairs of correspondence is
about three hours. It shows that: 1) our method has a faster
learning rate, and their method never learns a stable BTF in the
testing period, 2) our method learns well by using few data and
hence can re-build the appearance relationship models soon
after sudden illumination changes, and 3) even with different
number of collected matching data (12 or 16), the results
are converged after more data are collected. In Fig. 9(c), we
show the result of the camera pair of E3_Cam 1 and E3_Cam
2. Our method also learns well, and their method is difficult to
converge to a lower value of the reconstruction error even when
more than 500 targets have passed.

D. Experiment on Tracking Targets Across Multiple Cameras

We demonstrate the tracking results in three environments
and compare four approaches: 1) baseline method, 2) only using
spatio-temporal relationship, 3) baseline method combined with
appearance relationship, and 4) using both relationships. The
baseline method is that the entry/exit zones and the valid links,
describing whether two zones are connected without knowing
the transition time probability between zones, are determined
manually. The appearance histograms are matched directly (i.e.,
without being transformed by BTF, and can be considered as
the situation where the BTF is not learnt well) in the baseline
method. The method using only spatio-temporal relationship,
abbreviated as “ST only”, is matching targets by using the tran-
sition time probabilities estimated by our method mentioned in
Section IV. The baseline method refined by using appearance
relationship, abbreviated as “baseline + BTF”, is similar to the
baseline method, but the appearance histograms are matched
after transformation with the reconstructed BTF estimated by
our method mentioned in Section VI. The last method, abbrevi-
ated as “ST + BTF”, is learning both relationships automatically
and combining them with a specified weighting factor, which is
0.6 and 0.4 in outdoor and indoor environments, respectively,
for tracking. The tracking accuracy is defined as a ratio of the
number of objects tracked correctly to the total number of ob-
jects passing through the scene.

In the first environment, the proposed system is trained for a
1-h period, and evaluated by using unseen ground-truth of half
an hour. Totally 47 targets passed through the cameras during
the testing data collection period of half an hour. In the second
environment, the proposed system is trained for a 2-h period,
and evaluated by using unseen ground-truth of half an hour. To-
tally 63 targets passed through the cameras during the testing
data collection period of half an hour. In the third environment,
the proposed system is trained for a 4-h period, and evaluated by
using unseen ground-truth of an hour. Totally 798 targets passed
through the cameras during the testing data collection period of
an hour.

The overall tracking accuracy and the results of each pair of
cameras are shown in Table I (the word in red color representing
the best result). It is obvious that using either spatio-temporal re-
lationship or appearance relationship improves the tracking ac-
curacy compared with the baseline method, and combining both
cues, i.e., ST + BTF, will lead to the best results. It concludes
that our method performs well and achieves high tracking accu-
racy in both indoor and outdoor environments. Some tracking

TABLE I
TRACKING ACCURACY

results can be seen in the video sequence found at http://www.
youtube.com/watch?v=XZDf6WU1pmI.

E. Discussion

From Table I, we observe that the appearance relationship
improved tracking more than spatio-temporal relationship in an
indoor environment. On the contrary, the spatio-temporal rela-
tionship got better results in outdoor environments. The reasons
are as follows. First, the persons sometimes walk together, but
the vehicles usually keep the distance, so that the spatio-tem-
poral relationship can get a better result when tracking vehicles.
Second, the appearance of different persons is usually more dis-
tinct, but the appearances of vehicles are sometimes very sim-
ilar. In our experiments, the difference of average appearance
match errors for indoor pedestrians between correct match and
false match is about 0.12, but it is only about 0.02 for outdoor
vehicles. The reason is that we use the color feature only and the
vehicle colors are limited. According to the website [2], 90% of
vehicle colors in North America in 2008 are listed below: white,
black, silver, blue, gray, and red.

In Section VII-A, we have introduced the special property of
the first environment, a parking lot, where the transition time
is varied in different situations. We compare our incremental
learning method with the baseline method and the batch learning
methods that use two different learning periods, which are from
0 to 30 min and from 30 to 60 min, respectively. Then we eval-
uate them by using unseen ground-truth of half an hour. Notice
that the period for evaluation is the video sequence from 60 to
90 min, where the parking lot is almost full. The tracking accu-
racy of four approaches (baseline method, 30 min batch learning
by the video sequence from 0 to 30 min, 30 min batch learning
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by the video sequence from 30 to 60 min, and our incremental
learning method) are 59.6%, 68.09%, 89.40%, and 89.4%, re-
spectively. It shows that the results of batch learning are much
distinct by using different learning periods. This is also the main
problem of batch learning methods for which we always do not
know when to learn, and how long the learning period is neces-
sary. On the contrary, the proposed method is better for different
situations and long-term monitoring.

VIII. CONCLUSION

Unlike other approaches assuming that the monitored envi-
ronments remain unchanged, we have presented an adaptive
and unsupervised method for learning both spatio-temporal
and appearance relationships for a camera network. It can
incrementally refine the clustering results of the entry/exit
zones and the transition time probability distributions, and
learns the subspace of BTFs in a short period of time by
combing the spatio-temporal information and efficient MCMC
sampling. Two common problems, the weak link problem and
illumination-change problem, are solved, which have never
been studied by previous works.
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