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ABSTRACT 

Convolution and cross-correlation are the basis of filtering and pattern or template matching in multimedia signal 

processing. We propose two throughput scaling options for any one-dimensional convolution kernel in programmable 

processors by adjusting the imprecision (distortion) of computation. Our approach is based on scalar quantization, 

followed by two forms of tight packing in floating-point (one of which is proposed in this paper) that allow for 

concurrent calculation of multiple results. We illustrate how our approach can operate as an optional pre- and 

post-processing layer for off-the-shelf optimized convolution routines. This is useful for multimedia applications that 

are tolerant to processing imprecision and for cases where the input signals are inherently noisy (error tolerant 

multimedia applications). Indicative experimental results with a digital music matching system and an MPEG-7 audio 

descriptor system demonstrate that the proposed approach offers up to 175% increase in processing throughput against 

optimized (full-precision) convolution with virtually no effect in the accuracy of the results. Based on marginal 

statistics of the input data, it is also shown how the throughput and distortion can be adjusted per input block of samples 

under constraints on the signal-to-noise ratio against the full-precision convolution.   

Index Terms — fast convolution, approximate computation, error-tolerant multimedia processing 

EDICS: 2-ALAR Algorithms and Algorithmic Transformations, 2-HDSO Hardware/Software Co-Design and Instruction-Level Architecture Issues  

I. INTRODUCTION 

Processing and matching of digital input data in many diverse multimedia applications (e.g. template or signal 

matching [1] and speaker and music identification [2][3]) is based on digital convolution. Due to its computational 

complexity, acceleration techniques for convolution and cross-correlation have been studied for a long time. Beyond 

the tradeoffs between frequency-domain and time-domain convolution [4], research has investigated acceleration of 

convolution for specific cases. Merhav and Kresch [5] presented a novel method of approximate convolution using 

discrete cosine transform (DCT) coefficients, which is appropriate only for DCT-domain processing. Di Stefano and 

Mattoccia [6] presented an accelerated normalized spatial-domain cross-correlation mechanism, with partial check 

according to an upper bound. Kadyrov and Petrou [7] and Anastasia and Andreopoulos [8] showed that it is possible to 
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perform accelerated 2D integer-to-integer convolution/cross-correlation by piecewise packing of the input image data 

into floating-point representations. All these cases aim for acceleration of processing by exploiting specific properties 

of the application, such as transform-domain properties or integer-to-integer processing, and do not explore generic 

throughput/distortion tradeoffs. Adaptation of throughput according to the output distortion is currently only possible 

via custom hardware designs [9][10], but all existing approaches provide for static definition of the input and kernel 

precision and no dynamic adjustment of precision can be performed without significant overhead.  

This paper proposes the formation of two throughput/distortion alternatives as an optional feature for 1D 

overlap-save convolution realizations in programmable processors. Given the software nature of our approach, the 

derived designs can be ported to any state-of-the-art multimedia signal processing library [11], any programmable 

high-end digital signal processor (DSP) [12], and even to graphics processing unit (GPU) realizations [13] used within 

high-performance multimedia applications. Importantly, unlike related research limited to integer-to-integer 

processing [7][8] and 2D convolution with ����� complexity [6] (with � the kernel and signal dominant dimension), 

this is the first work for non-integer approximate convolution that demonstrates significant acceleration in practice, 

even when the convolution kernel has ����� or �����	�� complexity, i.e. for 1D time-domain and fast Fourier 

transform (FFT) based convolution. Finally, the proposed acceleration mechanism is provided externally to the 

convolution core and it can be selectively disabled if full-precision results are required. 

We first review the basics of overlap-save convolution and the proposed approximate computation layer in Section 

II. The proposed quantization, packing and unpacking method is detailed in Section III. Experimental results validating 

the obtained throughput scaling within two error-tolerant multimedia applications are provided in Section IV. 

Concluding remarks are given in Section V. 

II. OVERVIEW OF APPROXIMATE CONVOLUTION REALIZATION 

Consider the convolution of two 1D signals1: 


��
 � ��� � � � ��: ���
��� � ∑ ����� � ������ !"#$%   (1) 

The signal with the smallest time-domain support is called kernel and the other signal is called input [4]. Practical 

implementations of convolution of an &-sample input ��� with an �-sample kernel � will subdivide the input into ' 

partially-overlapping blocks of ()*�+, samples each (vector �) prior to the actual convolution. Each individual block � 
is convolved with the kernel and the resulting blocks (
) are assembled together to give the result of the convolution, 


��
. This is the well-known overlap-save method [4], performed for efficient cache utilization and for producing the 

output in a streaming manner, with latency depending on ()*�+, instead of &.  

 
1
Notations: signals are always represented in the time domain by lowercase boldface fonts (indicating vectors) and 

their elements are shown in brackets, e.g. � and ����; �-, �. indicate the companded and packed signal �, respectively;  �%  and �"  are the even and odd samples of �, respectively; /�0,1�2 and 3�4  indicate rounding, floor and ceiling 
operation respectively (equivalently for scalars); 5�56 indicates the &6 norm.    
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As shown in Figure 1, the data-partitioning layer is conventionally positioned at an intermediate layer between the 

application and the core of the convolution. Our proposal introduces a middle-layer (Tier 1.5 in Figure 1) that performs 

companding and packing/unpacking within each signal block in order to control the processing throughput and the 

induced distortion of the performed calculation. The advantage of Tier 1.5 is that the system can select an appropriate 

acceleration mechanism adaptively, i.e. based on the input data statistics. At the same time, the convolution core 

remains untouched; this allows for the usage of any existing high-performance kernel in software or hardware [9]-[13]. 

We illustrate this aspect by coupling our approach with the state-of-the-art Intel IPP library [11]. 

 
Figure 1. Execution environment of convolution and position of the proposed middle layer. 

III. PROPOSED APPROACH 

For presentation simplicity, this section is focusing on odd-length kernels (� is odd); straightforward modifications (or 

padding the kernel with a single zero) can be applied for even-length kernels. As mentioned, we use blockwise 

processing of the input signal to allow for memory-efficient streamed processing. In order to ensure the convolution 

process remains compute-dominated and not memory-dominated, each block is set to produce (  results, with 

( 7 2� and ( even. This leads to each overlapping input block � consisting of ()*�+, � �( 9 � 9 1� samples. 

Importantly, blockwise processing of the input signal ��� allows for the adaptation of the quantization and packing 

during the execution.  

A. Scalar Quantization and Packing 

Initially, both the input signal and the kernel are companded and rounded to integers by: 

�- � /;<�0, �> � /;?�0 (2) 

where ;< and ;? are the chosen companding factors that map the dynamic range of the input signal and kernel to sets 

@�AB, … , ABD and @�EB, … , EBD, respectively; for uniform companding, we set ;< � FG
5�5H and ;? � IG

5�5H. The utilized 

values for AB and EB depend on the error tolerance of each application under consideration; further details on them will 

be provided in Subsection III.D and in the experimental section. While each of the ' signal blocks � is companded by 

(2), the companding of the input kernel can be performed only once at the beginning of the convolution process if EB 

remains fixed for the entire process. The maximum possible absolute value of 
- � �- � �>  (i.e. the companding range) is 

JKLM � /;<;? �5�565�560 � N�ABEBO. (3) 

The obtained value of JKLM is important because it determines the space required in the numerical representation in 

Tier 1 Data Partitioning (e.g. overlap-save)

Tier 1.5 Companding  and Packing/Unpacking
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order to perform error-free packing and unpacking [7][8]. In this work, depending on the throughput and distortion 

requirements, the selected packing per input block can be: (i) a novel symmetric packing method proposed in this paper; 

(ii) the asymmetric packing method of [7][8]; (iii) no packing at all (full-precision overlap-save convolution 
 � � � �).  

In the proposed symmetric packing, the rounded coefficients of each ()*�+,-sample input block and the �-sample 

kernel are packed to create two blocks of 
PQRSTUV  samples and WX

VY samples, respectively by: 

�. � �-% 9 Z�-" � ��[: �.��[� � �̃�2�[� 9 Z�̃�2�[ 9 1� (4) 

�. � �> % 9 Z!"�> " � ��]: �]��]� � �̂�2�]� 9 Z!"�̂�2�] 9 1� (5) 

where: 0 ` �[ a bQRSTU
� , 0 ` �] a c 

�d and Z (0 a Z a 1) is the utilized packing coefficient, which is defined as [7][8]:  

Z � �2JKLM�!" (6) 

Notice that this differs from the asymmetric packing method of [7][8], where eLfgK parts of the input signal block are 

packed together (0 ` �[ a W()*�+, eLfgK⁄ Y and, for practical systems [8], eLfgK i @2,3D): 

��[: �.LfgK��[� � ∑ Zk�̃��[ 9 lW( eLfgK⁄ Y�mnopq!"
k$%   (7) 

and convolution occurs using kernel �>  instead of �. : 

.LfgK � �.LfgK � �>  (8) 

B. Block Convolution 

Once companding and packing has been completed, standard convolution takes place for the rth packed signal block 

�., 0 ` r a ', by using the packed data to produce the packed output (Tier 2 of Figure 1). Under the symmetric 

packing, we have (��[: (f
Ls
 ` �[ a bQRSTUt !"
� ): 


. � �. � �.   

 � ��-% 9 Z�-"� � u�> % 9 Z!"�> "v 

(9) 
 � u�-% � �> % 9 �-" � �> "v 9 Z w u�-" � �> %v 9 Z!" w u�-% � �> "v 

                                         � �.��[� � x∑ �̃�2�[ � 2�]��̂�2�]�1 /�2#]$% 9 ∑ �̃�2�[ � 2�] 9 1��̂�2�] 9 1�1 /�2#]$% z  
                                             9 Z w ∑ �̃�2�[ � 2�] 9 1��̂�2�]�1 /�2#]$% 9 Z!" w ∑ �̃�2�[ � 2�]��̂�2�] 9 1�1 /�2#]$%   

with
2
 

(f
Ls
 � |0      !"
�  

, for r � 0
    , for r � 0 �  (10) 

Thus, 
. stemming from convolution with symmetric packing contains three entangled outputs, the base output –  

multiplied by Z% � 1, and two side outputs – multiplied by Z  (side-Z ) and Z!"  (side-Z!" ). We can derive two 

convolution results via these three outputs as detailed in the following subsection. 

C. Unpacking and Inverse Companding 

The results of the rth block �., 0 ` r a ', are unpacked, inverse companded, and combined to form the final results. 

 
2
 As in overlap-save convolution, where the first � � 1 outputs are discarded beyond the first window processing 

[4], during processing and unpacking we discard the first (f
Ls
 outputs since they are not used. 
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Unlike asymmetric packing [i.e. (8)] where the convolution outputs 
.LfgK  can be unpacked following eLfgK 

successive iterations [(5) and (6), [8]], under convolution with symmetric packing the three terms are unpacked by the 

following set of equations, which are repeated for each �[ , (f
Ls
 ` �[ a PQRSTUV , with (f
Ls
 defined by (10).  

 Initially, each sample is brought to the positive domain of floating point by: 

���[ � � �.��[ � 9 JfL�� (11) 

where JfL�� � JKLM�Z 9 1 9 Z!"� 9 �fgfZ!"  [with JKLM  derived by (3)] and �fgf  a system-dependent parameter, 

which is derived in the experimental section. Then the terms entangled by Z and by Z!" are extracted by: 

�f���!� � � JKLMZ!"����[ � 1� � 1���[ � 1�2�, for �[ � (f
Ls
, for �[ � (f
Ls

� (12) 

�f���!��� � 1Z���[�2 (13) 

These results are used in order to produce one of the outputs by: 

�̃�2�[� � 1�f���!��� 9 �f���!� � 2JKLM2 (14) 

The term �2JKLM  in (14) brings the output �̃�2�[� to its original range, since both �f���!� and �f���!��� were brought 

to the positive domain by adding JfL��. Finally, the other output of the convolution is derived by extracting the 

component multiplied by Z% and again subtracting JKLM to bring the value to its original range: 

�̃�2�[ 9 1� � �1���[ �2 � �Z!"�f���!���� � JKLM� (15) 

Inverse companding is applied to recover the final results: 


 � �;<;?�!"
-   (16) 

The output from the first block (r � 0) consists of (( 9 � � 1) samples and is placed directly in the output 

(���
��� � �����. For r � 0, ( output samples are produced, which are placed in the output by (��: 0 ` � a (): 

���
�� � 1 9 ( w r 9 �� � ��� 9 2(f
Ls
 9 2�  (17) 

D. Discussion 

Table 1 summarizes the features of the proposed companding and packing (symmetric and asymmetric) in comparison 

to conventional processing. The arithmetic and memory requirements are calculated assuming the minimum block size: 

( � 2� � ()*�+, � 3� 9 1; larger input block sizes will have proportionally-higher requirements for all methods. 

The floating-point operations (FLOP) under frequency-domain convolution stem from the FFT FLOP approximation 

of Franchetti et al [13]. The arithmetic and memory cost of companding, packing and unpacking is included by 

counting their additions and multiplications; floor operations are performed by data conversion and have no arithmetic 

cost. The derivation of these formulas is trivial and is omitted for brevity of description. The table shows that 

symmetric packing is expected to be the fastest method under both time-domain and frequency-domain convolution. 

These high-level estimates will be coupled with experiments in order to assess the throughput gains obtained in practice.  

 Companding ranges: The proposed symmetric packing utilizes three positions within the numerical representation 

[at Z%, Z" and Z!", as shown by (9)]. On the other hand, the asymmetric packing of (7) utilizes eLfgK positions, at Zk 
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�l i @0, … , eLfgK � 1D [7][8]. Hence, from tight-packing theory (Proposition 1 of [8]), for error-free unpacking we get 

upper bounds (under double-precision floating point representation) shown in the “Companding range” row of Table 1. 

Distortion: The source of imprecision in the proposed approach is the quantization of (2). Assuming the input signal 

and kernel are modeled by zero-mean, independent, identically distributed (iid), random variables with standard 

deviations �< and �? (respectively), and the companding and rounding noise for the signal and kernel is zero-mean iid 

with standard deviation ���  and ���, the expected noise power stemming from companding and rounding is: 

�� � � �u�<���v� 9 u�?��� v� 9 u������ v�� (18) 

This is derived for each output ���� by expressing the impact of the companding and rounding process of (2) in affine 

form that contains all the noise sources [14] and subtracting from the equivalent expression for the noiseless 

(full-precision) operation of (1). We can convert �� into signal-to-noise ratio (SNR) against the full-precision result by: 

SNR� � 10 log"%
���<�?��

��  (19) 

Assuming (2) introduces uniform quantization noise, we have: ��� � "
��√"�  and ��� � "

��√"� with ;< � FG
5�5H   and 

;? � IG
5�5H . This leads to the SNR expression of Table 1, which is the expected SNR if the inputs are iid with known or 

estimated standard deviations �< and �?. As we shall show in the experimental section, the SNR estimate given in 

Table 1 can be used even under non-iid conditions to predict the SNR increase when increasing the companding range 

(AB and EB) if we use �< and �? derived from the marginal distribution of the input sources. This provides an analytic 

mechanism for controlling the distortion according to the error tolerance of the convolution of each input block.  

Table 1. Comparison of different approaches for input signal block ()*�+, � 3� 9 1 and companding ranges AB, EB. 

Method 
Conventional (full precision) 

convolution 

Companding and  

symmetric packing 

Companding and  

asymmetric packing [7][8] 

Floating-point operations  

(FLOP = additions, 

multiplications) 

Time: 

4�� 

 

Frequency: 

�45�+15� log��3�+1�+3�+1  

 

Time: �� 9 � 

Frequency:  

�22.5�+7.5� log��3�+1� 

+5�+1  

eLfgK � 2:   
Time:    2.5�� � � 

Frequency: 

      �30�+15� log��2�+1�+ 
¡¢
� �+ 

"¡
�  

eLfgK � 3:   
Time:     2�� � V

£� 

Frequency: 

�25�+15� log��¤
¡ �+1�+ 

¥�
¡ �+ 7 

Memory (samples) 

Time: 4� 9 1  

 

Freq.: 6� 9 2  

Time: 2� 9 1 

 

Freq.: 3� 9 1 

eLfgK � 2: 
Time: W§

V�Y 
Freq.: 3� 9 1 

eLfgK � 3: 
Time: 2� 9 1 

Freq.: 2� 9 1 

Companding range JKLM Not applicable N�ABEBO ` 97667 
eLfgK � 2: N�ABEBO ≤ 43165096 

eLfgK � 3:  N�ABEBO ` 97667 

SNR under iid inputs with std �< & �?  and iid quantization 

noise with std  
5�5H

FG√"� & 
5�5H

IG√"� 
Not applicable 10 log"%

144u�<�?ABEBv�

12 �u�<EB5�56v� 9 u�?AB5�56v�� 9 �5�565�56�� 
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IV. EXPERIMENTAL RESULTS 

We implemented the proposed approach in an Intel i5 540M 2.5GHz processor (Windows 7 64bit SP1, single threaded, 

Intel C/C++ compiler version 12, switches: /Ox /Ot /QxHost). We selected �fgf � 3.1193 w 10!"" based on the 

machine precision measurement of [7]. The following process is performed for companding and packing:  

Initialization: We find 5�56 and decide on the companding of the input and the kernel [via (2)] by defining AB and 

EB either based on distortion requirements or based on application requirements (see Subsections IV.B-IV.D for 

examples). The kernel is companded uniformly via (2) using ;? � IG
5�5H and packed using (5). The following steps are 

then repeated for every input block �. 

• Block companding: We find 5�56 and compand the block via (2) using ;< � FG
5�5H.  

• Block packing: We set Z via (6) with JKLM set via (3). Packing of the input block is performed by (4) for symmetric 

packing and by (7) for asymmetric packing with eLfgK i @2,3D.  

Even though uniform companding is performed per block, the above process adapts the companding parameters ;? and 

;< according to kernel and each input block’s maximum value. Importantly, the implementation can straightforwardly 

switch between asymmetric, symmetric and no packing with no overhead, in order to provide adaptive convolution for 

error-tolerant applications [16], while the convolution core remains unaffected. 

A. Throughput Tests using the Intel Integrated Performance Primitives (IPP) 7.0 

To examine the acceleration offered by the proposed approach, we created test input signals of & � 8192 w 2"% 

samples to be convolved with filter kernels of � � 800 samples. Concerning block processing, we varied the block 

size between ( i @2,4,8,16,32,64D w 2"%  samples. The input signal and kernel values were randomly generated 

between ��128.0,128.0� with double-precision floating-point accuracy. We set AB � EB � 16 for symmetric packing 

and asymmetric packing with eLfgK � 3 ; furthermore, we set  AB � EB � 256  for asymmetric packing with 

eLfgK � 2. The Intel IPP [11] (routine ippsConv_64f(), single-threaded) was used for all Tier-2 convolution.  

The results are given in Figure 2 in terms of Msamples/s (10¥ output samples per second) achieved by each case. A 

summary of the obtained throughput increase and the resulting distortion against the full-precision calculation is given 

in Table 2. Even though the performance gains vary according to the size of the input block, the proposed approach 

provides significant throughput increase even for the case of ���log�� complexity. Using the distortion estimation of 

Table 1, we find that companding and symmetric packing or asymmetric packing with eLfgK � 3 achieves SNR� �
27.1dB against the full-precision (conventional) calculation; companding and asymmetric packing with eLfgK � 2 

achieves SNR� � 51.2dB. This is in good agreement with the average SNR measured from the experiments (Table 2). 

Finally, to examine the impact of the proposed approach when using convolution kernels of different size, we varied 

the convolution kernel length, �, under input block ( � 32 w 2"% samples, and measured the obtained throughput for 
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each case. The results are presented in Figure 3; Figure 3(b) shows the theoretical throughput obtained by dividing the 

total output samples with the FLOP per case (from Table 1) followed by linear scaling to match the range of Figure 

3(a). Evidently, symmetric packing achieves significant acceleration in comparison to full-precision convolution and to 

asymmetric packing. This agrees with the theoretically-predicted performance ranking based on FLOP counts. 

 
Figure 2. Throughput of convolution under different packing methods 

(higher is better) with the underlying convolution realization provided by 

Intel IPP routine ippsConv_64f()[11] for all approaches.  

 

Table 2. Minimum and maximum 

percentile throughput increase and 

average SNR measured for each 

method of Figure 2 against the 

conventional (full-precision) IPP 

realization. 

Packing 

Method 

Min. 

(%) 

Max. 

(%) 

SNR 

(dB) 

Asymmetric eLfgK � 2 
18 32 51.3 

Asymmetric eLfgK � 3 
-14 55 27.5 

Symmetric 52 158 27.5 
 

 

 
(a)                           (b) 

Figure 3. Throughput of each method (higher is better) under varying filter kernel size, from � � 32 to � � 8192 

samples; (a) experiments with Intel IPP (the variability is due to IPP convolution core’s internal reconfiguration); (b) 

theoretical calculation of throughout based on the FLOP counts of Table 1. 

B. Error-tolerant Application 1: Music Matching System 

A recently-proposed music matching system that identifies cover songs [3] was selected as the first test case. For each 

input song to be identified, the system works by extracting beat and tempo data and then matching it to a pre-calculated 

beat and tempo database via cross correlation. Matlab code for this and the sample data were collected from the 

authors’ site [3]. Given that this implementation is dominated by the cross-correlation operations [3], the only 

modification performed was the replacement of the Matlab xcorr() function call with our convolution 
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implementation. Thus, in this case each input block of the convolution corresponds to a song’s beat and tempo data and 

each convolution kernel is the beat and tempo data of a song of the database. The settings used for our experiments 

were: average beat rate 120  beats-per-minute, chroma element central frequency 200Hz  [3]. Concerning our 

implementation, we set AB � EB � 8. Table 3 demonstrates that these settings yielded the same matching accuracy for 

all methods (53.75% match), while providing up to 112% increase in throughput in comparison to the full-precision 

(conventional) Intel IPP implementation, which in turn accelerates the processing by an order of magnitude in 

comparison to the Matlab implementation of the authors [3]. Interestingly, asymmetric packing with eLfgK � 3 turns 

out to be marginally slower than with eLfgK � 2 because, for small kernel sizes, the cost of the additional packing and 

unpacking may overturn the gain in throughput, as shown also by Figure 2. 

Table 3. Matching accuracy vs. cross-correlation throughput for the music matching system of Ellis et al [3]. 

Method Matching Accuracy Throughput (MSamples/s)

Full-precision Intel IPP 53.75% 6.54 

Companding and asymmetric packing,eLfgK � 2 53.75% 13.71 

Companding and asymmetric packing eLfgK � 3 53.75% 13.49 

Companding and symmetric packing 53.75% 13.90 

C. Error-tolerant Application 2: MPEG-7 Audio Descriptor Calculation 

MPEG-7 [15] is an ISO/IEC standard providing a rich set of standardized tools to describe multimedia content, thus 

enabling effective and efficient access (search, browsing and filtering) to media streams. For audio stream processing, 

one of the initial parts of the MPEG-7 processing workflow is determining if a multi-channel audio is actually mono. 

Furthermore, in order to synchronize multi-channel audio, it is imperative to calculate the relative delay between 

multiple channels. Signal blocks from each audio channel are cross-correlated to perform these tasks. To investigate 

this application, Matlab code for MPEG-7 compliant processing of audio sources (including example audio clips) were 

collected from an MPEG-7 multimedia software resources site [15]. The standard Matlab cross correlation xcorr() 

was replaced with our packed implementation of cross-correlation to calculate the throughput increase and the incurred 

loss in accuracy in this application. The default sample block size of 50ms was used for the first test and then varied to 

100ms and 200ms to verify the results for other block sizes. We set AB � EB � 32 for this case.  

Table 4. Results’ accuracy vs. cross-correlation throughput for the MPEG7 audio descriptor calculation [15]. 

Method 

Block: 100ms (4410 samples) 

Relative Delay 

Error 

Cross-channel 

Correlat. Error 

Mono/Stereo  

Correct Detection 

MSamples/

s 

Full-precision Intel IPP 0.00% 0.00% 100% 5.68 

Companding and asymmetric packing, eLfgK � 2  0.00% 0.03% 100% 5.48 

Companding and asymmetric packing, eLfgK � 3 0.00% 0.03% 100% 5.49 

Companding and symmetric packing 0.00% 0.03% 100% 15.57 

 Indicative results from the sample “DemoBad.wav” are shown in Table 4 (other audio files and block sizes yielded 



IEEE Trans. on Multimedia, 2012 

 

10 

similar results). It is evident that our packed implementation provides considerable throughput increase over 

conventional Intel IPP (175%) while suffering little or no loss of accuracy (no error for relative delay and mono/stereo 

audio detection and only 0.03% error for cross-channel correlation). Interestingly, asymmetric packing suffers at this 

signal and filter sizes because the packing/unpacking overhead negates the gain achieved by packing only the signal. 

D. Throughput Scaling under a Lower Limit on the SNR per Input Block 

We examine the possibility of dynamically scaling the processing throughput under a lower limit on the required SNR 

of the convolution of each input block. This requires the analytic estimation of the SNR obtained under different 

companding parameters AB and EB, which is illustrated here for the two applications of the previous two subsections.  

 The samples of the input features for the music matching (or the input audio – for the MPEG-7 descriptor 

calculation) have significant statistical dependencies due to their temporal correlation. Thus, using affine forms for 

estimating the mean and variance of ���� and �̃��� [as performed for the derivation of (18)] can quickly lead to 

intractable analytic expressions due to the cross terms appearing between the moments of random variables modeling 

temporally adjacent samples. Hence, we opt to directly model the marginal cumulative distribution function (CDF) of 

temporally adjacent input samples, with the square root of its second moment giving the value for �< and �? to be used 

in �� of (18). This will derive the error power and SNR under marginal CDF modeling, which will be underestimating 

the experimentally-observed SNR. However, this underestimation is amortized when assessing the SNR difference 

under varying AB and EB; alternatively, it can be calibrated via a single SNR measurement, as shown in the following. 

 For the two applications demonstrated earlier, we illustrate the modeling of the marginal statistics of representative 

inputs in Figure 4. The experimental cumulative histograms represent the cumulative frequencies of several 

representative inputs within several 16-sample sets. We experimented with several CDFs and the best result after fitting 

with the expectation maximization algorithm is reported for each case. Our choices for the marginal CDFs, i.e. 

bivariate Weibull and Laplacian, agree with past results on the modeling of audio features [18] and audio samples [19].  

(a)  (b) 

Figure 4. CDF fitting to the histogram of cumulative frequencies of several temporally adjacent sets of inputs; (a) 

Weibull CDF (® � 0.248 and ¯ � 1.191) for the music matching application of Subsection IV.B; (b) Zero-mean 

Laplacian CDF for the MPEG-7 feature processing application of Subsection IV.C. 
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 Using the obtained �< and �? values from the fitting, the results of the SNR expression of Table 1 under varying AB 

and EB (and for several inputs) are found in Figure 5. All model SNR results are calibrated via a single measurement at 

the coarsest quantization (AB � EB � 8) in order to provide an absolute SNR estimator per application. The figure also 

indicates the regions where different companding and packing options can be achieved. The results show that the SNR 

formula of Table 1 can be used to predict the distortion when switching from one companding option to another.  

(a)  (b)  

Figure 5. Average SNR for: (a) the music matching application (beat cross-correlation); (b) the MPEG-7 delay 

calculation via cross-channel correlation. The model results are calibrated via one SNR measurement at AB � EB � 8. 

 We illustrate the applicability of such a scheme in the dynamic adaptation of the convolution throughput for the 

music matching application. Figure 6(a) demonstrates an example of varying the minimum SNR requirement for each 

cross-correlation of the input beat and chroma data of a song with the beat and tempo database; hence, “Block Number” 

indicates beat & chroma entry of each song in the database (only 9 are shown). Figure 6(b) shows the throughput 

obtained by symmetric, asymmetric packing (eLfgK � 2) or full-precision processing. This adjustment is done by 

using the model of Figure 5(a) to first establish which packing (if any) allows for SNR surpassing the requirement and 

then selecting the maximum AB and EB that allow for this packing. If no companding and packing approach allows for 

the minimum SNR requirement to be met, then full-precision convolution is performed (i.e. SNR is infinity). Because 

only three options are available per block, the obtained SNR can be significantly higher than the minimum requested. 

 
(a)                         (b) 

Figure 6. Companding and packing adaptation according to SNR constraints per convolution block. 
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V. CONCLUSION 

We propose (and make available online [16]) an operational approach that scales the throughput of generic convolution 

and cross-correlation by increasing the imprecision (distortion) of the results. This can be used in multimedia 

applications where higher throughput is desired and certain imprecision can be tolerated (or is inherently present) due 

to noise in the input data (error tolerant multimedia processing). The possibility of selecting amongst three alternatives 

per convolution window can provide for software realizations that balance between throughput, memory and accuracy 

requirements, as detailed in the summary of Table 1. The proposed method can be applied as an optional layer for any 

high-performance convolution kernel as it operates externally to the kernel code. We validated this approach with the 

state-of-the-art Intel IPP convolution kernel in a digital music matching application and in MPEG-7 descriptor 

computations, where we demonstrated significant processing-throughput gain with only marginal loss of accuracy.  
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