

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http:/dx.doi.org/10.1109/TMM.2012.2190392

http://hdl.handle.net/10251/56257

Institute of Electrical and Electronics Engineers (IEEE)

De Fez Lava, I.; Fraile Gil, F.; Belda Ortega, R.; Guerri Cebollada, JC. (2012). Analysis and
evaluation of adaptive LDPC AL-FEC codes for content download services. IEEE
Transactions on Multimedia. 60(3):641-650. doi:10.1109/TMM.2012.2190392.

 1

Abstract— This paper proposes the use of Adaptive LDPC AL-

FEC codes for content download services over erasure channels.
In Adaptive LDPC codes, clients inform the content download
server of the losses they are experiencing. Using this information,
the server makes FEC parity symbols available to the client at an
optimum code rate. This paper presents an analytical model of
the proposed Adaptive LDPC codes. The model is validated
through measurements realized with an application prototype.
Additionally, results show the performance of these codes in
different scenarios, compared to the performance of non-
adaptive AL-FEC, Optimum LDPC AL-FEC codes and an
almost ideal rateless code. Adaptive LDPC AL-FEC codes
achieve download times similar to almost ideal rateless codes
with less coding complexity, at the expense of an interaction
channel between server and clients.

Index Terms—Adaptive codes, AL-FEC, FLUTE, LDPC
EDICS— 5-HIDE, 5-SEND, 5-WRLS

I. INTRODUCTION
OR a while now, the demand for wireless broadband
bandwidth has being increasing very rapidly. Users

demand greater access capacity to utilize an increasing
number of services and applications. In turn, these
applications become more and more hungry for bandwidth,
especially video services and related applications. As a result,
wireless broadband demand has experienced a hundredfold
growth in the last years and one can only expect a similar
expansion in the years to come.

Unfortunately, wireless broadband exploits a limited
resource: frequency spectrum. For this reason, new wireless
technologies improve spectrum efficiency and regulators
reshape radio spectrum allocation, adapting it to satisfy the
changing needs of society.

However, this approach faces important challenges to cope
with user demands. Modern wireless standards perform very
close to theoretical limits. Without a major breakthrough, it is
very unlikely that the efficiency of next generation
telecommunication systems would be orders of magnitude

Manuscript received October 1, 2011. This work was supported by the
Spanish Ministry of Industry, Tourism and Trade, under project MIQUEL
(TEC2007-68119-C02-01/TCM).

I. de Fez*, F. Fraile, R. Belda and J. C. Guerri are with the Institute of
Telecommunications and Multimedia Applications (iTEAM) from Universitat
Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain (phone: 34-
963879588; fax: 34-963879583; e-mail: isdefez@iteam.upv.es,
ffraile@iteam.upv.es, robelor@iteam.upv.es, jcguerri@dcom.upv.es).

greater than that of current technologies. Also, new wireless
technology needs time to become established in markets and
even more time to become economically profitable for
operators. Policymakers face difficulties to reshape radio
spectrum as any change requires extensive negotiations.

Since the frequency spectrum is a limited resource, it is
necessary to search for underexploited features of current
wireless technologies that could optimize the usage of
spectrum efficiency. Modern wireless standards provide
wireless multicast access. On the other hand, Consumer
Electronic Devices integrate higher storage capacity available
for content download. The combined usage of multicast
transmissions and content caching can be useful to improve
the performance of wireless communications, since content
items requested by many different users can be sent with a
single transmit operation and cached in storage memory of
clients, prior to a download request [1].

In this framework, content transmissions need to be
protected against errors. To avoid further investments in
infrastructure, additional protection needs to be provided at the
application layer, either by AL-FEC (Application Layer –
Forward Error Correction), by retransmissions or by a
combination of both. AL-FEC significantly improves the
performance of multicast content download services, but its
performance is somewhat dependent on the complexity of the
algorithm used to protect the information. In this sense, the
most advanced algorithms fall in the category of rateless codes
and perform very close to ideal FEC codes: no matter what is
the erasure rate of the channel, receivers need only to acquire
an amount of data equivalent to the size of the original file to
be able to restore it.

Nevertheless, rateless codes require more processing to
generate the parity data for a specific file than other AL-FEC
codes, such as LDPC. In environments where the multicast
content selection is dynamic, it may be impossible to generate
the parity data and insert it in the network in time [2].

On the other hand, LDPC AL-FEC codes provide a good
trade-off between performance (download time) and
complexity (time required to generate parity and time required
to do the decoding process) [3]. LDPC AL-FEC parity can be
generated nearly in real time, but unlike rateless codes, the
optimum code rate depends on the erasure rate of the channel.
When the code rate of LDPC AL-FEC is set to the optimum
rate for an erasure channel, LDPC AL-FEC codes perform
very closely to rateless codes.

In this paper, the code rate of an AL-FEC LDPC code is

Analysis and Evaluation of Adaptive LDPC
AL-FEC Codes for Content Download Services

Ismael de Fez, Francisco Fraile, Román Belda and Juan Carlos Guerri

F

 2

adapted to the erasure rate of the channel as perceived by a
particular user. During the transfer process, clients report on
the erasure rate they perceived. If needed, the server generates
additional FEC rate and inserts it in a multicast channel.
Receivers are notified about the availability of additional FEC
parity data and start processing it. The performance of these
proposed Adaptive LDPC AL-FEC codes is compared to
rateless codes, static LDPC AL-FEC codes and Optimum
LDPC AL-FEC codes. The Optimum LDPC AL-FEC codes
are an ideal implementation of Adaptive LDPC codes where
the feedback received by the clients is instantaneous.

The rest of the paper is structured as follows. Next section
provides an overview of related technologies. Section III
presents the test case scenario that sets the basis for the
measurements. Section IV analyses mathematically Adaptive
LDPC codes, whereas section V describes the methodology
used for the measurements. Section VI includes the theoretical
and the experimental results and their corresponding analysis.
Finally, the last section of the document includes some final
conclusions about the study and the future work.

II. BACKGROUND
This section describes the main technologies related to IP

multicast content download services. The proposal described
in this paper is based on the FLUTE (File Delivery over
Unidirectional Transport) protocol [4], which provides
reliability on the transmission through the usage of AL-FEC,
among other mechanisms. FLUTE implements an AL-FEC
building block [5] that allows the integration of virtually any
FEC code. In this sense, this paper is focused on the
standardized LDPC codes.

A. FLUTE
FLUTE is an IP multicast protocol widely used for

multicast file download services to mobile devices. Multicast
protocols improve the scalability of file transfer services, since
files can be delivered to massive numbers of receivers through
a single transmission operation. However, in the absence of
retransmissions in the transport layer, it is necessary that
multicast protocols provide reliability at the application layer
to overcome possible packet loss in the communication
channel.

FLUTE file transfers are organized into file delivery
sessions. A session is uniquely identified by the multicast
source IP address and by a session identifier called TSI
(Transport Session Identifier). Each session contains one or
more delivery channels. Each channel sends FLUTE packets
with a different UDP destination port number and with a given
transmission rate.

In the transmission, each file is fragmented in source
blocks. Also, each block is composed of n encoding symbols:
k source symbols and n - k parity symbols. Generally, each
symbol represents the payload of a FLUTE packet, although
one FLUTE packet can contain several encoding symbols.
Obviously, when no AL-FEC is used n=k. For the sake of
simplicity, in this paper n refers to the total number of
symbols of a file for both no FEC and AL-FEC. Figure 1

shows the division of a file in blocks and symbols.
Segmentation of files is provided by a blocking algorithm
(which calculates blocks from files) and a symbol encoding
algorithm (which calculates encoding symbols from blocks).
These algorithms are defined in the FLUTE RFC [4].

In reception, clients will be able to rebuild the file when
they receive a number of packets equal to k*inefficiency_ratio
[6] . The value of the inefficiency ratio depends on the coding
algorithm. In codes that belong to the Minimum Distance
Separable (MDS) category this value is equal to 1 [6], whereas
in the rest of codes the inefficiency ratio is greater than 1.

In this sense, FLUTE supports different AL-FEC codes:
Compact No-Code (that is, no coding is applied – No-FEC)
[7], Reed-Solomon [8], Raptor [9] [10], RaptorQ [11] and
LDPC codes [12].

Fig. 1. FLUTE packet construction.

 On the other side, there are two types of FLUTE delivery
sessions: file transmission and file carousels. In carousels,
files are sent cyclically on a seamlessly endless loop, which
represents another reliability mechanism. This way, the clients
can receive in the next cycles the packets lost in the current
cycle. This paper uses carousels as delivery mechanism. Each
carousel contains all the files to send.

B. LDPC
Low Density Parity Check (LDPC) codes [12] [13] are

lineal block codes based on a parity check matrix used in the
encoding and decoding processes. In AL-FEC, this matrix
defines the relations between the source and the parity
symbols. The matrix, which is by definition disperse, is
divided in two sub-matrixes: the left one (which establishes
the relations between the source symbols) and the right sub-
matrix (which refers to parity symbols).

By means of the matrix, the encoder generates the parity
symbols through XOR operations on the source symbols and
other parity symbols previously generated. Similarly, receivers
use the matrix to reconstruct the symbols that have not been
received by performing XOR operations on the encoding
symbols already received.

Obviously, receivers must use the same parity matrix as the
sender in order to successfully decode each source block.
Sender and receivers obtain the parity check matrix via a
predefined algorithm (depending on the type of LDPC

 3

structure). The algorithm generates the matrix using some
input parameters: number of source symbols (k), number of
encoding symbols (n), number of equations to which a source
symbol belongs to and seed used to generate the
pseudorandom numbers. All these parameters are sent in the
FLUTE header extension EXT_FTI.

The RFC 5170 [14] defines two LDPC structures: Staircase
and Triangle. These are the only LDPC structures supported
by FLUTE. Both structures only differ on the right sub-matrix
generation: one has a shape like a staircase, and the other like
a triangle. A complete comparison between both structures can
be found in [15], which analyses, among other parameters, the
inefficiency ratio and the encoding/decoding time.

III. SYSTEM OVERVIEW
The system proposed in this paper uses a hybrid unicast /

multicast content delivery mechanism to provide content to
users within the boundaries of the service area. It is assumed
that the overall capacity of the wireless access is shared
between unicast and multicast connections and that there is a
limited bandwidth for multicast connections. It is also
assumed that users experience a slowly varying channel.
Moreover, it is assumed that files in the carousel are only a
few popular files that may change with time. This system may
be provided on top of any wireless network technology with
multicast support, such as Wi-Fi.

During the delivery process, clients and server use a
reporting mechanism through which the server obtains an
estimation of the erasure rate perceived by every user. If
required, the server generates AL-FEC parity and inserts it in
the wireless media. All parity symbols belonging to a code
rate are inserted on a separate FLUTE channel. Therefore,
every client receives the base ALC (Asynchronous Layered
Coding) layer, with encoding symbols belonging to the base
FEC rate and, after some time, they also subscribe to a second
ALC channel in which they receive additional AL-FEC parity
at a rate adapted to the erasure rate that the user experiences.

Obviously, all multicast channels share the overall
maximum bitrate allocated for multicast in the wireless access.
Also, multicast and unicast traffic compete for network
resources. For this reason, there is no multicast traffic until
there are a sufficient number of requests for a content item.
Similarly, there are no AL-FEC parity channels until users
need it. In order to upper bound the maximum number of
channels, all users that experienced similar losses are
prompted to join the same multicast channel for additional
parity data. By separating the parity packets in different
channels according to their encoding rate, receivers only need
to process AL-FEC packets at an optimal rate for their channel
losses. This multicast scheme achieves lower resource
consumption in clients, which is appropriate for mobile
devices.

Figure 2 shows a general overview of the proposed
scenario.

Fig. 2. System overview.

IV. THEORETICAL ANALYSIS
This section analyses mathematically Adaptive LDPC

codes. The main goal is to calculate analytically the download
time for multicast FLUTE file transfer services using Adaptive
LDPC codes. The download time is defined as the time
elapsed from a download request until the file is completely
downloaded to storage memory. The last encoding symbol
received establishes this download time. In this study, each
FLUTE packet contains exactly one encoding symbol.

As mentioned above, the server sends files cyclically in a
file carousel. In order to calculate the download time, it is
necessary to know the minimal number of times a carousel is
sent, that is, the minimal number of cycles or loops needed by
a client to download a file. This number will in turn depend on
the packet losses of the communication channel between
server and client. [16] presents a mathematical model valid for
channels with uniform channel losses. In the methodology
applied in this paper, a Markov model models the channel
packet losses, in order to account for the characteristic
burstiness of wireless communication channels. The next
subsection describes the model for carousel retransmissions,
where the expected number of cycles is derived from the
expected number of packets received per cycle. The following
subsection describes how the Markov model is applied to the
calculation of the expected number of packets received per
cycle. Finally, the last subsection presents an algorithm to
calculate mathematically the download time.

A. Analysis of carousel retransmissions
The probability of receiving new packets is different

depending on whether AL-FEC is applied or not. When No-
FEC is used, the probability of receiving x new packets at any
given loop can be modeled by a hypergeometric distribution:

 (1)

where n is the number of symbols or packets (as there is no
FEC, n=k) of the file, l is the number of lost packets per loop
and m represents the number of missing packets at the
beginning of the loop. The denominator expresses the
probability of receiving n - l packets in a carousel cycle.

 4

Similarly, the numerator expresses the probability of receiving
exactly x new packets of the m missing packets out of the
received n - l packets.

 The range of all possible values for x is [0, m]. Thus, the
latter probability yields the following expression for the
expectation value of the number of packets correctly received
at loop i:

 (2)

The number of cycles needed to download a file can be
estimated using the following equation:

 (3)

Similarly, if AL-FEC is used, the probability of receive x
new packets at any given loop is defined by the next equation:

 (4)

where, in this case, n is the number of encoding symbols
(source symbols plus parity symbols), r is the number of
received symbols at the beginning of the loop and l is the
number of lost packets per loop. Note that this expression is
equal to (1), making the substitution m=n - r. In this case, the
expectation value is defined by:

 (5)

Then, an estimation of the number of cycles is provided by
the following expression:

 (6)

B. Markov model channel
 The Markov model [17], widely used in the literature,

simulates well the burst losses, typical in wireless networks.
Specifically, the two-state Markov model (also known as
Gilbert model) establishes that the probability of losing a
packet depends on whether the previous packet has been
received or not, as Figure 3 shows. Thus, in a bursty wireless
channel, it is more likely to lose a packet if the previous
packet is lost (1-q>p).

Fig. 3. State transition diagram for an example simplified Gilbert model.

The main parameters that characterize a lossy
communication channel are the average loss probability (Ploss)
and the average burst size (b). An appropriated configuration

of the parameters p and q allows to model a channel with a
given loss probability and burst size:

 (7)

Figure 4 depicts a state transition diagram defined by
applying this model to the FLUTE transmission with carousels
and considering that in each cycle of the carousel the server
sends n packets. Each state in the diagram contains a pair (x,
y) of numbers, where x is the number of packets received in
the current loop, and y indicates if the last packet was received
(0-ON) or not (1-OFF). Thus, there will be 2n+1 possible
states in the transition diagram:

Fig. 4. State transition diagram for the Markov model in the transmission

of n packets.

The transition matrix associated, with dimensions [(2n+1) x
(2n+1)], will be:

 (8)

The probabilities vector is a [2n+1] vector that indicates the
probability of being in each state:

 (9)

Therefore, the probabilities vector in the iteration i (that is,
after i packets have been sent) will be:

 (10)

where T is the transition matrix and Π(0) is the initial
probabilities vector. Considering that initially the system is in
the state ON, since at the beginning no packets have been
received, Π(0) will be:

 (11)

This way, the average number of packets received after i
iterations is calculated adding up the number of packets of

 5

each state multiplied by the probability of being in each state:

 (12)

The total number of packets received in a loop is provided
by applying (i=n) in (12). Hence, the estimated number of lost
packets per cycle will be equal to:

 (13)

With this value, the number of cycles needed to download a
file is calculated using formulas (1)-(6).

C. Analysis of Adaptive LDPC
As explained above, when using Adaptive LDPC, clients

will receive the file with no FEC parity until they are able to
join their corresponding parity channel. Thus, in order to
model Adaptive LDPC there is a need to combine the two
methods described above, corresponding to the cases where
AL-FEC is used and where it is not. This section presents an
algorithm that performs such combination to calculate the
average download time using Adaptive LDPC codes.

Basically, the algorithm hereby proposed calculates the
number of file packets downloaded applying the method
presented above for No-FEC for every cycle up to feedback
time. If the file download is not finished at feedback time, then
the algorithm applies the method for AL-FEC.

The algorithm uses the formulas presented in the previous
sections, using the following input parameters: the values p
and q from the Markov loss model, the number of packets that
make up a file without FEC (k), the transmission rate (b), the
packet size (S) and the feedback time (t_fd).

Moreover, in order to implement Adaptive LDPC, the
algorithm has also as input parameters the code rate used to do
the coding process and the inefficiency ratio derived from this
code rate. These are two key parameters in the performance of
the algorithm. Optimum values of code rate will provide the
minimum values for the download time. In this sense, the
value of the inefficiency ratio is strongly dependent on the
code rate. As mentioned, the inefficiency ratio depends on the
type of coding, and low values of inefficiency ratio will reduce
the download time.

Note that it is necessary to take into account that the
download can finish during a cycle, that is, before all packets
of a file have been sent. For this reason, dichotomy algorithms
1 and 2 adjust the download time, obtaining the percentage of
the last cycle in which the download has finished. This
adjustment can have a great impact on the download time if
the cycle time is very high. Specifically, Algorithm 1 adjusts
the download time when No-FEC is applied (used in part 1 of
the main algorithm) and Algorithm 2 adjusts it when Adaptive
LDPC is applied (used in part 2 of the main algorithm).
Algorithms 1 and 2 have as input parameters those that appear
in equations (1) and (4), respectively. Algorithm 1 has also as
input parameter the value of m from the previous cycle to the
cycle where the download has finished, whereas Algorithm 2
has the r of the previous cycle. Moreover, Algorithm 2 has the

inefficiency ratio as input parameter.
It is worth mentioning that the expectation value of the

number of new packets calculated using equations (2) and (5)
provides a decimal value. As the number of received packets
is an integer number, in order to round in a realistic way, the
Monte Carlo method has been used in all three algorithms.

Algorithm Adaptive LDPC

INPUT: p, q, k, S, b, t_fd, coderate, inef_ratio
OUTPUT: download_time
1: Initialize (num_cycles1=0, num_cycles2=0)
2: Calculate in which cycle the feedback message (c_fd) arrives
Part 1: No-FEC
3: while (not all packets have been received and num_cycles1+1<c_fd)
4: Calculate number of losses per cycle according to Markov model
 (p,q) using (13)
5: Calculate new packets received (P) in the current loop using (2)
 and update the total number of packets received
6: num_cycles1=num_cycles1+1
7: end
8: if (all packets have been received)
9: Obtain the percentage of the last cycle using Algorithm_1
10: download_time=(num_cycles1-1+percentage1)*k*S/b
Part 2: Adaptive LDPC
11: else
12: while (not all packets have been received)
13: Calculate number of losses per cycle using (13)
14: Calculate new packets received (P) in the current loop with (5)
 and update the total number of packets received
15: num_cycles2=num_cycles2+1
16: end
17: Adjust download time obtaining percentage2 using Algorithm_2
18: download_time=(num_cycles2-1+percentage2)*k*S/b/coderate+
 + t_fd
19: end

Algorithm 1

INPUT: k, m, l, last_m
OUTPUT: percentage1
1: Initialize (bottom=0, top=1)
2: while (true)
3: percentage1=(bottom+top)/2
4: Calculate new packets received (P) with (2) with input parameters:
 percentage1*(k,m,l) and update total packets not yet received
5: if (last_m-P<0)
6: top=percentage1
7: else if (last_m-P>0)
8: bottom=percentage1
9: else
10: BREAK
11: end
12: end

Algorithm 2

INPUT: k, r, l, last_r, inef_ratio
OUTPUT: percentage2
1: Initialize (bottom=0, top=1)
2: while (true)
3: percentage2=(bottom+top)/2
4: Calculate new packets received (P) with (5) with input parameters:
 percentage2*(k,r,l) and update total packets received
5: if (last_r+P<k*inef_ratio)
6: bottom=percentage2
7: else if (last_r+P>k*inef_ratio)
8: top=percentage2
9: else

 6

10: BREAK
11: end
12: end

Note that, when several blocks are used it is necessary to
modify the proposed algorithm. In the modified algorithm, it is
needed to take into account that the feedback message will
arrive when a specific block is being received. Hence, some
blocks can be received without FEC, another blocks can be
received without FEC and then with Optimum LDPC, and
another blocks can be received only with Optimum LDPC. So,
the last block downloaded will determine the download time.

V. EVALUATION METHODOLOGY
This section describes the methodology used to evaluate the

performance of the proposed Adaptive AL-FEC codes. The
goals of the evaluation are to validate the analytical model
presented above and to compare the performance of Adaptive
LDPC codes for content download services with other
proposals. The metric selected for the evaluation is the
download time. Thus, it is necessary to identify the system
parameters that could affect the download time and define
values for them that are relevant for the case under study, as
subsection V.A describes. Furthermore, in order to compare
analytical and experimental results, it is necessary to setup a
valid scenario for conducting trials with the Adaptive LDPC
implementation, which is explained in subsection V.B.

Since Optimum LDPC is an ideal implementation of
Adaptive LDPC, it is necessary to obtain the AL-FEC rate that
minimizes the download time in the evaluation scenario for
every packet loss rate. These values are later used to compare
the developed implementation with the lower bounds
established by Optimum LDPC.

Once all environment conditions are set and Optimum
LDPC is modeled, the evaluation will consist of comparisons
of the download time achieved under different configurations
of the system parameters.

A. Evaluation parameters
As mentioned, the parameter used in the evaluation is the

average download time. The study consists of measurements
of this time obtained by applying different AL-FEC codes to
FLUTE file delivery sessions: No-FEC, Optimum LDPC
(Staircase and Triangle), Adaptive LDPC and rateless codes.

The comparison between these codes is done analyzing
their behavior in different environments. Specifically, this
paper evaluates these codes for different file sizes, different
number of blocks, transmission rates and feedback times.

In this sense, the measurements consider two different file
sizes: 3000 and 6000 packets file size (i.e., over 4 and 8
Mbytes, as each packet contains 1428 bytes). These are typical
sizes of multimedia contents played in mobile devices, such as
music files or short videos [18].

Moreover, two different number of blocks have been used:
1 block and 10 blocks. In efficiency terms, it is more efficient
to send the files using one block. However, the block
represents the decoding unit and hence clients require less
memory when they work with small blocks. Therefore, using

several encoding blocks can be very recommended when
clients have limited resources.

Furthermore, two different transmission rates have been
used: 5 Mbps and 10 Mbps. Besides, feedback times of 1, 3
and 5 seconds have been used, since these are reasonable
response values according to the transmission rates used.

 The results of the study are presented in Section VI, which
contains two types of results: analytical and experimental. In
the first, the evaluation is done calculating the download time
through the algorithm presented in the previous section. On
the other hand, the next subsection explains the performance
of the experimental results.

B. Experimental scenario
The experimental results have been carried out in order to

validate the analytical ones. Thus, a more exhaustive analysis
of the different parameters can be made using the analytical
model, since its performance is much faster and easier.

The performance of these experimental results has been
carried out using an implementation of a FLUTE server and
client developed by the authors, which implements all the
aforementioned AL-FEC codes.

Note that the implementation of Adaptive AL-FEC codes is
not specifically regarded in the FLUTE standards. In order to
implement the Adaptive LDPC, this paper proposes that the
FEC information (i.e., the FLUTE header extension
EXT_FTI) is included in all the parity symbols, so that clients
detect the code rate as soon as they join the parity channel.
The FLUTE RFC [4] does not establish the frequency or the
type of packets that carry the FEC information, as the only
requirement is that there is one packet with the EXT_FTI
extension per file in a cycle.

Furthermore, the insertion of a new parity channel does not
affect ongoing downloads. When the server decides to include
a new parity channel, it generates the encoding symbols for
the specific file without interrupting the base channel.
Therefore, parity channels will be only available after the
server is able to process the file to generate the parity packets.
Clearly, the complexity of the AL-FEC algorithm and the size
of the block will lengthen the time needed for a server to
include the parity data in the scenario.

On the other hand, when a client joins a given parity
channel, they keep the source symbols successfully decoded
from the encoding symbols received in the base channel.
However, if there is a change in the AL-FEC code rate, client
needs to discard previously received parity symbols, as these
are no longer valid for the new code rate.

It is assumed that there is a feedback between server and
client that provides the server with an estimation of the losses
experienced by every client. A possible implementation of this
feedback is described in [19].

Rateless codes are simulated according to their definition as
near ideal FEC codes, which establishes that it is only
necessary to receive a small additional percentage of the
packets that make up a file to rebuild it, regardless the erasure
rate of the channel [20].

It is also worth noting that the transmission scheme of the

 7

packets that compose a block also affects the performance of
LDPC codes. For this reason, the measurements apply a
random transmission scheme (source and parity symbols are
sent in a random order), which provides better results than a
sequential scheme in the presence of burst losses [21].

In both analytical and experimental results, the
measurements collect as many iterations as needed to provide
a 99% confidence intervals. The measurements have been
made in a controlled environment, simulating the losses in the
channel with the two state Markov model [17]. In order to
simulate a typical wireless channel, different channel losses
between 0% and 30% (in steps of 5%) have been simulated.
Also a 50% losses channel has been simulated to see the
general tendency in the different studies. Fixing a percentage
of losses and an average burst size, parameters p and q from
Markov model are obtained using (7).

In the encoding process, values of code rates between 0.2
(very strong protection) and 0.9 (weak protection) have been
used, with a precision of 0.1. Preliminary results show that this
precision is enough to establish optimum AL-FEC values for
the case under study [22]. Bear in mind that code rate
represents the relation between the source symbols of a file
and the total encoding symbols, that is, k/n. So, the less code
rate, the more protection.

VI. RESULTS AND ANALYSIS
This section presents the results of the average download

time against different parameters such as the channel packet
loss rate, the transmission rate, the file size or the number of
blocks used to send a file.

Two main studies have been developed: the first evaluates
the optimum coding and code rates in channels with different
loss rates. Once these values have been obtained, Adaptive
LDPC is analyzed and compared with rateless codes and
Optimum LDPC codes.

The optimum codes and code rates are measured
experimentally, according to the methodology described in the
previous section. On the other hand, the evaluation of
Adaptive LDPC is done through analytical and experimental
measurements.

A. Optimum codes and code rates
This study analyzes what is the optimum coding and the

optimum code rate depending on the losses of the channel and
different transmission parameters: the transmission rate, the
content size and the number of blocks.

Just to give an example of the results obtained, Figure 5
shows the download time of a 3000 packet file size, using 1
encoding block with a transmission rate of 5 Mbps, applying
LDPC Staircase codes. The results show that for every
channel packet loss rate there is an optimum AL-FEC code
rate that minimizes the download time. For instance, in
channels with 25% of losses, the optimum code rate for LDPC
Staircase is 0.7. These results are compared with the ones
obtained with LDPC Triangle and Compact No-Code (no AL-
FEC used). The best codes (Compact No-Code, LDPC
Staircase or Triangle) and the best code rate for each

percentage of losses are chosen as optimum.
In this sense, Table I shows the optimum codes and code

rates obtained for each scenario. In the table, the AL-FEC
codes are identified according to the numeric identifier
assigned by the IANA: 0) Compact No-Code, 3) LDPC
Staircase and 4) LDPC Triangle. The parameters of the four
scenarios are:

• Case 1: 3000 packets file size, 1 block, 5 Mbps
• Case 2: 3000 packets file size, 1 block, 10 Mbps
• Case 3: 6000 packets file size, 1 block, 5 Mbps
• Case 4: 3000 packets file size, 10 blocks, 5 Mbps

TABLE I
OPTIMUM CODING PARAMETERS. IANA AL-FEC CODES IDENTIFIERS:
(0) COMPACT NO-CODE, (3) LDPC STAIRCASE, (4) LDPC TRIANGLE

Losses Case 1 Case 2 Case 3 Case 4
0% - (0) - (0) - (0) - (0)
5% 0.9 (3) 0.8 (3) 0.9 (4) 0.8 (3)

10% 0.8 (3) 0.8 (3) 0.8 (3) 0.7 (3)
15% 0.8 (3) 0.7 (3) 0.8 (3) 0.6 (3)
20% 0.7 (3) 0.7 (3) 0.7 (3) 0.6 (3)
25% 0.7 (4) 0.6 (3) 0.7 (3) 0.5 (3)
30% 0.6 (3) 0.6 (3) 0.6 (3) 0.5 (3)
50% 0.4 (3) 0.4 (3) 0.5 (4) 0.3 (3)

Clearly, if there are no losses, the addition of AL-FEC
parity penalizes the download time. For this reason, the best
code for lossless channels is Compact No-Code in all
scenarios. In the event of channel losses, LDPC Staircase
generally provides better download times than LDPC
Triangle. The optimum code rates range between 0.6 and 0.9
in most of the cases.

Note that the optimum coding parameters are not only
dependent on the channel losses, but also on other parameters
like the file size, the number of blocks or the transmission rate.
For instance, in the transmission of a 3000 packet file size,
using 1 block, with a transmission rate of 5 Mbps in a channel
with 25% of losses, the optimum coding parameters are:
LDPC Triangle with a code rate of 0.7. However, if the file is
divided into 10 source blocks, the optimum coding parameters
are LDPC Staircase with a code rate of 0.5.

Fig. 5. Download time evaluation with LDPC Staircase codes with 3000

packet file size, 1 block and b=5 Mbps.

Fig. 5 shows how, for every loss rate, the average download
time increases as the code rate moves away from its optimal

 8

value. Nevertheless, moderate deviations of the actual channel
packet loss rate from an estimated value may not increase the
download time drastically. For instance, in the first scenario,
using LDPC Staircase codes, the optimum code rate for a 15%
packet loss is 0.8. The same code rate provides the best results
for a 10% of packet loss and the results for 20% of losses are
only slightly worse than for the optimum code rate of 0.7.

B. Evaluation of Adaptive LDPC
In Adaptive LDPC codes, the server changes the coding

parameters (coding and code rate) upon reception of a
message that informs about the losses of the channel after
some feedback time. Once this message arrives, the server
uses the results obtained in the previous study to choose the
optimum coding parameters depending on the transmission
parameters (losses, file size, transmission rate and number of
blocks) and continues sending the file with the new
parameters. In order to minimize the download time, the
server continues sending from the last block that was being
transmitted before the coding change occurred.

In the different studies it is assumed that, initially, the
server sends the file using Compact No-Code (No-FEC)
codes, so no protection is used.

As Figure 6 shows, Adaptive LDPC (A-LDPC) codes offer
very good results compared to No-FEC. As the losses are
higher, the need of using AL-FEC mechanisms is more
obvious.

Fig. 6. Comparison between Adaptive LDPC and Compact No-Code with

3000 packet file size, 1 block, b=5 Mbps and t_fd=3 s.

As mentioned, experimental results have been carried out to
validate the analytical results. In order to see the differences
between the analytical and the experimental results regarding
Adaptive LDPC codes, Figure 7 shows a comparison between
two files of different size: 3000 packets and 6000 packets.

Fig. 7. Comparison between analytical and experimental results in a file

size evaluation with 1 block, b=5 Mbps and t_fd=3 s.

As figure shows the values of analytical and experimental
performance are very similar, although analytical results are a
slightly higher than experimental ones. This is due to the fact
that analytical results use a fixed inefficiency ratio of 1.07
which it is not exactly the inefficiency ratio of each percentage
of losses. This value depends on each coding and different
transmissions of the same file can provide different values so,
in some codes it is not possible to obtain the inefficiency ratio
analytically. We have chosen the value of 1.07 according to
[15] and [21].

Mention that all the studies hereby presented have been
carried out analytically and experimentally. Since both models
provide very similar download times, only the experimental
results are shown. Nevertheless, in the different graphs, the
experimental results include an upper error bar that represents
the difference with respect to the download time obtained in
the analytical results.

Returning to the file size analysis, Figure 8 shows a
comparison between the proposed Adaptive LDPC (A-LDPC)
codes, Optimum LDPC (O-LDPC) and rateless codes. As
expected, in all codes the download time of 6000 packet file
size is approximately twice the download time of 3000 packet
file size. For instance, the download time using Adaptive
LDPC codes with 20% of losses is 10693 milliseconds with
3000 packet file size and 19710 milliseconds with 6000 packet
file size.

Fig. 8. File size evaluation with 1 block, b=5 Mbps and t_fd=3 s.

The difference between Adaptive LDPC and Optimum
LDPC is lower as the file size is larger. On the contrary, the
difference between Optimum LDPC and rateless codes is
higher. Nevertheless the download time ratio (the download
time of Optimum LDPC divided by the download time of
rateless codes) gets better, so the larger file size, the better
download time ratio.

Fig. 9. Feedback time evaluation with 3000 packet file size, 1 block and

b=5 Mbps.

 9

On the other hand, Figure 9 shows the behavior of Adaptive
LDPC compared with Optimum LDPC and rateless codes for
different feedback times. Regarding Optimum LDPC codes,
Adaptive LDPC offers a good behavior, slightly worse than
Optimum LDPC if the feedback time is sufficiently short. As
shown in the figure, the feedback time has a significant impact
on the download time. In channel with high losses, the
difference between the three feedback times (1, 3 and 5
seconds) decreases.

The graph also shows that Optimum LDPC codes perform
very close to rateless codes (especially with moderate channel
losses). In this sense, Figure 10 shows the download time ratio
with respect to rateless codes. The graph shows that the
download time for Optimum LDPC is only between 5% and
15% higher than rateless codes. This ratio is only slightly
worse for Adaptive LDPC, especially when the feedback time
is short (around 20% for 1 second). When the losses are higher
the download time ratio is similar for the different feedback
times and Optimum LDPC.

Fig. 10. Download time ratio with rateless codes with 3000 packet file

size, 1 block and b=5 Mbps.

On the other hand, the transmission rate is, obviously,
another parameter that affects the download time: the higher
transmission rate, the lower download time. Figure 11 shows
that, when the transmission rate is doubled, the download time
is approximately divided by two. For instance, using Adaptive
LDPC in channels with 30% of losses with a transmission rate
of 5 Mbps, the download time is equal to 12155 milliseconds,
whereas the download time is 6815 milliseconds when the
transmission rate is 10 Mbps. With respect to Adaptive LDPC,
it is worth noting that for a fixed feedback time, the difference
between Adaptive LDPC and Optimum LDPC codes is lower
with low losses.

Fig. 11. Transmission rate evaluation with 3000 packet file size, 1 block

and t_fd=3 s.

Finally, regarding the number of blocks, Figure 12 shows
how dividing a file into source blocks affects the download
time. Both LDPC and rateless codes work more efficiently
with large blocks. If more blocks are used, the download time
gets worse for all AL-FEC codes.

Fig. 12. Number of blocks evaluation with 3000 packet file size, b=5

Mbps and t_fd=3 s.

Note that Optimum LDPC outperforms rateless codes when
more than one block is used, in cases where the channel
packet loss rate is relatively low (e.g. 5%). When several
blocks are used, the download time is, in general, determined
by the number of cycles needed to download the file. So
similar percentages of losses involve similar download times
if the number of cycles is equal. In this case, the last block that
has not been downloaded determines the download time. So, if
a certain block has not been decoded in the current cycle, it is
necessary to wait one entire cycle to try to download the
complete file.

Finally, emphasize that all the graphs hereby presented have
shown similar results for the analytical and the experimental
model. Hence, the analytical model proposed for Adaptive
LDPC AL-FEC codes is validated through experimental
measurements.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposes the implementation of Adaptive LDPC

AL-FEC for multicast content distribution based on the
FLUTE protocol. Adaptive AL-FEC codes represent a good
alternative to improve the reliability of multicast connections
over lossy channels, like wireless channels.

The different results show that it improves average
download times to levels comparable to rateless codes,
keeping the coding and decoding complexity of LDPC codes,
but at the expense of an explicit feedback between clients and
servers.

Despite that the ideal LDPC AL-FEC code rate depends on
the amount of packets lost, a given AL-FEC code rate
performs good in a wide interval of packet loss rates around
the value for which it provides a minimum download time.
This way, it is expected that the performance of Adaptive
LDPC does not depend greatly on the accuracy of the channel
packet loss estimation. However, results show that it depends
considerably on the feedback time, defined as the time needed
to provide clients with AL-FEC parity packets.

Although, in general, rateless codes offer better download
times, different studies have shown that the ratios between

 10

rateless codes and Optimum LDPC or Adaptive LDPC codes
are not very high. On the contrary, the decoding complexity is
much lower in LDPC codes, which makes these codes very
recommended in receivers with limited resources, for instance,
mobile devices. As mentioned, in these devices with limited
resources it is recommended to send the data using several
blocks, in order to reduce the decoding complexity. In that
case the behavior of Adaptive LDPC codes is very similar,
even better for some percentage of losses, than rateless codes,
as the results have shown.

Precisely, one of the main points of the future work is the
evaluation of Adaptive LDPC in mobile devices and the
validation of the results presented in a wireless channel like
Wi-Fi.

On the other hand, in channels with limited bandwidth it is
recommended to use few parity channels. So it is necessary to
choose dynamically the optimum code rate depending on the
different feedback messages received by all the clients, in
order to satisfy the major part of them. The way to choose this
best code rate for all users is part of the future work.

REFERENCES
[1] W. Lam and H. Garcia-Molina “Reliably networking a multicast

repository,” in Proc. of the 22nd International Symposium on Reliable
Distributed Systems (SRDS), pp. 5-14, Florence, Italy, Oct. 2003.

[2] J. Peltotalo, J. Harju, and M. Hannuksela, “Reliable, server-friendly and
bandwidth-efficient file delivery system using FLUTE server file
format,” in IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BSMB), Bilbao, Spain, May 2009.

[3] E. Paolini, M. Varrella, M. Chiani, B. Matuz, and G. Liva, “Low-
Complexity LDPC Codes with Near-Optimum Performance over the
BEC,” in Proc. Advanced Satellite Mobile Systems (ASMS), pp. 274-
282, Bologna, Italy, Aug. 2008.

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh, “FLUTE – File
Delivery Over Unidirectional Transport,” IETF RFC 3926, Oct. 2004.

[5] M. Watson, M. Luby, and L. Vicisano, “Forward Error Correction
(FEC) Building Block,” IETF RFC 5052, Aug. 2007.

[6] V. Roca, Z. Khallouf, and J. Laboure, “Design and evaluation of a Low
Density Generator Matrix (LDGM) large block FEC codec,” in 5th
International Workshop on Networked Group Communication (NGC),
Munich, Germany, Sep. 2003.

[7] M. Watson, “Basic Forward Error Correction (FEC) Schemes,” IETF
RFC 5445, Mar. 2009.

[8] J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-Solomon
Forward Error Correction (FEC) Schemes,” IETF RFC 5510, Apr. 2009.

[9] A. Shokrollahi, “Raptor Codes,” IEEE Transactions on Information
Theory, vol. 52, pp. 2551-2567, Jun. 2006.

[10] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, “Raptor
Forward Error Correction Scheme for Object Delivery,” IETF RFC
5053, Sep. 2007.

[11] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ Forward Error Correction Scheme for Object Delivery,” IETF
RFC 6330, Aug. 2011.

[12] R. G. Gallager, “Low Density Parity Check Codes,” IRE Transactions
on Information Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

[13] T. J. Richardson, A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 619-637, Feb.
2001.

[14] V. Roca, C. Neumann, and D. Furodet, “Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC)
Schemes,” IETF RFC 5170, Jun. 2008.

[15] V. Roca and C. Neumann, “Design, evaluation and comparison of four
large block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM

Triangle, plus a Reed-Solomon small block FEC codec,” INRIA
Research Report RR-5225, Jun. 2004.

[16] J. Peltotalo, S. Peltotalo, J. Harju, and R. Walsh, “Performance analysis
of a file delivery system based on the FLUTE protocol,” International
Journal of Communications Systems, vol. 20, no. 6, pp. 633-659, Jun.
2007.

[17] H. Bai and M. Atiquzzaman, “Error modeling schemes for fading
channels in wireless communications: A survey,” IEEE Communications
Surveys and Tutorials, vol. 5, no. 2, pp. 2-9, Fourth Quarter 2003.

[18] A. Downey, “The structural cause of file size distributions,” in 9th
International Symposium in Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), Cincinnati,
USA, Aug. 2001.

[19] ETSI TS 102 034 v1.4.1, “Digital Video Broadcasting (DVB); Transport
of MPEG-2 TS based DVB Services over IP based networks,” Aug.
2009.

[20] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain
approach to reliable distribution of bulk data,” in Proc. ACM SIGCOMM
98, pp. 56-67, Vancouver, Canada, Sep. 1998.

[21] I. de Fez, F. Fraile, R. Belda, and J. C. Guerri, “Performance evaluation
of AL-FEC LDPC codes for push content applications in wireless
unidirectional environments,” Multimedia Tools and Applications, Ed.
Springer Netherlands. Available online:
http://www.springerlink.com/content/n53104h562685118, Jul. 2011.

[22] I. de Fez, F. Fraile, R. Belda, and J. C. Guerri, “Evaluation of adaptive
LDPC AL-FEC codes for content download services,” in IEEE
International Conference on Multimedia and Expo (ICME), Barcelona,
Spain, Jul. 2011.

Ismael de Fez was born in Valencia, Spain. He received
his Telecommunications Engineering degree and the
M.S. in Telematics from the Universitat Politècnica de
València (UPV), Spain, in 2007 and 2010 respectively.
Currently he works as a researcher at the Multimedia
Communications research group (COMM) of the
Institute of Telecommunications and Multimedia
Applications (iTEAM), where he is working toward his

Ph. D. degree. His areas of interest are file transmission over unidirectional
environments and file encoding.

Francisco Fraile was born in Murcia, Spain. He
obtained a degree in Telecommunication Engineering
from the Universitat Politècnica de València (UPV) and
a M. Sc. Degree in Microwave Engineering from the
University of Gävle in 2004. Since then, until 2010, he
has worked as a research engineer for the Swedish
company Interactive TV Arena. In 2006, Francisco
joined the Multimedia Communications research group

(COMM) of the iTEAM Institute, to proceed with his doctoral studies as an
industrial Ph.D. student, interested in networked electronic media.

Román Belda was born in Alzira (Valencia), Spain. He
received his Computer Science degree from the
Universitat Politècnica de València (UPV), Spain in
2004 and he is currently studying his M.S. in
Telematics. Currently he works as a researcher at the
Multimedia Communications research group (COMM)
of the iTEAM Institute. His areas of interest are mobile
applications and multimedia transmission protocols.

Juan Carlos Guerri was born in Valencia. He received
his M.S. and Ph. D. (Dr. Ing.) degrees, both in
Telecommunication Engineering, from the Universitat
Politècnica de València (UPV), in 1993 and 1997,
respectively. He is a professor in the E.T.S.
Telecommunications Engineering at the Universitat
Politècnica de València, and he leads the Multimedia
Communications research group (COMM) of the
iTEAM Institute. He is currently involved in research

and development projects for the application of multimedia to industry,
medicine, education and communications.

