
Design and Synthesis for Multimedia Systems

using the Targeted Dataflow Interchange

Format
Chung-Ching Shen, Member, IEEE, Shenpei Wu, Nimish Sane, Member, IEEE,

Hsiang-Huang Wu, William Plishker, Member, IEEE,

and Shuvra S. Bhattacharyya, Fellow, IEEE

Abstract

Development of multimedia systems that can be targeted to different platforms is challenging due

to the need for rigorous integration between high level abstract modeling, and low level synthesis and

optimization. In this paper, a new dataflow-based design tool called the targeted dataflow interchange

format (TDIF) is introduced for retargetable design, analysis, and implementation of embedded software

for multimedia systems.

Our approach provides novel capabilities, based on principles of task-level dataflow analysis, for

exploring and optimizing interactions across design components; object-oriented data structures for

encapsulating contextual information for components; a novel model for representing parameterized

schedules that are derived from repetitive graph structures; and automated code generation for pro-

gramming interfaces and low level customizations that are geared toward high performance embedded

processing architectures. We demonstrate our design tool for cross-platform application design, parame-

terized schedule representation, and associated dataflow graph code generation using a case study centered

around an image registration application.

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

C. Shen, H. Wu, W. Plishker, and S. S. Bhattacharyya are with the Department of Electrical and Computer Engineering,

University of Maryland, College Park, MD 20742, USA (e-mail: ccshen@umd.edu; hhwu@umd.edu; plishker@umd.edu;

ssb@umd.edu).

S. Wu is with SAIC, Rockville, MD 20852, USA. (e-mail: shenpei.wu@gmail.com).

N. Sane is with New Jersey Institute of Technology, Newark, NJ 07102, USA (e-mail: nimish.sane@njit.edu).

IEEE Transactions on Multimedia, 14(3):630-640, June 2012



Index Terms

Embedded signal processing, software synthesis, design tools, scheduling, dataflow graphs.

I. INTRODUCTION

A variety of design platforms, such as the Texas Instruments Multimedia Video Processor [1], Broadcom

Mobile Multimedia Processors [2], and NVIDIA Tegra Multimedia Processor [3], are available for

implementing a wide range of multimedia applications. However, the application and exploitation of these

heterogeneous platforms for multimedia system design remains largely ad hoc, and the retargetability of

design tools across these platforms has not been adequately addressed, resulting in a lack of rigorous

integration between high level modeling, and low level synthesis and analysis.

Multimedia applications can often be described in terms of signal processing block diagrams. Model-

based design methods based on dataflow models of computation have become increasingly popular to

provide formal semantics for such block diagrams because of their natural correspondence to signal flow

graphs and system level DSP flows. Consequently, dataflow graphs are widely used to model applications

in many multimedia domains (e.g., see [4]). Furthermore, the behavior of many multimedia applications

can be characterized by patterns of stream processing computations and modeled efficiently using dataflow.

In dataflow models of computation, DSP applications are modeled as directed graphs, where vertices

(actors) represent computational modules for executing (firing) functional tasks, and edges represent first-

in-first-out (FIFO) channels for storing data values (tokens), and imposing data dependencies between

actors. Whenever an actor fires, it consumes and produces tokens from and to its input and output edges,

respectively.

When implementing a dataflow-based multimedia application model on a target platform, scheduling

plays an important role (e.g., see [4]). Here, by scheduling, we refer to the process of determining which

processing resource each actor executes on, and the ordering of execution among actors that share the same

resource. By affecting key metrics that include performance, memory usage, and power consumption,

scheduling often has significant impact on implementation quality.

The underlying graph representations for multimedia systems, especially for large-scale applications,

often consist of smaller sub-structures that repeat multiple times. Topological patterns have been shown

to enable more concise representation and direct analysis of such substructures in the context of high

level DSP specification languages and design tools [5]. Furthermore, by allowing designers to explicitly

identify such repeating structures, use of topological patterns provides an efficient alternative to automated



detection of such patterns, which entails costly searching in terms of graph-isomorphism and related forms

of computation. A topological pattern is inherently parameterized and provides a natural interface for

parameterized scheduling, which enables efficient derivation of adaptive schedule structures that adjust

symbolically in terms of design time or run-time variations.

In [6], we introduced a new dataflow-based design tool, called the targeted dataflow interchange

format (TDIF), for design and implementation of embedded software for multimedia systems. TDIF is

a companion design tool of the Dataflow Interchange Format (DIF) framework [7]. TDIF extends the

capabilities of DIF with dynamic dataflow software synthesis, cross-platform actor design support, and

dataflow-integrated features for instrumenting and tuning implementations.

In this paper, we go beyond our introduction to TDIF in [6], and introduce a novel schedule model

called the scalable schedule tree for parameterized scheduling based on topological patterns. We have

integrated this model into the DIF framework and TDIF environment by 1) providing a new language

syntax for specifying topological patterns, and 2) developing a software plug-in for constructing internal

representations and generating code for implementations targeted to different platforms based on our new

schedule model. This integration provides new capabilities in the TDIF environment for application design,

experimentation with parameterized schedules that are derived from scalable dataflow graph models, and

implementation of multimedia signal processing systems that employ repetitive graph structures. Through

a case study centered around an image registration application, we have validated our new methods and

tools, and demonstrated their utility in the design and implementation of multimedia systems.

II. RELATED WORK

In early design stages for describing multimedia applications as signal processing block diagrams,

system blocks are treated as “black boxes,” and designers focus on defining application specifications

and features at a high level of abstraction. After a target platform is chosen, system blocks are manually

transcoded, and the resulting implementations are tuned to match the platform. Such a design process,

from an initial application description to a final implementation, often consists of several complex design

steps that are linked by different design languages and tools, and ad-hoc transcoding processes. While

targeting heterogeneous design platforms, such a process tends to be more error-prone and time-consuming

due to the need for efficient coordination across different processor types. Therefore, a cross-platform

design environment is needed that provides capabilities for the designer to experiment with key design

phases — ranging from early design exploration to final implementation tuning — on different platforms.

There is a wide variety of development tools that utilize dataflow models to aid in the design and



implementation of DSP applications (e.g., see [8], [9], [10], [7], [11], [12], [13]). Using these tools,

application designers can develop the functionality of dataflow actors, and capabilities are provided for

automated system simulation or synthesis. However, static dataflow models are largely used in such tools,

which limits their utility in modern multimedia applications, where dynamic dataflow communication

across functional subsystems is increasingly employed (e.g., variable data rates arising due to dynamically

determined quality of service constraints). Furthermore, existing dataflow tools are largely platform or

language specific, and do not address retargetability as a primary objective.

For design and implementation for multimedia applications using dataflow, scheduling is a critical

aspect of implementing dataflow graphs (e.g., see [4]). Parameterized schedules have been studied before

(e.g., see [14], [15]), and previously, production and consumption rates were key dataflow graph aspects

that were used to generate parameterized schedules. In topological patterns, even if production and

consumption rates are fixed, the schedule is still scalable in terms of the numbers of actors and edges. Such

scalability, when formulated in term of topological patterns, leads to new opportunities and constraints

for developing parameterized scheduling techniques.

Early work on parameterized scheduling for dataflow graphs was done in the context of parameterized

dataflow representations. Parameterized dataflow is a meta-modeling technique that can be applied to

any underlying “base” dataflow model, such as SDF [16], CSDF [17], FRDF [18], and BDF [19],

for dynamically reconfiguring the behavior of dataflow actors, edges, subsystems, and graphs through

dynamic reconfiguration of parameter values [14]. Quasi-static scheduling techniques were developed

for parameterized synchronous dataflow (PSDF) specifications [14], which is the integration of the

parameterized dataflow meta-model with SDF as the base model. However, in this work, parameterized

scheduling for scalable topologies was not addressed — the underlying sets of actors and edges were

assumed to be fixed.

The reactive process networks (RPN) model of computation supports the construction of analysis and

synthesis tools for dynamic streaming multimedia applications that include both event-based and dataflow-

based computations [20]. RPN provides an integration framework with run-time reconfiguration for event

and stream processing which is flexible to handle run-time scheduling decisions and may also be used

to represent non-deterministic stream processing behaviors.

Using the parameterized Kahn process network (PKPN) model, designers can analyze the behavior of

a parameterized system at runtime based on self-timed scheduling without introducing non-deterministic

behaviors [21]. PKPN also automates the design process through integration with the Compaan/Laura

tool [22].



The operational semantics of the RPN and PKPN models can be viewed as extensions of the Kahn

process network (KPN) modeling framework [23], where processes execute concurrently, applying block-

ing reads to assess availability of data on their inputs, and control is incorporated into processes in a

distributed fashion without use of a global scheduler. While these models lead to flexible and efficient

execution of KPN-related models, they, like the parameterized dataflow framework, do not address the

scheduling of scalable topologies.

In [6], the Targeted Dataflow Interchange Format (TDIF) is introduced for design, analysis, and

implementation of embedded software for multimedia systems. In TDIF, designers construct schedules

based on programming interfaces that are automatically generated from the TDIF tool. These programming

interfaces provide a consistent, formal dataflow abstraction layer between designer-constructed schedules

and the actors that are executed by the schedules.

In this paper, we extend the developments of [6] in a number of ways. First, we introduce a novel

schedule model called the scalable schedule tree (SST) for representing scalable schedules based on

topological patterns, and we integrate specification and code generation support for SSTs to enhance

the capabilities of the TDIF environment. Rather than having designers specify schedules in terms of

arbitrary target-language code that connects to TDIF-generated actor interfaces (as in [6]), we raise the

level of abstraction for schedule specification by allowing SST-based specification of schedules. SSTs

are specified programmatically using graph construction APIs associated with the SST formal model,

which we have developed. Through code generation techniques that we have integrated into the TDIF

environment, complete code that implements the scheduler for a given application can be automatically

generated from an SST. Furthermore, in this paper, we use a more complex case study centered around an

image registration application to demonstrate our methods and the overall utility of the TDIF environment.

III. BACKGROUND

In this section, we summarize background on dataflow graph modeling, schedule representation, and

design tool development that we build on in this paper.

A. Core Functional Dataflow

TDIF is based on a general dataflow model of computation called core functional dataflow (CFDF),

which can be viewed as the deterministic sub-class of enable-invoke dataflow [24]. CFDF is a dynamic

dataflow model that can express both static and data-dependent dataflow rates, as well as conditional

behaviors. In CFDF, actors are specified as sets of modes, where each mode has a fixed production and



consumption rate associated with each output and input port, respectively. During execution, each actor

selects one mode from its set of modes as the current mode, which can be maintained as part of its state.

In CFDF, the separation of enable (fireability checking) and invoke (firing) functionalities is defined as

a first class characteristic of the model. Each actor has an associated enable function, which can be called

at any time between firings, and returns a Boolean value indicating whether or not there is sufficient data

available on the actor input ports to fire the actor in its current mode. Since such an isolated enable check

is available, the invoke function of an actor assumes that sufficient data is present, and reads its input data

without blocking reads. When an actor is invoked, it executes its current mode, produces and consumes

data, and updates its current mode. Since different modes of an actor can have different production and

consumption rates, dynamic dataflow can be modeled flexibly in CFDF.

B. The Dataflow Interchange Format

The Dataflow Interchange Format (DIF) framework provides a standard approach for specifying mixed-

grain dataflow-based semantics for signal processing system design [7]. The DIF Language (TDL), which

is part of the DIF framework, provides a unified textual language for expressing different kinds of dataflow

semantics, including graph topologies, hierarchical design structure, dataflow-related design properties,

and actor-specific information. TDL is therefore suitable for both programming and interchange (transfer

of dataflow graphs across design tools). By using TDL, multimedia signal processing systems can be

represented as dataflow graphs at a high level of abstraction.

The DIF package (TDP) is a software tool that supports TDL, and provides a variety of intermediate

representations, analysis techniques, and graph transformations that are useful for working with dataflow

graphs. With the support of module libraries for the actors referenced in a dataflow graph, an efficient

software implementation for the graph can be synthesized automatically using the DIF-to-C tool [7].

Although DIF-to-C supports only static dataflow applications — in particular, those that are based

on synchronous dataflow (SDF) semantics [16] — the tool is capable of exploring various kinds of

implementation trade-offs that are exposed effectively through DIF-based dataflow representations (e.g.,

see [7]).

C. Topological Patterns

For large-scale models of multimedia signal processing applications, the underlying dataflow graph

representations often consist of smaller substructures that repeat multiple times. A method for scalable

representation of dataflow graphs using topological patterns was introduced in [5]. Topological patterns,



such as the ring, butterfly, and chain patterns, are pervasive in signal processing applications, including

multi-dimensional signal processing systems, where processing of large scale dataflow structures is

common.

Topological patterns enable concise representation and direct analysis of substructures in the context

of high level DSP specification languages and design tools. Modeling based on topological patterns also

provides a scalable approach to specifying regular functional structures that is formally integrated with

the framework of dataflow. This integration allows not only for specification of functional patterns, but

also for their analysis and optimization as part of the larger framework of dataflow.

For more details on modeling and design based on topological patterns, we refer the reader to [5].

D. Generalized Schedule Trees

The generalized schedule tree (GST) is a compact, tree-structured graphical format that can represent a

variety of dataflow graph schedules [15]. In GSTs, each leaf node refers to an actor invocation, and each

internal node n (called a loop node) is configured with an iteration count In for the associated sub-tree,

where execution of the sub-tree rooted at n is repeated In times.

The GST has been demonstrated to represent looped schedules for dataflow graphs effectively in the

context of static, non-scalable schedules (e.g., see [15]). In this paper, we go significantly beyond the

capabilities of GSTs by formulating and implementing a novel schedule tree model for representing

scalable schedules (i.e., schedules that symbolically accommodate variations in the numbers of actors

and edges in the associated dataflow graphs). We refer to this new form of schedule tree as the scalable

schedule tree (SST) model. Our implementation of the SST representation is integrated with the TDIF

environment for generating platform-specific code from DIF models.

IV. SCALABLE SCHEDULE TREES

In this section, we build on the GST representation, and develop a new formal method to formulate and

represent a class of parameterized schedules. This targeted class of schedules is useful for implementing

dataflow graph models that employ topological patterns, as we demonstrate in subsequent sections of

this paper. Our new model for schedule representation is significantly more powerful than the original

GST formulation, and as a target for scheduling techniques, this new model enables the development of

correspondingly more powerful schedulers.

A scalable schedule tree (SST) has all of the features of a GST (see Section III), and additionally

provides the following new features.



1. Parameterization. An SST has an associated parameter set K. Nodes within the schedule tree can be

parameterized in terms of this parameter set (we will describe this in more detail below). The semantics

of how SST parameters (i.e., values associated with elements of K) change is not specified in the SST

model; rather, it is determined by the model of computation that is used for application specification (e.g.,

SDF with static graph parameters [25], parameterized dataflow [14], or scenario aware dataflow [26]), in

conjunction with the scheduling strategy that is used to derive the schedule tree. This decoupling from

parameter change semantics allows the SST model to be applied to a variety of different kinds of dataflow

application models and design environments.

2. Guarded execution. An SST leaf node, which encapsulates a firing of an individual enable-invoke

dataflow actor, has an optional guarded attribute, which indicates that firing of the corresponding actor

should be preceded by a run-time fireability (enabling) check. Such an enabling check determines whether

or not sufficient input data is available for the actor to fire. If sufficient input data is not available, the

firing is aborted — i.e., the corresponding actor is effectively “skipped” during the current visitation

of the leaf node. The guarded attribute of SSTs is motivated by the enable-invoke dataflow model of

computation, where guarded executions play a fundamental role [27].

3. Dynamic iteration counts. Loop nodes can be dynamically parameterized in terms of SST parameters,

which provides capabilities for data- or mode-dependent iteration in schedules. An SST loop node L can

be viewed as a parameterizable form of the constant-iteration-count loop nodes in GSTs. An SST loop

node L has an associated iteration count evaluation function cL : K → Z+, where Z+ represents the set

of non-negative integers. An implementation of cL takes as arguments zero or more of the parameters

in K, and returns a non-negative integer (zero parameters are used if the iteration count is constant).

Visitation of L begins by calling cL to determine the iteration count, and then executing the subtree of L

successively a number of times equal to this count. Note that cL is evaluated by the enclosing schedule

— as a schedule executes, it invokes cL to determine the iteration count for the associated SST subtree

execution.

4. Arrayed children. In addition to leaf nodes and SST loop nodes, there is a third kind of internal

node called an arrayed children node (ACN). ACNs are perhaps the most distinctive aspect of SSTs,

and the most closely related to topological patterns. These are discussed in more detail in the following

subsection.



A. Arrayed Children Nodes

An ACN z has an associated parameter set Pz . Each p ∈ Pz in turn has an associated evaluation

function fp : K → νp, where νp is the set of admissible values (parameter domain) of p, and again, K

is the parameter set of the associated schedule tree.

An ACN z has an associated array childrenz , which represents an ordered list of candidate children

nodes during any execution of the SST subtree rooted at z. For simplicity, we assume that childrenz is a

one-dimensional array, but the associated formulations can easily be extended to handle multi-dimensional

arrays of candidate children. The array childrenz has a positive integer size (denoted sizez), which gives

the number of elements in the array. It is assumed that the array is indexed starting at 0.

Each element in childrenz represents a schedule tree leaf node (i.e., an encapsulation of an actor in

the enclosing dataflow graph), an SST loop node, or another SST — i.e., a “nested” SST. An ACN z

also has three functions associated with it, which we denote as cinitz , cstepz, and climitz , that determine

how childrenz is traversed during a given execution of the enclosing subtree. These functions take as

arguments pre-specified subsets of the parameters of z, and return, respectively, a non-negative, positive,

and non-negative integer. One or more of these functions can be constant-valued — dependence on

parameter settings is not essential but rather a feature that is provided for enhanced flexibility.

B. SST Traversal Process

When an ACN z is visited during traversal (execution) of the enclosing schedule tree, the following

sequence of steps, called the SST traversal process, is carried out.

(1) The parameter settings for z are updated by applying the evaluation function fp for each parameter

p ∈ Pz .

(2) The values of cinitz , cstepz , and climitz are evaluated in terms of the updated parameter settings.

These values are stored in temporary variables, which we denote as I, s, and L, respectively.

(3) The computation outlined by the pseudocode shown in Algorithm 1 is carried out, where A represents

the array childrenz; count represents the iteration count evaluation function of the associated SST loop

node; and K represents the set of parameters for the enclosing SST.

A generalization of SSTs can be envisioned in which arrays of candidate children are replaced by lists,

and the visitation process for a generalized ACN g starts by applying a function g, which takes parameter

settings for Pg as arguments, and returns a list of children in the order that they should be visited.

Fig. 1 shows a synthetic example of a nested SST, where the scheduling result S shows the sequence

of actor executions that results from traversing the given SST.



Algorithm 1 Outline of the SST traversal process.
for (i = I; i <= L; i += s) {

if A[i] is a leaf node {

execute the actor encapsulated by A[i]

} else if A[i] is an SST loop node {

Z = count(K)

execute the loop node subtree Z times

} else { // A[i] is a nested SST

recursively apply the SST traversal

process to A[i]

}

}

Fig. 1. An example of an SST.

C. Relationship to Scalable Dataflow

The form of scalability provided by SSTs, which can be viewed as topological scalability, is orthogonal

to that provided by the scalable dataflow concept introduced by Ritz, Pankert, and Meyr [28]. The two

techniques can be applied independently or jointly. In scalable dataflow, the objective is to execute block-

processing versions of actors. Each scalable dataflow actor is programmed in terms of a vectorization

degree N , which represents the number of firings of the actor that are executed together. This allows

such an actor to process data in blocks of N units, and furthermore, to carry out internal computations

in such a block-processed way, which can provide significantly increased throughput and data locality,

possibly at the expense of latency and buffer memory requirements [29], [30].

While Ritz presents scalable dataflow in the context of SDF, referring to the model as scalable SDF

or SSDF, the underlying form of scalability is more general and can be applied to arbitrary application

programming interfaces (APIs) or software synthesis frameworks for signal processing dataflow graphs.

This form of vectorization-oriented scalability can be applied flexibly within SSTs. For example, an



SST loop node L can be connected as an element of childrenα, where α is an ACN, and L contains as

its single child the actor A that is to be vectorized. The loop count associated with L can then be passed

dynamically to a vectorized implementation of A to execute A in a block-processing fashion.

V. THE TARGETED DIF ENVIRONMENT

The TDIF design tool, introduced in [6], builds on the capabilities of the DIF framework [7], and

introduces new features for cross-platform actor design; static and dynamic scheduler implementation; and

code generation for targeted platforms. TDIF consists of new plug-ins to the DIF environment that focus

on efficient mapping of CFDF-based multimedia application representations onto embedded platforms.

The core of the TDIF environment contains a new dataflow actor design language called the TDIF

language for describing high level specifications of dataflow actors that can be retargeted across different

platforms; object-oriented data structures for encapsulating contextual information associated with CFDF-

based dataflow components; and application programming interfaces (APIs) that allow designers to design

and experiment with these components along with scheduling strategies and run-time instrumentation

techniques. By building on the CFDF model of computation, TDIF can flexibly accommodate both static

and dynamically structured multimedia applications.

The TDIF tool is based on four software packages — the TDIF compiler, TDIFSyn software synthesis

package, TDIF run-time library, and Software synthesis engine, and it currently supports C- and GPU-

based implementations (i.e., implementations for CPU and GPU platforms). The GPU-based capabilities of

TDIF are currently oriented towards NVIDIA GPUs, based on the CUDA programming framework [31].

Since CUDA is a C-like programming language (CUDA can be viewed a variant of C with NVIDIA

extensions and certain restrictions), a C- or CUDA-based actor can be implemented as an abstract data

type (ADT) to enable efficient and convenient reuse of the actor across arbitrary applications. In typical

C implementations, ADT components include header files to represent definitions that are exported to

application developers, and implementation files that contain implementation-specific definitions.

A. SST Plug-In

A new software plug-in, called the topological pattern plug-in, to the DIF framework has been

implemented to extend the DIF language (TDL) with support for topological patterns. The topological

pattern plug-in also allows designers to construct SSTs for schedules associated with dataflow graphs

that are specified in TDL, and that employ arbitrary numbers of topological pattern instantiations. The

topological pattern plug-in integrates the SST formulations developed in Section IV as a new internal



representation format and associated set of graph (schedule) transformations within the DIF framework.

Topological patterns that are currently supported by TDL and defined as pattern keywords in the language

include chain, ring, merge, broadcast, parallel, and butterfly. An example of a code

segment in which topological patterns are specified in TDL will be shown in Section VI.

The topological pattern plug-in allows designers to construct SSTs, systematically maintain SSTs and

SST subsystems (subtrees) as reusable design components, and link SSTs to TDIF code generation capa-

bilities so that control code that implements a selected SST can be synthesized automatically to coordinate

application execution. SSTs also provide formal representations that can be generated automatically at the

back-end of automated schedule construction techniques, and provide a natural interface through which

such techniques can be integrated into TDIF as scheduling plug-ins. Development of such automated

scheduling plug-ins is a useful direction for further work.

In the topological pattern plug-in, an SST node can be instantiated in the form of either a leaf node

or an internal node. An internal node can be configured with an iteration count or specified as an ACN.

A leaf node instance is associated with an actor from the original (application-level) dataflow graph. An

ACN instance in general contains pointers to the cinit, cstep, and climit functions, which are defined

in Section IV. Through these pointers, the functions can be evaluated any time during traversal of the

enclosing tree to obtain up-to-date values. Using a Java-based API for SST construction, designers can

programmatically build up SSTs, and link the constructed SSTs with other phases of the overall TDIF

design flow. This programmatic approach also facilitates iterative, experimentation-driven refinement and

optimization of SSTs, as well as maintaining libraries of alternative SSTs that can be drawn upon to

match different sets of implementation constraints. The abstract (language-independent) formulation of

the SST also facilitates retargeting of our SST construction API to other languages — e.g., so that the

methodology can be readily integrated into other design environments.

B. Integration in the TDIF Environment

In the TDIF environment [6], we have integrated specification and code generation support for SSTs.

Through this integration, we have raised the level of abstraction for schedule specification by allowing

SST-based specification of schedules, where leaf nodes in the schedule trees are connected to the TDIF-

generated actor interfaces. As described in the previous section, an SST is specified programmatically

using tree construction APIs associated with the SST internal representation.

Code generation in TDIF for an SST is carried out by applying depth first search to traverse the

schedule tree, and invoking a specialized code generation module in each visitation step depending on



the kind of node that is visited (leaf node, SST loop node, or ACN). During the traversal process for

code generation, if a visited node x is an SST leaf node, then the guarded attribute of x (see Section IV)

is first checked. If the guarded attribute is not set, then the associated actor is assumed to have sufficient

input data whenever x is visited (e.g., through static scheduling analysis), so no run-time check for data

availability is performed (i.e., code is not generated to perform such data availability checking). This

allows results of static analysis to help streamline the generated code, while also providing flexibility for

run-time checking when static analysis is not performed or does not guarantee fireability.

During the traversal process for code generation, if a visited node x is an SST ACN, then code

is generated to evaluate cinitx, cstepx, and climitx (through appropriate function pointers, macros or

constants set up for these attributes), and generate code for a loop that iterates across the subtrees

associated with selected children from childrenx. Code for the subtrees associated with childrenx is then

generated by recursively traversing these subtrees in a depth-first fashion.

When a loop node λ is visited during code generation traversal, code is generated to evaluate the

associated iteration count evaluation function, and code is then generated for a loop structure that is

controlled by this iteration count. To generate the body of this loop structure, the SST traversal process

is recursively applied to each child node of λ.

The code generated from an SST, which implements the scheduler for the given application, can be

linked together with a top-level C file that is automatically generated from the TDIFSyn software synthesis

package, and actor code from the associated actor library to construct an executable that implements the

application. For examples of scheduler code segments that are generated from SSTs, we refer the reader

to [32].

Fig. 2 illustrates the design flow of TDIF, which incorporates specification and code generation support

for SSTs and parameterized scheduling, as we have described. By following the methodology underlying

this design flow, the designer can focus on design, implementation and optimization for dataflow actors and

experiment with alternative scheduling strategies for specific platforms based on programming interfaces

that are automatically generated from the TDIF tool. These automatically-generated interfaces provide

structured design templates for the designer to follow in order to generate dataflow-based actors that are

formally integrated into the overall synthesis process.

VI. CASE STUDY: IMAGE REGISTRATION APPLICATION

To demonstrate the capabilities of the TDIF environment along with the new topological pattern plug-

in, we use an image registration application based on the Scale-Invariant Feature Transform (SIFT)



Fig. 2. TDIF-based design flow.

Fig. 3. Design flow for the targeted image registration application.

algorithm as a case study [33]. SIFT is a well-known algorithm in computer vision for feature detection

and matching of images.

A. Application Overview

In the image registration application, two or more images of the same scene can be overlaid through

the process of geometric alignment [34]. The SIFT algorithm provides a method to extract distinctive

scale- and rotation-invariant features from images. SIFT can be used to perform feature matching between

images that are taken from different views of the same scene. Fig. 3 shows a dataflow graph representation

of this application.

In SIFT, as shown in Fig. 3, the Cascade Gaussian Filter actor implements a cascade Gaus-



Fig. 4. The cascade Gaussian filtering process in SIFT.

sian filtering subsystem that produces a series of Gaussian filtered images. Neighboring images that

are filtered by the Cascade Gaussian Filter actor (e.g., see Fig. 4(a)) are subtracted by the

Difference of Gaussian actor to produce a series of difference of Gaussian images. Then the

Local Extrema Detection actor selects the maxima and minima of difference of Gaussian images

as key point candidates. Each key point is selected only if it is larger or smaller than all of its 26 neighbors

(8 neighboring pixels in the enclosing image and 18 neighboring pixels of the adjacent two images).

The Post Processing actor eliminates key points that are localized near the boundary of the

image or localized along line segments or curves across which there are large gradients in pixel intensity.

Orientation is assigned to each key point as well. Finally, image gradient information near the key points

is extracted and stored as key point descriptors by the Descriptor Assignment actor.

When performing feature matching between two images, the Key Points Matching actor matches

a key point i in an image A to a key point j in another image B only if the Euclidean distance between

i’s descriptor and j’s descriptor multiplied by a user defined threshold is not greater than the Euclidean

distance of i’s descriptor to all other key point descriptors [33].

Since key points matching may generate false matches between the reference image and the target

image, a refinement step is needed in order to eliminate these false matches. For such matching refinement

computation, we applied the random sample consensus (RANSAC) algorithm [35]. RANSAC is an iterative

method to estimate the parameters of a model from a set of observed inlier data that is contaminated by

a set of outlier data. In our case, inliers are correct matches and outliers are false matches.

The Target Image Transformation actor takes the outputs produced by the SIFT computation,

the refined matching result, and the target image, and produces the resulting registered image. Here, a rigid

transformation process, which includes steps of translation, rotation, and scaling, is used to determine the



corresponding positions (in the target image) of each pixel in the registered image. These positions are

coordinates with fractions. We use bilinear interpolation to determine each pixel value in the registered

image by taking weighted average values of four surrounding pixels in the target image to reduce visual

distortion.

B. Applying the Scalable Schedule Tree

The cascade Gaussian filtering subsystem in SIFT is a relevant case study for experimenting with

topological patterns and SSTs because it can be modeled naturally in terms of parameterized topologies.

Cascade Gaussian filtering can be modeled as a dataflow graph consisting of actors that perform Gaussian

filtering and downsampling computations. These operations can be divided into a set of o groups, such

that each group involves s filtering steps. Both o and s are parameters that can be configured by the

designer (e.g., to explore trade-offs between processing complexity and image processing accuracy).

In the cascade Gaussian filtering process illustrated in Fig. 4(a), the original image is convolved with

the first filter. The filtered image is saved and then convolved with the next filter, and so on. After one

group of filtering operations is carried out, s different blurred Gaussian images are labeled as a separate

octave. The next step is to downsample the last image of the previous octave by a factor of two. This

process, as shown in Fig. 4(a), repeats until o octaves of images are produced.

The topological pattern underlying this subsystem with o = 6 and s = 6 is a chain (linear arrangement

of actors) that can be specified using the TDL code shown in Fig. 4(b). Here, an array of 40 edges is

instantiated by connecting 41 specified nodes (six groups of six nodes each that are interleaved with five

individual nodes) in a chain.

Note that the binding of nodes to specific functions is done in a separate part of the TDL specification

that is dedicated to assigning actor attributes. This part of the specification is not shown for conciseness

(for details, we refer the reader to [7]).

In this example of cascade Gaussian filtering, since both o and s are parameters that can be configured,

one can naturally derive a nested SST as shown in Fig. 4(c). Such a representation provides a formal,

target-language-independent model of schedule structure that can be applied to coordinate execution for

this subsystem in a manner that is parameterized across two dimensions.

In the case that o = 6 and s = 6 (as shown in Fig. 4(c)), the Cascade Gaussian Filter ACN

has 11 children nodes, which include 6 nested ACNs, each labeled as filter, and 5 downsampler

actors encapsulated as leaf nodes, which are labeled as D[0], D[1], . . . , D[4]. Each of these leaf nodes

represents an encapsulation of a downsampler actor in the cascade Gaussian filtering application. Each



internal node labeled filter is an ACN that contains 6 children nodes, where each of these children

nodes represents an encapsulation of a Gaussian filtering actor in the application.

C. Evaluation in Terms of Coding Efficiency

Our design framework for specifying topological patterns enables concise and scalable representation

of multimedia applications. To help quantify this kind of benefit, we apply an evaluation metric called the

lines of code (LOC), which is the number of lines of code required for an application. Unless otherwise

specified, the LOC cost refers to code that the designer needs to manually provide (e.g., in contrast to

code that is automatically generated or reused from some other part of an implementation). The LOC

metric has been widely used in various methods, such as the Constructive Cost Model [36], SEER for

Software [37], and the Putnam model [38], for estimating software development effort. We apply this

metric on various applications (listed in Table I), including the cascade Gaussian filtering application,

that are specified with and without use of topological patterns. Note that use of the LOC metric is

facilitated by employing lines that have reasonably consistent complexity — we have tried to follow

such an approach in our comparisons. A more accurate metric along these lines would be to compare

the numbers of lexical tokens. Exploration of such a more detailed metric is an interesting direction for

further study.

We first compare LOC evaluation results by using TDL with and without the support of topological

patterns. Table I shows a comparison result in terms of LOC for TDL specifications with and without the

support of topological patterns for different applications. In this comparison, we compare the specifications

of topology components in terms of nodes and edges in TDL, where, for consistency, each node and

edge declaration occupies a separate line of code.

We also assess the LOC benefit for the cascade Gaussian filtering application that is obtained from code

generation in the TDIF environment. More specifically, we compare the LOC cost of an implementation

that uses code generation and the LOC cost of the generated code (i.e., the LOC cost of the generated

implementation). This gives a comparison of the complexity of the complete implementation generated

using TDIF compared to the complexity of the code that the designer has to write and maintain as source

code.

As discussed in Section V, the TDIF tool contains a code generator to translate SSTs into C code

that implements the corresponding schedules [32]. The TDIF environment also provides tools to translate

concise specifications of actor interface information (input, output, state, etc.) into APIs for implementing

the actors according to standardized dataflow implementation structures in TDIF [6]. Additionally, the



TABLE I

LOC COMPARISONS FOR TDL SPECIFICATIONS WITH AND WITHOUT THE SUPPORT OF TOPOLOGICAL PATTERNS (TPS).

Application without TPs with TPs

Cascade Gaussian filtering (CGF) 81 3

Image registration that contains CGF as a subsystem 205 18

JPEG encoder 37 9

FFT (size N = 8) 32 2

TDIF environment provides translation from DIF specifications into top-level C language implementations

that construct and execute the specified dataflow graphs.

Table II summarizes the LOC costs for different implementation components of the Cascade Gaus-

sian Filter subsystem when code generation is used. These are the costs for the designer-written

code that can be viewed as input to the TDIF toolset. These costs are listed as functions of the numbers

of dataflow graph actors n and edges e in the scalable application model, and the total LOC costs c in

the designer-written component of the actor implementations.

On the other hand, Table III shows the LOC costs of the complete generated implementation — i.e.,

the generated code together with the designer-written TDIF input code that is used directly (without

translation) in the implementation.

In the Cascade Gaussian Filter subsystem, the underlying topological pattern is a chain, and

the number of edges is of the same order as the number of nodes. Thus, comparing the LOC listings

in the two tables, we see that as the number of nodes n in the application is increased, the ratio of

the designer-written LOC cost to the complete implementation LOC cost decreases. For example, with

n = 41, e = 40, and c = 2, 960 in the discussed Cascade Gaussian Filter subsystem, the

designer-written code only takes about 41% of the complete generated implementation using the TDIF

environment. This helps to quantify the utility of the TDIF tool in terms of LOC costs as a function of

graph complexity. This comparison incorporates the use of topological patterns, which helps to reduce

the LOC cost for the top-level DIF specification.

D. Cross-Platform Experimentation

TDIF includes capabilities for targeting CUDA-enabled graphics processing units (GPUs) in addition

to pure C code (“CPU targeted”) implementations [6]. As part of this application case study, we experi-



TABLE II

LOC COSTS FOR DESIGNER-WRITTEN CODE IN THE TDIF ENVIRONMENT.

Top-level DIF specification 5n + e + 6

TDIF specification 5n

Building SST 16

Actor development c

Total 10n + e + 22 + c

TABLE III

LOC COSTS FOR THE IMPLEMENTATION GENERATED BY THE TDIF ENVIRONMENT.

Top-level C file 9n + 6

Function declaration 56n

Scheduling APIs 22n

Scheduling file header 2n + 5

Scheduling 41n

Actor development c

Total 130n + 11 + c

mented with the CUDA-targeted synthesis capability of TDIF for implementing different actors for the

image registration application. As shown in Fig. 3, parts of the application are a good match for GPU

execution, and thus, the synthesized GPU implementation exhibits significant performance improvement.

This aspect of our case study validates the utility of topological patterns and the developed tool chain

in enhancing application specification and scalability in the context of cross-platform experimentation

to explore trade-offs on alternative targets. Linkage to such experimentation capabilities is important for

multimedia-oriented tools since there is a wide variety of relevant platforms available for multimedia

system implementation.

In these experiments, input to the application is a 1200 × 900 gray-scale bitmap image, and the

implementations are executed on a 3GHz PC with an Intel CPU that is equipped with 4GB RAM, and

co-located with an NVIDIA GTX260 GPU. This GPU has a 576MHz graphics clock and a 1.242GHz

processor clock. The GPU block size and grid size are set to 256 and 4219, respectively. This latter value



TABLE IV

PERFORMANCE COMPARISON FOR CPU-TARGETED AND GPU-TARGETED IMPLEMENTATIONS.

CPU(sec) GPU(sec) Speedup

Cascade Gaussian Filter 11.896 0.416 28.60

Difference of Gaussian 0.584 0.012 48.67

Target Image Transformation 0.614 0.017 36.12

Overall image registration application 55.575 30.523 1.82

(the grid size γ) is computed as the ceiling of the image size divided by the block size — i.e.,

γ = ceil(
1200 × 900

256
) = 4219.

Table IV shows a performance comparison between CPU-targeted and GPU-targeted implementations

for the GPU-targetable actors, as well as for the overall image registration application, using the TDIF

environment. We note that for the CPU-targeted implementation of the overall image registration ap-

plication, all of the actors in the application are implemented in C (i.e., without GPU acceleration).

On the other hand, for the GPU-targeted implementation, the GPU-targetable actors such as Cascade

Gaussian Filter, Difference of Gaussian, and Target Image Transformation are

implemented in CUDA and the remaining are implemented in C. Furthermore, implementations of the

cascade Gaussian filtering subsystem are generated by TDIF based on SSTs that exploit topological

pattern structures in the application specifications.

The results are obtained according to the average execution time for 10 runs in each of the two cases.

The results show that GPU acceleration provides significant benefit in this application, and validates

the retargetability of our use of topological patterns and SSTs in TDIF. However, the application-level

speedup is less than the corresponding actor-level speedups. This is due to factors such as context switch

overhead and communication cost for memory movement between CPU- and GPU-targeted subsystems.

These factors are associated with overall schedule coordination in the application implementations. Use of

the TDIF environment allows us to obtain such a comparison with relatively high coding efficiency, and

a correspondingly high degree of automation, as demonstrated in Section VI-C. This is due to the high

level of abstraction and accompanying formal modeling capabilities provided by TDIF and the associated

TDL programming features. Use of topological patterns helps to enhance the coding efficiency and raise

the level of abstraction further by representing applications in terms of scalable, higher level constructs



that are complementary to conventional forms of hierarchy in graphical design specifications.

VII. CONCLUSION

In this paper, we have introduced the Targeted DIF (TDIF) environment as a novel software tool

for design and implementation of multimedia signal processing systems. We have presented a novel

scalable schedule tree (SST) model for representing parameterized schedule structures based on topo-

logical patterns. We have also presented a new plug-in to the DIF framework for specifying SSTs that

execute dataflow-based application models containing topological patterns, and we have demonstrated

the integration of this plug-in with TDIF to provide code generation from SSTs to platform-specific

implementations. Through a case study centered around an image registration application, we have

validated our new methods and tools, demonstrated their utility in cross-platform design, and evaluated

their coding and performance efficiency. Useful directions for further work include exploring SSTs that

incorporate more complex forms of adaptivity, and supporting code generation from TDIF to additional

classes of platforms, such as FPGAs and multicore digital signal processors.

VIII. ACKNOWLEDGEMENT

This material is based on research sponsored by Air Force Research Laboratory under agreement

number FA8750-11-1-0049, Laboratory for Telecommunication Sciences, and US National Science Foun-

dation. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recommen-

dations expressed in this article are those of the authors and do not reflect the views of AFRL, LTS, or

NSF.

REFERENCES

[1] Texas Instruments, Military Multimedia Video Processor (MVP) 320C8X Data Sheet: SMJ320C80, June 2002.

[2] Broadcom, High-definition 720P Mobile Multimedia Processor: BCM2727, October 2007.

[3] NVIDIA Corporation, Whitepaper: the Benefits of Multiple CPU Cores in Mobile Devices, 2010.

[4] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook of Signal Processing Systems, Springer,

2010.

[5] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya, “Scalable representation of dataflow graph structures using

topological patterns,” in Proceedings of the IEEE Workshop on Signal Processing Systems, San Francisco Bay Area, USA,

October 2010, pp. 13–18.

[6] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya, “A design tool for efficient mapping of multimedia

applications onto heterogeneous platforms,” in Proceedings of the IEEE International Conference on Multimedia and

Expo, Barcelona, Spain, July 2011, 6 pages in online proceedings.



[7] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis from the dataflow interchange format,” in Proceedings of

the International Workshop on Software and Compilers for Embedded Systems, Dallas, Texas, September 2005, pp. 37–49.

[8] J. Eker and J. W. Janneck, “CAL language report, language version 1.0 — document edition 1,” Tech. Rep. UCB/ERL

M03/48, Electronics Research Laboratory, University of California at Berkeley, December 2003.

[9] G. W. Johnson, LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control, McGraw-Hill,

1997.

[10] J. L. Pino and K. Kalbasi, “Cosimulating synchronous DSP applications with analog RF circuits,” in Proceedings of the

IEEE Asilomar Conference on Signals, Systems, and Computers, November 1998, pp. 1710–1714.

[11] S. Kwon, H. Jung, and S. Ha, “H.264 decoder algorithm specification and simulation in simulink and PeaCE,” in

Proceedings of the International SoC Design Conference, October 2004, pp. 9–12.

[12] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language for streaming applications,” in Proceedings of the

International Conference on Compiler Construction, 2002, pp. 179–196.

[13] L. F. Teixeira, L. G. Martins, M. Lagrange, and G. Tzanetakis, “MarsyasX: multimedia dataflow processing with implicit

patching,” in Proceedings of the ACM International Conference on Multimedia, 2008, pp. 873–876.

[14] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow modeling for DSP systems,” IEEE Transactions on

Signal Processing, vol. 49, no. 10, pp. 2408–2421, October 2001.

[15] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and E. Deprettere, “Parameterized looped

schedules for compact representation of execution sequences in DSP hardware and software implementation,” IEEE

Transactions on Signal Processing, vol. 55, no. 6, pp. 3126–3138, June 2007.

[16] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245,

September 1987.

[17] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static dataflow,” IEEE Transactions on Signal

Processing, vol. 44, no. 2, pp. 397–408, February 1996.

[18] H. Oh and S. Ha, “Fractional rate dataflow model for efficient code synthesis,” Journal of VLSI Signal Processing Systems

for Signal, Image, and Video Technology, vol. 37, pp. 41–51, May 2004.

[19] J. T. Buck, “Static scheduling and code generation from dynamic dataflow graphs with integer-valued control systems,”

in Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, October 1994, pp. 508–513.

[20] M. Geilen and T. Basten, “Reactive process networks,” in Proceedings of the International Workshop on Embedded

Software, September 2004, pp. 137–146.

[21] H. Nikolov, T. Stefanov, and E. Deprettere, “Modeling and FPGA implementation of applications using parameterized

process networks with non-static parameters,” in Proceedings of the IEEE Symposium on FPGAs for Custom Computing

Machines, 2005, pp. 255–263.

[22] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere, “System design using Kahn process networks:

the Compaan/Laura approach,” in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,

February 2004, pp. 340–345.

[23] G. Kahn, “The semantics of a simple language for parallel programming,” in Proceedings of the IFIP Congress, 1974,

pp. 471–475.

[24] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Functional DIF for rapid prototyping,” in Proceedings

of the International Symposium on Rapid System Prototyping, Monterey, California, June 2008, pp. 17–23.



[25] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya, “Gabriel: A design environment for DSP,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 11, pp. 1751–1762, November 1989.

[26] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita, and S. Stuijk, “A scenario-aware data

flow model for combined long-run average and worst-case performance analysis,” in Proceedings of the International

Conference on Formal Methods and Models for Codesign, July 2006, pp. 185–194.

[27] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya, “Heterogeneous design in functional DIF,” in Transactions on

High-Performance Embedded Architectures and Compilers IV, Per Stenström, Ed., vol. 6760 of Lecture Notes in Computer

Science, pp. 391–408. Springer Berlin / Heidelberg, 2011.

[28] S. Ritz, M. Pankert, and H. Meyr, “High level software synthesis for signal processing systems,” in Proceedings of the

International Conference on Application Specific Array Processors, August 1992, pp. 679–693.

[29] S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable synchronous dataflow graphs,” in Proceedings of

the International Conference on Application Specific Array Processors, October 1993, pp. 285–296.

[30] M. Ko, C. Shen, and S. S. Bhattacharyya, “Memory-constrained block processing for DSP software optimization,” Journal

of Signal Processing Systems, vol. 50, no. 2, pp. 163–177, February 2008.

[31] NVIDIA CUDA Compute Unified Device Architecture: Programming Guide, Version 1.0, June 2007.

[32] S. Wu, “Representation and scheduling of scalable dataflow graph topologies,” M.S. thesis, Department of Electrical and

Computer Engineering, University of Maryland, College Park, 2011.

[33] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol.

60, no. 2, pp. 91–110, 2004.

[34] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and Vision Computing, vol. 21, pp. 977–1000,

2003.

[35] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image

analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[36] B. Boehm, B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy, D. Reifer, R. Selby, and B. Steece, “Cocomo ii model

definition manual,” Tech. Rep., University of Southern California, 2000.

[37] L. Fischman, K. McRitchie, and D. D. Galorath, “Inside seer-sem,” Journal of Defense Software Engineering, pp. 26–28,

April 2005.

[38] L. H. Putnam and W. Myers, Five Core Metrics : The Intelligence Behind Successful Software Management, Dorset House

Publishing, 2003, New York, New York, USA.

[39] I. Cho, C. Shen, S. Potbhare, S. S. Bhattacharyya, and N. Goldsman, “Design methods for wireless sensor network building

energy monitoring systems,” in Proceedings of the IEEE International Workshop on Practical Issues in Building Sensor

Network Applications, Bonn, Germany, October 2011, pp. 974–981.


