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LP-SR: Approaching Optimal Storage and Retrieval
for Video-on-Demand

S.-H. Gary Chan, Senior Member, IEEE, and Zhuolin Xu

Abstract—In a distributed large-scale video-on-demand (VoD)
streaming network, a content provider often deploys local servers
close to their users. A movie is partitioned into segments which
the servers collaboratively replicate and retrieve ( ). A crit-
ical but challenging problem is how to minimize overall system
deployment cost consisting of server bandwidth, server storage,
and network traffic among servers. In this paper, we address this
problem through jointly optimizing movie storage and retrieval in
the server network. We first formulate the optimization problem
and show that it is NP-hard. To address the problem, we propose a
novel, effective and implementable heuristic termedLP-SR. LP-SR
decomposes the optimization problem into two computationally ef-
ficient linear programs (LPs) for segment storage and retrieval, re-
spectively. The strength of LP-SR is that it is asymptotically optimal
in terms of , and is not high to be closely optimal (around 5 to 10
in our study). For large movie pool, we propose a movie grouping
algorithm to further reduce the computational complexity without
compromising much on the performance. Through extensive sim-
ulation, LP-SR is shown to perform significantly the best as com-
paredwith other state-of-the-art and traditional schemes, reducing
the deployment cost by a wide margin (by multiple times in many
cases). It attains performance very close to the global optimum.

Index Terms—Distributed video-on-demand, linear program-
ming, optimization, segment storage and retrieval.

I. INTRODUCTION

I N order to provide cost-effective video-on-demand (VoD)
streaming service scalable to large number of users, a con-

tent provider often deploys distributed servers placed close to
user pools. These servers cooperatively replicate and retrieve
movies given movie popularity. Such architecture is able to
greatly reduce network load and scale up the streaming and
storage capacity of the network [1]. In this paper, we consider
the critical and challenging problem of minimizing the system
deployment cost of VoD streaming through optimizing movie
storage and retrieval in the servers. The cost model we use
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Fig. 1. A distributed servers architecture for VoD service.

is general and comprehensive, capturing server storage, server
bandwidth utilization and network traffic among the servers.
We show in Fig. 1 a typical distributed and cooperative VoD

network consists of a central server (or repository) storing all
the movies and proxy servers placed close to user pools.1 While
the central server stores all the movies, the proxy servers are of
possibly heterogeneous storage which may be able to replicate
only a fraction of the movies. Each user has a home (or local)
server to serve his request. If the request is a hit, the home server
directly streams to the users. Otherwise (i.e., a miss), the home
server pulls the content from a remote server (either a proxy
server or the central server) to stream to the request. In other
words, the bandwidth of the servers are used to stream not only
its own home users (if any), but also remote servers requesting
their contents.2 Note that to minimize interactive delay, movie
segments are streamed in the network, i.e., they are not down-
loaded at the clients before being played back. (To further re-
duce user startup delay, one may consider pre-storing the “pre-
fixes” (the first, say, 30 seconds) of the movies at the servers.
In any case, such prefix operation is orthogonal to our current
study.)
The deployment cost of such a VoD network mainly consists

of two major components, server cost due to the total storage
and upload/streaming rate of a server, and network cost due to
the bandwidth used between pairs of servers to serve the misses.
Given movie popularity, a challenging problem is hence which

1In this paper, we use “client” and “user” interchangeably. We also use
“movie,” “video” and “content” interchangeably.
2In this paper, we use the term “servers” to collectively refer to the central

and proxy servers.
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movies to store (or replicate) and where to access them in order
to minimize the deployment cost for interactive streaming.
For efficient server storage and retrieval, each movie is con-

sidered to be partitioned into segments ( ). We formulate
the cost-minimization problem of optimizing movie storage and
retrieval and show that it is NP-hard. To make it tractable, we
propose a novel and efficient heuristic termed LP-SR which de-
composes the problem into two linear programs (LPs) for seg-
ment storage and retrieval, respectively. The salient feature and
strength of LP-SR is that it is asymptotically optimal in , i.e., as
increases, its performance approaches global optimum. Fur-

thermore, our results show that does not need to be large (say
5–10) for the system to be closely optimal (within 6.5% devia-
tion in our simulation).
Note that LP-SR is orthogonal and applicable to any estima-

tion and prediction algorithms of movie popularity and traffic
[2]–[6]. It may be run regularly based on the estimation or
prediction interval (e.g., on a nightly basis). Therefore, LP-SR
can keep the deployment cost low as the popularity, number of
movies and traffic in the system change over time.
Our contributions of this work are three-folds:
• Comprehensive consideration of system deployment cost:
We present a realistic and general model on the deployment
cost of VoD, which includes comprehensively server band-
width utilization, storage and network transmission cost.
(Previous work in VoD seldom considers all these factors
together.) We formulate the joint optimization problem for
movie storage and retrieval and show that it is NP-hard.

• LP-SR: Achieving asymptotic optimality for video-on-de-
mand:We propose LP-SR which decomposes the original
NP-hard problem into two linear programming (LP)
problems for segment storage and retrieval, respectively.
These LPs can be efficiently solved in polynomial time.
LP-SR is asymptotically optimal in , i.e., the system
cost approaches the global minimum as increases. With
LP-SR, the network is able to make the best use of lim-
ited server storage, efficiently utilize the available server
bandwidth, and substantially save network traffic cost. To
reduce the computational complexity for large number of
movies, we further propose an efficient movie grouping
algorithm which achieves close optimality but reduces the
complexity by a polynomial factor of , where is
the group size of the movies.

• Extensive simulation study: We conduct extensive
simulation and comparison study of LP-SR with both
state-of-the-art and traditional schemes. Our results show
that LP-SR achieves substantially the lowest system cost,
outperforming others significantly by a wide margin (by
multiple times in many cases). Our results show that
many existing heuristics are still quite far from the global
optimum, and LP-SR can achieve performance very close
to such optimum.

This work is organized as follows. We briefly review the pre-
vious work in Section II. In Section III, we formulate the joint
optimization problem for VoD and show that it is NP-hard. We
present LP-SR and its implementation framework in Section IV.
In Section V, we present illustrative simulation results on the
performance of LP-SR. In Section VI, we discuss how to further

reduce the run-time complexity of LP-SR by movie grouping.
We conclude in Section VII.

II. RELATED WORK

We briefly discuss previous work as follows. The joint op-
timization problem of movie storage and retrieval is generally
regarded as NP-hard [7]–[9]. As a result, many heuristics have
been proposed to address it (e.g., [7]–[15]). It is often not clear
how these heuristics relate to the optimum. In contrast, the pro-
posed LP-SR has a much stronger optimality property: it is
asymptotically optimal in and can be designed to be arbi-
trarily close to the optimum by increasing (with trade-off in
computational overhead in finding the optimal solution). We
show that even under realistic condition that is far from large
(e.g., 5 to 10), the performance is already very close to the op-
timum. Due to its highly optimal nature, LP-SR outperforms
many state-of-the-art and traditional schemes by a wide margin
of multiple times. In contrast with some previous algorithms
based on iterations [12], [16], LP-SR is based on LP formula-
tions and hence is highly efficient and guarantees to converge.
The work in [4], [6] considers how to support user interac-

tivity through efficiently searching for movie segments. While
the heuristics are strong and impressive, they have not consid-
ered cost optimization issue. For thework studying the cost issue
of VoD [9], [10], [17]–[22], many of them have not comprehen-
sively considered the cost components in the system. Our model
captures various costs with general functions on network band-
width, server storage and server uploading bandwidth. There-
fore, ourmodel and formulation is amore complete, realistic and
practical consideration of a VoD network. There has not been
previous study on VoD with such a general and comprehensive
consideration on its deployment cost.
While some previous work presents impressive measurement

work on commercially deployed VoD systems [23], [24], we
address the optimization issue of a VoD network and propose a
new scheme which is asymptotically optimal. Our optimality is
shown to be significantly better than the state of the arts. The
recent VoD work in [25]–[27] seeks to maximize the sharing
of peers to offload the server load. While the objective of these
works is to utilize the uploading bandwidth as much as possible,
ours is to minimize the deployment cost of VoD. The difference
in objectives leads to different system design and operation.
A preliminary version of this work has been reported in

[28]. The current work extends it substantially by studying and
proving the complexity of the problem, and proposing a movie
grouping algorithm which greatly reduces the time complexity
of the algorithm for large movie pool. We also present signif-
icantly more simulation results to validate the much stronger
performance of LP-SR.

III. PROBLEM FORMULATION AND ITS COMPLEXITY

In this section, we present the joint problem of movie storage
and retrieval to minimize deployment cost and show that it is
NP-hard. We show the important symbols used in Table I.
The overlay network is modeled as an undirected graph

, where is the set of servers and repository and
is the set of overlay edges connecting nodes in (the

extension to directed graph is straightforward given our current
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TABLE I
MAJOR SYMBOLS USED IN THIS PAPER

formulation). Let be the set of movies and be the movie
length (in seconds). Let be the popularity of movie ,
which is the probability that a user requests movie , where

and .
A server has a certain storage space (in seconds). Let

(1)

indicate whether server stores movie . Note that for the
repository, . We obviously must have

(2)

Let

(3)

be the probability of supplying movie from server to server
. As the server cannot supply more than that it stores, we must
have

(4)

In other words, when there is a miss, a remote server can only
supply the movie it locally stores. And by definition,

.
Each user retrieves data from the servers (including his home

server), we hence must have

(5)

Let be the total movie request rate at server (requests
per second); the request rate for movie at server is hence

.
Further let be the average holding (or viewing)

time for movie , where . Note that we have consid-
ered user interactivity on movie segments through , which
may be different for different movies (interesting movies may
have , or vice versa). Furthermore, we are interested
in average holding time, as we are considering time-averaged
cost at steady state (hence the distribution of the holding time
may be different for different movies). While interacting with
the movie, a user holds up a stream and may uniformly visit
any segments of the movie over time. Given the above, the av-
erage amount of data streamed from server to for movie
is hence .
Let be the movie streaming bitrate (bits/s). Hence, the

data rate the server “pulls” from server for movie is
. Therefore, the total network transmis-

sion bandwidth (bits/s) from server to is

(6)

for , and, by definition, .
We consider a general network cost model for the traffic be-

tween servers serving the misses. Let be a monotonically
non-decreasing piece-wise linear function of network cost due
to the directed traffic flow from server to , i.e.,

(7)

with . Note that our model is general as does not
have to be the same as . The total network cost is hence

(8)

The bandwidth used in a server to serve the other remote
servers depends on where to store and how to retrieve a movie.
For any server , the total uploading rate (bits/s) that it
serves other servers is given by

(9)

The servers help each other using “cache and stream” model,
i.e., a remote server streams to a user through his home server.
Therefore, the total bandwidth of server to serve its local users
is given by . This is a fixed quantity
given local traffic, and hence will not be considered in our cost
optimization.
While network cost depends on the traffic between pairs of

servers, the cost of a server depends on its total storage and
uploading rate used (in order to serve the other servers in the
network). Such storage and rate are limited by its disk capac-
ities independent of other servers. Let be the cost of op-
erating the server , which is a monotonically non-decreasing
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piece-wise linear function in (storage) and (uploading
bandwidth), i.e.,

(10)

In another words, the server cost is a function of its storage and
streaming bandwidth. The aggregated server cost is hence

(11)

Therefore, the total system deployment cost is

(12)

We state our joint cost-optimization problem as follows:
1) JOSR: Joint OptimizationOnMovie Storage and Retrieval

Problem toMinimize Deployment Cost: Given topology , user
demand , storage capacity , movie popularity ,
and cost functions and , we seek to minimize the
total cost given by (12), subject to (1) to (5). The output is movie
storage in each server (i.e., ) andmovie retrieval between
servers (i.e., ).
2) Claim: The JOSR problem is NP-hard.
Proof: We prove its NP-hardness by deriving a polynomial

reduction from the Domatic Number Problem, whose NP-com-
plete version is stated as follows. Given and a posi-
tive integer no larger than , is the domatic number of at
least , i.e., can be partitioned into at least disjoint dom-
inating sets?
Given and , we construct an instance of our decision

problem as follows. The network contains equal-sized
movies with equal popularity everywhere, with each server
being able to store only one movie. Consider the case that movie
length is homogeneous, average viewing time of a movie is
the entire movie, request demand at each server is , unit
storage cost is zero and unit access cost of “pulling” a movie
from a remote server (including the streaming cost of the remote
server and the network cost from remote to the home server)
is units ( ). Note that such instance construction can
obviously be done in polynomial time. Our decision problem
hence becomes: Given the instance, is there a joint SR strategy
which achieves total cost of at most ?
Clearly, at each node , the minimum average access cost

is when one movie is stored locally and
movies are in the remote servers with 1-unit access cost, and the
total cost collected from all the nodes is correspondingly

. As the overlay VoD network in consideration is a
connected graph, we construct its subgraph which maintains
all the servers (i.e., nodes) and the edges with 1-unit access cost.
This can also be done in polynomial time. We show that can
be partitioned into disjoint dominating sets if and only if there
is such a strategy.
First, if there is such a strategy, any node can access a

movie within 1-unit access cost. Then if we could separate
into disjoint sets with each corresponding to a certain movie,
it would result in dominating sets because the distance be-
tween a set and any node is either zero (i.e., contained in the set)

or one unit (i.e., connected by an edge). Furthermore, if we have
disjoint dominating sets, we can easily derive such a strategy

by assigning each set a distinct movie to store. Therefore, we
reduce the Domatic Number Problem to our decision problem
which proves that our optimization problem is NP-hard.

IV. LP-SR: LP-BASED SEGMENT STORAGE AND RETRIEVAL

In this section, we present our novel and efficient heuristic
called LP-SR, which decomposes the optimization problem
into two LPs for segment storage (LP-S) and retrieval (LP-R).
LP-SR works as follows: we first relax the problem stated above
to an LP which yields optimal movie storage (Section IV-A).
Based on the LP solution, we then discretize segment storage
(Section IV-B). Our discretization process for segment storage
is shown to be asymptotically optimal. Given the storage,
we solve the optimal segment retrieval problem by another
LP (Section IV-C). We analyze the run-time complexity of
LP-SR in Section IV-D. Finally we discuss the implementation
framework of LP-SR in Section IV-E.

A. LP-S: Relaxation to a Linear Program for Movie Storage

In order to address the NP-hard problem, we relax the con-
straint in (1) as

(13)

After such relaxations, it is clear that our problem contains
only linear constraints of real numbers. Therefore, it becomes
an LP, and its solution refers to the fraction of movie
that server stores.
Note that for any arbitrary linear functions of ((10)) and
((7)) the relaxed problem becomes a linear programming

(LP) problem which can be solved efficiently.

B. Asymptotically Optimal Segment Storage and Placement

The LP solution above leads to optimal fraction of movies
stored in each server (and hence called LP-S). For ease of repli-
cation and access, in reality each movie is partitioned into inte-
gral parts of segments ( ). The major issue is then how to
discretize the LP-S solution to obtain the number of and which
movie segments to store in each server.
We present here an asymptotically optimal segment storage

algorithm, i.e., as increases, our algorithm approaches the
JOSR exact solution (we show later in our simulation that does
not need to be large to achieve closely optimum). In order to do
that, we place some of the segments of a movie so as to match
as closely as possible the optimal movie storage obtained
from LP-S. The major issues are then how many segments of
a movie should be stored (i.e., segment space allocation) and
which of these segments should be stored (i.e., segment place-
ment) at each server.
1) Segment space allocation: Based on LP-S solution, the op-
timal number of segments of movie that server should
store is

(14)

For integral and finite , needs to be discretized to
integral values. We present below a simple discretization
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TABLE II
SYMBOLS FOR SEGMENT RETRIEVAL

approachwhere each server tries tomatch the optimal LP-S
solution as much as possible through integer rounding.
We first round down the result as obtained in (14)
to its closest integers . For server , it first al-
locates segment space according to these integers
for movie . This clearly does not violate its storage con-
straint (given in (2)).
Note that after the above process, the “unmatched” portion
(in minutes) of movie is given by

(15)

For the residual storage server then allocates space in
decreasing order of the unmatched portion until its total
storage is exhausted.
It is clear from above that, with our discretization process,
we can come arbitrarily close to the exact optimality
of JOSR solution by increasing , i.e., asymptotically
approaches the optimal solution. This is because the
rounding effect diminishes with .

2) Segment placement: It is clear that after the above segment
space allocation, each server stores integral number of
movie segments. Each server then needs to place some of
segments to store. The guiding principle of our place-

ment algorithm is that all the segments of a movie should
has similar number of replicates in the whole network.
Accordingly, we use rarest first in segment placement.
Specifically, when a server makes a segment placement
for a movie, it selects the segment which is the least
globally stored until the space budget of the movie is fully
consumed.

C. LP-R: Optimal Segment Retrieval as a Linear Program

The optimal solution of given by LP-S is no longer
appropriate due to our segment storage. We hence need to for-
mulate another LP (called LP-R) to derive optimal segment re-
trieval given segment storage above. The major variables used
for segment retrieval is shown in Table II.
Let be the set of segment indices of any

movie. Let indicates whether server stores
segment of movie , which has been derived the solution
given in Section IV-A. We further let be the probability of
requesting server from server segment of movie . The
segment retrieval problem can then be stated as follows:

• Arrival rate: A request for a movie leads to streaming of
all its segments. Therefore, the request rate for segments
at server , given movie request rate , is

(16)

• Length: A movie is equally divided into segments; hence
we have

(17)

• Popularity: The popularity of the segments of the same
movie is given by

(18)

Using the above, we can formulate optimal segment retrieval
problem as a linear program (LP-R), i.e.,

D. Run-Time Complexity of LP-SR

To solve LP-S and LP-R, we may use CVX which imple-
ments the wide-region centering-predictor-corrector algorithm
(an interior-point method) to solve this problem [29], [30]. It
has been proven that it has worst-case iteration bound
and overall time complexity, where is the number of
variables.
Note that LP-S and LP-R has and

variables, respectively. Therefore, the
time complexity of the two LPs is and

, respectively. Furthermore, the time
complexity of segment storage is , because all the
servers, movies and their constituent segments are traversed to
determine which server to store which segment.
Given the above, the overall time complexity of LP-SR is

. Note that even though the run-time com-
plexity of LP-SR is related to , low (say 5) already achieves
closely optimal solution.

E. Implementation Framework

We show in Fig. 2 an implementation framework of LP-SR
run in the central server (as there is no need to implement any
decision algorithms in the proxy servers). Given the system pa-
rameters on the movies, servers, and network, the central sever
can solve the LP-S problem as presented in Section IV-A. Based
on its solution, it further calculates the required segment space
and segment placement at each proxy server as presented in
Section IV-B. The servers store the the computed movie seg-
ments according to this decision (given by ). Given such
storage decision, the retrieval decision can be made by solving
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Fig. 2. An implementation framework of LP-SR at the central server.

Fig. 3. Movie popularity with Zipf parameter 0.6 for 100 movies.

LP-R as presented in Section IV-C. The servers then retrieve
their missing segments accordingly (given by ).

V. ILLUSTRATIVE SIMULATION RESULTS

In this section, we first present our simulation environment
and performance metrics to study the performance of LP-SR,
followed by illustrative results at steady state.

A. Setup and Performance Metrics

LP-SR can be applied to any movie popularity. For concrete-
ness in our simulation, we consider that movie popularity fol-
lows the Zipf distribution with parameter , i.e., the request
probability of the th movie is proportional to . Fig. 3 shows
movie popularity given our baseline parameters of and

movies, where the top 30% of the movies account
for close to 60% (56.72%) of the traffic. In a Zipf distribution,
movie popularity becomes more “skewed” as increases; there-
fore in this paper, we sometimes call the Zipf parameter the
“skewness” of the distribution.
In our simulation, we consider that requests arrive at each

proxy server according to a Poisson process with total rate
(req./second). It is clear from Section IV that the optimization of
LP-SR does not depend on the specific request process at server
but its arrival rate . Therefore, the results and conclusions

may be extended to any request processes or traces so long as
they share the same request rate.
The central server has no home users. The proxy servers have

heterogeneous storage space and bandwidth following a Zipf
distribution (independent of each other). The repository stores

TABLE III
BASELINE PARAMETERS USED IN OUR STUDY

all the movies with a streaming capacity twice of the average
streaming capacity of the proxy servers. Unless otherwise
stated, we use the default values as shown in Table III for our
system parameters (the baseline case).
In the simulation, we consider the network cost function from

server to server to be proportional to the bandwidth between
them, i.e.,

(19)

where is some constant (by definition, ).
The server cost is a function of its storage and its total upload

bandwidth used to serve the remote servers, modeled as

(20)

where is a constant ( in our baseline, and
is a piece-wise linear function monotonically increasing in .
As is limited by the bandwidth capacity of the

server, we use a cost model inspired by queuing theory due to
server congestion [31], [32]. We show in Fig. 4 streaming cost

versus used in our simulation, where is the
maximum uploading capacity of the server and hence is
the bandwidth utilization of the server. The cost increases with
the bandwidth utilization at the server. There are three linear
segments formed by points (0, 0), (0.8, 0.125), (0.93, 0.4375)
and (0.99, 1.925) (these coordinates can be easily verified using
the queuing delay model , where is some
constant). As the consumed bandwidth approaches the
bandwidth capacity , the server cost increases sharply. (Note
that although for concreteness we have used a cost model of a
queuing function, LP-SR is by no means limited to that; any
other monotonic cost function may be equally used.)
The performance metrics we are interested in are:
• Total cost (unit/s), which is the sum of server cost and net-
work cost according to (12). This is the total deployment
cost of the network.
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Fig. 4. Streaming cost model at a proxy server.

• Server cost (unit/s), which is the sum of its storage and
streaming defined in (11) and (20). We further examine the
following cost components:
— Storage cost, which is the total cost due to server
storage; and

— Streaming cost, which is the server bandwidth cost to
support other servers.

• Network cost (unit/s), which is network transmission cost
defined by (8) and (19).

• Cost of each movie (unit/s), which is the average cost to
access movie by any user. It is the cost to provide on-de-
mand streaming service of the movie to users, due to its use
of network bandwidth, server storage and server uploading
bandwidth.

We compare LP-SR with the following traditional and
state-of-the-art movie replication schemes:
• Random, where each server randomly stores movies
without considering their popularity. This is a simple
storage strategy.

• MPF (Most Popular First), where each server stores the
most popular movies. This is a greedy strategy, but does
not take advantage of cooperative replication.

• Local Greedy [10], which divides the movies into three
categories, those popular ones which all servers store (full
replication), those medium popular ones which only one
proxy server store (single copy), and those unpopular ones
which only the repository stores (no copy). By formulating
a LP problem, it seeks to minimize network cost. As Local
Greedy assumes homogeneous access cost, we set its ac-
cess cost to be equal to the average access cost between
servers in our network.

• Super-optimum, which is the direct LP solution on Page
4 by simply relaxing the integral constraints from (1) to
(13) of JOSR. Due to such relaxation on , its solution
of minimum cost, denoted as , must be lower than
that of the original NP-hard solution denoted as . In
other words, . We call the super-op-
timum solution because it is no worse than the NP-hard so-
lution. Note that LP-SR solution must be no better than the
NP-hard solution, i.e., We will see
later in the section that the LP-SR solution is

Fig. 5. Total cost versus in LP-SR.

Fig. 6. Cost versus average proxy storage.

very close to and asymptotically approaches the super-op-
timum , meaning that LP-SR is close to the NP-hard
solution.

In all the comparison schemes, upon a miss request, the home
server chooses an available server which has the requested
content with a probability proportional to . It is a reason-
able, simple and effective strategy because the server with lower
access cost has higher chance to be chosen. With this proba-
bilistic approach, a server with low access cost is not always se-
lected so as to avoid congestion, and hence high network cost,
at the server.

B. Illustrative Results

We plot in Fig. 5 the total cost versus in LP-SR. As in-
creases, the network approaches the super-optimal case given by
relaxing the integer constraints on movie storage . (Note
that the curve optimum lies between the LP-SR and the super-
optimum.) However, for humble value of , the performance is
already very close to the optimum (less than 6.5% deviation in
our default setting). This shows that our network is highly ef-
ficient, with closely optimal performance even for the practical
finite value of .
We show in Fig. 6 the cost components and total cost versus

the average storage space for servers. The total cost falls off ini-
tially but rises up again, showing a minimum. At the beginning
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Fig. 7. Total cost versus request rate given different schemes.

Fig. 8. Total cost versus the Zipf parameter (skewness) of storage capacity
given different schemes.

when the proxy servers have little storage, all the traffic concen-
trates on the repository, leading to high overall streaming cost.
As proxy storage increases, the repository load is reduced and
hence the streaming and network transmission cost. As storage
further increases, storage cost becomes a major component. It
is clear that LP-SR can balance the cost between storage and
bandwidth and achieve its optimality by provisioning optimal
network resources.
We show in Fig. 7 the total cost versus the request rate given

different schemes. Total cost grows with request rate mainly
due to the increase in network traffic. LP-SR clearly achieves
cost close to the optimum and much lower than any of the other
schemes. In other words, given the same deployment budget,
LP-SR can support much higher request rate (i.e., more concur-
rent users in the system). MPF does not perform well because it
mainly relies on the central server to serve the requests for the
unpopular movies. Random, due to its popularity-blind nature,
stores insufficient copy of the popularmovies, leading to consid-
erable cost. Local Greedy has lower cost due to its network cost
optimization. LP-SR achieves by far the best performance be-
cause it achieves near optimality by capturing not only the net-
work transmission cost but also the server storage and streaming
cost.
We show in Fig. 8 the total cost versus the Zipf parameter

(skewness) of the storage capacity of proxies given different

Fig. 9. Total cost versus the Zipf parameter (skewness) of movie popularity
given different schemes.

schemes. The total cost in general increases with storage skew-
ness. It is because skewed storage means that many requests
have to be indirectly served by the remote servers of large
storage space. This consumes much of server bandwidth, and
hence the streaming cost dramatically increases. Having a sub-
stantially lower and closely-optimal cost with a much slower
growth rate in cost, LP-SR is much more scalable and can
make good movie placement by best utilizing server storage.
MPF decreases with the Zipf parameter of storage because the
proxies of large storage share some load from the repository,
hence reducing the streaming cost of the repository.
We plot in Fig. 9 the total cost versus the Zipf parameter

(skewness) of movie popularity given different schemes. The
total cost in general decreases with the popularity skewness.
This is because skewed popularity means that more requests are
concentrated on fewer popular movies. Consequently, there is
lower miss rate, leading to lower streaming and network cost.
LP-SR achieves substantially the lowest cost (which is closely
optimal with little difference), even for low Zipf parameter, i.e.,
when the popularity is quite uniform. This shows that LP-SR
makes virtually optimal movie placement and retrieval deci-
sions. Local Greedy performs better than MPF because it takes
network cost into consideration. The cost of Random increases
with Zipf parameter because it is popularity-blind. As a result,
the popular movies, because of their copies not increasing with
their popularity, suffer from high streaming and network cost.
We plot in Fig. 10 the total cost versus the Zipf parameter

(skewness) of proxy bandwidth given different schemes. In gen-
eral, the total cost increases with the Zipf parameter because
skewed bandwidth means that the servers with low bandwidth
but large storage cannot support much remote streaming to other
servers. This defeats the advantages on its locally storedmovies.
Furthermore, the servers with lower bandwidth more easily run
out of bandwidth, leading to a sharp increase in streaming cost.
LP-SR clearly has the lowest cost with little difference from the
optimum, beating the other schemes by multiple times. It is also
robust to system heterogeneity, and fully utilizes the storage and
bandwidth resource for cooperative streaming.
We show in Fig. 11 the total cost versus total number of

movies for different schemes. The cost increases with the
movie size because of additional network load to stream
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Fig. 10. Total cost versus the Zipf parameter (skewness) of bandwidth capacity
given different schemes.

Fig. 11. Total cost versus the movie size given different schemes.

Fig. 12. Server cost distribution given different schemes.

movies. LP-SR enjoys substantially the lowest cost as it makes
closely optimal decisions on movie storage and retrieval. MPF
suffers from high cost because the repository needs to stream
those unpopular movies, leading to high streaming cost.
We compare in Fig. 12 the server cost for different schemes.

We sort the proxy servers according to their storage in ascending
order (as their streaming capacity is the same in our baseline),
and the last server is the repository. It is clear that LP-SR
achieves costs of little difference from the optimum. Because
of that, it utilizes the best the storage and bandwidth resources
of proxy servers, leading to the lowest repository streaming

Fig. 13. Movie cost for different schemes.

cost as compared with other schemes. All the other schemes
suffer from high repository cost (note that log scale) due to
misses in the proxies. The figure shows that LP-SR has strong
server cooperation to achieve near-optimal performance. As
MPF only stores the most popular movies at the proxy servers,
it has lower proxy server cost but much higher repository cost
(due to miss traffic). In MPF, the proxies barely contribute their
bandwidth and storage to help each other. Local Greedy, with
network cost optimization, outperforms Random in both proxy
server cost and repository cost.
We compare in Fig. 13 the cost to access a movie for different

schemes. The movies are sorted according to their descending
popularity. The popularity-based schemes (i.e., LP-SR, Local
Greedy and MPF) tend to locally store the popular movies, and
hence those movies enjoy lower cost. LP-SRmakes much better
decision by cooperatively storing the movies. LP-SR accom-
plishes much better optimality with a rather uniformmovie cost.
Its cost of medium to unpopular movies is strikingly much lower
by orders of magnitude than the other schemes. Also shown
is the movie cost for the super-optimal case. LP-SR clearly
achieves performance of little difference from the optimum. For
MPF, the costs of popular movies are negligible at steep sacri-
fice of less popular ones. Random treats each movie equally and
thus has the most uniform cost distribution. The figure shows
that LP-SR makes intelligent decisions on movie storage and
retrieval to achieve low deployment cost.
We finally study the impact of popularity mis-estimation on

the performance of the VoD. We consider a system optimally
designed with the Zipf parameter , the estimated (or
assumed) parameter for movie popularity. We show in Fig. 14
what the system cost is for different actual Zipf parameter (the
movie ranks remain the same). Also shown in solid line is the
case if the assumed parameter exactly matches with the actual
one. Obviously, at , the two curves match. If the actual
movie popularity is less skewed (lower ), the cost increases
quite sharply because of the increase in access traffic. On the
other hand, if the actual popularity is more skewed (higher ),
the cost penalty due to such mis-estimation is not as high. This
is because the servers storing those popular movies have lower
miss rate. If the actual Zipf parameter further increases, the cost
starts to increase again because those servers not storing those
popular movies need to retrieve them from others, incurring
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Fig. 14. Cost performance against actual Zipf parameter for movie popularity
given that the system is designed with .

Fig. 15. Efficient computation method on movie grouping in the default
baseline.

much network and server bandwidth costs. The result shows
that in estimating Zipf parameter, over-estimation has higher
impact than under-estimation (the performance is more sensi-
tive to over-estimation). The estimation does not have to be very
accurate in order to achieve closely optimal performance.

VI. EFFICIENT COMPUTATION FOR LARGE MOVIE POOL

In terms of the number of movies , the run-time com-
plexity of LP-SR is (Section IV-D). As the number
of movies increases, we need to compute the solution more
efficiently.
In this section, we propose an efficient computation based on

movie grouping. The movies are divided into groups of size
(in seconds). Our algorithm achieves a polynomial factor
of reduction in complexity without sacrificing much on per-
formance. We then illustrate its performance with simulation
results.

A. Efficient Movie Grouping

Fig. 15 illustrates the efficient computation method on movie
grouping. The basic idea is to divide movies into groups such

that the complexity of the LP-SR is reduced. We first divide the
movies into fixed-size groups to be stored in servers. Let be
the group size (in seconds). In order to accommodate a group in
any server, clearly group size must be chosen such that

(21)

Movies are grouped according to their decreasing popularity.
The most popular movies are put into the 1st group to make up
the size , fragmenting the last movie and store it across groups
if necessary. The remaining movies are then assigned to group
2, 3, and so on. This process is repeated until the all the movies
are grouped.
Let be the set of groups and be the group. The above

grouping process leads to the following:
• Length: Each group is of equal size and satisfies

(22)

• Group popularity: The group popularity is given by

(23)

Note that if a movie is fragmented across groups, the pop-
ularity of the movie in a group is proportionally adjusted
based on its fragment length in the group.

After this movie grouping is done, LP-SR is run on the groups
by treating them as “movies” with popularity . In the
phase of segment storage, a group is partitioned into group-
segments and stored and accessed accordingly similar as before.
The movie can be efficiently retrieved from a group-segment
with a simple table lookup.

B. Time Complexity

The time complexity of movie grouping is clearly , as
all the movies are traversed to be assigned to different groups.
The total run-time complexity on obtaining the solution is hence

, where is the average group size. In other
words, the complexity is reduced by a factor of .

C. Illustrative Results

We conduct simulation to study the performance of our
grouping algorithm. We use the same baseline parameters as
given in Section V.
We plot in Fig. 16 the total cost versus request rate given dif-

ferent group sizes (Note that because the default movie length is
90 minutes, a group size equal to that means no grouping). Total
cost rises up with the request rate mainly because the increase of
network load. Large group size can reduce the time complexity
of LP-SR but increase the performance deviation from the op-
timum. LP-SR with movie grouping can still achieve closely
optimum, outperforming Local Greedy by a wide margin (of
multiple times when the request rate is high).
We next examine the total running time to compute the

LP-SR solution after the movies are grouped with our algo-
rithm. We show in Fig. 17 the running time of LP-SR given
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Fig. 16. Total cost versus request rate given different group sizes.

Fig. 17. The total running (computational) time of LP-SR given different group
sizes and in no grouping case.

different group sizes.3 The running time increases with the total
number of movies. It is because LP-SR captures the information
for every movie, and hence more movies introduces more in-
formation and decision variables for LP-SR to process. LP-SR
with movie grouping can greatly reduce the time complexity
(over triple times in the default baseline setting). The result
shows that movie grouping leads to efficient computation for
a large movie pool.
We plot in Fig. 18 the tradeoff curve between total cost and

running time for movie grouping. We also illustrate the figure
the corresponding group size of each tradeoff point. As running
time increases, LP-SR achieves better performance. Total cost
first decreases sharply and then converges to some value (corre-
sponding to the optimal value of no grouping). It is clear that a
good operating point of the system is one with low running time
and cost, which is around the “knee” of the around (with group
size of 3 to 4.5 hours corresponding to 2 to 3 movies per group
respectively).

VII. CONCLUSION

In this work, we have studied optimal segment storage and
retrieval to minimize VoD deployment cost for interactive

3As the running time depends on the machine used, we have normalized the
time in terms of some unit. For a 64-bit ThinkCentre M90 with Intel i7 CPU
870 2.93 GHz and RAM 4.00 GB, the unit is in minute.

Fig. 18. The tradeoff curve between total cost and running time for movie
grouping.

streaming with distributed proxy servers. The deployment cost
captures comprehensively the costs of server streaming, server
storage and network transmission.
For efficient server storage and retrieval, each movie is par-

titioned into segments ( ). We first formulate the joint
problem and show that it is NP-hard. To address this, we pro-
pose LP-SR, a novel and efficient heuristic which decomposes
the problem into two linear programs (LP) for segment storage
(LP-S) and retrieval (LP-R), respectively. In marked contrast
with much of the previous work where heuristics are often pro-
posed without knowing how they perform with respect to the
optimum, our solution is asymptotically optimal in , and does
not need to be large to achieve near optimality ( is around 5).
To make our solution more efficient for large movie pool, we
propose amovie grouping algorithmwhich achieves close to op-
timal performance with polynomial reduction in running time.
We have conducted extensive simulation to compare

LP-SR performance with other traditional and state-of-the-art
schemes. The results show that LP-SR substantially outper-
forms the other schemes by a wide margin (multiple times in
many cases). LP-SR achieves close optimality with much lower
deployment cost.
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