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Abstract

In multiview applications, multiple cameras acquire thmeacene from different viewpoints and generally producectated
video streams. This results in large amounts of highly rddah data. In order to save resources, it is critical to feptdbperly
this correlation during encoding and transmission of thdtimew data. In this work, we propose a correlation-awaezket
scheduling algorithm for multi-camera networks, whereoinfation from all cameras are transmitted over a bottlerdaanel
to clients that reconstruct the multiview images. The salieg algorithm relies on a new rate-distortion model thaptcres
the importance of each view in the scene reconstruction. pgse a problem formulation for the optimization of the kmic
scheduling policies, which adapt to variations in the sceomstent. Then, we design a low complexity scheduling atgori
based on a trellis search that selects the subset of caadidakets to be transmitted towards effective multiviewonstruction
at clients. Extensive simulation results confirm the gairoof scheduling algorithm when inter-source correlatioforimation
is used in the scheduler, compared to scheduling policiéis mé information about the correlation or non-adaptiveesiiing
policies. We finally show that increasing the optimizatiasribon in the packet scheduling algorithm improves the dnaission
performance, especially in scenarios where the level afetation rapidly varies with time.

Index Terms

Foresighted packet scheduling, source correlation aisalysultiview streaming, interview correlation, ratetdigion opti-
mization, multimedia communication.

|. INTRODUCTION

Advances in interactive services and 3D television haveegdkie road to multiview video applications, in which mukip
sources acquire and transmit several correlated mediansérl]-[4]. Multimedia wireless sensor networks and racdinera
video systems are typical examples of multiview setups.fléxaility and the interactivity offered by such applicatis however
come at the price of increased storage/bandwidth requite@&o overcome these limitations, the coding and trarsons
schemes need to properly exploit the correlation amongcssyrin order to provide effective image quality in resoarce
constrained environments.

In this context, we aim at providing insights on how resouwaltecation strategies can benefit from correlation infaiorain
a multi-camera scenario, in which neighboring camerasieeqoe same scene but from different perspectives. Thissste
results in spatial correlation between the informatioreastns, since cameras typically have overlapping fields of,vie
addition to temporal correlation between frames acquiggtsecutively by the same camera. This spatial-temporatleion
can be exploited either at the source (e.g., by joint enapdinthe different sources) or at the decoder side (e.g., byt jo
reconstruction of the different images). In this work, wensider the latter case and we show how the packet transmissio
scheme can be opportunistically adapted to satisfy netwonistraints, when the source correlation is exploited etdicoder
for image reconstruction.

In more details, the proposed framework targets the opétitn of resource allocation schemes for the transmissfon o
correlated sources under delay and bandwidth constr&ather than focusing here on source coding aspects, wetarested
in a scenario where each camera independently acquiresfimegcene with no communication between cameras. The edcode
views need to be gathered by a gateway or a wireless access(p®) (see Fig. 1), which then forwards packets to clients
interested in decoding (part of) the 3D scene. Assumingrieawork resources are constrained, only a subset of thereaame
images can be transmitted to the clients. The encoded viesvdransmitted with ecorrelation-aware packet scheduling
algorithm driven by the gateway or the AP. This centrally rchioated scenario is quite typical in practice, and in gaitr
in IEEE 802.11 wireless networks. In these networks, thetRGoordination Function (PCF) is one of the common solgion
supported by Medium Access Control (MAC) layer to organiatadransmissiori [5][[6]. At higher layers, master routars
home gateway devices are also used as central controllerefaork services and devices [7]J] [8]. The packet schaduli
algorithm filters packets to reduce the transmission cadtsatisfy the resource constraints in the system under gwerggion
that the images are jointly reconstructed at decoder. Iardaloptimize the reconstruction quality, one has howevg@roperly
select the packets to be transmitted, along with their tréssion schedule. For example, the frames that are highhglated
to packets already available at the decoder can have a lawitprin the scheduling algorithm. This is due to the factttha
they can be reconstructed from the correlated frames atdbed#r side even if they are actually not transmitted. Orother
hand, frames that have only a low correlation with previpushnsmitted data should be prioritized in the schedulimges
they would be reconstructed at a poor quality if they are reptdmitted.
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Figure 1. Multi-camera system, with bandwidth bottlenetkha access point.

We propose a novel rate distortion (RD) model that estimiteglistortion in scene reconstruction from multiple clared
images. Based on this model, we build a scheduling techrtigateminimizes the distortion in the scene reconstructiod a
adapts the transmission scheme to temporal variationseostkene content and correlation level. The proposed sdhgdul
algorithm optimizes the long-term utility function withfreement at each transmission opportunity. For such an ighgoito
reach optimality though, a large time horizon has to be amrsd in the optimization, which leads to high computationa
complexity. Thus, we propose a suboptimal trellis-basgdrihm that is able to reduce the complexity while still ggeving
most of the benefits of correlation-aware scheduling ogition. Simulation results demonstrate that the proposeedailing
algorithm outperforms correlation-agnostic schedulimg§jgies or static camera selection algorithms. This shdwvesrteed of
correlation-aware scheduling policies in multiviews syss, which are able to efficiently share network resourcesngm
cameras, while rate allocation (RA) techniques proposetiénliterature cannot solve such a scheduling problemgsiney
usually do not consider correlation between sourcés [@]. [1

The remainder of this paper is organized as follows. Relatexks on multiview data gathering are described in Sedfibn |
In Sectior1ll, some technical preliminaries are given and mew RD model is introduced. The packet scheduling probtem
formulated in Sectiof IV and the trellis-based optimizat&plution is provided in Sectidn]V. In SectignlVI, we disciike
simulation results, and we conclude in Secfionl VII.

Il. RELATED WORKS

In this section, we first provide a general overview of the tmekevant works from the literature that focus on multi-eaen
streaming and we highlight the key differences with our wdrken, we describe in more detail the research work in resour
allocation and correlation-aware multiview streaming.

In multiview systems, prior studies usually addressed twainnopen problems: i) how to efficiently encode distributed
sources, ii) how to efficiently deliver information to usérglifferent applications. To answer the first questiontribsted source
coding (DSC) has gained attention as new coding paradigij [IZ] to exploit source correlation. When no communicatio
is assumed between cameras during the coding process, B dhe encoding to stay simple by shifting the computation
complexity to the decoder. Research on DSC, as well on bliged video coding (DVC), has been mainly focused on optingiz
the coding scheme, given an a priori knowledge on the cdivela.e., given an a priori side information (SI)_[13]=]15 hus,
the selection of sources that can be used for the generati®h is usually assumed to be known; the optimization of this
selection is still an open problem. Even if many works hauelistd DSC in multiview applications, an optimization framuek
that is able to exploit in the most efficient way the sourceaation level is still missing. In our paper, similarly thet DSC
framework, we consider that the cameras do not communicileeach other but rather exploit the source correlatiorhin t
packet scheduling process. Even if this is not consideredignpaper, our framework also applies to cameras streantled
by DSC. It represents a complementary solution to DSC in #ségth of distributed camera systems.

In the second set of works that optimize the delivery of midtv data, some prior studies address the problem of pnogidi
interactivity in selecting views, while saving on trangmit bandwidth and view-switching delay! [2[,_[16]-[20]. Therk
in [2] is mainly focused on coding views with a minimum levdlredundancy in order to simplify the view switching, and
the works in [18], [21] optimize the selection of views to beceded and transmitted based on the user interest. Therautho
in [19], [22] investigate the transmission of multiview el coded streams on P2P networks and IP multicast, resplgctiv
These works mainly focus on the coding aspects and DSC is pftgposed as a solution to reduce encoding complékxity [23]
or to provide interactive access to the different viels [24]

The work proposed in this paper is rather defined as a ratesdibm problem in multi-camera systems. Multi-camerauese
allocation solutions in the literature often ignore the ayric correlation between sources and rather focus on aptigithe
resources for each camera independently. In other wordg, ubually optimize the scheduling policy in evaluating twost,
the distortion gain and the time constraints of each canmegarately and ignores the possible correlation among @ané&his
may result in suboptimal allocation of the network resosrégesource allocation techniques have for example beesidayad
in [10] for video surveillance systems, in which each of taenera captures and transmits the video information in ailnmt



network. The optimization of the resource allocation (itee time sharing between sources) is based on both the retwo
and source information, but ignores the correlation betwtbe sources. In a more general resource allocation frankevew
works have introduced the sources correlation in the opttion of transmission schemes. A multi-party 3D tele-imgive
system is considered i [R5], where correlated views ardewt together to create a common virtual environment amting
participants. These participants are distributed over\arlay network and can gather information from neighbongles.
Source correlation is taken into account to dynamicallyirojzie the multicast topology for content delivery betweades
involved into the multi-party 3D tele-immersive sessiom [26], a three-step approach is proposed to optimize theures
allocation between spatially correlated sources for radti frequency-division multiple access (FDMA) netwarlktowever,
multimedia transmission is not considered in the optindzat

In [27], the level of spatial correlation between sources I@en considered at the MAC layer for wireless sensor nkswor
The authors assume that the network needs to estimate ah.%vBuoie to the correlation between neighboring sensors, only
part of them might be selected for sending information to ghk, so that the transmission data rate is limited. The MAC
protocol prioritizes the access to representative nodes,riodes with reduced levels of correlation. The samatiotuhas
been considered i [28] and applied to multimedia streamdngpatial correlation model for visual information in wiess
multimedia sensor networks (WMSNSs) has been proposeaduting an entropy-based analytical framework to evaltlete
visual information offered by multiple cameras. When théwoek resources are insufficient the cameras that maxintiee t
joint entropy in a camera set are selected for transmis3iba.model however only solves a static correlation-basecera
selection technique, while we consider a dynamic correlation-bgmsettet scheduling optimization in our work. In particular,
the framework in[[2B] can be seen as a particular case of ablgm, where both cameras and scene content are static. The
correlation model proposed ih [28] has been also used in [28¢re the problem of efficient gathering of visually coated
images from multiple sensors has been investigated. Thedstihg optimization is aimed at reducing the energy corsion
during transmissions by exploiting a correlation-awafféedéntial encoding technique. However, the model is higd@nsitive
to transmission failures. Moreover, the cameras grouppigrzation is based on the assumption of a static cormativhich
does not hold in dynamic scenarios. Our work is substaptidififerent from [29], since we propose a packet scheduling
optimization that i) is able to adapt to correlation vanas in dynamic scenes, ii) considers independent sourdegdide.,
it preserves simplicity at the source side).

Finally, it is worth noting that the correlation between @as might be exploited not only for DSC or resource allacati
techniques, but also for error resilience. For example,dhieelation between views is implicitly considered in[30Jhe
authors propose an optimized interactive multiview striegnover wireless wide area networks (WWAN), where a coopera
peer-to-peer repair technique is considered to alleviatket losses.

There are important differences between the above workshenstudy proposed in this paper. First, we focus our atienti
on the important problem of optimizing scheduling algarithsuch that view correlation can be exploited efficientlyhat
decoder. Second, even if some other works have investigasedirce allocation techniques for multiview scenarigsatic
view correlation and dynamic packet scheduling solutiores reot studied in the literature related to multi-cameraesys.
This is exactly what we propose to address in this paper.

Ill. FRAMEWORK

We now describe the framework considered in our work. Fingt, present the multi-camera system and describe the
multiview acquisition and transmission processes. Them,imroduce the scene reconstruction method and show tkat th
correlation between cameras plays a crucial role in thenstcaction of missing frames at the decoder. Finally, weppee a
new rate-distortion model for the representation of the 88ng information.

A. Multi-camera system

We considerd cameras that acquire images and depth information of a 3Besitem different viewpoints. The images
acquired by thel correlated cameras need to be collected by a common AP thatually transmits (part of) the 3D scene
information to clients, which are all interested in recegall video streams. Due to bandwidth constraints in themanication
system (e.g., on the wireless channel, or on the path betABeand clients), it might not be possible to transmit all trenfes
from all the cameras to the clients. Thus, at each transomisgpportunity, it is important to accurately select whiamapes
have to be scheduled and which ones can be sacrificed (ifetramsmitted), such that the average distortion is mingadiz
However, depending on the camera arrangement and the stemmation, the frames acquired from the different cameras
might be correlated in both time and space. First, each aaaejuires temporally consecutive frames, which are cige)
especially for static or low-motion 3D scenes: this is traporal correlation in image sequences. Then, neighbouring cameras
might acquire overlapping portions of the same scene; #add to correlated frames due to gpatial correlation between
multiview cameras. Both the temporal and the spatial catigris might help in reconstructing the overall scene imfation
if some images are missing at the decoder.

We address the frame selection problem as a resource @dlogabblem that takes into account the level of correlatiotong
cameras in a novel packet scheduling algorithm. We assumedzlnm which there is no communication among cameras in



order to save bandwidth and power. The only minimal infofarathat is known a priori is the position of the cameras, Whic
is possibly updated when cameras change positions in dgnsettings. Along with depth information, each camera i bl
estimate its influence on its neighbors and in particulaictrgribution that it can offer in the reconstruction of rigigr views.
We propose below a novel correlation model where each cao@ragredict the correlation level with neighboring cameras
without global depth information. This local correlatia@vél, which is a set of simple values representing the infleaf the
camera in the reconstruction of the neighboring ones, it lsg®ach camera to the scheduling engine.

Then, we consider that each encoded image at a given timeninsbm a particular camera is packetized into a data unit
(DV) and stored in the camera buffer. Each data unit contaixisre and depth information about the 3D scene. All thearam
DUs are possible candidates for scheduling. We furthernassihat the transmission is based on a Time Division Multiple
Access (TDMA) model where no more than one DU might be scleein any TDMA slot. Once a DU is scheduled for
transmission, the channel stays busy for one or multiple siots, until the current DU has been completely transdfteue
to streaming delay constraints, the DU needs to be receigémtda playback deadline, denoted By, in order to be useful
for decoding. This means that a DU acquired at the tinstays useful till timet 4+ 7p. Data units that have no chance to be
received on time are not considered for scheduling and gismgpped by the cameras. We also assume that the commuonicati
channel is lossless such that all the transmitted DUs anmecity received by the access point and subsequently tkatsli
It follows that packets that are not available at decodeehasen skipped by the scheduler, and not lost due to unreliabl
communication. In this framework, our goal is to propose aealation-aware scheduling algorithm that selects DUsnfro
different cameras in such a way that the overall distortioithie reconstruction of all camera views is minimized undier t
bandwidth constraints.

B. Scene Reconstruction

We describe now the scene reconstruction process, whitthelp to better understand the benefits of exploiting theiaba
and temporal correlation of the images. At the receiver,siéeh frame is decoded independently. The images that lave n
been transmitted are estimated based on time and/or vienpwoiation algorithms using information from neighboringmes.
More precisely, for the interpolation of a missing viewthe receiver uses images from neighboring cameras withdfelepth
image based rendering (DIBR) techniques (Fig-]2(a)). BIpicDIBR algorithms use depth information in order to esite
by projection the position of pixels from view in the missing viewn. The projected pixels are generally of good precision
(depending on the accuracy of the depth [31]) but do netrciine whole estimated image, due to visual occlusions. As
shown in Fig[ 2(H), one can build a binary mask that desciibe®ccluded regions. Then, by merging the estimationsruda
by the projections of different neighboring views, we obtdifferent reconstructed regions in the interpolated iemathis
can be summarized in a global occlusion map with differegtores corresponding to the different occlusions. In thengpla
in Fig.[2(b), the reconstructed scene is subdivided inteetregions, each of them is characterized by the set of nefgitp
views that contribute to the scene reconstruction. In paldi, the blue region (which represem% of the total scene) is
reconstructed based on the estimation from only the view1, while for the yellow one (which represer$; of the total
scene) the estimation from view— 1 is considered. The remainirg% of the scene (i.e., the green region) is reconstructed
by merging estimations from both views. The principle fanperal extrapolation is the same. The decoder uses theabieil
past frames to reconstruct a missing frame. The past fraamasot be used to estimate the whole missing image because of
occlusions and object motion. The regions where the pastesacould give some useful information are computed sityilar
to the occlusion map in the view interpolation case. The globap with the different prediction regions is used to dead
the best interpolation method for the missing frames at geoder.

An example of multiview video reconstruction is depictedrig.[3, for the case df cameras that acquire several temporally
consecutive frames. The goal of the decoder is to reconsituthe frames in time and space, even if only part of themehav
been received (dark colored boxes in Hig. 3). In this exampke consider that each frame is correlated with frames of
the two neighboring views in space, and with the two temppiccessive frames (of the same view). If one or more of
these correlated frames are missing, the received framesaatribute to the estimation of the missing data (lightoced
boxes in Fig[B). In order to avoid error propagation, we atgrsthat only the received frames can be used to reconstruct
the missing ones (i.e., reconstructed frames are never fasegstimation of other missing frames). Note that we coaisid
temporal estimation only in the forward direction for th&kesaf simplicity. Our model can however be extended easily to
include temporal interpolation in the backward directioo fi.e., from future frames). Finally, a missing frame cainbe
reconstructed (white boxes in Fid. 3) when all its correldt@ames are missing too.

C. Rate-Distortion Model

We now propose a novel rate-distortion model adapted to ¢kaesreconstruction framework described above. Hhth
camera at time, acquires the imagé; ,, and compresses it at a rate Bf ,,, bits per pixel(m =1,..., M). A subset of the
compressed images captured by all cameras is transmittibe twecoder, which targets the reconstruction of the fudhsc If

1From here onwards, we assume the time axis discretized is @&o scheduling slots) of length equal to the TDMA slot diora
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Figure 2. Example of DIBR image estimation at decoder. (a)déntral viewn is estimated from the two neighboring views— 1 andn + 1. (b) the
occlusion maps corresponding to the two estimations ar@edein order to obtain a global occlusion map with 3 regiortse Percentage numbers in the
masks indicate the portion of the frame dedicated to eadomrreg

the frameF; ,, is available at the decoder, the distortion is directly dej@mat on the compression or the source raté; If, is
missing at decoder, it is reconstructed from the availabighboring frames (in time and space), as described in tadqurs
section.

The overall distortion of the scene at instans thus expressed as

M

DiR) =Y — Dy(Ry) (1)

w
m=1 "

wherew,, represents the relative importance of a given camera viguerhits to give a different weight to each camera view
in the distortion evaluation (e.g., the central camera mighpreferred to the lateral ones) and it reflects the redtiterest
that clients have in each camera stream. In our problem fiation, the weight parameter is assumed to be given as ai prior
information. The rate vectaR;, defined as

T
Rt = [Rt,l Rtyg - Rt,M Rt—l,l - Rt—l,M - Rt—pr,l - Rt—pT,M] s

represents the size (in bpp) of the frames received from fiifereht cameragm = 1,..., M) in a window of time of size
p1, which can be used for the reconstruction 6f,,,. The parametepr defines the maximum number of frames that can
be considered in temporal interpolation at the decoder. dis@rtion D, ,,,(R;) is the distortion of then-th view at instant
t. For each viewm acquired at the instartt we further decompose the frame into regionsand we denote by, ,, the
set of such regions. For each € S; ,,, we denote byx(s;) the relative area of the frame dedicated to the regignsuch
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Figure 3. Example of frames reconstruction in multivieweadsetup, where each frame is correlated with the frames @frigighboring views and with
the two temporally consecutive frames (of the same viewgsiig frames are reconstructed from information in theetated frames that are available at
decoder. Received frames are represented in the figure Bycdiwred boxes, the reconstructed ones by light colorece®oWhite boxes represent frames
that cannot be reconstructed from the received frames.
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thatzsjest,m a(sj) = 1. In Fig.[2, for example, the frame acquired from the centeahera is subdivided in three different
regions: the blue, the yellow, and the green ones, witk;) corresponding t®.07,0.09, and0.84 respectively.

Then, a mapping functio#; ,, » describes which of the neighboring frames can contributeeéaeconstruction of the region
s; of the m-th view at timet. In the absence of temporal correlation, the spatially meiging views only are considered for
frame reconstruction. This means tlggt,, 1 = [@j.m,c(1) ... ¢j.m,(M)], whereg, ., (k) = 1 if the k-th camera is correlated
with the regions; of the frameF; ,,, and¢; ., (k) = 0 otherwise. In this case®, reduces taR; = [R;1 R 2 ... B¢ a). When
both spatial and temporal correlations are used in the staartion, the matrixp; ,,, , becomes

Bjom,t = [P4m,t(1) o Djm (M) Gjmi—1(1) ... Gjom,e—1(M) .. @jimt—pr(1) - Pjom,t—pr (M)]

wherepr is the number of past frames that can be considered for tlumsgaiction of the current image. Equipped with the
above notation, the distortioP, ,,(R;) becomes the sum of the distortion in each p@rbf the frame at instant:

_ [ 2ses.,, @(si)d[@jme - Re] i the view is not received
Dim(Rt) = { d[Ry.m) otherwise. 2)

Finally, the distortion functions/[R] in Eqg. {2) can be evaluated from the general expression ofRbefunction of an
intra-coded frame with high-rate assumption![32]:

d[R;] = proy 27 3

where R; is the number of bits per pixels and is equal to the sum of thesréhat contribute to the current regiery, is the
spatial variance of the frame and is a constant depending on the source distribution. It istiwooting that the model of
Eg. (3) has been chosen because it is quite simple and yeatagecHowever, our packet scheduling framework is generdl a
other source rate-distortion functions could be used in(&y.

IV. PACKET SCHEDULING ALGORITHM

We discuss in this section a novel packet scheduling framefar wireless multiview camera system that uses the rate-
distortion model proposed in the previous section. Thenpvopose a novel problem formulation for rate-distortionimgl
packet scheduling.

A. Transmission policy

We consider a channel with successive time slots for packesmission. Each time slot represents a transmissionrpity.
The objective is to select which DU should be transmittedaaheavailable time slot, in order to maximize the qualitylhe t
decoder under the playback delay constraint givefipyA greedy hence myopic strategy can choose the scheduliray by
selecting to transmit at each time slot the frame that mim@sithe overall distortion at decoder. However, such a sdimgd
solution does not necessarily optimize the overall diginrsince it does not consider a long term optimization adijec A
less myopic scheduling leads the scheduler to allocate faote all the views of the camera set with a more global distm
objective. Thus, in the following we optimize the packetesthling strategy over a finite time horizon that is generkiger
than one transmission time slot.



The delaylp as well as any temporal parameter introduced in the follgvisnexpressed in terms of time slots for the sake
of clarity. We denote by the time slot at which we optimize the scheduling policy fotimme horizon of K time slots. We
consider an online optimization with no a priori informatiabout the video sequence. However, we allow a latendy afots
between the acquisition and the scheduling process, in aweay that, at time, the characteristics of frames acquired up to
the time slot(¢t + K — 1) are available to the scheduler. In more details, at the tmstantt, all the frames from all the views
acquired in the intervat — Tp + 1,t + K — 1] are possible candidates for transmission except thosénéivat been scheduled
already. They form a set of cardinalily. Let the/-th DU be characterized by its sizB; in bitd, its acquisition time slot
Ta, (i.e., the instant at which the frame is acquired), its eadpn deadlin€lrs; = Ta; + 1p, and its transmission policy
m o {a(1)...q;(K)} in the nextK time slots. A transmission policy; at timet¢ is a binary vector according to which the
DU [ is allocated for transmission over the time horiZert + K — 1]. Let A = {0, 1} be the action space ang(k) € A the
scheduling action taken for the Dlat thek-th slot of the optimization. In particulas, (k) = 1 means that the data urihas
to be sent at timét + k£ — 1). As the channel is lossless, we assume that each DU is sefukauinost once during its lifetime
and that each transmitted DU is sent entirely. In order tadatransmitted DUs whose deadline has expired, we impoge tha
at thek-th slot (withk = 1,..., K) only DUs acquired in the time intervad — Tp + k + 1,¢t + K — 1] are candidates for
being transmitted at timét + k). Finally, we denote byr = [r;...7.]7 the scheduling policy for thé, candidate DUs at
time ¢. Each policyr leads to a particular distortion on the client side. In thisrky we seek the best poliey* that is able
to minimize the expected distortion while satisfying thechel constraints.

The scheduling policy is refined at next transmission opputy based on the newly acquired frames. This means that a
scheduling policy can change over time. In particular, agnthve best set of DUs selected for transmission, the DU sdéé diu
the first time slot is sent, while the scheduling is not gusged for the other DUs. For example, a DU planned for transiotis
by the scheduling policy computed at timenight actually never be transmitted if a future frame witghear importance takes
its transmission slot. In this way, the refinement of the daliag policy compensates for the limited knowledge of tlidew
sequence that is imposed by the online nature of the algorithle formally define below the packet scheduling problem in
our new framework.

B. Problem Formulation
We first consider the scheduling problem for a single DU. lis ttase, the transmission rate is denoted by

K
R (m) =B

al(k)l

k=1

WhereZkK:1 a;(k) is equal tol is the DU is scheduled for transmission in theth slot, and equal t® otherwise. The
overall distortion is evaluated as

_ [ DRy i k) =0
D (m, H) —{ D; (W {HUI}) otherl\civisel X

where# is the set of the DUs already transmitted in the time slototeef (i.e., # represents the scheduling history), and
D, is the overall distortion level derived from Edl (2), whehe tsubscriptq¢, m} have been replaced by the subsciigo
describe the data unit The function¥ {?{} evaluates the received rate vec#®rof the M views acquired in the lastr
instants given the set of transmitted D@s In particular, each elemertof the vectorR is set toB; if the j € H, and to0
otherwise. The evaluation d; obviously involves the size and the prediction maps of the dait, namelyB; and {¢,;}.
For the sake of clarity, we omit this dependency in our equati

We now consider the rate and distortion for multiple DUs.Ha joint scheduling of multiple DUs, we evaluate the average
distortion and rate for a set of scheduling policies- [r; ... 7). This outlines the dependency between DUs in the packet
scheduling optimization. The average rate for a sef. @Us with a transmission policy is thus given by

K
Rr) =3 R(m) = By Zaxk)] . 5)
l l

k=1
The derivation of the average distortion is not as straagithrd as the one of the average rate. In particular, theafate
given DU only depends on the scheduling policy for that DUjlevkhe distortion for a given DU depends on the scheduling
policy of the correlated DUs

w

L
D(m.H) =Y Dy (¥ (HUPy}) ©)
=1

2The size of a DU includes the size of both texture and depth. dat



where D, is the distortion for the reconstructed DOUgiven the scheduling policy, andP;. is the set of DUs scheduled in
the time slotg¢, ¢t + K — 1] based on the scheduling poliey Note that, among the DUs iR,, the frames correlated with the
DU [ have an impact in the reconstruction of théh DU in the case where it cannot be transmitted (i.e., incheel ¢ P,).

Equipped with the above definitions of rate and distortiongach policy, we want now to find the best scheduling policy
«* that minimizes the average distortion while satisfying f@amdwidth constraints. In particular, we seek for

7 (H) = arg minD(w,H) s.t. R(m) < Chy (7)

whereCjg,, is the bandwidth constraint given iy - K - T'rpara, WhereC' is the channel capacity arldrpas 4 is the TDMA
slot duration in terms of seconds. In the following, we assurf,, to be constant over time. However, since our scheduling
optimization is refined at every scheduling opportunitg, tmodel can be extended to any system where the bandwidthr&@ions
evolves in time simply by changing the constraint in Eq. (7).

Due to the dependency among DUs in Hd. (6), the optimizatimblpm can unfortunately not be decomposed easily into
mutually independent subproblems. The optimization mwbtan be solved with exhaustive search methods, which feswev
rapidly become computationally intractable for a largeetitmorizon K and a large number of camerd$. An alternative
solution consists in solving the optimization problem witérative algorithms, where policies are optimized segaén. The
authors in[[33], for example, propose an iterative sensitadjustment (ISA) method where, at each iteration, taeagmission
policy of a single DU is optimized, keeping the other policiixed. The overall process is then repeated till convergenc
Unfortunately, due to multiple dependencies between DUsiinproblem, the iterative method does not necessarilycethe
computational complexity compared to an exhaustive sestrettegy. In the following section, we describe our apprate
yet effective solution to determine the best packet scliegluver the time horizon of siz&'.

V. TRELLIS-BASED OPTIMIZATION SOLUTION

We propose in this section a new trellis-based method fardening the packet scheduling policies. The key idea tatlim
the computational complexity relies on an effective prgngtrategy based on correlation information. We build disréh
the solution space as follows. We consider the schedulitignggation problem over the time horizdn, ¢ + K — 1]. In the
following, we refer to the time instarit + & — 1) as thek-th scheduling opportunity (or time slot), withe [1, K]. At the k-th
scheduling opportunity, thé DUs that are candidates for scheduling are representedebstates (or node§)Si 1, ..., Sk}
Then, a direct edge (or branch) from stiig; to the stateS;y;,; represents the decision of scheduling thia DU at the
(k + 1)-th transmission opportunity, given that thi¢h DU has been transmitted during theh slol. A costB; is associated
to such an edge, which corresponds to the size oftreDU. For the sake of completeness, we also consider, fon gme
slot, the null stateS; o. A branch heading to the null state means that no frame isdstb@, and a zero transmitting rate
is associated to this edge. A sequence of branches forpashaand all possible paths form taellis. A full path is a path
connecting a node at the time slot= 1 to a node at the time slét = K. It represents a feasible scheduling policy optimized
over a time horizonk as long as the bandwidth constraints are satisfied (i.e suhe of the sizes of all transmitted DUs is
smaller than the channel capacity). The feasible polici whe minimum distortion is the one leading to the best schimglu
policy. Note that, since we do not consider packet retragsions in our system, the transmission state can only appear
on a path for a given packet.

An example of the trellis-based representation is depittefig. [4, where the scheduling policy considers a time luoriz
of K = 3 in a scenario with four cameras. Before starting the fraraesimission (i.e., at the time sl6} no DUs have been
acquired and only the null state is available. In the geneask, a scheduling policy at the first time slot (i/e.= 1) is
represented by a branch going from a specific stateto any possible staté; ;, where Sy ; is the state associated to the
DU previously scheduled at the time slgt— 1). The selected scheduling policy is the one that alloc&ies then F» ;, and
finally Fj 4.

As already mentioned above, while the transmitted ratecéstsal to each branch does not depend on the other branches,
the average distortio®(7*) cannot be evaluated separately for each data unit. Becdude @orrelation between DUs,
the distortion of a given full path is not equal to the summatdf the distortion gain for each branch on the path. From an
algorithmic point of view, this means that all the branchagehto be considered for computing the optimal schedulihgtiso.
Ideally, an exhaustive search should evaluate distortioallofull paths to select the policy with minimum distortiodowever,
the number of states and full paths are prohibitively lafgm. example, in a scenario in whidh DUs can be scheduled over
K time slots, the number of possible full paths is at lebst(L — K — 1)!. Rather than an exhaustive search, we propose a
suboptimal algorithm that reduces the visited states peg 8lot and thus substantially reduces the number of fulptd be
tested. The key concept is that the best scheduling poliliygly to be the policy that permits the reconstruction ofsnof the
scene. Hence the scheduler shall try to send as much “innaVats possible, or as little redundancy as possible. fingly,
once a DU is transmitted, the other DUs that carry correlatéormation should get a smaller priority. The correspogdi
branches in the trellis are thus unlikely to be part of theimat path. Thus, we propose to prune branches depending on

3From here onwards, “branch” or “DU” will be used interchaalgly, assuming that each branch represents a scheduled DU.
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the level of correlation that exists between a DU that is cdatd for transmission and the set of previously scheduled,D
denoted byP,» wherer” is the scheduling choices (or path) franto k.

In more details, we introduce a branch reward parameterdohn &ranch in the trellis. It is an estimate of the contriuiti
that the DU associated to a given branch can provide to theathweene reconstruction process, conditioned on the tata
have already been scheduled. Consider a givenpfatis the set of DUs scheduled at the fitsscheduling opportunities. We
evaluate the gain of adding an edge reaching the rthde , to the pathwk: we are interested in the reward of scheduling
the DU ¢ at the time slotk + 1, given that the DUs in the sé®.. have been previously scheduled. This branch reward is
formally given by

L
p(SinglPr) = 7 D24 S alsg) max 10,1850 W [P Ug) — - ¥ (Pt} ®)
=1

SjEFz

In other words, the rewargl(Sk+1,4|Pxx) is the “innovative” contribution that the D can offer to the reconstructed scene. In
particular, for the decoding of tHeth DU among the. DUs under consideratiomax {0, [@;; - ¥ {Prx U g} — ¢;1 - U {Prr }}

is equal to0 if the regions; € F; can be reconstructed from the previously scheduled DUs the DUs inP,x), while it is
equal tol if the region cannot be reconstructed from the DU$in.. In the latter case, the DY is innovative for the region
Sj.

We now describe our solution to optimize the schedulinggyodit timet¢ and over a time-horizon ok’; the key concept
is that, at each scheduling opportunity, we select a suldsait branches defined in the trellis and we consider the subse
the search space for our packet scheduling policy. The hemin the subset are selected as the ones with the higheshbra
reward in Eq.[(B). We assume that, at tirhéi.e., ¥ = 1), all branches represent possible candidates for beindjrgtepart
of the best scheduling solution (i.e., no pruning is donetanfirst branch of the paths). Thus, we initially determime }
as the set of branches going from the time glot 0 (i.e., the node representing the scheduling history) totithe slot
k = 1. In general, we denote byr*} the set of all paths fronl to & (i.e., the set of possible scheduling policies in the
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Algorithm 1 Scheduling Optimization Algorithm

Init: Setk = 0. Select all possible branches from the single state in 0 to all defined states ik = 1. Denote by{r'} the
set of all branches fromt = 0 to £ = 1, and byw! a generic element of the set.
1: for k=1to K —1do
2. for each pathrk € {z*} do
3 step a): for the considered path frofnto %, individuate all branches going from the scheduling oppaty & to the
scheduling opportunity + 1. Denote byB,. the set of these branches.

4 step b): among branches if8. that satisfy the bandwidth constraints identify the sulo$ehe N, branches with the
highest profitp(Si+1,4|Pr ), With ¢ € B« and discard the remaining branches.

5 step ©): include theN, selected paths (i.e., the considered pefthplus the N, selected branches) ifw"+1}.

6: end for

7. k< k+1.

8: end for

9: evaluate the best scheduling poliey as

7 =arg min D(w) s.t. R(m) < Chy
me{nK}

first k& time slots), and byr* a generic element of the set. For each palffhthe search space of possible branches in which
the current path can be extended is denoted3hy. From B, a subset of at mos¥, survivor branches are selected as the
ones satisfying the bandwidth constraints and maximizivgliranch profitp(Sk+1,4|Pxr), With ¢ € Bgr. This means that
N, branches will be considered for constructing the candigatas**! starting fromz*. This subset selection is evaluated
for each element i{w*} and successively for all the > 1. This leads to at mosiVX~! possible paths for each'. Once
the full paths are evaluated, we identify the best schedypiolicy as the one that corresponds to the full path miningzi
the overall distortion. The overall scheduling algoritrsrpresented in Algorithial 1. The branch pruning strategynallas to
explore only(|{m'}|NX~1) paths at most.

An example of our algorithm is depicted in Fjg. 4(b) for a smeém of 4 cameras. In this example, for the sake of simplicity,
we assume that the decoding deadlind’js = 1 such that each frame acquired at the time &laxpires at the time slot
k + 1. We consider the first frame of the sequence &pd is the initial state of the scheduler+ 1). No branch is pruned
in the first time slot. This means th@ﬁ'l} = {(5070 — Sl,o), (S0,0 — Sl,l)a (S0,0 — 51,2), (S0,0 — 51,3), (S0,0 — 51,4)}, where
(S, — Sy) represents the branch going from stéleto stateS, . For each of these branches, we evaluate the full paths as
follows. Consideringr! = (Sp 0 —S1.1) and N, = 2, the subset of survivor branches for= 2 is {(S1.1 — S2.4), (S1.1—S2.0)}-
These two survivor branches are includedit}, and the operation is repeated for every branchmih}. The branch pruning
strategy is considered also fér= 3, obtaining then the sefr®}, which is the set of all the survivor full paths going from
k =0 to k = 3. In our illustrative example, these paths are represengezblid black lines. Among the candidates full paths,
we finally select the best scheduling solution as the onemiimg the distortion as evaluated in Ef] (7).

VI. SIMULATION RESULTS
A. Smulation Setup

We provide now simulation results for a multi-camera scenahere data have to be transmitted over a bottleneck cthanne
of rate Cgw. We start the scheduling optimizationtat 1. Since each scheduled DU is entirely transmitted, we cengite
next transmission opportunity ast+ 7, whereT, is the number of time slots required to transmit the sele€ted At this
new scheduling opportunity, a new optimization is perfodnoger the successivk time slots. We proceed similarly till the
end of the simulation, which in our case corresponds to thpir&on time of the last frame of the video sequence.

We consider image sequences where all the DUs from all theeim@mrhave the same size for the sake of simplicity,
and assume that all the views have the same importancewj,es w in Eq. (1). Our simulations are carried out with the
“Ballet” and “Breakdancer” video sequencés][34], which sishof N; = 100 frames, at a resolution ofr = 768 x 1024
pixel/frame andFr = 15 frames per second. The total number of camera views ranges4rto 8. We study the performance
of our algorithms in different configurations, for diffetecamera setups, different values of the DU sRend for different
constraints on the bottleneck bandwidttgy .

We denote byps the number of spatially correlated cameras and we assurhedbh view is correlated tps/2 neighbor
views, if available, on both the left and the right sides. Agady mentioned in SeE_IlIB, the correlation in time, de
by pr, is related to the number of frames considered in tempotalpolation at the decoder. Bojit and ps represent the
maximum number of correlated frames in the time and space domaipecésely. Theactual level of correlation experienced in
each single frame depends also on the video content. Theotparametergt andps take different values in our simulations
in order to study the behavior of the scheduler for differemtrelation image reconstruction scenarios. We expettatign
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Figure 5.  PSNR vs spatial correlation leyed for systems with8 cameras(C' = 23.5 Mbps, r = 11.7 Mbps, Tp = 5, and pr = 0, Ballet sequence
model).

build the¢ matrix as explained in SeC.JIl. In the Appendix we providengofurther details on the construction of the matrix.
In short, the number of regions in which each frame is subdididepends on both the video content and the correlation
level. Thus, frames can be decomposed into different regionparticular, each region is designed by a unique contibimaf
correlated frames that are involved in the reconstructtahedecoder. In the temporal domain, the contribution admgoring
frames to each region is evaluated by comparing images fnensame camera. More precisely, each frame is subdivided int
regions, each of them can be reconstructed from previousjyieed frames only if no motion occurs in these regions. As n
motion estimation is employed at the source coding nor ategbeiver in our system, only the fixed background contribte

the temporal extrapolation of missing frames. In the spdbanain, to evaluate the influence of each camera on the beigty
ones, we use DIBR techniques and calculate the number ofspixat can be estimated from neighboring views. This can be
achieved by each camera with the information about its owsttdmap, and about the positions of the neighbor cameras. The
overhead information required for this estimation thusregponds to the information about the camera positionschwis
generally of small size. As observed [n[36], the exact valtiehe correlation level is however not a critical paramérethe
scheduling optimization. Errors in the correlation evéitua caused by a coarser estimation with a smaller overhimzes not
have a significant impact on the scheduling policies. Thushé following, we assume a precise knowledge of the cdioela
information and we neglect the small overhead required tionage the correlation level.

Since we are interested in reconstructing all the views Hatdlients), simulation results are provided in terms of mea
PSNR, which is the PSNR averaged over all the frames of alls/iéhis means that, even if some frames are decoded at
high PSNR values, the average PSNR of the reconstructee seigit be in the low PSNR range in challenging transmission
conditions. First, the PSNR of the reconstructed sceneakiated from the rate-distortion model described in E&&lllThen
we validate our findings by experiments with actual recartsion of the video frames at the decoder.

The proposed algorithm has been compared to two baseliritalyms: a random allocation of the DUs (“Baseline -
RNDM"), whose distortion performance has been averaged 0¥ runs, and a scheduling solution where cameras priorities
are defined a priori based on the joint entropy of the camet@sdfas defined in [28] (“Baseline - Akyildiz"). In particu)
the camera selection for the latter method is based on th@akparrelation that exists between views, while time etation
information is neglected. The camera priority is estalglislas follows: the camera minimizing the overall distortimtomes
the highest priority camera. Then, other cameras are irdiifdthey maximize the diversity (i.e., if they minimize tepatial
correlation) with respect to the cameras that have beeriquay selected. We first provide results for a greedy optation
scenario (i.e., K = 1) and demonstrate the benefit of a correlation-aware scimgdaptimization w.r.t. baseline algorithms.
Then we depict the performance of foresighted optimizatiolutions, showing that low-complexity solutions lead twogd
performance when the optimization horizon is enlarged.

B. Greedy Optimization

We first analyze the performance of our algorithm in the caserer the optimization horizon is limited to the next
transmission time slot. We first study the importance of thewledge of the correlation information in the optimizatio
Our optimization algorithm is evaluated in different caimhs that depend on the type of correlation informationsidered
in the scheduling decisions: i) “Correlation Known”, wheretfull correlation information is considered in the optiation;

ii) “Space Corr Known”, when only the spatial correlationdsnsidered,; iii) “Time Corr Known”, when only the temporal
correlation is used; iv) “No corr known”, when the schedulempletely ignores the correlation between frames.
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AVERAGE PSNROF THE RECONSTRUCTED IMAGES FOR EACH CAMERA FOR SYSTEMS WITSHCAMERAS (ps =38, ptr = 3,C = 23.5 Mbps,

Table |

r =11.7 Mbps, AND Tp = 5), FOR THEBALLET SEQUENCE MODEL
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Figure 6.
model).

PSNR vs spatial correlation leya} for systems with8 cameras ' = 23.5 Mbps, r = 11.7 Mbps, pr = 3, andTp = 5, Ballet sequence

We first study the gain that can be achieved when the comelatiodel is known by the scheduler. In the following figures,
the PSNR of the reconstructed scene is evaluated from thalistortion model described in S&c._TII-C. In the first exipents
reported in Fig[h, the temporal correlation between camisraeglected both at the scheduler and at the decoder anocws f
on the influence of the spatial correlation, which means ithiasing frames are reconstructed from neighboring vievisnbu
from previous frames. The performance of the schedulingralgn is given as a function of the spatial correlatjgn(i.e., a
function of the number of views that are considered to beiahatorrelated) for systems witR cameras, a playback delay
Tp = 5, a constant encoding rate per camerarcf 11.7 Mbps and a channel capacity = 23.5 Mbpsﬁ. This bandwidth
constraint means th&tonly frames out o8 can be allocated on the channel between each frame acoidtirst, we observe
that the gain experienced by the algorithm using the spediaklation information in the scheduling compared to thsecin
which all the correlation levels are ignored is substaratial this gain increases with the number of correlated fraireeswith
ps). Thus, the knowledge of the spatial correlation is abledosiderably improve the efficiency of the scheduling decisi
Moreover, the proposed algorithm outperforms both basdigorithms. This means that the packet scheduling opdiioiz
leads to a better level of adaptation than the a priori cansetection technique il [28]. It is interesting to note thay,
neglecting the correlation model (“No Correlation Knowtfie performance becomes very bad and even worse than a random
allocation solution. This means that, rather than choo#iiegscheduling based on wrong correlation informations ibétter
to completely ignore it.

In the next experiment, temporal correlation is considémate scheduling decisions. The PSNR quality is provideign(@
as a function of the number of spatially correlated camegafor systems with8 cameras(C = 23.5 Mbps, r = 11.7 Mbps
and a temporal correlationr = 3 (i.e., each frame is considered to be correlated with theetiprevious frames of the same
camera view). It can be observed that the algorithm usingoteat correlation (“Time Corr Known”) is the closest one ket
algorithm using all the correlation information (“Corr Kwa”). It has to be noted that all the results provided in thg. B
have been evaluated considering temporal interpolatidineatiecoder. However, not all the algorithms include thisrimation
in the scheduling optimization. For example, the algorittivat only takes into account the spatial correlation infation
(“Space Corr Known”) is not able to outperform the baselitgoathm with random allocation. This means that, when \6ew
are highly correlated in both temporal and spatial domaingartial information on the correlation does not alwaysl leaa
considerable gain in the scheduling optimization. In Tdptee average PSNR for the sequences reconstructed infteesdt
camera views is provided for the same experiment. It can lserobd that most of the reconstructed camera views achieve
the highest PSNR with the correlation-aware schedulingrétym.

We now repeat similar experiments in a different camera gandition with only 4 views. In Fig]7, the PSNR quality is

“Note thatr = R[bpp] - Sg[pixel per framé- Fr[fps].
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Figure 8. Reconstructed PSNR for systems withnd 8 cameras for different encoding rates and levels of coioglaBallet sequence).

measured as a function of the encoding rate=€ 23.5 Mbps, Tp = 5). It can be observed that there is a tradeoff in the
choice of the encoding rate, which varies with the level ofrelation information used in the scheduling decisionsisTh
tradeoff is the result of a source quality that increaseh witcoding rate, while the penalty due to the channel alseases
with encoding rate, since more DUs are dropped at high ratehe®dsame channel bandwidth constraint. If there is no known
correlation neither in time nor space (i.es = 0, pr = 0 in Fig.[7(@)), it is better to reduce the encoding rate, so tiere is

a chance of increasing the number of DUs allocated for tréssom, hence the diversity of the information. On the canytr
when the correlation can be exploited both in time and spacér&me interpolation (i.e.ps = 4, pr = 2 in Fig.[7(b)), the
best encoding rate appears to be a medium fatéd{bps). This means that, in this case, rather than schedulindgyalframes

at low rate (i.e.;r = 5.8 Mbps), it is better to transmit less frames but at higher rate andxploit the correlation for the
reconstruction of the missing ones.

Finally, we confirm the above observations on experimentl @wisystem that performs actual reconstruction of the video
frames at the decoder. These results are provided il Figh8.‘Baseline-Akyildiz” performs better than a random sallid
most of the time, but it is in general outperformed by the psmal scheduling optimization, for almost all the valygs
of spatial correlation. These observations are in line witin previous results where the quality is measured with tHe R
model of Sec[Tll. They confirm the benefits of including ctation information in the scheduling algorithm, even in aeply
scenario i = 1).
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Table Il
AVERAGE PSNROF THE RECONSTRUCTED SEQUENCE FOR EACH CAMERA FOR SYSTEMSTMI4 CAMERAS (C = 47 Mbps, r = 23.5 Mbps, AND
To = 5), FOR THEBALLET SEQUENCE MODEL

Static Cameras Moving Cameras
Optimization Method ps=0,pr =2 ps =2,p1 =2 ps=0,pr =2 ps=2,p1 =2
K=3][K=5]|K=3[K=5[|K=3][K=5[K=3]K=5
Exhaustive search algorithn] 24.39 24.54 26.50 26.65 23.13 23.19 25.07 25.20
Branch pruning strategy 24.39 24.52 26.47 26.63 23.11 23.16 25.05 25.18

Table Il
AVERAGE PSNROF THE RECONSTRUCTED SEQUENCE FOR EACH CAMERA FOR SYSTEMSTMI4 CAMERAS (C = 47 Mbps, r = 23.5 Mbps, AND
Tb = 5), FOR THEBREAKDANCER SEQUENCE MODEL

Static Cameras Moving Cameras
Optimization Method ps =0,pt =2 ps = 2,pt = 2 ps =0,pt =2 ps =2,pt =2
K=3][]K=5|K=3[K=5[|K=3][K=5[K=3]K=5
Exhaustive search algorithn] 23.09 23.25 25.56 25.70 24.18 26.73 24.45 26.92
Branch pruning strategy 23.03 23.23 25.54 25.67 24.18 26.70 24.43 26.91

C. Large Optimization Horizon

We now provide results for a framework with foresighted optiation where scheduling policies are computed for sévera
future time slots & > 1). We have already shown above the gain of the proposed #igover the baseline ones from
K =1, so that we now limit the study to the proposed schedulingrélym, and look at the gain of a foresighted scheduling
policy with respect to a greedy optimization. First, we pdevresults where the quality is measured with the R-D moélel o
Sec[l (no actual reconstruction of the video frames atdbeoder). Then we validate our findings by experiments witha
reconstruction of the video frames at the decoder. For thadbr pruning strategy in the trellis-based schedulingtesiuwe
consider the number of survivor branches per time slot taVhe= 2. The results are provided for both a static scenario,
where cameras are fixed and the correlation level variaivasiue to video content, and a dynamic scenario, where eamer
are allowed to move in time with a dynamic level of spatialretation.The random movement of the cameras is simulated as
follows. We assume a set @f\/ possible positions that each camera can take. We startrthdation by randomly allocating
each camera in one of the available positions. At each timig alcamera is randomly selected for changing its position (
can randomly move to the neighboring position). The cameoaeas only if the chosen position is not already occupied by
another camera; otherwise no movement is performed by therzaset at this time slot. Based on the position of the casnera
the correlation level is evaluated. This means that theetation between two neighboring cameras can dynamically e
time, accordingly with the camera movement. In particidach view can always be reconstructed from the two neighori
ones, but if these two are far apart the portion of frame tlaat lse reconstructed will be small. Moreover, we also assume
that the correlation with the frame previously acquirediimetis zero when there is a camera motion. Each result prdvide
the following solution has been averaged ov@00 simulations runs.

We first compare the proposed sub-optimal scheduling dlgoriwith an optimal one. In particular, we randomly select
a time instantt € [1,100] and assume that the scheduling history till the time instantl is knownfl. We are interested
in optimizing the scheduling policy over a time horizon &f time slots with our trellis-based search technique and waith
optimal solution, which exhaustively search for the bekesitling policy. Decoding quality results for the DUs acgdiduring
the time interval under consideration. Results of the retacted distortion of the DUs acquired during the timeanss[1, ¢]
are provided in TablE]ll and in Tablellll, for the Ballet andeBkdancer video sequences, respectively. Each value riagmce
over 1000 random simulations for both static and dynamic scenaridk Wi= 23.5 Mbps, r = 11.7 Mbps, andTp = 5. It
can be observed that, for both sequences, the differenaeéetthe branch pruning strategy and the exhaustive seattioth
is negligible. This means that the pruning of the branchaséntrellis-based optimization does not penalize sigmifigathe
performance, while it drastically reduces the computati@momplexity.

We now provide results for the proposed foresighted sclhigluptimization in dynamic scenarios. In F[d. 9, the model-
based reconstructed PSNR is given as a function of the nuofbmstimization time slotg< for systems withd cameras for
several temporal correlation levels € 23.5 Mbps, ps = 2, C = r andC = 2r). For all the temporal correlation values,
we provide results for largé&l’ and we observe performance gains wih Note that the distortion gain due to lardé is
sometimes marginal for two main reasons: i) the channelagpia very limited and only few DUs can be scheduled comg@are
to the total number of acquired DUs (Fjg. 9(a) where the ckhnapacity is equal to the source rate of one camera on)y); ii
there are large levels of correlation so that the systenopmdnce is less sensitive to non-optimal scheduling dawsssince
most of the views will be reconstructed at a fair level anywsse Fig[ 9(B) whem, = 3).

In Fig.[I0, the PSNR quality is provided as a function of thémjzation horizonK for systems with8 dynamic cameras
(C = 47 Mbps, r = 23.5 Mbps, Tp = 5, and ps, = 4) for both Ballet and Breakdancer video sequences. By isanga

5The scheduling history is randomly selected.
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Figure 10. Model-based reconstruction PSNR vs optiminaltiorizon K for systems with8 dynamic cameras({ = 47 Mbps, r = 23.5 Mbps, Tp = 5,
ps =4, and Ng = 2).

the number of cameras fromto 8 but keeping the ratio between the channel constr@irgnd source rate constant, the
number of DUs that cannot be scheduled increases; this nth&eselection of the best scheduling policy even more ckucia
As expected, the quality gain for large optimization hong@ets more important in this case.

Finally, in Fig.[11, experimental results are provided fgstems with8 dynamic cameras{ = 47 Mbps, r = 23.5 M bps,

Tp = 5, and p; = 4). The experiment is the same of F[g.]10 but the actual renact&in of the scene is performed at
the decoder. As already demonstrated for the greedy ogttiiz results, thequalitative behavior of the experimental and
model-based results is similar. In general we observe thatlarger the temporal correlation, the better the quatityhe
reconstruction since more past frames can be used in thastaotion of a given frame. Furthermore, the experimeneslits
confirm that increasing the optimization horizon improvas performance, as already observed in the results denigetdthe
model-based results.

From the simulation results, we can draw the following I&agn. First, we have demonstrated that the temporal anéaspat
correlations that exist among acquired frames in a multivdeenario is a crucial piece of information in the optimiaatof
the streaming strategy. When packet filtering is imposedditldneck channels, the packet scheduling strategy casticaty
benefit from the knowledge of the correlation that existsvieen data units. We have also shown that a foresighted @gatiion
strategy outperforms greedy optimizations in most casesebVer, the benefit of considering the correlation levehmpacket
scheduling algorithm increases in dynamic scenarios comdpa static ones. The proposed algorithm is optimized ah time
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and refined at each transmission opportunity, allowing tes@er dynamic scenarios, in which both cameras positiodstze
level of correlation can vary in time. In addition, it is wrhoting that i) when the level of correlation exists in bdtle time
and space domains, knowing at least one of the two corraldiels leads to an improvement in the scheduling algorithm
compared to the case where no correlation information ismknai) the knowledge of the correlation level might help in
selecting the best rate at which each camera should enceden#iyes. In particular, the greater the level of corretgtibe
lower then number of views that needs to be allocated perisitiqn time for optimal performance.

Based on the above learnings, several possible researettidits can be studied. The packet scheduling algorithm can
be extended to source coding optimization problems, whHezerdte of each view could be adapted over time. It could also
be extended to scenarios with unreliable channels. At Jaifye proposed framework can be used in different systems in
emerging multiview video streaming applications, in whiozith spatial and temporal correlations represent cruefatination
for adapting the video delivery solution.

VII. CONCLUSIONS

We have investigated the impact of frame correlation fordbieeduling of packets in a multi-camera system. In pasicul
we have proposed both a novel RD model able to take into atdbencorrelation level among cameras and a method to
estimate the contribution that each camera can offer in éeenstruction of correlated views. Based on this model, axeeh
proposed an optimization algorithm, which determines thekpt scheduling policy by taking into account the chanapbcity
and both the temporal and spatial correlations among enldodes. The proposed algorithm is able to adapt the traassoni
strategy to the level of correlation experienced by eachetame have formalized a trellis-based optimization anchease
proposed a suboptimal yet effective solution with a traetalomplexity, based on effective pruning in a trellis regametation.
Simulation results have demonstrated the gain of the pezpasethod compared to classical resource allocation tgubsi
Finally, we have also demonstrated the robustness of fgre=i optimization strategies.

APPENDIX
¢ MATRIX CONSTRUCTION

We now provide further details on the construction of ¢henatrix. The entire process is based on the subregions inhwhic
each frame is subdivided. In more details, the number oforegin which each frame is subdivided depends on both the
video content and the correlation level. Thus, frames caddm®mposed into different regions. Each region is desidpyed
unigue combination of correlated frames that are involvedhie reconstruction at the decoder. In the temporal dontla@,
contribution of neighboring frames to each region is evi@ddy comparing images from the same camera. More precisely
each frame is subdivided into regions, each of them can lmnstaicted from previously acquired frames only if no motio
occurs in these regions. As no motion estimation is empl@tdtie source coding nor at the receiver in our system, oy th
fixed background contributes to the temporal extrapolatibmissing frames. In the spatial domain, to evaluate theiémte
of each camera on the neighboring ones, we use DIBR techsigne calculate the number of pixels that can be estimated
from neighboring views.

In Fig.[12, we provide an example to better explain howdhmatrix is constructed and what is the meaning of each element
of the matrix. In the figure, we consider a scenario in whicb tameras acquire the scene of interest. We are interested in
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Figure 12. Example in constructing the regions in which tlemke F; 1 is subdivided. (a) Regions of framg; ; reconstructable from framé} o. (b)
Regions of frameF; 1 reconstructable from framé&;_» 1. (c) Regions of frame; ; reconstructable from framéy_1 1.

evaluating the matrix for the framg, ; (depicted in the figure as a dashed-border box), knowingfhat F;_; 1 and F;_ 1

are correlated td*; ;. In Fig.[12 (a)-(c) we show which parts of the franig; can be reconstructed from, o, F;—1 1 and
F,_21, respectively. Regions that can be reconstructed (i.at,ahe correlated) from the neighboring one are highliglred
grey in each subfigure. For example, from Higl 12 (a), we ofesdvat regionss, 4,6, and 7 of frame F; ; are correlated to
frame F} ». Thus, we can build a vect@f,o) =[00110 1 1]7 that maps the spatial correlation between the two views into
the reconstructable subregions. If we then look at a spe@fjion, say for example regioh we observe that the region is
reconstructable from framg;_, ; and F;_; ; but not fromF; ;. So, we can notice that each region has a unique combination
of frames that can be used for the reconstruction at the @ecbdiibte also that all the regions of each frame can be always
completely reconstructed from the same frame. This meaatstiie vectoid,,), which depicts the regions df; ; that can

be reconstructed fron} ;, corresponds to a unitary vector. Merging together all thetorse,1y, (.2, ¢(1—2), dt—1), We
obtain the following matrix

b1t = [Dv1)|Dw2)|Ot—2)[t—1)] = 9

e e
= Ok~ OO
OO O M= O
O O O = =
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Recalling the notation that we used in Sec. §il,; = {¢j71_¢};:1, whereg, ; , describes which of the neighboring frames can

contribute to the reconstruction of the region From this matrix, we can notice that regidrcan be reconstructed only if the
frame of interest (i.e.F} 1) is received. Otherwise, the region cannot be reconsuuayeany neighboring frame. As general
intuition, the larger is the level of correlation betweearfies, the greater is the number of non zero elements in théxmat
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