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Abstract 

 

Data mining tasks such as music indexing, information retrieval, and similarity search, require an 

understanding of how listeners process music internally. Many algorithms for automatically analyzing the 

structure of recorded music assume that a large change in one or another musical feature suggests a 

section boundary. However, this assumption has not been tested: while our understanding of how listeners 

segment melodies has advanced greatly in the past decades, little is known about how this process works 

with more complex, full-textured pieces of music, or how stable this process is across genres. Knowledge 

of how these factors affect how boundaries are perceived will help researchers to judge the viability of 

certain algorithmic approaches with different corpora of music. 

 We present an empirical analysis of a large corpus of recordings whose formal structure was 

annotated by expert listeners. We find that the acoustic properties of boundaries in these recordings 

corroborate findings of previous perceptual experiments. Nearly all boundaries correspond to peaks in 

novelty functions, which measure the rate of change of a musical feature at a particular time scale. 

Moreover, most of these boundaries match peaks in novelty for several features at several time scales. We 

observe that the boundary-novelty relationship can vary with listener, time scale, genre, and musical 

feature. Finally, we show that a boundary profile derived from a collection of novelty functions correlates 

with the estimated salience of boundaries indicated by listeners. 

 

Keywords: boundaries, corpus analysis, music information retrieval, music analysis. 
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I. Introduction 

 

A. Background 

 Although a piece of music reaches a listener’s ear as a continuous, uninterrupted audio signal, it is 

perceived as a set of discrete events. Moreover, these events are grouped, and these groups are themselves 

grouped recursively. Locating the boundaries between groups is essential to the task of music structure 

analysis, a task that has gained increased attention from the music information retrieval (MIR) community 

in recent years. Information about the structure of a piece of music has numerous applications: for 

instance, it can be used to generate summaries of songs [1], or to identify recordings of the same pieces in 

a corpus [2]. 

 Many algorithms have been proposed for estimating musical structure directly from audio 

recordings (for a review, see [3]). These algorithms are mostly based on a few simple principles: that 

boundaries in a piece of music correspond to great changes in musical features (a premise introduced by 

[4]); that sections tend to be homogeneous with respect to features; and that sections often consist of 

repeated sequences. These principles are all reasonable, and the best analysis algorithms perform very 

well in evaluations. However, none of these algorithms are based on cognitive models of the perception of 

structure. As a result, they may not be adaptable to new data sets. Evidence for this is seen in the 

contortions required to account for specific musical situations, such as variations in tempo [5], or a final 

chorus that modulates upward [6]. Thus we may expect that an algorithm that performs well on a given 

dataset could perform poorly on a new dataset that includes new genres or styles. For this reason we look 

toward cognitive models of musical structure. 

 Lerdahl and Jackendoff’s Generative Theory of Tonal Music (GTTM) [7], one of the most 

important models of the perception of structure, works from the ground up. The model begins its analysis 

at the atomic level, and provides rules to specify how music’s indivisible units—read notes—are grouped 

in the listener’s mind into sequences. The same general principles, with some adjustments, can often 

explain how these sequences can in turn be grouped together to form longer sequences. 
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 Experimental evidence suggests that GTTM, and other comparable models such as [8], 

implemented as the Melisma system1, and the Local Boundary Detection Model [9], make accurate 

predictions about when listeners perceive boundaries [10], [11]. Algorithmic implementations of all of 

these models exist [8], [9], [12], [13]. 

 Unfortunately, these approaches have significant drawbacks. First, the above implementations all 

work only for very simple musical contexts: namely, monophonic melodies. This is because the 

underlying models are harder to apply as the music grows in complexity from monophony to polyphony, 

or from monotimbral to multitimbral music. Second, while the models can all claim some degree of 

generality, the focus on melodic segmentation hints that they mainly apply to Western tonal music. 

Finally, because each model approaches segmentation in a ground-up way, they can be difficult to 

implement at longer time scales where it is more likely that the rules governing the analysis may conflict, 

or that the predictions will be muddied by factors that are very hard to model, such as parallelism. 

 Hence there is a need for general models of the perception of structure in full-textured, 

polyphonic music. We propose beginning to develop such a model by taking advantage of resources that 

the MIR community has produced for the large-scale evaluation of algorithms: ground truth collections of 

structural annotations. A ground truth annotation is a description provided by a listener that is assumed to 

be the sole correct formal analysis. Of course no such absolute truth exists. Evidence that different 

listeners perceive musical structure differently is found in any perceptual study that shows listeners 

marking boundaries at different times (e.g., [10], [14]). However, in these same examples, it was mainly 

observed that despite this variation, listeners tend to mark boundaries at similar times. Similarly, while 

[15] found that listeners’ ability to detect repetitions changed across exposures, they changed in consistent 

ways. Thus, we may hope that ground truth provided by one listener represents how many listeners might 

hear a piece of music. Accordingly, while continuing to research best practices for collecting and labeling 

ground truth, the MIR community has produced many corpora of annotations of musical structure. 

                                                
1 <http://www.link.cs.cmu.edu/music-analysis/>, accessed 10 November 2012. 
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 Collections of annotations are mainly used to evaluate algorithms. But what if we treated these 

annotations not as ground truth, used to study the effectiveness of algorithms, but as an object of study in 

itself? Since each annotation reflects a listener’s perception of a piece of music, we can analyze the 

annotation to test basic assumptions about how music is heard. One drawback of this approach is that 

existing collections of annotations, to save resources, tend to include just one listener’s analysis per piece, 

in contrast to studies such as [14], which compared the responses of 21 listeners. This drawback is offset 

by the opportunity to study far more pieces: compared to the six songs studied in [14], the corpus studied 

in this article has two listeners per piece, but 746 (over 100 times more than [14]’s 6) pieces. 

 Thinking of annotations as objects of study rather than tools for studying algorithms, we may 

actually derive some interesting conclusions about music cognition from the existing MIR literature. For 

example, [16] used machine learning to classify points in a recording as either boundaries or non-

boundaries, and found that of over 800 feature dimensions considered, all three time scales and all four 

feature classes (harmony, melody, timbre and rhythm) were represented among the most informative 20. 

This suggests that listeners are likely to integrate information from many musical parameters at many 

time scales when judging the location of boundaries. Paulus and Klapuri [17] found that, when searching 

for similar sequences in music, it was optimal to calculate audio features over short time windows, but 

when searching for similar homogenous sections, a longer window was preferable. This may be evidence 

that when listeners judge two sections to be similar based on repeated sequences, the sequences they 

attend to are relatively short, whereas when listeners judge two sections based on their having an overall 

similar sound, this has been determined over a longer time scale. 

 An important question about the perception of boundaries is why listeners make the boundary 

indications they do. Both [14] and [10] collected free responses from participants about what cues they 

were attending to when they indicated a boundary. In both cases, listeners mostly indicated that a change 

in a particular parameter, such as timbre, rhythm, melody, register, articulation or harmony, motivated the 

response, while some indications were also attributed to parallelism or to a pause or break. Deliège [18], 

in testing the applicability of GTTM’s grouping rules to perception, found that the salience of the rules 
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differed with regards to implying boundaries. Sanden, Befus & Zhang [19] asked listeners to indicate 

boundaries while paying attention only to a single musical feature, such as timbre or harmony, and found 

that the resulting segmentations differed in how well they related to the overall perceived structure of the 

songs. Studies such as these can be limited either by their reliance on hand-picked, often very short 

stimuli that present exactly the musical contrasts being investigated, or by the infeasibility of collecting 

listener’s impressions of large numbers of long stimuli. 

 Using large corpora of structural annotations that the MIR community has collected for the 

purpose of evaluation, we may efficiently investigate a large amount of music. By comparing the 

annotations to the recordings, we may investigate the relationship between features of the annotations—a 

record of how the structure was perceived by a listener—and features of the recordings, a record of what 

they heard. In this article, we report on our investigation of the acoustic features of those points 

designated by listeners as structural boundaries. 

 

B. Proposed experiment 

 We conducted an empirical analysis of how the acoustic properties of recordings relate to the 

boundary indications of listeners. We first test the hypothesis that boundaries correspond to moments in 

the recording at which relevant musical features change greatly. Secondly, we investigate how the answer 

to this question depends on the listener, the genre of the piece, and the musical features considered. 

Finally, we examine how the rate of agreement among musical features varies with the rate of agreement 

among listeners. Our approach is similar to [19], in which listeners were asked to segment eight pieces 

while paying attention to a single musical feature, and their responses were correlated to the perceived 

structure of the pieces; in our case, we relate the actual acoustic properties of the signal to the perceived 

structure. 

 The present work differs from previous research on the perception of structure in several 

important respects. First, our musical stimuli were complete, full-textured recordings, rather than short 

excerpts, or simplified stimuli such as melodies or MIDI renditions. Second, our study does not focus on 
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a narrow genre of music; since our investigation spans a wide range of genres, our observations may be 

more generalizable. Both of these differences lend our analysis an ecological validity that can be difficult 

to achieve in an experiment using few or artificial stimuli. Finally, our methodology is notable since, 

rather than collect data from an experiment, we are seeking insights into music perception by mining 

information from a large dataset developed for other applications. As will be seen, while we study a 

sizeable dataset, we have only exploited a fraction of the data available in this domain, and shown the 

beginnings of the discoveries possible. 

 

II. Materials and Methods: the SALAMI dataset 

 

The data analyzed were originally created for the Structural Analysis of Large Amounts of Music 

Information (SALAMI) project.1 The SALAMI project is to use automatic structural analysis algorithms 

to analyze several hundred thousand musical recordings, which would allow musicologists interested in 

form to pursue research on a scale that was previously impossible. The project funded the creation of the 

largest ever corpus of human-generated structural annotations in order to demonstrate the effectiveness of 

these algorithms [20]. This corpus contains descriptions of nearly 1400 recordings, nearly 1000 of which 

were each analyzed by two independent listeners. Annotations for half of the total collection have been 

released to the public domain; the private half, which was not used in this study, will be released after 

serving for a few years as a benchmark dataset for other evaluations such as the Music Information 

Retrieval Evaluation Exchange. The SALAMI data are described briefly in this section; a complete 

account of its design and its properties can be found in [20], and a record of the “Annotator’s Guide” used 

as a reference by the participants is available on the SALAMI website.2 

 

 

                                                
2 <http://salami.music.mcgill.ca/>, <http://www.music.mcgill.ca/~jordan/salami/SALAMI-Annotator-
Guide.pdf>, accessed 1 October 2012. 
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A. Participants and apparatus 

The nine annotators (four men, five women) hired to provide annotations were all in their 20s and 

pursuing an advanced degree (Master’s or PhD) in either Music Theory or Composition. They were 

trained to use Sonic Visualiser, a powerful software package that allows quick data entry and navigation 

of the recording, and they could use any means to listen to the music. 

 

B. Stimuli 

The SALAMI collection contains roughly one quarter each of popular, jazz, classical, and world music. 

An additional portion was drawn from the Live Music Archive3 (LMA), consisting mostly of popular and 

jazz recordings. Of the public half of SALAMI, 761 recordings were considered: 498 were annotated by 

two listeners and 263 by one listener. A breakdown of the number of annotations within each genre is 

given in Table 1. 

Table 1. Number of recordings analyzed according to genre and number of annotators. 

Genre One annotator Two annotators 

Popular 51 101 

Jazz 10 112 

Classical 44 65 

World 30 78 

LMA 113 142 

 
 
 

 All recordings were mp3s with 44.1 kHz sampling rates. The sound quality varied somewhat 

between files—while most mp3s had a bit rate between 128 and 192 kbps, some had variable bit rates and 

others had bit rates as low as 96 kbps—but none of these differences were expected to affect listeners’ 

                                                
3 <http://archive.org/details/etree>, accessed 1 October 2012. 
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perceptions of structure, and this is not investigated here. Indeed, the poor sound quality of the recordings 

themselves was often a greater concern: the LMA includes some audience recordings of live concerts, 

which may include background noise or clipping. 

 SALAMI’s annotations do not record the listeners’ familiarity with the music. It is unlikely that 

any annotator had heard much of the corpus before given the extreme breadth of the corpus, but it is also 

unlikely that the occasional hits in the collection, such as Michael Jackson’s “Thriller,” were unknown to 

the annotators. 

 

C. Procedure 

The annotators’ descriptions were multi-dimensional in that three kinds of information were indicated 

separately: musical similarity (which was annotated at short and long time scale), formal function (e.g., 

“chorus” or “transition” labels), and lead instrumentation. Only the long time scale of the musical 

similarity layer was considered in the present research. In this layer, annotators indicated boundaries and 

provided uppercase letter labels (“A”, “B”, etc.) to indicate which sections were similar or shared the 

same fundamental musical idea. Annotators decided for themselves whether the unifying idea was 

primarily harmonic or melodic, or due to some other musical attribute. Labels could be inflected with a 

prime symbol to indicate substantial variation. Annotators were instructed to indicate on average five 

distinct uppercase letters per song, and to align their analyses with the metrical grid of the piece, if 

applicable, so a section beginning with a pickup would be annotated as beginning on the down beat. An 

example pair of annotations is shown in Figure 1. 

 

 Annotators used Sonic Visualiser4 according to the following workflow: first, listen through the 

full piece and indicate section boundaries in real time by pressing a key. On a second listening, pause to 

correct or adjust the position of boundaries as necessary. Next, provide labels for each section at each on 

each of the three layers—similarity, function, lead instrument. Finally, after skipping around to make 
                                                
4 <http://www.sonicvisualiser.org/>, accessed 1 October 2012. 
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corrections or resolve ambiguities as necessary, listen through the song a final time to confirm. The 

number of times each recording was fully heard is not known, but was requested to be at least three. 

 

III. Data Analysis 

 

Structural analysis algorithms are commonly evaluated by executing the algorithm on a recording and 

grading the result against a ground truth annotation. This grade is difficult to interpret in isolation, so to 

fairly assess the significance of the result, a baseline approach, such as an algorithm that outputs random 

analyses or that makes predictions according to some naïve approach should be executed on the same 

corpus. 

 In contrast to a typical evaluation, our goal is to study the annotations themselves, and not the 

effectiveness of an algorithm. Thus our analysis proceeds in an inverted manner: instead of comparing 

how well a given algorithm and a naïve baseline approach can predict the boundaries in an annotation, we 

compare how well the annotated boundaries and a random baseline set of boundaries can predict the 

output of an analysis algorithm. In our case, this algorithm is based only on the rate of change of selected 

musical features. Our approach will effectively measure the amount of information that the annotations 

contain regarding these changes. 

 This section describes the audio features used to characterize the music, and the steps used to 

estimate the points of greatest musical change. None of these features is alleged to represent how the 

listener processes these musical attributes; the listener certainly perceives the music more holistically, 

basing their analysis on the properties not of frequency bands but of notes and other discrete events. The 

novelty-seeking approach tested here could be applied to more abstract representations using automatic 

beat tracking, transcription and source separation. However, these remain areas of active research: we 

lack robust tools with known error rates for these tasks that have been tested on a corpus as varied as the 

SALAMI data used here. Rather than employ intermediate and imperfect transcription efforts, we choose 

to estimate features directly from the audio. Assuming that changes in musical parameters are reflected by 
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changes in our audio features, our study will test how these musical changes relate to the perception of 

boundaries. 

 

A. Audio processing 

Five audio features were used to encapsulate information from the following musical parameters: timbre, 

harmony, key, rhythm, and tempo. The object was to select features that would differ when these musical 

parameters differed, and be stable when the parameters did not differ. None of the audio features chosen 

are totally independent of each other, but each has been designed to efficiently encapsulate information 

about a particular parameter while minimizing input from other information. 

 For timbre we chose the Mel-frequency cepstral coefficients (MFCCs), widely regarded as a 

suitable representation of the timbre of a short audio snippet [21]. The values in an MFCC vector indicate 

the strength of different periodicities in the Mel-scaled spectrum and hence characterize the shape of the 

spectrum with a minimum of harmonic information. MFCCs were calculated using windows of 0.19 

seconds and a hop size of half that. The lowest coefficient was discarded, since it relates specifically to 

overall loudness, and the next 12 coefficients were used. 

 For harmony we used the chromagram, which gives the strength in the signal of each pitch class 

from A to G#. The method used takes the constant-Q transform of the signal, which scales the spectrum 

so that each bin corresponds to a single pitch, and then sums the contributions of each pitch class. Our 

window size was 0.1 seconds with a hop size of half that. Both MFCCs and chromagrams were calculated 

using Queen Mary’s Vamp Plugin set [22]. 

 The center of effect (CE), which refers to a music segment’s estimated tonal center within 

Chew’s Spiral Array model of tonality [23], was used to provide information on the key. While the center 

of effect generator (CEG) algorithm finds the key itself, we use only the CE as a proxy for the key, which 

facilitates rate of change computations. The CE was calculated using the audio key-finding system from 

[24], which uses a fuzzy analysis scheme to extract the pitches sounded from the spectrum, maps the 
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pitches to their letter names, then calculates the CE, i.e. the geometric mean of their representations in the 

Spiral Array. Window size was 0.37 seconds with a hop size of one quarter of that. 

 The remaining two features are derived from a sonogram, which applies a model of the ear to 

estimate the perceived loudness in each of the twenty Bark scale frequency bands. A fluctuation pattern 

(FP), also called a rhythmogram, measures the strength of loudness fluctuations between 0 and 10 Hz in 

each frequency band [25]. A 1200-element vector, giving the strength of 60 modulation frequencies in 

each of the 20 Bark scale frequency bands used, describes each window of the FP. The periodicity 

histogram gives the estimated strength of periodicities over the tempo range of 40 to 240 bpm (0.6 to 4 

Hz) in a version of the signal that has been filtered to emphasize sharp attacks [26]. The strength of a 

period is the number of times its amplitude (estimated using a comb filter approach) exceeds a given 

threshold over a short series of windows. FPs and periodicity histograms were calculated with the MA 

Toolbox [27] using a window size of 3 seconds and a hop size of 0.37 seconds. 

 

B. Generating novelty functions and picking peaks 

From each feature, we calculate a novelty function. Novelty functions were first proposed for segmenting 

audio by Foote [4], who estimated the amount of novelty at a point as the sum of the self-similarity of the 

passages that preceded and followed that point, and the dissimilarity between the two. Our novelty 

function ignores the internal similarity of the windows and focuses on the dissimilarity distance: in 

particular, we calculated at each point the Euclidean distance between the average feature vector before 

and after that point. It is essentially the same as the function used by the Argus algorithm for 

segmentation by tonal center [28], and can be seen as a continuous-time version of the difference features 

successfully employed by [16].  

 Varying the window size over which to take this average allows one to look at how the musical 

parameters evolve at different time scales; we used values starting at 0 (i.e., the first derivative of the 

feature vectors) and up to 30 seconds at 5 second intervals, meaning 7 different time scales altogether. 

Given that listeners have indicated that they usually perceive boundaries in response to a changing 
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musical feature, difference features are a natural physical measure to use. In both [28] and [16], using 

difference functions at multiple time scales has been shown to be effective means for predicting 

boundaries. 

 Peaks in the novelty function are hypothesized to indicate likely positions for boundaries. Of 

course, if the novelty function is sufficiently noisy, then there will be peaks throughout, and all 

boundaries and non-boundaries will be found to lie near peaks. We thus want to select only the tallest 

peaks. Our chosen peak-picking method first applies a smoothing filter to the novelty function that 

averages each value with the 10 previous and subsequent values; then we pick the top 10 peaks with the 

following heuristic: once a peak was added, any other peaks within 6.5 seconds were made ineligible. 

These choices broadly match the properties of our collection of annotations: the median number of 

segments per recording was 10, and the smallest average segment length for a recording was greater than 

6.5 seconds. 

 

C. Random baseline 

To properly assess the audio properties of the boundaries calculated as described above, it is necessary to 

compare them to a set of non-boundaries. We selected random non-boundaries with the following 

constraints: first, for each recording, there should be an equal number of non-boundaries and boundaries. 

This ensures that the mean segment lengths are identical. Second, the boundaries should lie a minimum 

distance from all true boundaries. We set a buffer of 1.5 seconds, ensuring that even in the annotation 

with the shortest mean segment length, non-boundaries could be drawn from at least half of the recording. 

(Note that the mean segment length across the entire corpus was over 25 seconds, so this problem was 

rare.) With these two constraints, non-boundaries were drawn with uniform probability over the eligible 

portions of the recording. 
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D. Analysis metric 

The chosen peaks in the many novelty functions now constitute our “ground truth,” and we have two sets 

of boundaries, one derived from annotations and another from a random process. We can now calculate 

how well each set of boundaries predicts the ground truth, and compare them. Although two annotations 

were available for some recordings, we evaluated each separately.  

The evaluation metrics we use are precision, recall, and f-measure. If we designate the set of 

annotated boundaries as A and the set of novelty function peaks as P, then the set of boundaries in A that 

‘hit’ or are nearer to some peak in P than some given threshold (we use values of 3.0 and 0.5 seconds) is 

expressed as A ∩ P. We can then express precision as the fraction of attempts that are successful (|A ∩ P| 

/ |A|) and recall as the fraction of peaks that are found (|A ∩ P|/|P|). We are most interested in the f-

measure, their harmonic mean. 

 Finally, we did not include in our evaluation any trivial boundaries, such as those that indicate the 

start or end of the recording, or any boundaries occurring in the first or final 1.5 seconds of the piece. 

 

IV. Results & Statistical Analysis 

 

A. Are boundaries points of novelty? 

 

We first ask: are boundaries points of novelty? For each of the 761 recordings, we calculated 35 novelty 

functions, for each combination of five features and seven time scales, and extracted sets of peaks as 

described in section III.B. We calculated the average f-measure between these novelty functions and the 

boundaries and non-boundaries for each of the 1,253 annotations, resulting in 1,253 paired trials. The 

median f-measure for boundaries (0.328) was nearly twice that for non-boundaries (0.178) using a 

boundary match threshold of 3 seconds (see Figure 2). A paired Wilcoxon Signed Rank test5 confirmed 

                                                
5 Since the f-measures collected were not normally distributed, we use non-parametric tests. The 
Wilcoxon Signed Rank test is a non-parametric alternative to the paired Student’s t-test, and gives the 
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that the difference in medians was significant (U = 771,373.5, p-value < 10-15), with a large effect size (r 

= 0.59). This indicates that boundaries are a better indicator of novelty peaks than non-boundaries. 

Indeed, the mean f-measure for boundaries over each set of 35 novelty functions was larger than that of 

non-boundaries in 93.9% of the annotations. 

 When the boundary match threshold is reduced to 0.5 seconds, the chance that a random point 

will be near a boundary also shrinks, and the contrast between the two groups grows: the median f-

measure for boundaries (0.078) was more than twice that for non-boundaries (0.028). A Wilcoxon test 

again confirmed that the distributions have a different median (U = 744,216.5, p < 10-15). The mean f-

measure was greater for boundaries for 90.3% of the annotations. Despite the poorer overall performance, 

the effect size (r = 0.58) still indicates a large practical significance. 

 Since the boundaries surpassed the non-boundaries at predicting points of novelty, we can 

conclude that boundaries indeed tend to be more novel than other points in a piece. But what do the 

numbers mean qualitatively? The maximum f-measure possible is 1, indicating perfect recall and 

precision, but in practice, even two similar listeners are unlikely to replicate each other’s analyses with 

such accuracy. Since we would not expect any algorithm to predict boundaries as well as another listener, 

we can use inter-annotator agreement as a performance ceiling. Using the subset of 492 pieces in our 

corpus that were annotated twice, and a threshold of 3.0 seconds, the median f-measure of inter-annotator 

agreement was 0.769. This is more than twice the median agreement between the novelty functions and 

the boundaries, which was 0.326 for this subset. This large difference was of course significant according 

to a Wilcoxon test (U = 18.9, p < 10-15), and the effect size (r = 0.60) reflects that the factor by which 

points of novelty predict boundaries better than non-boundaries is almost the same as the factor by which 

boundaries are better predicted by another listener’s annotated boundaries than by points of novelty. 

                                                                                                                                                       
probability that two distributions of paired samples have the same median. The Wilcoxon Rank Sum test 
does the same for independent samples. The Kruskal-Wallis test is non-parametric version of one-way 
ANOVA and tests whether all the medians of a set of independent distributions are the same. The 
Friedman test does the same, but accounts for a blocking factor. 



 

Audio properties of perceived boundaries 16 

 We may also calculate the inter-annotator “disagreement,” or the agreement between the 

boundaries of one annotation and the non-boundaries of the other, as a performance floor. The median of 

this measure was 0.118, which differed from the above medians with approximately the same significance 

and effect size. Using boundaries instead of non-boundaries to predict points of novelty led f-measure to 

increase from 0.178 to 0.326; a listener attempting to identify instead of avoid the boundaries indicated by 

another listener led f-measure to increase from 0.118 to 0.769. The larger increase in the latter case 

suggests that although the boundaries relate more to novelty than do the non-boundaries, qualitatively, 

this is less significant than the perceptual difference between boundaries and non-boundaries. 

 If we were to compare our novelty functions to state-of-the-art structural analysis systems, we 

would likely find that they surpass our performance. At the 2012 MIREX evaluation6, using a corpus of 

annotations comparable to ours, the mean f-measure achieved by nine algorithms varied between 0.42 and 

0.49 using a 3.0-second threshold, and between 0.16 and 0.29 with a 0.5-second threshold. While all of 

these means far exceed the mean f-measures achieved in this study, this comparison is not meaningful: the 

algorithms submitted to MIREX use far more information than novelty (e.g., sequential repetitions, 

multimodal feature distributions), to estimate structure, and so it is expected that they would fare better. 

The purpose of this experiment is to investigate how well measures of novelty explain the information 

contained in the annotations; hence the relevant comparison is between the annotated boundaries and the 

random sets of non-boundaries. 

 However the results are parsed, we have observed that boundaries annotated by listeners are more 

likely than chance to be associated with a peak in novelty, suggesting that annotators do attend to novelty 

in the signal—and that the annotations, in turn, contain information about acoustic novelty. Does the size 

of this effect vary according to the listener, to the genre, or to the type of novelty function calculated? In 

the next four subsections, we address these questions by examining the effect of these factors on f-

                                                
6 <http://nema.lis.illinois.edu/nema_out/mirex2012/results/struct/sal/summary.html>. Accessed 13 
November 2012. 
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measure contrast, which we define as the amount by which the boundary f-measure exceeds the non-

boundary f-measure for each novelty function. 

 

Differences among listeners. 

 

Among 1,253 annotations, a Kruskal-Wallis test indicated a significant effect of annotator (χ2 = 15.577, df 

= 8, p = 0.049) on the f-measure contrast, suggesting that the annotator’s responses correlated with 

boundaries to varying degrees. However, a multiple comparison test (using a Bonferroni correction) 

found no pairs of annotators for which f-mesure contrast differed significantly. The distributions shown in 

Figure 3a show that differences between the annotators are minimal, suggesting that altogether the 

annotators were similar in the way their annotations reflected musical changes. 

 

Differences among genres. 

 

The effect of genre (see Figure 3b) was also significant according to a Kruskal-Wallis test (χ2 = 63.631, df 

= 4, p < 10-12). A multiple comparison test found a difference in the f-measure contrast between five of 

the ten pairs of genres: four of these indicated that f-measure contrast was smaller in classical than in 

other genres, with a small to moderate effect size (0.19 ≤ r ≤ 0.33); the fifth indicated a small difference 

between popular and jazz (r = 0.17). This could indicate that when annotating classical music, listeners 

paid more attention to criteria other than novelty, such as parallelism; or, that the transition between 

sections in a classical piece tends to be less sudden—that is, there are more elided boundaries than in 

other kinds of music. 
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Differences among time scales. 

 

To evaluate the effect of window size, we averaged the f-measure contrast across features for each of the 

seven window sizes and for each annotation. A Friedman test found a significant effect of window size (χ2 

= 844.94, df = 6, p < 10-15), and many pairs of time scales differed. All comparisons between the 0-second 

window size and another showed a small to moderate effect size (0.20 ≤ r ≤ 0.32). As seen in Figure 3c, 

the immediate derivative (time scale 0) did not improve very much on the baseline at all, suggesting that 

novelty at this time scale was of little relevance to the annotators. Additional comparisons yielded a small 

difference between the 30-second window size and window sizes between 5 and 20 seconds (0.11 ≤ r ≤ 

0.19), and between the 25-second window size and window sizes between 5 and 15 seconds (0.10 ≤ r ≤ 

0.16). This suggests that these longer time scales are also less relevant in terms of acoustic novelty. The 

10-second time scale improved the f-measure the most, suggesting that it was the most perceptually 

relevant time scale for establishing section boundaries. It is interesting that although the mean segment 

length across all pieces was roughly 25 seconds, the 25-second window offered less contrast to the 

baseline than the 10-second window. This could simply be explained by the fact that the boundaries of 

short sections risk being obscured by a large window, but a section larger than a shorter window size is 

less likely to be obscured. 

 

Differences among features. 

 

A Friedman test found differences in f-measure contrast among features averaged across time scales to be 

significant (χ2 = 529.71, df = 4, p < 10-15). A multiple comparison test followed by calculation of effect 

size yielded small differences between timbre and key (r = 0.27), timbre and tempo (r = 0.21), as well as 

rhythm and key (r = 0.25) and rhythm and tempo (r = 0.21), suggesting that timbre and rhythm were both 

more reliable indicators of boundaries than tempo or key (see Figure 3d). The effectiveness of harmony 
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lay somewhere in between: it was found to differ from timbre, tempo and rhythm with a small effect size 

(0.10 ≤ r ≤ 0.12) and to differ from key with a slightly larger effect size (r = 0.19). 

 That tempo should be a less reliable predictor of boundaries is a reasonable result, since in most 

popular and jazz music, which comprise at least half the data studied, tempo does not commonly vary 

across sections. However, it is a surprise for key. The features for key (center of effect) and harmony 

(chroma) provide similar information, but while chroma merely provide the raw pitch content, center of 

effect condenses this information into a single estimate of the tonal center. Our results suggest that for the 

purpose of locating boundaries, this process filters out more information than noise. 

 

B. Do any boundaries not match a novelty peak at all? 

The mean f-measure indicates how well the annotated boundaries predict the set of peaks given by a 

particular novelty function. But we would not expect every boundary to be suggested by every musical 

feature at every time scale. A further question to ask is if there are any boundaries that do not match any 

peak at all; this would indicate the minimum extent to which boundaries are not associated with changes 

in musical parameters. 

 To answer this question, we produce a histogram showing the number of novelty function peaks 

associated with each boundary, using a threshold of 3 seconds (Figure 4). The comparable histogram for 

non-boundaries is given below the x-axis. It shows that 7.1% of annotated boundaries do not match a peak 

in any novelty function, meaning 92.9% match at least one—and most match many more. The median 

number of novelty functions matched is eleven; since there are five features and seven time scales, the 

median indicates that half of the boundaries matched at least two distinct features at three distinct time 

scales, showing boundary perception to be a function of multiple features at multiple time scales. The 

non-boundary histogram is more heavily skewed to low values than the boundary histogram, and they are 

about equal when the number of novelty peaks matched is nine. Hence, if exactly nine novelty peaks 

match a particular point, then that point is about equally likely to be perceived as a boundary as not; the 

odds of the point being a boundary steadily increase as more novelty peaks match that point. 
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 The light gray regions in Figure 4 indicate the subset of boundaries that are “symmetric,” i.e., 

those where the labels of the sections before and after the boundary are the same (prime symbols attached 

to segment labels were disregarded here, so the labels ‘A’ and ‘A′’ were treated as equal). Symmetric 

boundaries are hypothesized to indicate less novelty than non-symmetric boundaries, and this is borne out 

modestly by the data. Of the boundaries that match no novelty function, 34.3% are symmetric, whereas 

only 26.7% of all boundaries were symmetric. The median number of matching novelty functions for 

non-symmetric boundaries is eleven; for symmetric boundaries, it is nine. A Wilcox rank-sum test 

showed that this was a significant effect (U = 11,406,306, p < 10-15), with a small effect size (r = 0.10). 

The effect here is slight, but the measure of “symmetry” used is very rough, and does not take into 

account the annotated changes in lead instrumentation. In many of the jazz pieces, for instance, nearly 

every section is given the same label, and the most salient structural information lies with the changing 

soloists. Still, this result provides some support for the hypothesis that the perception of symmetric 

boundaries owes less to novelty and perhaps owes more to factors such as parallelism. 

 

C. Can boundary salience be estimated by annotation concurrence? 

We have observed that boundaries vary in the number of novelty functions they match: nearly all 

boundaries match a few novel points, and a minority match several. This is curiously analogous to the 

finding in [14] that, in each piece studied, a few boundaries stood out as salient to all listeners, while the 

majority of boundaries were indicated by only a handful of listeners. They further found that the 

perceptual salience of a boundary correlated strongly with the number of people who indicated that 

boundary. Bruderer et al. [14] assembled the boundary indications of many listeners to produce a 

continuous boundary profile, indicating at each moment the potential salience of a boundary in that 

position. We conjecture that we could obtain a similar result by collecting information from a set of 

automated listeners (i.e., novelty functions), each indicating boundaries according to the parameter (i.e., a 

given musical feature at a given time scale) to which they are attending. 
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 We do not have the boundary salience data to test this claim, but we may approximate salience by 

combining the annotations of two listeners and giving more weight to non-symmetric boundaries. We 

combined annotations with the technique proposed by [14]: all the boundary indications were collected 

(non-symmetric ones counted twice), and the result was convolved with a Gaussian function (we used a 

full-width half-maximum of 1.5 seconds instead of 1.25 seconds given by [14]). 

 Figure 5a shows the result of applying this procedure to the two annotations for the song “I Close 

My Eyes” by the band Shivaree. The dashed line gives the boundary function as estimated from the two 

annotations; the solid line gives the boundary function estimated from the 35 novelty functions. There is 

very close agreement with the largest peaks in the novelty functions, and less agreement among the less 

significant peaks. The Pearson correlation between the two time series is 0.60, a close overall fit. When 

we performed this procedure on all 492 pieces for which two annotations were available, we found the 

mean Pearson correlation to be 0.33 (sd = 0.18), suggesting a moderate relationship throughout the 

corpus. An example of a pair of boundaries that matched the novelty functions poorly is given in Figure 

5b. These are the annotation- and novelty-derived boundary functions for Precious Bryant’s “Morning 

Train,” and the Pearson correlation between them is -0.03. Even so, the fit is qualitatively good for the 

second half of the song. 

 This result shows that the simple measure of novelty defined in this article, versions of which are 

already used regularly in the MIR community, actually does seem to converge on the same information 

contained in the annotations. Moreover, this information, when collected from a variety of features at 

different time scales, can be combined into an overall novelty function that seems to reflect the same 

patterns of salience that listeners display. 

 

V. Conclusion 

 

 We have investigated a large corpus of recordings and annotations to show that acoustic novelty, 

as estimated by features reflecting timbre, harmony, key, rhythm and tempo, relates strongly to the 
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position of boundaries indicated by listeners. The strength of this relationship was shown to be 

moderately affected by the feature and the time scale used to estimate the novelty—specifically, the 

novelty of tempo and key and the novelty at the shortest time scales were found to be less informative 

than the rest—as well as by genre, with the result that boundaries in classical music were less consistently 

novel according to our features than in other genres. Finally, we saw that a boundary profile derived from 

novelty functions correlated modestly with a boundary profile estimated from the annotations. Since [14] 

found that the fraction of listeners who indicated a boundary correlated with the judged salience of that 

boundary, our findings may help expand this result to suggest that the salience of a boundary is correlated 

to its acoustic novelty. 

 At the same time, our results show the limitations of solely analyzing points of novelty for the 

purpose of boundary estimation: although nearly all boundaries corresponded to a peak in novelty, not all 

peaks in novelty indicated a boundary (see Figure 4). This indicates that as a predictor of boundaries, 

acoustic novelty has high recall but low precision. Thus, while novelty is important to listeners, it is not 

the final word; listeners reject many novel points as false positives, perhaps using information relating to 

metrical structure, parallelism, or other factors to perceive seemingly novel moments as moments of 

continuation. The success of state-of-the-art structural analysis algorithms suggests this is indeed the case 

(Section IV.A). 

 Bruderer and McKinney [11] demonstrated the perceptual validity of segmentation models that 

used score-based representations. The present study may help develop comparable audio-based models 

that could be applied to any recorded music, whether or not a score exists—or whether the music even 

could be transcribed using Western music notation, as much electronic music cannot. 

 The annotations deserve further study, as there were many interesting interactions between the 

features and time scales used, and the genre of the piece, that could not be fully explored here. For 

example, the usefulness of the tempo feature was higher at longer time scales; the timbre feature was less 

useful on the LMA database, perhaps reflecting a lack of timbral information in these noisier recordings; 

and the best time scale on the classical music was 25 seconds (even though this was among the worst time 
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scales for the other genres), perhaps indicating that boundaries in classical music tend to reflect long-term 

changes, or that the most significant short-term changes are often misleading with respect to finding 

boundaries in classical music. 

 An important caveat to our findings is that there is no proof of causality: boundaries do tend to 

occur at novel moments, but this novelty is not necessarily what motivates the listener to perceive a 

boundary. An alternative explanation would be that listeners identify repeated sequences and infer 

boundaries between them, and that the novelty of the boundaries arises from the fact that these sequences 

tend to differ acoustically. This alternative is perhaps supported by the observation that symmetric 

boundaries (those between repetitions) are less well explained by novelty than the other boundaries. 

While this experiment cannot settle the question of causation, the studies conducted in [10] and [14] 

confirm that listeners often find the changes that occur at boundaries their most salient aspect. Still, as 

illustrated in Figure 4, many boundaries remain unexplained by any kind of acoustic novelty. Further 

studies should test how well these boundaries are explained by parallelism, pauses, and changes in other 

musical parameters not tested here. 
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Figure 1. Two annotations for the song “Ain’t Too Proud To Beg” by The Lost (SALAMI ID 1420). The 

shading of the segments emphasizes the labels within each annotation separately. 

 

Figure 2. Distribution of f-measure scores for boundaries and for random sets of non-boundaries, given a 

grading threshold of 3.0 or 0.5 seconds. Outliers in a modified boxplot are those that lie more than 1.5 

times the interquartile range outside the second and third quartiles. 
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Figure 3. Distribution of f-measure contrast (the absolute improvement in f-measure achieved by sets of 

boundaries over non-boundaries) among (a) different annotators, (b) different genres, (c) different time 

scales, and (d) features. All results found using a grading threshold of 3.0 seconds. 
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Figure 4. Comparison of histograms for boundaries (gray) and non-boundaries (white) according to 

number of novelty functions with a matching peak. Symmetric boundaries, i.e., those between sections 

with the same letter label, are distinguished from non-symmetric boundaries. 

 

 

Figure 5. Comparison of boundary profiles estimated from annotations (solid line) and from novelty 

functions (dashed line) for (a) “I Close My Eyes” by Shivaree (SALAMI ID 4), and (b) “Morning Train” 

by Precious Bryant (SALAMI ID 36). 


