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Social Image Analysis from a Non-IID Perspective

Zhe Xu, Ya Zhang, Longbing Cadjember, IEEE

Abstract—An image in social media, termed social image,
shows characteristics different from those images widelyidcussed
in image processing, which can be described by both content
and social use-related attributes, calledsocial image attributes,
including visual contents, users, tags and timestamps. The are
strong coupling relationships between social image attribtes,
which makes social images not independent and identical dis
tributed (non-1ID). By analyzing the relationships among these
attributes, we can better understand the semantic activigs
conducted on such non-1ID social images, hence enabling new
applications including content organization, recommend#on and
social activity understanding. In this article, we presenta novel
algorithm to analyze the coupling relationships between smal
images based on coupled similarity metrics. It involves nobnly
intra-coupled similarity within a social image attribute, but also
inter-coupled similarity between attributes, in analyzing the non-
iidness of the similarity between social images. In particlar, we
propose a multi-entry version of coupled similarity metric to deal
with attributes (i.e. tags) which have many-to-one relatioship
with respect to images. Experimental results on the Flickr goup
dataset show that the proposed algorithm achieves promism
results in various applications including image clusterirg and
tagging.

Keywords—similarity metric, social media, non-I1Dness learning,
structure mining

I. INTRODUCTION

Several studies have previously attempted to analyzelsocia
images utilizing their contextual metadata. The relatigns
between visual features and tags are mined to annotate wel
images [1] and measuring the distance between semantic
concepts [2]. Wu et al. cluster web images by mining correla-
tions between images and their surrounding texts [3]. Recen
ly, multi-relational clustering techniques have been pssd
which consider multiple objects in heterogeneous networks
[3], [4]. Most of the existing methods dwell on modeling a
unidirectional link between two attributes, such as howals
similarity influences image tags. Fig. 1 shows typical styas
dealing with non-1ID social images.

There are strong non-lID characteristics embedded in kocia
image applications [5]. None of existing work fully captare
coupling relationships between attributes, values andy@sa
There is a lack of methods that can utilize and analyze
various kinds of metadata in a unified view. A fundamental
issue shared by social image applications is how to measure
the similarity between attributes, values and images inasoc
image applications. We try to find a way to model the whole
relationship network from different perspectives. Simila
metric is a fundamental issue in image analysis. For instanc
content organization can be formulated as an image clagteri
problem, which can be solved in a bottom-up manner using
image similarity. Network analysis contains the generatib
tag network and user network, each of which is an ensemble

HE Internet is in an era of public sharing and socialof links between_ _similar tags or users weighted by a pairwise

interacting, encouraging more and more people to updlstance. !n_addltl_on, the discovery process can .be cgm_;idg
load images or videos to media-sharing sites like Flickr andS & multidimensional recommendation employing simifarit
YouTube. As a result, the volume of community-contributed®n €ach dimension. We thus propose a coupled similarity
multimedia resources available on the web has been driigtica Metric for social images from a non-IID perspective to suppo

increased. These collections raise new opportunities §sawe
new challenges to multimedia research.

various social image applications.
For non-11D applications, instead of managing each attebu

In multimedia sharing websites, social media images (sociandividually, the coupled object similarity (COS) [6] erlab
images for short) are often associated with a set of condéxtu interaction and feedback from other attributes. For social

metadata in addition to their visual features. While inahgd

image analysis, COS has an appealing feature that it not

the metadata is expected to improve the accuracy for soci@inly captures the similarity among objects (images), bso al
image analysis, these images shall no longer be treated @sovides intermediate results of similarity between hittté

independent and identical distributed (1ID). For examjote,

values (e.g. tags and users). However, COS is not directly

ages posed by a user in a certain time frame may be of thapplicable to measure the similarity among the objects for
same theme and hence share similar tags. When measuring thbich an attribute may have multiple values (callednalti-

similarity of social images, one needs to consider the égogpl
relationship among individual attributes as well as indibal
images. The inter-relationships between attributes fohmge
relationship network.

Zhe Xu and Ya Zhang are with Institute of Image Communicataom
Network Engineering and Shanghai Key Laboratory of Multimae Pro-
cessing and Transmissions, Shanghai Jiao Tong UniveGiina, e-mail:
{xz3030,yazhang @sjtu.edu.cn

Longbing Cao is with the Advanced Analytics Institute, Usrsity of
Technology, Sydney.

entry attribute). For instance, in Flickr, the number of tags
for an image can range from zero to thousands. Hence, the
tag-image relationship, which plays a vital role in pragtic

is a many-to-one relationship. A similar situation existsew
describing movies by genres [7]. The authors solve the probl

by converting multi-entry attributes into several supjyert
Boolean attributes, where 0 for absence and 1 for presence
of a value. The modification may lead to extremely high time
complexity, making it inapplicable to attributes with adar

set of values such as the tag attribute of a social image.



Il. RELATED WORK

Visual Tag
Visual Tag User In this section, we briefly review related work on social
image algorithms and applications and on analyzing coupled
o . - Visual Tag similarity to cater for non-1ID characteristics.
— = : Social media analysisMany applications have now in-
volving social media analysis, including event identifiocat
(@) (b) [8], city exploring [9], ecological phenomena discoven0]1
and personalized recommendation [11], [12]. Due to the well
— e Do Visual ag known semantic gap [13], visual features alone are not able
- to represent images at the semantic level. Many methods
have been proposed to employ various types of metadade
Visual Tag User Visual ag available on multimedia sharing websites. Consideringasg
the most important semantic context, many researchers ain
(©) (d) to reduce the semantic gap using tags [14]-[16]. Meanwhile,

geographical information is widely used for image annotati
images. () Algorithms consder mlipl tiioutes, bat miroduce coupling Sl SumMarization and event detection [17]{19]
rela?ionship bgtween them. (b) Propa?gation algori7thmsIeynpnidirecti(‘:nalg _Netwo_rk analy5|s:There_ are various networks associated
links from one attribute to another. (c) Clustering algumis put muliple ~ With social images including user network, tag network and
attributes together in a black box. It is hard to provide aplieit explanation  image network. To explore users’ social networking behavio
for why an algorithm succeeds or fails. (d) Coupled analyeisoduces  Pglla et al. [20] quantify the evolution of social commueti
coupling relationships within multiple attributes. based on temporal membership changes. Kumma et al. [21]

characterize the user network into categories and inditete

action pattern of each user. Wu et al. present Flickr digtasc

a measurement of the relationship between semantic cancept

We propose in this paper a coupled similarity metric forin visual domain [2]. For the image network, the problem can

the multi-entry attributes namelulti-entry Coupled Object be seen as structure mining. “Topic Models” [22] discover
Similarity (MeCOS), which treats the tags of an image aspatterns by representing the underlying topics with word
a feature vector. MeCOS calculates intra-coupled and-intetistributions. Recently, Latent Dirichlet allocation (RP[23]
coupled similarity between individual attribute valuesy B is widely used to model the topic clusters. Diffusion-based
iteratively choosing the most similar value pair in two v@s{  methods put images and metadata together into a bipartite
the similarity between value vectors is calculated based ograph [24] or hypergraph [3], and perform co-clustering al-
singe value similarities. MeCOS shows promising results ingorithm to extract similar images.
comparison with a state-of-the-art algorithm based on aghn  Multi-relational algorithms The multi-relational clustering
ative matrix factorization [4]. techniques learn structures given various entities andiphail
relationships. Early algorithms [25], [26] fail to achievea-

The main contributions is as follows. 1) We introduce thesonable results on large-scale datasets. Sun et al. [2@linte
idea of coupled similarity metrics to social image analysis similarity measure called PathSim that is able to find peer

to handle the non-lIID characteristics of social images. Bygb'ects in heterogeneous networks. Lin et al. [4] propose a
measuring the similarity between images and between aittrib ) 9 ' j brop

values (tags, users), the algorithm provides a unified Viev\rlwonnegative matrix factorization (NMF) algorithm to char-

to understand the strong semantic interactions embedded ?ﬂg{;; reallﬁgotr;al Srtéléfctzgisa?é g:g%erﬁ:(ﬂg Sterren%rnst.?;nea
social image collections that supports applications ofgena erformagnce of t%epstructure dist?over [0CeSS

clustering, tag network, and tag recommendation. 2) Tol¢ack P ! yp o .

the challenges brought by multi-entry attributes, the Mult . Non-llDness learingVore recently, increasing attentions
entry Coupled Object Similarity (MeCOS) metric is proposedhave been paid to the coupling among attributes and object-

to capture the many-to-one relationships between ataibutS N complex applications such as coupled behaviors in a
values and objects. community and semantic linkage between items for recom-

mender systems [6], [28], [29]. The discussion in [5] furthe
The rest of the paper is organized as follows. Section lsummarizes major theoretical challenges of complex behavi
summarizes the existing studies. Section Il reviews oedipl and social applications and so-call&ilg Data applications
similarity metrics and presents some open issues of the simas heterogeneity and coupling, which forms the need of non-
larity metrics. The multi-entry coupled similarity metrig p-  1IDness learning. In the relevant applications, differgmges
resented in Section IV. Section V briefly introduces the sketta of data sources make the problem not identically distridhute
for experiments together with visual features and metadatevhile various couplings between objects, attributes,tiaia
used in the analysis. Section VI presents the performancmake it not independent. By introducing intra-coupled and
of MeCOS to different social image applications. Sectioninter-coupled relationship within and between attribytesn-
VII introduces possible improvement and extension of thellDness-oriented coupled analysis has been successfplly a
algorithm. Conclusions are drawn in Section VIII. plied in coupled clustering [6], coupled behavior analy28],



[30], item recommendation [7], recommender system [31d, an C. Coupled Object Similarity

coupled clustering ensemble [32]. The Coupled Attribute Value Similarity (CAVS) between
_ Social image applications present strong non-IID characte 4itributes x and y is introduced naturally as the produchéi
istics as discussed in Section |. However, none of existiogkw coupled and inter-coupled similarity. The sum of all CAVSs

systematically captures the coupling relationships betwe o ms the Coupled Object Similarity(COS) between objects.
social image attributes, values and images. While non-éH3n

learning and coupled analysis have been shown effective in
handling many applications with non-1ID features, we hase n D. Open Issues

found the related work reported for social image applic&tio  Although the coupled similarity algorithm achieves fairly
to systematically capture comprehensive couplings betweegood performance on applications including clustering and
social image attributes, values and images. In particatenial  recommendation, there are still several open issues tleat th
images present the so-called multi-entry challenge totiegis  a|gorithm fails to address. First, for intra-coupled saritly, the
coupled similarity metrics. In this work, we explore the €ou aigorithm only considers the occurrence of each value.-It as
pled similarity in social images with many-to-one coupbng sumes that “the discrepancy of attribute value occurrenoest
between an object and multiple values associated with apeflects the value similarity in terms of frequency disttibn”
attribute. [33]. Apparently, the assumption, with the possible semant
information missing, may not be robust enough. For most of
the attributes, such as visual contents, the semanticasityil
is more reasonable than statistics. The second issue libg in
In this section, we briefly review the basic algorithm of multi-entry problem. For specific attributes, such as tagasno
coupled similarity metrics [6] and present possible modific image or genres of a movie, an object may be described by
tions and extensions. The algorithm is proposed in terms ghossibly more than one values. The standard coupled sityilar
both intra-coupled and inter-coupled attribute value kit  algorithm fails to cover this scenario.
ties. Here, “intra-coupled” stands for the relationshighivi
an attrlt?'ute (i.e. valug frequ_ency dlstrlbunon_), whllent_er— . IV. M ULTI-ENTRY COUPLED OBJECT SIMILARITY
coupled” means the interaction of other attributes witls thi
attribute (i.e. feature dependency aggregation). Theildeta As discussed before, the standard coupled similarity oeetri
about the functions and discussions can be found in [6].  do not address the multi-entry problem, i.e. attributes tiaae
many-to-one relationship with objects. In a previous afiem
to solve this problem, each possible value of the multiyentr
A. Basic Information Functions attribute is re-assigned as a new attribute of Boolean salue

The similarity between two objects is built on top of the [7]: Therefore, the intra-coupled similarity between \alu
similarities within their values for all features. Seveiafor- ~ VECIOrS tums into the inter-coupled similarity betweewne

mation functions are defined in formulating the relatiopshi allributes. As a consequence, the computational complexit
within and between multiple attributes [6]. increases dramatically. This solution works reasonably ove
. . . the application of movie recommendation because the multi-

e Three Set Information Functions (SIFs) are defined t0ynry ‘attribute involved (i.e. movie genre) has a relagihall

) . _ ‘ Set of values. However, when considering tag as an attribute

e An Inter-Information Function (IIF) is defined to trans- here can be hundreds or even thousands of independensyalue
form the information from one attribute to another making the computational complexity too high to deal with
attribute through the bridge of objects. practical applications.

e Finally, the Information Conditional Probability (ICP) In this section, we present a multi-entry coupled object
is calculated to represent the probability that differentgjmijarity algorithm. Given a multi-entry attribute, irstd of
kinds of attribute values appear together. turning all the possible values into new attributes, weespnt

it in the original form - feature vector. In that manner, weffir

calculate the coupled similarity between individual atite

values, then perform a championship list selection to thm t

single value similarity into the similarity between vedor

IIl. COUPLEDSIMILARITY METRICS

B. Intra-coupled and Inter-coupled Interaction Similgriiet-
rics
To measure the similarity of values within an attribute, the
algorithm considers the relationship between attributiieva
frequencies. Two values are similar if the frequenciesangel A Problem Statement
and nearly the same. The goal of coupled similarity analysis is to measure the
In the view of inter-coupled interaction, two attributewe$  similarity between data objects. Each object is described b
are closer to each other if they have more similar valueseveral attributes. Here is a summarization of notatiorthién
subsets in other attributes in terms of co-occurrence bbje@lgorithm. Data objects are organized by an informatiometab
frequencies. Hence, the inter-coupled similarity betwaem S =< U, A, V, f >, whereU = {uy,...,u} is a finite set
attribute values is defined as the probability of co-ocawree of data objects;A = {ay,...,a,} is a finite set of features;
in the value space of the other attributes. V =Uj_, Vj, Vj is the set of attribute values of featuse;



TABLE IIl. N OTATION TABLE
Notation Abbreviation Explanation Example
u; - objects, indexed from 1 to m UL, Uy ey UG
aj - attributes, indexed from 1 to n A, B,C
m - total number of objects 6
n - total number of attributes 3
V; - set of all possible values of attribute j Vo = [B1, Ba, B3, Ba]
fi(ui) - The value for an object; of attribute j f2(u2) = [B1, B3]
Fw (O) VCF total count of attribute values in W that occurs for objectOi FiBy.ByyHui,uep) =1+1=2
Fi{ury, o ur }) SIF1 attribute values of a set of objects f5 ({ui,us}) = {[B1, B2], [B2, B3]}
g;(x) SIF2 objects whose attribute value is (contains) x éor g2(B3) = {u2, us, us}
g;‘ (W) SIF3 objects whose attribute value is (contains) at least onmesié in W fora ; g2(B3, Bs) = {u2,u3, us, us, ug}
Dk (x) IIF map from a value x of attribute j to attribute k by shared otsjec ¢32(C2) = {B1, B2, B3, B4}
Py (W) ICP probability of attribute k, value W conditioned on attribitand value x Py3({B1}[C2) = 1
65"’ (z,9) laAvVS Intra-coupled Value Similarity between values x and y ofiladte j 65“ (B1, B2)
01k (z, y) IRS Inter-coupled Relative Similarity between values x and jattfibute j by attribute k d312(B1, B2)
6;6 (z,y) leAVS Inter-coupled Value Similarity between values x and y ofilattte j by all other attributes 5é“ (B1, B2)
6;“”(w, y) CAVaS Coupled Attribute Value Similarity between values x and yattfibute j 6;‘”(B1, B2)
5 (Wi, Wy) CAVeS Coupled Attribute Vector Similarity between attribute t@s W; and W; of attribute k 54¢([Bu1, B2], [B1, B3))
COS(ui,uy) COSs Coupled Object Similarity between objeats and u; COS(u1,uq)

Objects
Attributes

Value
frequency

—>{ IaAVS

CAVaS CAVeS CcOos

m IRS —> IeAVS

IIF

Fig. 2. Working process diagram to describe the MeCQOS dlguri Support functions such as IIF, SIF and ICP are caladilédecompute the inter-coupled
similarity (leAVS). In addition to standard COS, we intraguattribute vector similarity (CAVeS) based on attribuggue similarity (CAVaS).

TABLE I. A TOY TABLE II. A TOY EXAMPLE OF
EXAMPLE OF INFORMATION INFORMATION TABLE WITH A MULTI -ENTRY
TABLE ATTRIBUTE B.
U/A al as as U/A al az as
U1 Al B1 01 U1 Al Bl, B2 01
uz AQ Bl Cl u2 AQ Bl, B3 Cl
us AQ BQ Cg us AQ Bg, B4 Cg
ug | Az Bs (> us | As Bi,B2,Bs (-
us | Ay Bz (% us | A4 Bs, B3 Cs
us | Ay B2 (3 us | Ay B1,B2,Bs C3

andf = /\;.L:1 fi(fj : U = V;) is the value of the j-th attribute

of item wu;.

Let the k-th attributea;, be an attribute with multi-entry
feature. The attribute; has an information sub-tablg, =<
U, Vi, fr >. Here, since the value afy, is a vector instead of

1 fe(ui) = Vi

m

a value,f, : U — 2V satisfies J!

1=

B. Multi-entry Information Functions

For multi-entry attributes, we re-define some of the infor-
mation functions. The meaning of the information functions
can be found in Sec. Ill-A.

DEFINITION 1: Suppose the k-th attribute has multi-entry
feature. Three&et Information Functions (SIFs) are defined
asfy:2V - 22" g : Vi —» 2V, andg; : 2% — 2U.

f}:({u"‘u "'7u"‘t}) = {fk(u‘l‘1)7 ) fk(u’!‘t)}a (1)
gk (@) = {uilz € fr(u;),1 <i <m}, (2)
W) = {Juilfrlw) nW #0,1<i<m}, (3

wherew;, u,,, ...u,, € U, andW C V.
With the respective SIFs for single-entry and multi-entry
attributes, the form of Inter-Information Function(lIF)ags

Table | shows a toy example of the information table

performing standard coupled similarity metrics. Tabler} i
troduces a multi-entry attributes, Vo = {Bi, B2, Bs, B4}

and f2(u2) = {Bl7 B3}

unchanged.
DEFINITION 2: The Inter-Information Function(lIF)
Gk V; — 2V s

bjk(r) = fr(g;(x)), (4)
However, when referring to the Information Conditional
Probability (ICP), the original form no longer suits for rtiul

entry attributes. As a property of the conditional prohiapil



given a condition, the probability of all possible valuessld

sum to one:
Zpk\j(wiL’C) =1 5)

wherex € V;, w; € Vi, (w; C Vi in a multiple version), and
Ui w; = Vk .

DEFINITION 5: For a multi-entry attribute k, given the
information sub-tablesy, the Multi-entry Intra-coupled At-
tribute Value Similarity (MelaAVS) between value x and y
is defined as:

8 (2, y) = max(P((z,y)|z) + P((z,y)ly) = 1,0)  (8)

Supposes we follow the original ICP formulation where whereP((z,)|z) stands for the probability that attribute value

Py (Wla) = W. AssumeG = g;(z) and G; =

gx(t:)Ngj(z). For the single-entry situatiotdy; contains only
one attribute value. Therefore, we have g¢tG; = G and
> i Prjj(wilx) =1 correctly.

In the multiple version, when attribute k has multiple ezdri

y appears in an object’s attribute vector in condition thas x
already in that vector.

High similarity is achieved only when two tags always
appear at the same time (like “barack” and “obama”). We
define the similarity value to be non-negativg, ' € [0, 1].

G; turns to a feature vector. Since the intersection between In the toy examplepB; occurs for 4 timesB, occurs for 5
G; and G, are not always empty, the sum of all conditional times, there are 3 objects whose attribujeinclude both3;

probabilities can exceed one.

and By. S0} (B1,By) = § + £ — 1 =0.35.

Therefore, instead of the number of objects, we treat ICP

as the proportion of the total number of attribute valueshin t
object set.

DEFINITION 3: We define theValue Count Function
(VCF) Fw(0) : 2V — N to be the count of attribute values

in W C Vi which appears in the set of feature vectors from

an object item subsed C U.

Fw(0)

>

weW,0€0

Zw (o) (6)

where Z,,(0) is an indicator function indicates whether the
attribute vector of an object o contains an attribute value w

DEFINITION 4: Suppose that the k-th attribute has multi-
entry feature. Given the k-th attribute vall® C T and
the j-th attribute valuer € Vj, the Information Conditional
Probability (ICP) of W with respect to x is:

_ Fwlgr(W) Ng;(=))
Fr(g;(x))

In Table ”, fz*({ul,U,Q}) {{Bl,Bg},{Bl,Bg}},
g2(B1) = {u1,uz}, while ¢3({B1,B2}) = {u1, us,us, ug},
(253*)2(02) {Bl,BQ,B3,B4}. If we use the Origi'
nal ICP, Yi_, Pys({Bi}|C2) T+1+ 2+
2.33 > 1. For the proposed ICP functiotb,s({ 51 }|
B;}

{3
{B1} _ 1 4 )
[{B2,B4,B1,B2,B3,B2,B3}| ~— T° Thenzizl P2‘3({ v |
Lpafadi g
= .

By (W) (7)

2) =
Cy) =

Wl

Q

C. Intra-coupled Value Similarity
In the multi-entry situation, the intra-coupled value simi

larity can be formulated in a much rational way since sim-

D. Inter-coupled Value Similarity

With the definition of IIF and ICP in Section IV-B, based
on intersection set, we define tiulti-entry Inter-coupled
Relative Similarity (MelRS) between value x and y of an
attribute j based on a multi-entry attribute k as:

Sk y) = Y min{ Py ({W}a), Pe; {W}y)},

weﬂ

wherew € () denotew € (|J ¢j—x(z)) N (U ¢j—x(¥)).

DEFINITION 6: TheMulti-entry Inter-coupled Attribute
Value Similarity (MeleAVS) between value x and y of an
attribute j is:

(9)

n

Z ak5j|k(xay)v

k=1,k#j

5;‘ (z,y) (10)

In the experiment, we set the weighj, for each attribute to
a same value.

In the toy example, as attribute, has multiple entries, we
get 55‘3(01, C3) = 0.64. Meanwhile, sinceas is a single-
entry attribute, the calculation of |R§|2(B1, Bsy) follows the
original single-entry formulation, the result @s65.

DEFINITION 7: TheMulti-entry Coupled Attribute VAI-
ue Similarity (MeCAVaS) §4¢(x,y) between attribute values
x and y of an attributey; is the product of intra-coupled and
inter-coupled similarity.

Aa I, I.
6j (x7y) = 5]' (l‘,y) ! 63’ (x7y)a (11)

ilar values tend to appear together in an object. The most

straightforward idea is the co-occurrence matrix. Howgirer
co-occurrence matrix, the most frequently occurred tagd te
get higher co-occurrence value. In practice, these tagallysu
indicate abstractive concepts, it is error prone to say ttet

E. Coupled Attribute Vector Similarity

DEFINITION 8: For a multi-entry attributea;, we de-
fine the Multi-entry Coupled Attribute VEctor Similarity

are semantic similar to other tags. We call them group relate(MeCAVeS) between attribute vectorg (u;) and fi(u;) of

tags.

two objectsu; andu; asdie(fr(wi), fr(u;)).

To solve this problem, we formulate the intra-coupled value Before designing the multi-entry vector similarity, werint

similarity by introducing the idea of conditional probatyil

duce some desirable characteristics at first.



1) Sparsity inequality:Rarely occurred attribute values usu- F. Coupled Object Similarity

ally convey larger discriminative power. Suppose we have go  Gijyen the information table S, th&oupled Object Simi-

two images both tagged by “peach”. Apparently, they are MOrgarity (COS) between objects;, andu;, is:
similar than two “fruit” images.

54 (fwi {wi}) < 64 ({wy}, {w;}), if Fru,y(U) > f{w(-}(U)- COS(uius) = 0 (fFi(ws), fi(uz))/m (18)
12) k=1

2) Aggregation inequality:Objects with more same values where

are more similar to each other. Ag . .

A {5k @ jis a single-entry attribute

54 ({wi}, {wi}) < 64 ({wi, wi}, {wi,w;})  (13) % = s¢ jis a multi-entry attribute

3) Full profile tendency:lt is an optional characteristic that where n is the number of attributes.
we never penalize additional attribute values. The aim is to Finally, for COS, all CAVSs of single-entry and multi-entry
encourage images with more tags. Tag-rich images tend tattributes are added together. Therefore, we have accsimepli
receive higher similarity to other images. Therefore, ie th the modified coupled similarity algorithm starting from the
tagging application, the system can get more candidate taggsit;r_lilarity between attribute values to the similarity beem
objects.
54 ({wi}, {wi}) < 64 ({wi,wy, oy wj, } {wi, wiey s oo wie, }) In the toy example COS(ui,us) = (0.125 + 0.285 +

(14)  0.36)/3 = 0.256.
where{J} "{K} = 0.

To achieve the sparsity feature, we calculate the abstracti V. DATASET
metric of each attribute value. Concepts with higher abstra
metric get lower weight when calculating the similarity miet

DEFINITION 9: Given the information sub-tablé;, we
define in-degree, out-degree and abstraction metric of a
attribute value x as:

We present experiments on a Flickr Group dataset. Groups in
Flickr are self-organized communities with common inté&ses
34]. People participate in groups by sharing photos or dis-

ussing topics for specific social demand. Analysis on Flick
groups could offer insights into robust content presenitetind

. (P((4,z)|7 social behavior trends.
D) = =) ey as
|Vk| -1
) A. Overview
DY (z) = 2;(P(G,2)|7)) jeVi\ {a} (16) Using the Flickr API, we collect data from 15 Flickr groups
[Vi| — 1 covering different interests including nature, travet, aews,
out in and animation. We use seven of them and extract the lates
Absty(z) = DP**(x)/ Dy (2) (17) 3000 images for groups with a large number of images. Tags

II'hat occur in less than five images are discarded. Table IV
provides an overview of the dataset used in this study. We
number them Group A to Group G in the rest of this paper.

We propose a championship list selection strategy to tur
attribute value similarity into vector similarity. Giverwo
attribute vectors, the algorithm iteratively find the clsise

attribute value from each vector, shrink the vectors, arthtg TABLE IV.  FLICKR GROUP DATASET

the vector similarity according to value similarity and wel - ST N o Ry

abstraction. The details are shown is Algorithm 1. 10477049@N00| The Southwest United Statek 3000 | 973 | 122
1063441@N20 :<VOCALOIDS>: 889 312 106

1255404@N21 Shanghai Open Gallery 3000 665 187

Algorlthm 1 ChamplonShlp list selection algonthm 1314582@N21 | Fascinating Nature: Level 1| 3000 878 709

Input: Attribute vectors for two objectgy, (u;) and fi (u;) C Vj,. MeCAVaS 655343@N23 Creative Art Photography | 3000 | 398 328
§4a(z,y) for eachz,y € T 88657993@N00 Design 3000 | 985 | 554
Output: MeCAVes(SAe(fk(ui),fk(uj)), 94326334@N00 News-Photojournalism 3000 | 1250 359
initialize §4¢ =0
repeat
retrieve an attribute value from each obje@f) andw'” who get the -
- s () (6 J B. Preliminary
minimum 64 (w, W, ) . . . . . .
0 0 In a social environment, images are associated with various
let s = max{Absty (w; '), Absty(w; )} . . - -
e SR BN ' types of attributes. In this paper, we mainly focus on visual
updates e+ = 6 (w; ', w;"))/s . -
) é ) ¢ features and three contextual features: user, tag, and time
mr.lemo"e_wi i rom fk_(“i)mar: wy from f (u;) There are several other features available on Flickr, ssch a
until £ (us) or fi(u;) is empty location, comments and user friendship, which may also be
incorporated into the proposed algorithm.
In the toy example, 07*¢(fu,(u2), fa,(ue)) = Visual Features
64¢(By, B1)/Absta(B1) + 64%(Ba, B3)/Abst2(Bs) = (1) Color. We use two color based features: color histogram

0.625/1.1+0.031/1.4 = 0.59. and color moments.



‘V) * SIFT-BOW ] relationship. We also present a comparison on differenki-app
; ‘ cations with another algorithm that discovers multirelaél

‘;z_._ structure in social images.
H A. Tag Similarity
12345075@No00 By taking tags as an attribute of images, we use the
intermediate result (MeCAVS in Section IV-E) to measure the
ape similarity between tags. Fig. 4 shows the tag network geadra
o from the top 100 tags in the group “The Southwest United
heart States”.
_ Compared to the result obtained by tag co-occurrence, the
_ /) proposed algorithm removes fake links generated by the most
B 5006.12.24 frequently occurred tags which may be treated as stopwords
= 15:23:04 in document processing. As a result, the network is much

clearer and meaningful. The network contains links that ap-
Fig. 3. Demonstration for visual contents and metadataestmifor an image.  pears naturally (e.g. “nm” v.s. “newmexico”) and ones gener
ated according to specific dataset (e.g. “coloradowiltiNs.
“deer”). In the coupled view, except for the tag co-occucesn
(2) Texture.Local Binary Patterns (LBP) is used to extract other factors including users and visual contents also pfay
texture features [35]. important role in measuring the tag similarity.
(3) Interest PointsWe extract SIFT features to provide scale
and orientation invariance [36]. SIFT is known as the most :
successful feature descriptor in image classificationTgie-  B- Image Clustering
scriptors are then quantified into visual words by bag-ofédso One of the most important applications of the proposed
model [37]. Afterwards, bag-of-words model is performed toalgorithm is to extract relational clusters from a group gma
each of the features to obtain categorical attribute valWes  stream. In this application, we present an effective atgori
extract 50 words for each visual feature. to organize contents in a Flickr group. We cluster the images
Contextual Metadata. into a given number of patches. In each patch, the most
(1) User. In Flickr, images are uploaded by users freely. Thusrepresentative images, tags, users and other useful iafmm
the ownership conveys important contextual information. A are presented, providing a user-friendly demonstratioritfe
image is linked to its owner. The user-image relationship isgroup.
one-to-one. 1) Experimental SettingsSpecifically, each image in the
(2) Tag. Tags are descriptive texts assigned by image ownergroup is considered as an object, whose attributes inchugle t
to describe the semantics of images. Tags indicate botfalvisuuser and visual features. Object similarity is calculated b
information (“sky”, “blue”) and semantic information (“pa  MeCOS algorithm. We choose k-modes [39] as the clustering
py”, “canon”, “awesome”). Tags may be the most importantalgorithm in this study, which can deal with the problem of
attribute to connect images to their semantics. An image capategorical data clustering.
have zero to thousands of tags, the relationship between tag To evaluate the clustering result, we seek to answer the

and images is many-to-one. following questions.
(3) Time. An image in Flickr is associated with a timestamp e What are the most representative images, tags and user
indicating its uploading time. in each cluster?

e To what extent do the clusters separate from each other*
Which attribute plays the most important role in the
clustering progress?

In this section, we present three typical applications of ® Does the clustering result really help organizing multi-
the multi-entry coupled object similarity (MeCOS) metfics relational data and exploring images?
Using the dataset of Flickr group (described in Section V), Does the algorithm obtain similar results on different
we first present a brief analysis of the tag network generated groups?
according to the multi-entry coupled attribute value samity We enclose clustering results of groups driven by different
(MeCAVS). Section VI-B presents case studies on extractingnterests. In each group, we extract 5 relational clustes a
relational clusters driven by local image similarity. A qita-  show the most representative tags and images. In fact, Bnage
tive evaluation of the algorithm through a tag predictiosktss  in the mode sequence extracted by k-modes algorithm are
provided in Section VI-C. The performance of the algoritlsm i in the centroid of the cluster images. Therefore, they can
compared with baseline methods without introducing coupli be directly selected as the representative images. Here the
algorithm extracts 5 images in the mode sequence for each
1For detailed results, please visit http://ir.sjtu.ediraxu/cp.html. cluster.

VI. EXPERIMENTS




B redrock

universityofnewmexico

Fig. 4. Tag network generated by MeCAVS for group “The Sowsinited States”, drawn using NetDraw software [38]. Tharg shows all links between
the top 100 frequently occurred tags with MeCAVS value latgan 0.1. Different colors stand for different componemttracted from the tag map. Relationship
shown in the figure is much clearer than that from tag co-oecae.

2) Clustering Results:Fig. 5 shows the clustering result  3) Comparison with Global-based Algorithnks mentioned
of the group “Creative Art Photography”, which collect- in Section I, Lin et al. [4] proposed a nonnegative matrix-fac
s images showing creative minds. The collections contaitorization algorithm (shorted to NMF in below) to character
paintings, photographs and post-processed images. Frem thelational structures of group photo streams. The basia ide
most popular tags we know that the tags mostly concentratis to minimize the difference between observation dataimatr
on content(“flower”, “water”), quality(“supershot”, “dimond-  and predicting matrix (a product of three component matjice
classphotographer”), camera information(“nikon”) andisar We present a comparison with their clustering results.&ihe
tic tricks(“macro”, “photoshop”). Cluster A1 mainly colles  evaluation is a largely subjective issue, the discussioimlsna
photos describing portrait and creative activities. A ffigant  focus on the merits and shortcomings of global and localdase
feature is that there are many black-and-white photographs clustering methods.
the cluster. The other big cluster, Cluster A3 consists ghhi The global-based matrix factorization algorithm achieves
quality macro shots of flowers and nature scenes. Cluster Afearly optimized clustering results on singular attrisuiith
shows colorful paintings. Images performing High-Dynamica pairwise comparison, we find that two methods tends to
Range(HDR) to depict clouds, sky, sunset and beach are caéxtract similar news events. However, as shown in Fig. 6(b),
lected in Cluster A5. Cluster A2 is a little bit different thais the method suffers a pr0b|em that the representati\/e inmges
characterized by tags indicating high quality (e.g.“sspet”,  tags are not “representative” enough. We recall that intf4,
“bravo”). In general, the clustering process is mainly g@aidy  authors select the most representative images based on ho
visual features. It is clear that by utlIIZIng the multi-agbnal ||ke|y an imagei be|ongs to a clustek. It is argued that
information, the algorithm successfully extracts intetpble  even an image has a100% probability for clusterk;, it is
structure of the data. By viewing the group again in a bettehot convincing that the image is the most suitable choice for
organized view, we can summarize the group as a communiepresenting the cluster. Experimental results show that t
that shares high-quality shots of various semantic cosceptepresentative images selected by the proposed algorithm a
(e.g. portraits, flowers, trees and sunset) utilizing dveat the modes in k-modes algorithm are more interpretable than
artistic tricks (e.g. black-and-white, HDR and macro-$hot  those selected by NMF method.

In Fig. 6(a), analysis on a news event oriented group In addition, the proposed algorithm has several featurats th

(“News-Photojournalism”) shows a different charactézishs ~ outperforms the global-based algorithm.

most of the contents are describing local events based onImage relationship mapWith the similarities between all
abstract concepts, visual features play a weaker role in th#hage pairs, the system can extract not only the cluster
clustering process. We discover that the representatiye da membership for each image, but also the structure within and
five clusters all tell a story, indicating five news eventpees ~ between clusters. For example, we can pick out the centroids
tively (politics demonstration, Iraq war, the Bush goveemy ~ outliers within a cluster, along with the bridge nodes bewe
poverty problem in the Philippines and a fire in Pottstown).two clusters. It gives a better understanding of the retatio
We apply the algorithm to other groups and achieves anabgostructure of the data.

results. The results show that the proposed algorithm d@@gan New item problemWhen a new image is added into the
the group content in a more interpretable way. Meanwhilegroup, the global-based algorithms need to re-calculage th
based on the relational structure, local events can beategtta whole matrix to reach the global minimum point. In contrast,
effectively. for the proposed algorithm, the only additional calculatie
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Fig. 5. Clustering result of the Group “Creative Art Photgny”. The tagCloud generated by the top 100 tags [40] is shiowthe right part. In the right
bottom shows the image-tag and image-user matrices whereitfs and columns are reordered based on the cluster ingfiche corresponding images, tags
or users. The most representative five images and tags ofohastier are presented in the left. Images are resized imt@dme size. The tags and images of
clusters indicate strong semantic information.

to measure the similarity between the new image and every os = 08 .

image in the dataset. The updating process is much easier ar — 1
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C. Tag Recommendation

Tag prediction task provides a quantitative evaluatiorttier |[]|ﬂ m ‘ Iﬂ |ﬂﬂ Iﬂ | o Iﬂ m Iﬁ | I“ lﬂ
proposed similarity metrics. We perform nearest neighlabur 1 RNk " I nm |
gorithm with MeCOS as the similarity metric. The underlying 123 45 6 7 1t 23 45 67
assumption is that visually similar images tend to havelami (@) cold start (b) one initial tag
tags, especially ones uploaded by users sharing a common _ )
aste I is worthwhile o note that gven the palrwise mage 8, T 2900, Saer LI Sups, O sonas b ooty
Slm"amY’ more Comphcated d'ﬁ“_S'P” methods can poiehyt and M stands for NMF.gThe left one shows the result of coldt svanile theg
be applied to obtain better prediction performance. right one is the result of given one initial tag as input.

For each group, we choose 80% images for training and
20% for testing. Flickr has an important strategy namedtbatc
tagging. A user can tag dozens of images using a batch mode . ) )
when uploading them. If a batch of images happen to appear@10 (precision of the top 10 predicted tags) as the evahuati
in testing set and training set at the same time, predictin etric. Experimental results shov_v that other criterionshsais
by the tags of these training images will lead to a fakeR@10 (recall of the top 10 predicted tags), NDCG (Normal-
high performance. Therefore, instead of random choosireg, wized Discount Cumulative Gain) get similar results.
split the training and testing set according to the uplogdin The empirical results show that the proposed algorith-
timestamp. m outperforms baseline algorithms significantly. For gi®up

We compare our result with NMF and two baseline methodsvhose tags are averagely scattered, NMF outperforms tag-
based on tag frequency and visual similarity relatively. e  based method. However, for the groups which have several
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Fig. 6. Clustering result of the Group “News-Photojoursiali. (a) The result generated by MeCOS algorithm. The reshuivs an event-centric structure.
Visual features play a weaker role in the clustering pracégsThe result generated by NMF. Clusters are re-orderaghéile pairwise comparison to coupled
algorithm. Although NMF method extracts reasonable evehts representative images are not clear enough accorditige tclusters’ representative tags.

group related tags, baseline methods achieves competitive images become more similar in semantic level than visual lev
even better performance than NMF. It is argued that NMF, asvith the raise of input tags.

a global-based method, uses the same weight for all images in

the cluster when predicting tags. Hence, images that ase les VII.
similar to the predicted image could produce negative ihpac L ) )
on the predicting performance. On the contrary, MeCOS based We present three applications of MeCOS in the paper. By in-

algorithm only gives high weight for the most similar images troducing coupling relationship of multiple attributesglRIOS
. .. _shows promising performance on non-IID social images. The
When evaluating the performance of the proposed algorlthr?esult is based on the following characteristics of MeCOS.

in predicting tags for images, all tags of testing images are "y, iije features Compared to baseline methods such as
removed. Therefore, tags are recommended to testing 'magﬁ‘ﬁage similarity and tag similarity, MeCOS employs mulip|

without knowing their initial tags. In the view of recommeatd i 1o available for social images to achieve bettefope
system, this phenomenon is formulatedcatd start problem mance

When we introduce an experiment on performing collaboeativ Coupling relationshiplnstead of regarding each attribute in-

{ﬁgrlggtﬁg;%ggmrgnutgﬁﬂdagg;:art; ergigltssgroewrse gg?rfnfw%rrr]%i\é% pendently, MeCOS introduces coupling relationship betw
ge, q y g ultiple attributes. The inter-coupled relationship pd®s

the algorithm without personalized vgnance. valuable information in addition to traditional attribwalue
We present a performance evaluation to measure the perfog-rm”arity_
mance of different startup parameters. For every testirgen Interpretable resultsThere are some algorithms that employ
the first N tags are given as initial input, leaving the rermin  inter-relationship between attributes, such as bicliragei24],
tags as the predicting goal. In the first step, no initial tags  hypergraph [3] and topic model [22]. However, most of them
given, similar images are ones which are visually similadl an gre not transparent in the training process, which makes the
uploaded by similar users. When N increases, with more taggsuylt hard to explain. On the contrary, MeCOS provides a
given as input, algorithms tend to find images that are mor@jearer explanation of why two objects are similar by trgcin
similar in semantic level. For the tag frequency method, Wane similarity between multiple attribute values. This cteter-
added a Naive Bayes algorithm given the tag co-occurrencgtic is extremely important for recommender systems. When
matrix. Experiments (Fig. 8) show that although NMF andintroducing possible friends for a user, a higher success ra
tag-based method both increase their performance when givgyil| be achieved if a plausible reason is provided.
more input tags, MeCOS algorithm still outperforms other \ersatility. By placing all the attributes on a same status,
methods constantly. MeCOS provides a unified view to analyze social images. Hav-
A typical demonstration of different predicting resultsevh  ing attained all the inter-coupled and intra-coupled samity
importing new tags is shown in Fig. 9. The recommendingof each attribute, the algorithm can be extended to analyze

D ISCUSSIONS



11

1 15 Z 25 3 35 4 45 S 1 15 g z5 3 35 4 45 S 1 15 g z5 3 35 4 45 S

——cP

—T
——M

(d) P@10 for group E (e) P@10 for group F (f) P@10 for group G

Fig. 8. Cold start result for different groups on P@10. Theis stands for number of input tags. Coupled based algesitfCP) outperforms image similarity
(1), popular tags (T) and NMF (M) methods. Note that with therease of input tags, the total number of tags availabl&éntésting set declines. Therefore,
the upper bound of P@10 declines.

all problems related to the concept “similarity”. Although tially non-11D. This motivates us to explore theoreticalfala-

the performance may not be competitive with state-of-ttie-a tion for analyzing non-1ID social images in this paper. Aato

algorithms which are designed specifically for one problemjngly, we present a new and effective similarity metric: tizul

MeCOS does provide a new perspective of social imagentry coupled similarity metrics and social image analgzin

analysis. algorithm to capture the comprehensive couplings embeddec
Despite the merits above, MeCQOS still has much room foiin social images and especially the many-to-one relatipnsh

improvement. The main problem of MeCOS is that whenbetween tags and images. By measuring the similarity betwee

computing coupled object similarity, the weight of each at-images together with the similarity within various kinds of

tribute is fixed. Therefore, since Flickr Group dataset ghly  contexts at the same time, we provide a unified view for

determined on the role of users, the clustering result of 8C tackling social image applications including network gséd,

is very sensitive to users. In that case, the weight of useimage clustering and tag prediction. Experiments showttieat

attribute should be lower. A set of self-learned parameters algorithm discovers interpretable structures of the mmdtiia

preferred for different datasets. contents especially in terms of representative images and
For future work, we plan to extend the application of thetags, which provides a more user-friendly demonstration of

algorithm to efficient image discovery and aesthetic imagesocial images. Extensive experiments show that the prapose

analysis. We also plan to build an online application demgsimilarity metric and algorithm outperform baseline metso

to provide a better demonstration for the structure of auiste and global based matrix factorization method in tag prémfict

in multimedia social sharing websites.
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