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Complexity Control based on Fast Coding Unit
Decision in the HEVC Video Coding Standard
Amaya Jiménez-Moreno, Eduardo Martı́nez-Enrı́quez, and Fernando Dı́az-de-Marı́a, Member, IEEE

Abstract—The emerging High Efficiency Video Coding stan-
dard (HEVC) achieves higher coding efficiency than previous
standards thanks to a set of new coding tools such as the
quadtree coding structure. With this novel structure, the pixels
are organized in Coding Units (CU), then in Prediction Units
(PU), and finally in Transform Units (TU), whose sizes can be
optimized at every level following a tree configuration. These tools
allow a very flexible data representation; however, they involve
a very high computational complexity.

In this paper we propose an effective complexity control (CC)
algorithm. Our proposal is based on a hierarchical approach. An
early termination condition is set at every CU size to decide if the
following CU sizes should be explored or not. The actual encoding
times are also considered in order to meet the target complexity
in real-time. Moreover, all the parameters of the algorithm are
estimated on-the-fly to adapt its behavior to the content, the
encoding configuration, and the target complexity over time.

The proposed method has been experimentally tested for a
large variety of video sequences and coding configurations. The
experimental results prove that our proposal is able to meet
target complexities reductions of up to 60% with respect to
a full-exploration, with a notable accuracy and quite limited
losses in coding performance. Moreover, it has been compared
with a complexity control state-of-the-art method, achieving a
significantly better trade-off between coding complexity and
efficiency, besides higher accuracy to meet the target complexity.
Also, a comparison with a complexity reduction state-of-the-
art method highlights the advantages of the complexity control
framework. Finally, we show that the proposed method works fine
when the target complexity varies over time, which is a desirable
feature for devices with changing computational resources.

Index Terms—Complexity control, fast coding unit decision,
HEVC, on-the-fly estimation.

I. INTRODUCTION

The High Efficiency Video Coding (HEVC) is the latest
video coding standard developed by the Joint Collaborative
Team on Video Coding (JCT-VC). The current popularity of
high definition (HD) video signals, or even higher resolutions,
and the huge amount of new applications based on video
services, such as video streaming in Internet and mobile
networks, are driving the need of video coding standards
with higher coding efficiency than the previous ones. The
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HEVC standard deals with these new needs. HEVC is a block-
based hybrid coding technique that significantly outperforms
previous video coding standards, such as H.264/AVC, MPEG-
4 or MPEG-2. It is able to duplicate the coding efficiency when
compared to H.264/AVC [1] thanks to a set of new coding
techniques included in HEVC [2]. The most relevant new
feature of the HEVC standard is the quadtree coding structure.
In previous standards, every frame in the video sequence
was divided in macroblocks (MBs), which are 16×16 pixels
blocks. In HEVC, each frame is divided in blocks of equal
size called coding tree blocks (CTBs), whose size can be
selected as 16×16, 32×32, or 64×64 pixels. Then, HEVC
allows dividing the CTBs into smaller coding units (CUs)
using a quadtree coding structure. The dimensions of the CUs
can be from 8×8 pixels up to the CTB dimensions, depending
on the tree depth at which the CU is located. The higher depth,
the lower the CU dimensions. Therefore, a CTB can consist
of either only one CU or multiple CUs.

Each CU can in turn be divided into prediction units (PUs)
and transform units (TUs). Regarding the prediction stage,
every CU can be further split into PUs of various sizes,
on which the motion estimation (ME) process is performed.
Specifically, each CU either could not be further divided or
could be divided into two or four blocks, which could be of
asymmetric sizes. Fig. 1 shows all the partitioning possibilities
of a CU of 2N×2N pixels into PUs.

Regarding the transform stage, the CU can be considered
as the root of another quadtree in charge of carrying out the
transform process of the residue obtained after the prediction
stage. The sizes of the TUs can vary from 4×4 up to the CU
size, depending on the depth at which the TU is located. The
left side of the Fig. 2 shows an example where a CTB of
64×64 pixels is divided into the corresponding CUs (in solid
line) and TUs (in dashed line). In the right part of Fig. 2, the
associated quadtree is shown.

The encoder needs to select the best coding option among
all the possibilities previously explained. The best coding
quadtree structure (including the CUs, PUs, and TUs sizes)
is selected through a Rate-Distortion Optimization (RDO)
process, which must evaluate every tree configuration and
compare all of them in terms of rate and distortion. Specif-
ically, the encoder seeks the coding option that minimizes a
distortion measure subject to a given rate constraint:

min
θ

{D(θ)} subject to R(θ) ≤ Rc, (1)

where θ represents a combination of different coding options
(CU, PU, TU, motion vectors (MVs), etc.); D(θ) represents
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Fig. 1. PU sizes for a CU of 2N×2N pixels.

Fig. 2. (a) In solid line an example of a 64×64 CTB divided into 13 CUs.
Two CUs (e, and f) of 32×32, seven CUs (a, b, c, g, l, and m) of 16×16,
and four CUs (h, i, j, and k) of 8×8 pixels. In dashed line an example of a
TU structure where the TU size can be the same as of the CU (a, b, d, f, g, l,
h, i, j, and k) or not (c, e, and m). (b) The associated quadtree, in solid line
for CUs and in dashed line for TUs.

the distortion between the original and the reconstructed CU;
and R(θ) is the rate needed to encode the CU, both using θ;
finally, Rc represents the rate constraint.
This problem can be solved using Lagrange formulation,

which leads to the following unconstrained problem [3]:

min
θ

{J}with J(θ) = D(θ) + λR(θ), (2)

where J(θ) represents the cost associated with a set of coding
options θ; and λ is the Lagrange multiplier that weights the
relative importance between D(θ) and R(θ). Thus, a certain
λ value yields a solution θ∗(λ) that turns out to be an optimal
solution to the original RDO problem (1) for Rc = R(θ∗).
R(θ) is calculated as the total bit rate, including the

information related with the residual transform coefficients,
the MVs, etc., considering the CU, PU, and TU sizes deci-
sions. D(θ) is calculated as a sum of squared errors (SSE)
between the original and reconstructed blocks. Therefore, to
calculate R(θ) and D(θ) the encoder requires carrying out the
prediction, residue calculation, transformation, quantization,
entropy coding, and the inverse processes with every possible
configuration. This process results in extremely high computa-
tional complexity, which actually is far above the complexity
of the H.264/AVC standard and becomes the bottleneck of the
HEVC standard. Thus, the motivation of this work is to design
an algorithm able to control the computational complexity of
a HEVC video encoder and, consequently, allow for more
efficient implementations of the HEVC standard.
Our proposal is focused on the complexity control problem,

as there are just few works related with this subject and fur-

ther improvements still can be achieved. Using the statistical
properties of the sequences and the time measures of the
encoder we will be able to adjust the encoding process to the
required target computational burden. Moreover, we propose
to adaptively adjust the parameters of our method, trying to
avoid the generalization problem associated to the use of fixed
values in the performance parameters.

The rest of this paper is organized as follows. In Section
II an overview of the state-of-the-art methods that deal with
the complexity control (CC) and complexity reduction for the
HEVC standard is presented, as well as the main contributions
of our proposal. Section III provides a detailed explanation of
the proposed method. In Section IV the experimental results
supporting the proposal are presented and discussed. And
finally, Section V summarizes our conclusions and outlines
future lines of research.

II. REVIEW OF THE STATE-OF-THE-ART

Several works have been published that address the problem
of the high computational complexity of the HEVC standard.
Two related tasks can be identified in this field: CC and
complexity reduction. In the first case, the encoder must meet
a specific target complexity, assuring that the encoding process
fits the available computational resources. On the other hand,
in the second case the goal is just to reduce the complexity of
the encoding process as much as possible. As explained before,
the optimal representation of a CTB can be broken down into
a series of decisions related to CU depths, PU modes, and
TU quadtree sizes. Thus, both the complexity reduction or
the complexity control problems have been usually addressed
by providing fast solutions to different sub-problems dealing
with determining CU depths, PU modes, or TU sizes, or a
combination of them.

Since our goal is to design a method to control the
complexity of an HEVC encoder based on a fast CU depth
determination, hereafter we focus the description of the state-
of-the-art on the methods for fast CU depth determination
and on the CC problem itself. Therefore, although there exist
relevant works dealing with ways to achieve efficient solutions
to the PU mode selection (e.g., [4]–[7]) or to the TU size
selection (e.g., [8] and [9]), they are not covered here.

In [10] a CC method for HEVC was proposed. The method
relies on the observation that in those co-located regions of
consecutive frames which kept some features unaltered (mo-
tion, texture, etc.), the CU depths selected as optimal tended
to maintain. Thus, this information can be used in the next
frames, which the authors called “constrained frames”, avoid-
ing the assessing of the remaining CUs. The CC was achieved
by estimating the number of constrained frames between each
two regularly encoded frames required to meet the complexity
target. Furthermore, the same authors presented an extension
of this work [11] which intended to improve the previous
solution for the case of fast-motion video sequences with low
target complexities. In particular, they proposed to estimate
the maximum CU depth to be explored in the constrained
frames based on both spatial and temporal correlations, such
that spatial neighboring CUs were also used along the CUs
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of previous frames to estimate the CU depths for the current
constrained frame.
In [12] a rate-distortion and complexity optimization

method was proposed to select the quantization and depth
parameters. Using predictive techniques and game theory-
based methods, the maximum CU depths for some frames
were restricted in order to carry out the encoding within a
given complexity budget.
In [13] a workload management scheme was suggested. The

idea was to dynamically control the complexity by estimating
a complexity budget for each frame. Specifically, this method
acted on different parameters of the encoder, such as the
maximum CU depth assessed, the search range, etc., so that the
complexity target was fulfilled. In order to minimize the RD
losses, a set of different encoding configurations was designed
as well as a control feedback loop to dynamically update the
available computational resources.
In [14] a fast CU depth decision method was described. By

analyzing the CU depths selected in the last frame, the least
used CU depths were disabled in the current frame. Moreover,
for every CU, the depths of the neighboring and co-located
CUs were analyzed to avoid checking unnecessary CU depths.
The decision at frame level depended on some thresholds and
the decision at CU level depended on the number of neigh-
boring CUs that fulfilled some requirements. The thresholds
and the number of neighbors were fixed experimentally.
In [15] a fast CU depth selection relying on a Bayesian

approach was presented. The algorithm was based on estimat-
ing offline some class-conditional probability density functions
(pdfs) that were stored in a look up table. Subsequently, using
a Bayesian decision rule, the thresholds to decide whether to
check or not the next CU depth were estimated (also offline)
for different encoding settings and sequence resolutions.

[16] also presented a method able to constraint the
CU depths by predicting the optimal depth from spatial-
neighboring and co-located CTBs. Moreover, three early ter-
mination methods to select a suitable PU partition were also
described.

[17] was based on a so-called “pyramid motion diver-
gence” to early skip some CU depths. First, the optical flow
was estimated from a down-sampled original (non-enconded)
frame. Then, for each CU, the pyramid motion divergence was
calculated as the variance of the optical flow of the current CU
with respect to that of the CUs of smaller size. Finally, since
CUs with similar pyramid motion divergence tended to use a
similar splitting, an algorithm based on Euclidean distances
was used to select a suitable CU quadtree structure.
In [18] a simple CU early termination method was sug-

gested. In particular, they proposed to stop the CU splitting
process when the selected PU mode for the current CU depth
was the Skip mode.
In [19] a method was presented that dealt with decisions at

the CU and PU levels. The PU mode decision was terminated
if the R-D cost was below a threshold. This threshold was
calculated as the average R-D cost of some blocks previously
encoded with Skip mode. The CU depth early decision was
made by comparing the R-D cost at a certain depth with the
sum of the best R-D costs of the four CUs of the following

depth. If the latter was higher, the CU was not split anymore.
[20] presented a CU depth decision method based on the

depth correlation information between adjacent CUs in the
spatial and temporal neighborhoods. The depth search range
was adaptively selected for each CU based on the information
of the more selected CU depths in the spatial and temporal
neighboring CUs. With such information in the CU to be
encoded, a similarity degree is selected with different depth
search ranges available.

In [21] a fast decision algorithm for Intra prediction was
described. Three early termination methods were proposed.
The first one, avoided the computation of large PUs based
on the correlation of neighboring PUs. The second and third
methods, which rely on the Bayes’ rule on RD costs, either
skipped a specific PU partition and proceed to the next or
skipped all the remaining PUs, respectively.

Although a lot of research has been devoted to complexity
reduction in HEVC, there is still much room for improvement
in the CC field. Some of the previous CC works suffered
from slow convergence to the target complexity (e.g., [10]
and [11]). In other cases, the complexity was controlled by
means of the dynamical selection of encoding configuration
parameters without taking into account the potential impact on
the performance of every parameter (e.g., [13]). Other methods
were not able to adapt to the video content (e.g., [14] or [15],
which are actually complexity reduction methods that rely on
either fixed thresholds or statistics calculated offline).

The main contribution of this work is to use a CU early
termination method based on a RD cost analysis to design a
CC method. To the best of our knowledge, these techniques are
commonly used in complexity reduction frameworks, but they
have not been applied to address the CC problem in HEVC.
The proposed method relies on adaptive thresholds computed
based on RD cost statistics and actual encoding time measures
to control the complexity on-the-fly. In this way, its behavior
is adapted over time to the video content, to the encoder
configuration, and to variable target complexities. Finally, our
method only needs to perform simple mathematical operations
to update the parameters; in other words, there is no extra
complexity associated with the method itself.

This work is a novel CC design for the HEVC standard
inspired by an earlier work by the same authors [22] that
addressed the CC problem in the H.264/AVC standard. The
method in [22] focused on the mode decision in H.264/AVC,
where a hypothesis test was used to choose between a low- or
a high-complexity encoding mode, and the threshold of such
a test was adapted according to the target complexity. While
mode decision in H.264 is more related to PU selection in
HEVC, the method proposed in this paper relies on CU depth
decision, where it is more effective to tackle the CC problem
in HEVC. Consequently, a comprehensive “ad-hoc” analysis
has been conducted to understand the encoder performance
regarding the CU depth decision. Moreover, since the decision
has to cover all the available CU depths, we have proposed to
make a split or non-split decision at every depth level, so that
several thresholds (one for each possible CU depth) need to
be managed to reach a given target complexity.
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Fig. 3. Flowchart of the proposed method.

III. PROPOSED METHOD

A. Overview

In order to control the computational complexity of an
HEVC standard encoder, the proposed method, which only
applies to inter slices, establishes an early stop condition
at each CU depth based on a set of dynamically adjusted

TABLE I
A priori PROBABILITIES (%) OF EVERY CU DEPTH.

Depth 0 Depth 1 Depth 2 Depth 3

B
as
ke
tb
al
lD
ri
ll QP 22 0.17 0.33 0.25 0.19

QP 27 0.33 0.29 0.21 0.11
QP 32 0.44 0.27 0.18 0.05
QP 37 0.54 0.16 0.13 0.03

B
Q
M
al
l QP 22 0.16 0.25 0.30 0.23

QP 27 0.26 0.27 0.25 0.15
QP 32 0.35 0.29 0.22 0.09
QP 37 0.44 0.29 0.17 0.05

Fo
ur
Pe

op
le QP 22 0.50 0.27 0.16 0.06

QP 27 0.71 0.18 0.08 0.02
QP 32 0.81 0.13 0.04 0.01
QP 37 0.86 0.09 0.03 0.01

thresholds. Fig. 3 shows a flowchart that summarizes the
main steps of the method. For every frame f and every CU
c, the method starts exploring all the possible PU modes
for the lowest depth level i = 0. If the early termination
condition is satisfied, the higher depth levels are not tested,
saving the corresponding computation time. On the contrary,
if the early termination is not made, the encoder continues
evaluating the next CU depth i = i + 1, checking again the
corresponding termination condition. In summary, the goal of
the proposed method is to determine a suitable number of
depths to explore, so that certain complexity constraint is met
and the encoder does not incur in significant coding efficiency
losses. To that purpose, the proposed method has to be content-
dependent, i.e., has to adapt to the actual video sequence
content; moreover, the bit rate and quality must be maintained
near to that obtained with the regular coding process.

To establish the early termination conditions we rely on a
set of thresholds (one per depth level) that depend on statistics
of R-D costs and actual time encoding measures. The R-D
costs (2) help us to select an appropriate CU depth while
not incurring significant coding efficiency losses. The time
encoding measures allow us to adjust the encoding process to
the target complexity in real-time. In other words, having real-
time measures of the time spent by the encoding process, we
are capable of dynamically adjusting the thresholds to make a
suitable number of early stops to meet the target complexity.

In [23] we proved that the statistical distributions of the
R-D costs could be used to dynamically select a threshold
which allowed us to make reliable decisions concerning the
mode decision problem in H.264/AVC. Therefore, we decided
to explore the same idea on HEVC and, moreover, to propose a
full CC algorithm. The suitability of the R-D costs for making
early stops and the design of the set of thresholds and their
on-the-fly adaptation are explained in the next subsections.

B. Motivation

First, we study if the R-D costs are adequate variables to
rely on when designing a fast CU decision algorithm intended
to control the complexity in HEVC.

The aim of our analysis is threefold: first, to study the
relationship between CU depths and both the actual video
content of the sequences and the quantization parameter (QP);
second, to check if the R-D costs are useful to early decide



IEEE TRANSACTIONS ON MULTIMEDIA 5

TABLE II
MEANS AND STANDARD DEVIATIONS OF THE R-D COSTS ASSOCIATED

WITH EVERY PU MODE WHEN DEPTH 0 IS OPTIMAL AND WHEN IT IS NOT.

JMerge,0 J2N×2N,0 J2N×N,0 JN×2N,0 JMin,0

B
as
ke
tb
al
lD
ri
ll

Q
P
22

µ|d∗ = 0 27242 27465 27224 27237 26986
σ|d∗ = 0 4422 4742 4427 4464 4383
µ|d∗ ̸= 0 59646 59136 57142 56345 54722
σ|d∗ ̸= 0 35805 34893 32894 31973 30841

Q
P
27

µ|d∗ = 0 52231 52530 52411 52396 51713
σ|d∗ = 0 11363 11186 10967 10952 10886
µ|d∗ ̸= 0 138970 134770 129340 127230 123050
σ|d∗ ̸= 0 87177 82628 77502 75642 72824

Q
P
32

µ|d∗ = 0 98320 99380 99605 99376 96781
σ|d∗ = 0 38847 36279 35970 35895 35421
µ|d∗ ̸= 0 295040 281590 268250 263810 253540
σ|d∗ ̸= 0 180690 169120 156780 153640 147240

Q
P
37

µ|d∗ = 0 205820 208940 209950 208570 199530
σ|d∗ = 0 137410 129050 129360 128330 127230
µ|d∗ ̸= 0 568130 541880 515360 506030 482480
σ|d∗ ̸= 0 338160 318710 295790 289790 277560

Fo
ur
Pe

op
le

Q
P
22

µ|d∗ = 0 14940 15106 15088 15071 14911
σ|d∗ = 0 6668 6651 6654 6637 6644
µ|d∗ ̸= 0 29571 29466 28974 28959 28489
σ|d∗ ̸= 0 15777 15674 14983 14953 14426

Q
P
27

µ|d∗ = 0 25449 26117 26025 25970 25344
σ|d∗ = 0 15031 14940 14952 14917 14925
µ|d∗ ̸= 0 62849 62140 60130 60165 58397
σ|d∗ ̸= 0 39621 39044 36588 36405 34723

Q
P
32

µ|d∗ = 0 47860 50539 50227 50011 47545
σ|d∗ = 0 33492 33115 33232 33151 33014
µ|d∗ ̸= 0 134010 131760 126510 126930 122180
σ|d∗ ̸= 0 89218 86372 80503 79659 75947

Q
P
37

µ|d∗ = 0 100610 109720 109340 108720 99958
σ|d∗ = 0 76376 75367 75805 75896 75265
µ|d∗ ̸= 0 281280 278290 267870 268910 256700
σ|d∗ ̸= 0 170070 166500 156110 154610 146940

the CU depth in HEVC; and third, to find which one of the
available R-D costs turns out to be more suitable for our
purpose.
First, we study the a priori probabilities of every CU

depth in different video sequences and for different quality
targets. In this manner, we intend to gain some insights
into the relationships between the optimal CU depths and
the contents of sequence and the QP. For this purpose, we
have used the HM13.0 software [24] with the configuration
file “encoder lowdelay P main” (with this configuration the
maximum CU size is 64×64 pixels -depth 0- , and the
minimum is 8×8 pixels -depth 4-). Following the specifica-
tions in [25], a subset of the recommended test sequences
were encoded with QP values of 22, 27, 32, and 37. In this
conditions, we estimated the a priori probabilities of every
CU depth considering the complete encoded sequence. For
brevity reasons, we only show in Table I the results for
three representative sequences since similar conclusions can
be drawn from others.
As can be observed, for the sequences with smooth or

little movement and static regions (such as “FourPeople”) the
encoder selects the lower depths with high probability for
all QP values. However, the probability of selecting lower
depths when the sequence is more complex decreases notably.
Moreover, the a priori probability of depth 0 (or even the
depth 1 in “BQMall” ) increases with QP and vice versa. This
means that a coarser coding process results in a larger number
of CUs encoded using large sizes (such as 64×64 or 32×32).
In view of these results, which shows that low CU depths
tend to be optimal for several sequences and QPs, an early
determination of the optimal CU depth favoring low depths
should undoubtedly contribute to reduce the complexity of the
encoding process. Moreover, it seems reasonable to design an

algorithm able to adapt its behavior on-the-fly to the content
and the encoder configuration since the optimal depth selection
shows high dependence on both the sequence and the QP
value.

Second, we checked that the R-D costs are suitable variables
to early decide the CU depth in the HEVC standard. As ex-
plained before, at every CU depth there are several PU modes
that will be evaluated by the encoder in R-D terms to select the
best one for that depth. We denote by JPU=a,depth=i the R-D
cost associated with the PU mode a at the depth i. Specifically,
we analyzed the statistics (means and standard deviations)
of the R-D costs associated with every mode a at depth i
given both that depth i was optimal and that it was not, i.e.,
JPU=a,depth=i|depth∗ = i and JPU=a,depth=i|depth∗ ̸= i,
respectively.

The experimental setup was the same as for the pre-
vious analysis. In Table II we show the results for two
sequences (“BasketballDrill” and “FourPeople”) at the four
recommended QP values for depth 0. In Table II, JMerge,0

refers to the R-D cost associated with the “Merge” PU mode
at depth 0, JMin,0 refers to the minimum cost obtained after
checking all the PU modes available (depth 0), J2N×2N,0

refers to the cost for the 2N×2N PU mode (depth 0), and so
on. µ|d∗ = 0 and σ|d∗ = 0 denote the mean and the standard
deviation when the optimal depth is 0, while µ|d∗ ̸= 0 and
σ|d∗ ̸= 0 denote these same statistics when the optimal depth
is other than 0.

In order to visually check if the two conditional pdfs of
the R-D costs, given that depth i was optimal and that it was
not, are actually separable, we have estimated both pdfs, as
follows:

pJ (JPU=a,depth=i|depth∗ = i)

pJ (JPU=a,depth=i|depth∗ ̸= i) , (3)

i.e., the probability of certain cost JPU=a,depth=i when the
optimal CU depth is i, and when it is not. Fig. 4 shows
the obtained pdfs for depth 0 (for higher depths the results
are similar). In this manner, we gain some insight into the
shape and the actual separability of these pdfs. The sequences
“BasketballDrill” at QP 37 and “FourPeople” at QP 22 were
used to illustrate this point.

The results both in Table II and Fig. 4 show that the
statistics of the two compared pdfs (when certain depth is
optimal or not) are significantly different and reasonably
separable for all the analyzed R-D costs and that all the
analyzed JPU=a,depth=i costs present a very similar behavior.
In particular, we draw two conclusions: 1) the CU depth
decision problem can be addressed from updated statistical
information of these R-D costs; and 2) any of the considered
R-D costs turns out to be suitable. In the following subsection,
we proposed a specific design of the early stops based on one
of these R-D costs.

C. Designing the early termination conditions

As explained before, the proposed method aims to make fast
CU depth decisions which allows us to control the complexity
of the encoding process. To this purpose, the method relies on
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(a) “BasketballDrill” at QP 37

(b) “FourPeople” at QP 22

Fig. 4. An illustration of the pdfs for several R-D costs at CU depth 0 for
two sequences, “BasketballDrill” and “FourPeople”.

a dynamical selection of a set of thresholds, one per depth
level, based on statistical information related to R-D costs
that is updated on-the-fly, so that the fast CU depth decision
process is actually content-dependent.
In the previous section it became evident that there are

relevant differences between the pdfs when certain depth is
optimal or not (i.e., between making or not a split decision at
certain depth) and that each of the resulting pdf pairs in (3)
is separable by establishing a proper threshold. Furthermore,
since these differences are consistent for different R-D costs
(e.g., similar behavior can be seen in Fig. 4 for JMERGE,0,
J2N×2N,0, and JMin,0), we decided to use J2N×2N,i for
convenience, because it provided slightly better results than
the others.
In order to make the process simpler, we rely on just one

pdf to make our decision, i.e., instead of seeking for an
optimal threshold taking into account both the conditional pdf
given depth∗ = i and the conditional pdf given depth∗ ̸= i,
we make our decision at every depth level just consider-
ing (pJ (JPU=a,depth=i|depth∗ = i)), as we successfully pro-
posed in [23] in the H.264/AVC framework. Specifically, for
every CU depth i, we set a threshold that directly depends on
the mean and the standard deviation of this pdf, i.e.:

THdepth=i = µJ2N×2N,i +
(
ndepth=i × σJ2N×2N,i

)
, (4)

where THdepth=i is the threshold for depth level i; µJ2N×2N,i

and σJ2N×2N,i are the mean and standard deviation of
pJ (J2N×2N,i|depth∗ = i), respectively; and ndepth=i is the
control parameter, which allows us to adapt the threshold.
Defining the threshold in this manner provides two essential
advantages: 1) since the mean and standard deviation are
updated on a CU-by-CU basis (details below), the thresholds
are content-adaptive; and 2) the ndepth=i parameter allows us
to set more or less demanding thresholds according to the
target complexity.

For each CU at depth level i, if the actual cost J2N×2N,i

is below the threshold, the early termination condition is
satisfied, and the process to encode that CU is stopped. On the
other hand, if J2N×2N,i is above the threshold, the encoding
process for that CU continues exploring higher depth levels.
In other words, the early stop at a specific depth level i is
actually made if the likelihood of the actual cost J2N×2N,i

coming from the conditional pdf given that depth∗ = i is
high enough (relative to the threshold).

Finally, the parameter ndepth=i establishes a balance of the
complexity-coding efficiency tradeoff for a given sequence,
encoding configuration, and complexity target. In particular,
the control of this tradeoff allows us to act on how often the
early stop at i is actually made and, consequently, allows us to
dynamically control the complexity. More details concerning
how to manage this parameter are given in Section III-D.

1) On-the-fly estimation of the statistics: The fact that the
thresholds that define the early termination conditions are
content-adaptive is one of the main contributions of this paper.
In this subsection we describe how the pdf parameters are
estimated on-the-fly to adapt the threshold to the content along
the video sequence.

In particular, we model the pdfs from their means and
variances. Thus, we suggest a simple procedure to update these
two parameters on a CU-by-CU basis which is based on an
exponential average:

µ̂J2N×2N,i(t) = αµ̂J2N×2N,i(t−1)+(1−α)J2N×2N,i(t), (5)

σ̂2
J2N×2N,i

(t) = ασ̂2
J2N×2N,i

(t− 1) +

(1− α)(J2N×2N,i(t)− µ̂J2N×2N,i(t))
2, (6)

where t is an index associated with the times that the depth
level i is selected as optimal; µ̂J2N×2N,i

(t−1) and µ̂J2N×2N,i
(t)

are the estimated means at the instants (t − 1) and t, re-
spectively (the variances σ̂2

J2N×2N,i
(t − 1) and σ̂2

J2N×2N,i
(t)

following the same notation); J2N×2N,i(t) is the RD cost at
the instant t; and α is the parameter defining the forgetting
factor of the exponentially averaging process. Specifically, α
has been set to 0.95 in our experiments.

Fig. 5 provides an example illustrating the behavior of the
exponential average. In particular, we show the estimated mean
(µ̂J2N×2N,i

) along 350 samples. Furthermore, the expected
mean values considering blocks of 50 samples are shown, as
control points that the average estimator should follow. As can
be observed, the exponential average produces a reasonable
approximation. The behavior of the estimation of the variances
is nearly identical.
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Fig. 5. Illustration for the exponentially average estimation of µ̂J2N×2N,i

for BasketballDrill at QP 32.

D. Controlling the complexity

As stated before, ndepth=i controls the number of early
stops selected at depth level i. In particular, from (4), the
higher ndepth=i, the higher the resulting threshold and the
more likely the early stop (since the likelihood of obtaining
a J2N×2N,i cost lower than THdepth=i becomes higher).
Therefore, acting on ndepth=i, we will be able to manage
the computational complexity to meet certain target. To be
more precise, hereafter we will use encoding times as practical
measures of the computational complexity.
Specifically, following a strategy similar to that we proposed

for H.264/AVC [22], we rely on a simple feedback algorithm
for updating ndepth=i:

nfr=j+1
depth=i = nfr=j

depth=i + λdepth=i

(
timefr=j − timetarget

)
,
(7)

where fr = j + 1 and fr = j stand for frame numbers
j + 1 and j, respectively; thus, nfr=j+1

depth=i varies from its
previous value (that of frame j) according to the deviation
of the actual encoding time of frame j with respect to
the target, i.e.,

(
timefr=j − timetarget

)
. Furthermore, the

parameter λdepth=i controls the tradeoff between the speed
and the accuracy of the algorithm.
In a few words, ndepth=i is updated on-the-fly on a frame-

by-frame basis to meet the complexity constraint. For example,
if timefr=j is higher than timetarget, it means that we
have allocated to frame j more resources than those targeted
and, thus, we need to increase the threshold (to make more
early stops), as it really happens since timefr=j − timetarget
becomes positive.
It should be noticed that the parameter λdepth=i must

depend on the depth level i. In doing so, we aim to produce
smoother transitions of ndepth=i when i is low, which is
desirable because of, if we make a wrong decision by making
an early stop at a low depth, we will incur in significant coding
efficiency losses. Thus, we only allow smooth transitions of
ndepth=i for low depths and relax this constraint as the depth

increases. In particular, λdepth=i is computed as follows:

λdepth=i = λ0 × (timedepth=i/timeCU ) , (8)

where λ0 is an initial value experimentally set to 0.2;
timedepth=i is the time to encode a CU with an early stop
at depth i; and timeCU is the time to encode a CU exploring
all depths available. As can be easily noticed, timeCU is
the maximum value for timedepth=i and timedepth=i+1 >
timedepth=i. Therefore, the lower the depth i, the lower
λdepth=i and vice-versa. It should be noted that timedepth=i

and timeCU are computed in a frame-by-frame basis as the
average time spent encoding a CU with an early stop at depth
i and the average time devoted to each CU when all depths
are explored, respectively.

The target complexity can be specified by the user or the
application running the video encoder, and depends on the
resources available in a specific device and the time that
the user/applications allocates for the encoding process. In
the proposed method the target complexity is specified as a
percentage with respect to the complexity of a full-search
encoding process TC(%), and our method is responsible for
transforming this percentage in an encoding target time value
timetarget to be used in (7). Specifically, knowing the time
that a CU needs to be encoded using full-search (timeCU ),
and the total number of CUs per frame M , we can easily
obtain timetarget as follows:

timetarget = timeCU ×M × (TC/100) . (9)

E. Summary of the algorithm

The complete method is summarized in Algorithm 1.

Algorithm 1 Proposed coding process.
Require: F : number of frames to be encoded
Require: M : number of CUs per frame
Require: D: number of available depths in a CU
1: for ∀f ∈ F do
2: Retrieve the time to encode the previous frame

timefr=f−1

3: Obtain average values timeCU and timedepth=d

4: Calculate timetarget to encode the frame f (9)
5: Calculate λdepth=d (8) and ndepth=i (7)
6: for ∀m ∈ M do
7: for ∀d ∈ D do
8: Evaluate all PU partition modes in depth d
9: Calculate the µ̂J2N×2N,d

(5) and σ̂2
J2N×2N,d

(6)
10: Obtain THdepth=d (4)
11: if J2N×2N,d < THdepth=d then
12: Go to 14
13: end if
14: end for
15: Decide the best coding options among all CU depths

and PU partitions evaluated
16: end for
17: end for
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TABLE III
PERFORMANCE EVALUATION OF THE PROPOSED METHOD FOR DIFFERENT TARGET COMPLEXITIES.

TC TC = 90% TC = 80% TC = 70% TC = 60%

Sequence ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%)

BasketballDrill
0.67 0.02 9.57 0.79 0.02 17.06 1.23 0.05 28.44 5.19 0.24 39.76(832×480)

BasketballDrillText
0.48 0.02 8.52 0.75 0.03 17.28 1.11 0.05 27.75 6.35 0.30 41.12(832×480)

BasketballDrive
0.07 0.00 9.30 0.32 0.01 17.10 0.83 0.02 26.51 1.72 0.05 38.21(1920×1080)

BasketballPass
0.42 0.02 13.68 1.11 0.06 20.44 2.10 0.11 27.82 4.84 0.25 35.15(416×240)

BlowingBubbles
0.90 0.02 12.62 2.26 0.08 20.43 5.74 0.24 32.95 11.79 0.47 43.75(416×240)

BQMall
0.31 0.01 12.42 0.71 0.03 20.78 2.42 0.11 31.44 12.20 0.49 46.59(832×480)

BQSquare
0.54 0.01 11.56 1.40 0.05 17.75 3.74 0.15 26.50 12.74 0.58 39.14(416×240)

BQTerrace
0.06 0.00 9.98 0.59 0.02 20.60 1.77 0.06 33.65 7.92 0.25 54.10(1920×1080)

Cactus
0.10 0.00 7.19 0.14 0.01 14.91 0.74 0.03 25.22 2.42 0.08 39.58(1920×1080)

ChinaSpeed
0.17 0.01 12.73 0.89 0.07 21.15 4.03 0.29 30.58 26.67 1.38 42.66(1024×768)

FourPeople −0.01 0.00 12.55 0.16 0.01 20.93 0.35 0.01 31.57 0.66 0.02 44.46(1280×720)
Johnny −0.04 0.00 9.74 0.08 0.00 19.35 −0.06 0.00 28.84 −0.10 0.00 39.44(1280×720)
Kimono

0.04 0.00 8.14 0.29 0.01 19.69 0.72 0.03 30.25 1.07 0.04 42.06(1920×1080)
KristenAndSara

0.12 0.00 9.46 −0.18 0.00 18.39 0.07 0.00 28.08 0.12 0.00 39.08(1280×720)
ParkScene

0.03 0.00 9.65 0.57 0.03 19.51 1.57 0.07 31.14 7.28 0.31 48.62(1920×1080)
PartyScene

1.13 0.05 9.97 3.62 0.17 21.18 11.40 0.55 37.91 25.05 1.02 52.67(832×480)
RaceHorses

0.12 0.01 5.60 0.92 0.05 13.77 3.82 0.21 24.17 15.42 0.78 38.92(416×240)
SlideEditing

0.31 0.04 8.78 0.23 0.02 17.66 0.93 0.13 28.96 0.48 0.07 42.49(1280×720)
SlideShow −0.22 −0.01 7.06 0.50 0.04 16.58 1.61 0.14 25.16 6.97 0.54 35.56(1280×720)
Vidyo1

0.12 0.00 9.75 0.24 0.01 18.61 0.14 0.00 28.80 0.26 0.01 39.48(1280×720)
Vidyo3 −0.05 0.00 7.16 −0.17 0.00 15.93 −0.08 0.00 26.74 0.46 0.01 41.46(1280×720)
Vidyo4 −0.02 0.00 10.13 0.01 0.00 18.07 0.29 0.01 29.32 0.87 0.04 44.83(1280×720)

Average 0.23 0.01 9.79 0.69 0.03 18.50 2.02 0.10 29.17 6.83 0.31 42.23

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

To assess the performance of the proposed method, it was
implemented in HM13.0 software [24]. The test conditions
were chosen following the recommendations in [25] and the
configuration file was “encoder lowdelay P main”. A com-
prehensive set of sequences of several resolutions and covering
a variety of video contents (motion, textures, etc.) was used
(see Table III).

B. Meeting a target complexity

To compute the encoding time savings and, consequently,
the complexity reductions, we have used the following mea-
sure:

TS =
Time(HM13.0)− Time(Proposed)

Time(HM13.0)
× 100. (10)

Thus, relying on this measure we were able to assess the
capability of our proposal to meet different target complexities.
Moreover, as another goal in our proposal is to incur in
coding efficiency losses as low as possible, we also needed to
monitor the performance in terms of bit rate increment ∆BR
or PSNR loss ∆PSNR, which were calculated following

the recommendations in [26]. In particular, the proposed
method was evaluated for four different target complexities,
TC(%) = {90, 80, 70, 60}.

Table III shows the results for all the considered target
complexities in terms of ∆BR, ∆PSNR, and TS, averaged
across the four QP values recommended in [25] (QP values of
22, 27, 32, and 37). From these results, we can conclude that
the proposed method obtains a notable accuracy for all the
considered target complexities. In particular, the mean values
of TS obtained taking into account all the video sequences
show a very small deviation from the target values (the highest
deviation is 2.23% for TC=60%). Moreover, the complexity
savings are obtained in exchange for very limited losses in
coding performance. The mean values for ∆BR are 0.23, 0.69
and 2.2% for TCs of 90, 80, and 70%, respectively. However,
when TC is 60%, the average ∆BR reaches 6.8%, which was
expected since the proposed only acts on the CU depth, and,
necessarily, low target complexities involve large CU sizes
and, therefore, a coarser encoding process.

Furthermore, it should be noticed that the average 6.8% in
∆BR comes from few sequences for which achieving 40%
complexity reduction is hard (only 6 sequences out of 22
produce BD-Rate loss above 10%, causing the average value
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(a) R-D performance. (b) Zoom in of the Figure on the left.

Fig. 6. R-D performance for the 4 considered target complexities for the sequence BasketballPass.

(a) R-D performance. (b) Zoom in of the Figure on the left.

Fig. 7. R-D performance for the 4 considered target complexities for the sequence BQTerrace.

to reach 6.83%).
Some selected numerical results of Table III have been

further illustrated on Figs. 6 and 7, which show the R-
D performance of the proposed method for different target
complexities. On the left part of the figures the complete R-D
curves are shown, while on the right part we have zoomed in
the curves to see a segment in more detail. As can be observed,
the conclusions do not change with respect to those already
drawn from Table III.

C. Comparison with a complexity control state-of-the-art
method

In this subsection we compare the proposed method with
a state-of-the-art method [11]. The configuration file and QPs
used to conduct this comparison are those of the previous ex-
periment, and the comparison is focused on target complexities
TC = {80, 70} because the method described in [11] is not
able to reach TC = 60%. The obtained results are shown

in Table IV in terms of ∆BR, ∆PSNR, and TS, averaged
across the four QP values.

As can be seen, the method presented in [11] is not as
accurate in terms of meeting the target complexity as the
proposed method when the target complexity becomes more
demanding. Nevertheless, in general, both methods achieve
a high accuracy level. In particular, for TC = 80% the
deviation from the target is below 2% in both cases; for
TC = 70% the deviation of the proposed method continues
below 2% while in the case of [11] it increases up to 3.6%.
Furthermore, for TC = 70% and some specific sequences such
as Johnny, BasketballPass, or BlowingBubbles, the proposed
method obtains significantly higher time savings (28.84, 27.82,
and 32.95 %, respectively) than those of [11] (21.55, 21.39,
and 21.11%).

Regarding losses in coding efficiency, the average ∆BR of
[11] is higher than that of the proposed method; specifically,
the results of [11] are about 3% worse than those of the
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TABLE IV
PERFORMANCE EVALUATION OF THE PROPOSED METHOD IN COMPARISON WITH [11].

Proposed method [11]

TC TC = 80% TC = 70% TC = 80% TC = 70%

Sequence ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%)

BasketballDrill
0.79 0.02 17.06 1.23 0.05 28.44 4.45 0.18 19.52 6.99 0.27 25.60(832×480)

BasketballDrillText
0.75 0.03 17.28 1.11 0.05 27.75 4.17 0.19 18.34 6.54 0.28 25.51(832×480)

BasketballDrive
0.32 0.01 17.10 0.83 0.02 26.51 2.30 0.04 20.19 5.00 0.08 29.98(1920×1080)

BasketballPass
1.11 0.06 20.44 2.10 0.11 27.82 6.27 0.32 17.30 7.67 0.37 21.39(416×240)

BlowingBubbles
2.26 0.08 20.43 5.74 0.24 32.95 2.69 0.10 16.88 3.80 0.14 21.11(416×240)

BQMall
0.71 0.03 20.78 2.42 0.11 31.44 4.62 0.19 19.29 7.78 0.32 23.26(832×480)

BQSquare
1.40 0.05 17.75 3.74 0.15 26.50 3.09 0.12 13.67 5.79 0.19 21.73(416×240)

BQTerrace
0.59 0.02 20.60 1.77 0.06 33.65 1.36 0.03 18.48 2.84 0.05 25.58(1920×1080)

Cactus
0.14 0.01 14.91 0.74 0.03 25.22 1.85 0.04 21.57 3.20 0.06 25.95(1920×1080)

ChinaSpeed
0.89 0.07 21.15 4.03 0.29 30.58 5.76 0.34 19.66 9.11 0.50 27.77(1024×768)

FourPeople
0.16 0.01 20.93 0.35 0.01 31.57 1.73 0.05 22.53 3.32 0.08 31.15(1280×720)

Johnny
0.08 0.00 19.35 −0.06 0.00 28.84 1.82 0.02 19.98 4.01 0.05 21.55(1280×720)

Kimono
0.29 0.01 19.69 0.72 0.03 30.25 0.29 0.01 22.75 0.56 0.01 29.96(1920×1080)

KristenAndSara −0.18 0.00 18.39 0.07 0.00 28.08 1.55 0.04 21.49 2.09 0.04 34.63(1280×720)
ParkScene

0.57 0.03 19.51 1.57 0.07 31.14 2.27 0.08 21.60 3.38 0.11 27.24(1920×1080)
PartyScene

3.62 0.17 21.18 11.40 0.55 37.91 4.18 0.18 18.78 6.27 0.27 24.41(832×480)
RaceHorses

0.92 0.05 13.77 3.82 0.21 24.17 5.30 0.29 15.72 7.41 0.39 20.22(416×240)
SlideEditing

0.23 0.02 17.66 0.93 0.13 28.96 5.14 0.83 16.99 8.76 1.25 25.64(1280×720)
SlideShow

0.50 0.04 16.58 1.61 0.14 25.16 5.72 0.42 25.42 6.68 0.47 28.53(1280×720)
Vidyo1

0.24 0.01 18.61 0.14 0.00 28.80 1.74 0.04 20.58 2.33 0.04 31.80(1280×720)
Vidyo3 −0.17 0.00 15.93 −0.08 0.00 26.74 0.96 0.03 18.55 2.04 0.05 30.92(1280×720)
Vidyo4

0.01 0.00 18.07 0.29 0.01 29.32 1.09 0.03 17.80 6.10 0.10 25.39(1280×720)

Average 0.69 0.03 18.50 2.02 0.10 29.17 3.10 0.16 19.41 5.07 0.23 26.33

proposed method.

As can be inferred from results in Table IV, the method
presented in [11] has more difficulties when trying to reach
lower target complexities. In fact, the comparison does not
involve TC = 60% because it is difficult to achieve higher
TSs using [11]. This is due to the fact that this method
is not able to reach the high number of constrained frames
required to achieve low target complexities. Moreover, if the
sequence presents high motion content, the optimal CU depths
stored to be used in the constrained frames are probably high
depths and, consequently, the potential complexity savings are
limited. In contrast, the proposed method does not suffer from
this problem since it always can use higher thresholds to reach
any required target complexity.

In Fig. 8 we present ∆BR as a function of TS for
the two compared algorithms with respect to the reference
software. Specifically, we show the results obtained for two
representative sequences BasketballDrive (on the left part of
the figure) and Vidyo4 (right part). As can be seen, the method
in [11] is not able to achieve TSs above 30%, while the
proposed method can manage TSs near to 40%. In terms
of ∆BR, our proposal is able to achieve the same target

complexities in exchange for notable smaller losses in coding
efficiency, as can be seen in Fig. 8 for both sequences.

D. Comparison with a complexity reduction state-of-the-art
method

In this subsection we compare our proposal with a state-
of-the-art method of complexity reduction [20], which aims
to reduce the complexity of the HEVC encoder, but it is not
capable of meeting a given complexity target. The configura-
tion file and QPs used to conduct this comparison are those
of the previous experiments. The obtained ∆BR, ∆PSNR,
and TS values, averaged across the four QP values, are shown
in Table V. To fairly compare both methods, we provide in
Table V those results of the proposed method which are more
similar to those of [20] in TS terms.

Some interesting conclusions can be extracted from this
experiment. First, the method presented in [20] is not a CC
method and, consequently, provides very different results in
terms of TS depending on the content (e.g., in “KristenAnd-
Sara” the TS is 54%, while in “BlowingBubbles” is 8%).
Therefore, it does not provide a solution capable of running
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(a) BasketballDrive. (b) Vidyo4.

Fig. 8. Performance evaluation of the proposed algorithm in comparison with [11]. Bit rate increment as a function of the computational time saving.

TABLE V
PERFORMANCE EVALUATION OF THE PROPOSED METHOD IN COMPARISON

WITH [20].

Proposed method [20]

Sequence ∆BR(%) ∆PSNR(dB) TS(%) ∆BR(%) ∆PSNR(dB) TS(%)

BasketballDrill
0.79 0.02 17.06 0.97 0.02 17.96(832×480)

BasketballDrillText
0.75 0.03 17.28 1.21 0.02 18.11(832×480)

BasketballDrive
0.83 0.02 26.51 0.97 0.01 26.79(1920×1080)

BasketballPass
0.42 0.02 13.68 0.48 0.01 10.06(416×240)

BlowingBubbles
0.90 0.02 12.62 0.03 0.00 8.49(416×240)

BQMall
0.71 0.03 20.78 0.56 0.01 17.12(832×480)

BQSquare
0.54 0.01 11.56 0.12 0.00 8.78(416×240)

BQTerrace
1.77 0.06 33.65 0.95 0.01 28.76(1920×1080)

Cactus
0.74 0.03 25.22 0.93 0.01 29.29(1920×1080)

ChinaSpeed
0.89 0.07 21.15 0.18 0.01 19.68(1024×768)

FourPeople
0.66 0.02 44.46 7.86 0.11 46.58(1280×720)

Johnny −0.10 0.00 39.44 4.20 0.05 46.96(1280×720)
Kimono

0.29 0.01 19.69 0.42 0.01 24.47(1920×1080)
KristenAndSara

0.12 0.00 39.08 14.28 0.25 54.15(1280×720)
ParkScene

0.57 0.03 19.51 1.31 0.02 24.89(1920×1080)
PartyScene

1.13 0.05 9.97 0.13 0.00 12.66(832×480)
RaceHorses

0.12 0.01 5.60 0.07 0.00 7.78(416×240)
SlideEditing

0.48 0.07 42.49 53.95 2.66 64.81(1280×720)
SlideShow

6.97 0.54 35.56 42.66 2.21 51.30(1280×720)
Vidyo1

0.26 0.01 39.48 9.97 0.17 49.21(1280×720)
Vidyo3

0.46 0.01 41.46 3.05 0.04 42.94(1280×720)
Vidyo4

0.87 0.04 44.83 6.55 0.07 42.78(1280×720)

Average 0.91 0.05 26.41 6.85 0.25 29.70

on a fixed-resource platform, while our approach is perfectly
capable as already proved in Table III.
Second, the results obtained in “SlideEditing” and

“SlideShow” deserve a comment. In these two sequences the
content is quite uniform until a sudden change happens. This
is hard to manage for the algorithm of [20] that suffers when
a scene change occurs because only few depths are actually
allowed for such frames, incurring in huge ∆BRs (which

approximately doubles the original rate). It should be noticed
that our method does not suffer from this problem due to the
adaptive statistics that define our early detection thresholds.

Third, in general terms, the results of our proposal are better
when compared at the same complexity saving level with those
of [20] (e.g., “BasketballDrillText” and “Vidyo3”). In some
sequences, the results of our method are slightly worse than
those of [20] (e.g., “RaceHorses”). However, in average, our
proposal outperforms [20], since a similar complexity saving
is obtained at the expense of a clearly lower ∆BR (0.91% vs.
6.85%).

E. Convergence properties
Finally, we have studied the convergence properties of our

algorithm since, from our point of view, the capability of
reaching the required target complexity with certain accuracy
level and in the shortest time possible becomes a relevant
performance indicator. For this reason, we designed a method
that is able to adapt to the content on-the-fly. In particular,
in this section we prove that our method is able to adapt its
behavior on-the-fly over the coding process to any kind of
content, coding configuration, or complexity target.

The convergence properties of our algorithm are shown
in Tables VI and VII. The average time actually spent on
encoding the frames is denoted as t̂ime

fr
, and the average

target time is called t̂imetarget. All the results are measured
in seconds. The results in Table VI are obtained with a QP
value of 32, and in Table VII the QP used is 27.

Table VI shows the results for three different sequences
(Four People, BQMall, and Blowing Bubbles), exhibiting very
different contents, each one encoded with four target complex-
ities, TC(%) = {90, 80, 70, 60} (the TC values are specified
on the left side of the table). As it can be seen, the proposed
algorithm achieves an encoding time very similar to the target.
Specifically, the highest deviation from the target is only 0.63
seconds, so we can conclude that we obtain a very good
accuracy with our proposal.

In Table VII we show some results that illustrates the
behavior of the proposed method when the target complexity
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TABLE VI
CONVERGENCE PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM.

FourPeople BQMall BlowingBubbles
(1280×720) (832×480) (416×240)

90

t̂imetarget 30.50 22.41 6.48

t̂ime
fr

30.20 22.09 5.85

80

t̂imetarget 28.35 20.28 5.13

t̂ime
fr

28.04 20.11 4.90

70

t̂imetarget 24.49 16.51 3.85

t̂ime
fr

24.32 16.44 3.78

60

t̂imetarget 19.95 12.88 3.46

t̂ime
fr

19.86 12.98 3.48

TABLE VII
CONVERGENCE PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM.

FourPeople BQMall BlowingBubbles
(1280×720) (832×480) (416×240)

Fr 1 - 49 Fr 50 - 100 Fr 1 - 49 Fr 50 - 100 Fr 1 - 49 Fr 50 - 100

60
-
80 t̂imetarget 21.72 32.37 14.89 24.59 4.24 5.13

t̂ime
fr

21.70 31.97 15.41 23.96 4.81 5.57

90
-
70 t̂imetarget 32.09 28.13 23.60 23.28 7.22 6.22

t̂ime
fr

31.50 28.51 23.64 23.25 7.24 6.04

varies over the coding process. The t̂ime
fr

and t̂imetarget
average values are obtained for the same three sequences
in two cases: first, with TC = 60% from frames 0 to 49
and TC = 80% from frames 50 to 100 and, second, with
TC = 90% over the first fifty frames and TC = 70% over
the remaining frames (each set of frames is specified in the
table as “Fr 1 - 49” and “Fr 50 - 100”). As can be observed
in these examples, when a change of the target complexity
happens, the proposed algorithm is able to adapt its behavior
and reach the new target complexity. It must be noted that,
analyzing the behavior in the frames where the change in TC
happens, our method is able to quickly adapt and reach the
new target complexity in a few frames.

V. CONCLUSIONS AND FURTHER WORK

In this work, we have proposed a complexity control method
for the HEVC standard. The proposed method is based on a
set of early termination conditions at CU depth level. The
early termination conditions rely on a set of thresholds which
are adjusted dynamically. The thresholds apply to R-D costs
whose statistical properties are estimated on-the-fly, allowing
the proposed method to adapt to different contents, encoder
configurations and target complexity requirements which can
vary over the coding process.
Our proposal has been extensively tested and the exper-

imental results prove that the method works effectively for
a great variety of sequences and complexity requirements,
outperforming the results achieved by a complexity control
state-of-the-art method in terms of both accuracy to reach
the target complexity and coding efficiency, and showing the
advantages of the complexity control approach with respect to
the more common complexity reduction methods. Moreover,

we have shown that the proposed algorithm is able to adapt its
behavior when the complexity requirements change over time.

An interesting future work would be to extend our design to
act also at the PU and TU decision levels, what undoubtedly
would provide additional computational savings. Moreover, we
also suggest to explore the use of more complex classifiers to
obtain higher accuracy in the fast decision process.
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