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Abstract—With the rapid growth in multimedia services and most OSNs recommend video content to their users based
the enormous offers of video contents in online social netwks, on the user’s rich context information (e.g., social status
users have difficulty in obtaining their interests. Therefae, var- ages, professions, health conditions and hobbies) cattain

ious personalized recommendation systems have been propds . . . . . .
However, they ignore that the accelerated proliferation ofsocial '™ their released multimedia data. Regarding this way, rsve

media data has led to the big data era, which has greatly impeeti recommendation systems have been propdsed [32], [24].
the process of video recommendation. In addition, none of #&m However, there exist two major challenges in this scenario.

has considered both the privacy of users’ contexts (e,g., gal The first challenge comes from the big data’s role in the
status, ages and hobbies) and video service vendors’ repisies, — yargonalized recommendation. In detail, OSNs have accel-

which are extremely sensitive and of significant commercial . L . )
value. To handle the problems, we propose a cloud-assisted_erated the popularity of applications and services, rggglt

differentially private video recommendation system basedon 1IN the explosive increase of social multimedia data. In this
distributed online learning. In our framework, service vendors case, multimedia big data puts companies in a favorite po-

are modeled as distributed cooperative learners, recommeting  sition to have access to much more contextual information
video§ according.to user’s context, while simultan.eouslycmpting [2]. However, how to harness and actually use big data to
the video-selection strategy based on user-click feedbacto . . L
maximize total user clicks (reward). Considering the spariy effec_tl_vely personalize recommendat'on is & monumensd ta
and heterogeneity of b|g social media datal we also propose aTrad|t|Ona| Stand'alone mu|t|med|a SyStemS cannot halh’ﬂﬂe
novel geometric differentially private model, which can greatly storage and processing of this large-scale datégsets [gld&e
reduce the performance (recommendation accuracy) loss. @u that, complex and various user-generated multimedia big da
simulation shows the proposed algorithms outperform other j, the OSNs results in the sparsity and heterogeneity ofuser
existing methods and keep a delicate balance between commg L. . .
accuracy and privacy presenving level. context data. I_—|enc<_a, it is extre_mely_ che_lllengmg to impleme
recommendation with the multimedia big data.

Furthermore, the privacy in recommendation has raised
widely concern. On the one hand, as declaredlin [5], usen's se
sitive context information may be exposed by the recommen-
dation results. Intuitively, the more detailed the infotima
related to the user is, the more accurate the recommendation

N recent years, online social networks (OSNs) have begst the user are. But once the recommendation records are

massively growing, where users can share and consumeagitessed by a malicious third party, individual features ca
kinds of multimedia contents. As a result, given the numsrode inferred by them merely based on the outcome of the
different genres of videos in social media, how to discolier t recommendation. For example, advertising video of luxury
videos of personal interest and recommend them to indiVidufoods recommended to a particular person indicate the iacom
users are of great significance. Recommendation is foreségyel of this user. Also basketball video recommendatian fo
to be one of the most important services that can provigge same user exposed it's hobby. Then with additional side
such personalized multimedia contents to usgrs [1]. Skeveifgormation, the malicious party may identify the person in
companies have demonstrated initial successes in mul@megal life. On the other hand, the inventory of videos is an
recommendation system designl [3] reported that YouTubgportant commercial secret for the service vendor. Aslier t
won its first Emmy for video recommendations. Actuallyservice vendors’ incentives, they rely on stored video seur

_ _ _files to gain popularity among users. Intuitively, videovies
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collaborative filtering (CF)[[10] and content-based (CBg}-re
ommendation[[9] can provide meaningful multimedia reconr
mendations at an individual level. However, their starmhal
systems have difficulties in dealing with tremendous higt
dimensional multimedia big data. As for the privacy concer
in recommendation, previously, anonymity was the main tot
in recommendatiori [11]. But the fact that the information ca
only be partially removed will allow for re-identification.

Differential privacy [12] proposed recently is a heuristic
method to solve this problem. Informally, differential yacy
means that the output is going to be almost exactly tt
same whether it includes a single user’s data in the inp
datasets. Therefore, hardly can one make an accurate inf
ence on signal user’s feature based on the recommendation ] ] ] ] ]
results. Besides, adding laplace noise into the recomntienda F19- 1: A gene_ral illustration of multimedia cloud basededd
rewards can hide small changes that arise from a singfFommendation system.
video’s contribution. Thus, the revenue gain of one signal
video cannot be deduced. Several studies have incorpdtated .
into recommendation systenis [13], [14], but their worksyonxPected total recommendation reward and do not want to
focus on small-scale media datasets, yet executing diffiaie reveal their repositories to _other service vendors. Hovyene
privacy in a large datasets often impacts little on accuraéi?e cooperation, each service vendor will share some irdorm
which works extremely efficiently under the big data conteton such as the user's context vectors and the videos’ teven
In conclusion, it is necessary to design a privacy-presgrvigains with nelg_hb(_)rserwce vendors. Then, service venchors
video recommendation that can handle the multimedia big daftfer the repositories of other service vendors from theetha
and achieve high-accurate recommendations. information. To solve this privacy leakage, we adbpplace

In this paper, we introduce differential privacy into dismMechanisnil2], adding noise to shared revenue gains. As for
tributed online learning to design an efficient and highumate the users’ privacy, to prevent the exposure of their fealyre
timely recommendation system based on multimedia clo{f3® récommendation videos, adding noise to the revenus gain
computing [15]. As illustrated in Fig. 1, user-generated-muS Not noneffecuye. B_ecause the gain is prqduced after the
timedia big data (e.g, images, audio clips and videos) is firecommended video is revealed and disturbing the accurate
translated to remote media cloud and stored in decentdali&Stimation of gains of their own videos with this noise is not
data centers (DCs). Then use technologies such like Bag-Bgcessary. Thus, we empl@kponential mechanisifif] to
Features Tagging (BoFT)][6] to extract user’s context vectgdrotect the users’ privacy, where the service vendors nahydo
and convert the results to distributed video service vemddielect the video according a computed exponential prababil
(servers). Finally recommended video contents are pushedigS- Faced with the fact that user's contexisd{mensional
multimedia applications in OSNs. point in the context space) are sparse d!strlt_)uted over the

Our main theme in this media cloud based scenario is tfzNtext space, we propose a nogdometric differentially
video service vendors are modeled as decentralized onlRfé/ate method to promote the total reward. This paper makes
learners, who try to learn from user’s high-dimensionattegn the following contributions:
data and match it to the optimal video. The service vendorse We propose a media cloud based video recommendation
are connected together via a fixed network over the media system and rigorously formulate it as a distributed online
cloud, each of whom experience inflows of users’ context learning problem. In our model, decentralized service
vectors to them. If service vendors cannot find suitableasde vendors work cooperatively to deal with large-scale con-
in their repositories for the coming user, they can forward textual data.
the use’s context data to neighbor service vendors, who wille To handle the dimensionality and sparsity of the mul-

Media Cloud

Context
extractors

Vi service vendors

Recommended
videos

user:

find out the suitable video in his repository to recommend
to this user. At the end of each time slot, the reward of

the recommended video is observed. Service vendors can

learn from the result and adjust their selection strategit ne
time. Since the extracted context vectors from multimedta b
data are high-dimensional and omnifarious, the contextespa
with d dimensions { is the number of user features) can be

extremely huge and heterogeneous. Then, learning the most

matchable video for each individual can be extremely slow.
Therefore, each service vendor initially groups userstifar
the context space) with similar context into rough crowasl a
then they dynamically refine the partition strategies oiraet

To goal of each service vendor is to maximize its long term

timedia big data, our method adaptively partitions the
context space for each service vendor. Our evaluation
results show this method has lower performance loss and
converges fast to optimal strategy.

To the best of our knowledge, we are the first to deal
with the privacy issue of both the social media users and
video service vendors in recommendation. We integrate
exponential mechanism and Laplace mechanism simulta-
neously into distributed learning systems. We guarantee
e-differential privacy while not coming at substantial
expense in total reward.

We propose a “geometric differentially private model” to
deal with the sparse contextual data, which can reduce
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the performance loss extensively. TABLE I: Comparison with prior work in recommender sys-
Th_e remainder_of the paper is organized as foll(_)ws. fMS Contentbased | o . Centralize
Section Il, we briefly review the related work. Section Il (CB),Collaborative crypg’ograph); Private (©),
presents the necessary background concepts of this work| In filtering(CF).graphy -~ jitorential | target | 9€S€M-

. . . based(GB),context- ri\’/ac (DP) tralized
Section 1V, we detail the system model, dgflne our perfor- aware(CA) privacy D)
mance metric, the adversary model and design goals. Sectiqiiz]-[19 CB \ None C
V describes the design of algorithms and provides theateti¢ 2‘2) gé (C;E s mone g

; ; u one
anaIyS|s_of Fhe per.formar?ces. In section \{I, we prgsent S CA v None =
geometric differentially private model. Section VIl diszes 37 CA \ None D
our experimental results and analysis. Section VIII codefl 11 Hybrid CF A User c
this paper. 27 CF Cr User C

pap 13 GB DP User D

14 CF DP User C

Il. RELATED WORK (&l GB bP lljgeer' c
. . . Our -

Several recommendation algorithms have been exploited ok CA bpP Serv!ge D
provide

in the past. Content-based filtering (CB) recommendation
systems|[[17]+[19] focus on the similarities of contentestl

tags and descriptions and they find user-interested itesedba . . . . . .
on user’s individual reading history. CB recommender syste Jorgenseri [13] combine differential privacy with sociakg

are easy to deploy. Nonetheless, simply representing thesusr:or recommendation. But their work only study the privacy
profile information by a bag of, words is not sufficient toOf sensitive user-item preferences and connections batwee

capture the exact interests of the user. Collaborativeifilje people, rather than individual features. Our work aims at th

(CF) recommendation systenis [20].[21] rely on abundant ydyivacy of individual fea.tures contallned in their contextal
transaction histories and content popularity. CF systeeas PNd the secrecy of service vendors’ data.

quire enough history consumption record and feedback,whic

is not suitable to real-time recommendation. Graph-baG&] ( [1l. BACKGROUNDS

recommend_atlon systermis [22], [23] bU|_Id a gr_aph to caleulag pifferential Privacy

the correlation between recommendation objects. Then, rec ) . . ) o i
ommendation problem turns into a node selection problem on al '€ concept oflifferential privacyis originally introduced
graph. Besides that, users cotagging behaviors and ffigusls by Dwork [12], which gives us a riorous definition of privacy.
in social network are described by a graph. Combining graphDefinition 1 (Differential Privacy [12]). A randomized
theory with recommendation is a marvellous idea. Howewer, algorithm M hase differential privacy if for any two input
OSNs, this graph can be continuously changeable. Constriggtts A and B with a single input difference, and for any set
ing and storing such graph are impractical. Context-awa®é outcomesk € Range(M),

recommendation systems make recommendation based on the

contextual information both of items and usefs.| [24] hasedon P[M(A) € R] < exp(e) x P[M(B) € B].

a pioneering in this area, but its centralized frameworlsfai  |nformally, differential privacy means that the outcome of
to satisfy the need of big data environment. Our distributgg,, nearly identical input datasets (different for a single
cooperative recommendation framework can arrange recofdmponent) should also be nearly identical. Thus, attaiker
mendation timely under big data environment and providggyt aple to get the information of the individual's inforrivat
rigorous performance guarantees. by comparing the query result of A and B. In our model, the
As for the privacy in recommendation systems, anonymifi{yyt datasets are users’ context vectors. The privaisythe
was the main tooll[11]. However, especially for rich, highparameter to measure the privacy level of the algorithm. The
dimensional big data, most anonymization techniques app@foice ofc is a trade-off between the privacy and the accuracy
to cripple the utility of the data [25][ [26]. In addition,dhgh  of the output.
anonymized, users may be re-identification in the presefice ogpe effective tool is the Laplace Mechanism[12], i.e.,
colluding adversaries or those with auxiliary informat{28]. M(z) = f(z)+Lap(2L). In this way, f() is a counting query

€

On the other hand, prior works lay emphasis on cryptograpBy the data sek’, and Lap() is the Laplace distribution with

7] o make the privacy-sensitive data ina(_:cessiblt_e 0 aQndard deviatioﬁ@ to scale the counting query result.
_out3|der_s and the server by means of encryption. But it i;sua_ Definition 2 (Sensitivity of Laplace mechanig@d]). The
incurs high computation and communication overheads. Dgénsitivity of a functiory is:

ferential privacy[[12] proposed in recent years has beeorinc
porated into recommendation by several studies. McShedy a Af =max| f(z) — f(W);, 1)
Mironov [14] show how to adapt the leading algorithms used oY

in the Netflix Prize competition to make privacy-preservingherex andy are input datasets differ on at most one compo-
recommendations. This is typically accomplished by addimgent. The sensitivity of a functiofi captures the magnitude,
noise to the item covariance matrix, to hide small changass thby which a single component can change the funcfion the

arise from a single users contribution. Ashvahal. [8] and worst case. Indeed, the sensitivity of a function gives gmeup
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bound on how much we must perturb its output to preserve
privacy.
Media Cloud

ContextPartition of i ContextPartition of M

y

Corollary 1 (Composabilityf16]). The sequential applica-
tion of randomized computatiaif;, each givings; differential
privacy, yields) ", ¢; differential privacy.

Referring to differential privacy, another powerful tod i
the exponential mechanisin [16]. The exponential mechanism
MEg.,.,r) Selects and outputs an element € R with
probability proportional t@xp(%). Here,z is the input
data set we want to proteat,is the output of the mechanism
andu(z, k) is the unity function. There is also a definition of xi(1)

the sensitivity:

vendor i
Recommend video

Recommend video|
Kt) from

K(t) from
kit

Definition 3 (Sensitivity of Exponential Mechanigj4]). x(t)
The sensitivity of exponential mechanism is defined asafsilo a
)

Au = max max w(zy,r) —ulzs, ). (2
TER 11,£2:HI1—$2H1§1| ( ! ) ( 2 )| ( ) & &
The sensitivity measures the change of utility functiopig, 2: A general explanation of our video recommendation
u(z,r), when one item in targeted data set changes. Afystem. Each service vendor keeps a context space partition
important theorem can also be derived (as [34] : of arriving contexts. This partition process is dynamic inyet

Theorem 1. Fixing a databasexz, let Ropr =
{r € R:u(z,r) = OPT,(x)} denote the set of elements inA. System Model
R which attain utility scoreOPT,,(x). Then, When used to
select an output € R, the exponential mechanisaf(z)
ensures that:

The system model is shown in Fig. 2. There are dis-

tributed service vendors distributed in media cloud, which
indexed by setM = {1,2,3..., M}. They work independently

Plu(z,e5(z)) < max u(x,r) — 2§u (In( |R‘<i:|T|) +1)] 3) and cooperatively in discrete time setting- 1,2, ..., T. Each

< exp(—1). vendor owns a set of videos. We denote the set of videos
M, = {ky ka,... kx} for service vendoi. At each time slot,
the following events happen sequentially for service vendo
1. 1) a user’s extracted context vectes(t) comes to service

Our proposed distributed learning method derives froffendori; 2) The service vendarchooses one video from his
contextual bandits$ [29]. This algorithm learns form thetean repositoryM; or sends the context vector to neighbor service
information available at each time, which, in this case, igandor;, who will select one video from\1, for the user with
the users’ context vectors. Then, it keeps an index thgfs context; 3) At the end of each time ‘slot, the user’s click
weights theestimated performance and uncertairdf each feedback fy. .., (t) (If user clicks, it equals one, otherwise
action (recommended video or neighbor service vendor Jaro, where: is the recommended video.) is observed; 4) The
this case) and choose the action with highest index at eag}vice vendoi learns from the feedback, then promotes the
time. Furthermore, the indices for the next time slot for allg|ection strategy for next user.

actions are updated based on the feedback received fronjye gescribe the details and some reasonable assumptions
the chosen action (users click feedback). There exist sopg e

works studying the contextual bandit [29]. [30], where test 1y £40h service vendor has access to only its own video
action given the context is learned online. C. Te&iral. first ooy Service vendors are selfish in the sense thay, th
proposed a d|§tr|buted context_ual bandit frame_work for bigy ot reveal their repositories to other service vendots. B
data classification [31] and social recommendation$s [38}. Bthey know the number of videos of other service vendors.

the uniform partition method proposed in their work does ngf, (s article, we assume every service vendor possekses
fit into the sparse big data. A context-aware partition methg,yaqs

for big data proposed in [33] is a heuristic work. Nonethgles
the single-learner framework can not satisfy the need of tla
massive big social data. We combine adaptive context sp
partition with distributed learning, which can efficientigndle
above difficulties.

B. Online Learning

2) The context informationz;(t) of the data is a high-
fmensional vector. Each coordinate of the vector reptssen
& feature of the user (e.g., gender, hobby, profession and
age). We use the hypercube = |0, 1]‘i to denote its range,
whered is the dimension of the space. Given the setting of
big data,d is extremely large and those context vectors are
IV. PROBLEM FORMULATION distributed non-uniformed in the hypercube space.

In this section, we first present the system model and3) At the end of each time slot, we use a random variable
assumptions. Then we give our performance metric. Finallg . (t) to represent the reward (user click feedback) produced
we outline the adversary model and design goals. by the recommended vidéa If user clicks the recommended
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videok, it equals one, otherwise zero. Lef ., be the expected a neighbor service vendor, who output a video and receive
reward of a video conditional on the context Different high reward. Then, the curious service vendors know that thi
videos have different expected reward for the same contexeighbor service vendor owns a video about sport.

We aim to find the video with the highest expected reward for To address the adversary models above, we proposed a
that context. Naturally, similar contexts have similar ested differentially private learning algorithm. Our scheme iasles
reward with the same video. We use the Lipschitz conditiqurivacy protection and performance guarantees as follows:

to describe this similarity: « Users’ Privacy GuaranteeEven if the malicious party
(4) can gain access to the recommendation outputs, it is
less likely for he to infer the user’s feature from the
The goal of the service vendor is to try its best to rec- recommended result. And we prove that our proposed
ommend video with highest expected reward. Consequently, algorithm can preserve-differential privacy for user’s
if the service vendor does not have matchable video to its privacy.
coming user’s context, he will forward the context to neighb o Service vendors’ Privacy GuaranteEhe curious service
service vendor. Our algorithm chooses another servicearend  vendor can not distinguish the video of neighbor service
by comparing the average rewards of each service vendor with vendors by shared information. The proposed algorithm
those of its own videos. To be reasonable, in this distribute  can preserve-differential privacy for service vendors.
contextual bandit framework, we cadll; = M;N\M_; theset . Performance GuaranteeOur proposed algorithm can
of arms (videos and other service vendors) of service vendor guarantee the regret in equation (6) is sublinear con-

Uk 2y — Ukao| < L1 — 22| .

i, whereM_; = M — {i}. verged, i.e.,R(T) = O(T") such thaty < 1 . A smaller
~ will result in faster convergent rate. In the following
B. Performance Metric section we will propose a private distributed learning

algorithm with sublinear regret.

Privacy-Reward Trad-off Our analysis shows that the
higher level the privacy is preserved, the lower the
total reward is received. By varying the value of the
privacy parametet, we can keep a trad-off between the
total recommendation reward and the privacy preservation

Definition 4 (Optimal Arm). Our benchmark when evaluat-
ing the performance of the learning algorithm is the optimal *
solution, which selects the arm with the highest expected
reward from the sek’; = M; M _; given context;; at time
t. Specifically, the optimal arm we compare against is given

by:
E* (x¢) = argmax uy 4,, Vo € X. (5) level.
ke,
Knowing the optimal solution means that learrigservice V. DIFFERENTIAL PRIVATE DISTRIBUTED ONLINE
vendor: in this case) knows the arm iit; that yields the LEARNING ALGORITHM FOR CLOUD BASED VIDEO
highest expected accuracy for eache X. RECOMMENDAION

Definition 5 (The Regret of Learning). We define the regret gjnce the reward of each recommended video for different
as a performance measure of the learning algorithm used Q¥ers have unknown stochastic distributions, the natusgl w

the learners. Simply, the regret of a learning algorithm f0fy |earn a video's performance is to record and update its
learneri is the reward gap between optimal arms and selected 1yl mean reward for the same context vector. Using such

arms. an empirical value to evaluate the expected reward is thie bas
T T approach to help the service vendors to learn. However, the
R(T) = Zt:l e () e — B {Zt—l f’“(t)’“(ﬂ’ ©)  context spaceX’ can be very large, recording and updating the

mple mean reward for each context are scarcely possible.

where k(t) denotes the video or neighbor service vendira .
(*) g he memory capacity of the sever can not meet the need of

chosen at time, k*(x;) denotes the best choise for context .
R . keeping a sample mean reward for all contexts. To overcome
egret gives the convergence rate of the total expecteddew& . . - .
. . . . the difficulty, we dynamically partition the entire contextace
of the learning algorithm to the value of the optimal solatio . . .
into multiple smaller context subspaces (according to the
) number of arriving users). Then, we maintain and update the
C. Adversary Model and Design Goals sample mean reward estimates for each subspace. This is due
As similar privacy concern for the users’ sensitive contetd the fact that the expected rewards of a video are likely to
data in [5], we consider a adversary model as followsiM&) be similar for similar contexts.
licious third partywho can gain access to the recommendationIn our distributed framework, each service vendasr M
outputs and own some side information such as location abaynhamically partitions the context spadewhen contextr; ()
some users. The goal of this malicious third part is to deduaeives to them. To better understand the proposed P-DAP
a particular user’s features by observing the recommemlatalgorithm, we apart it into two algorithms, i.e., Algorithm
outputs. Then, they can identify the media user in the rehland Algorithm 2. Service vendar runs Algorithm 1 to
world with deduced features and additional side infornmatioselect video or request neighbor service vendor’s help for
(2) Selfish and curious service vendomho want to infer its own user. Because service vendoidoes not outward
neighbors’ repositories from shared information. For eglen recommendation revenue gain to other service vendors, we

the curious service vendor forward a sports fan’s context tmly need to protect user’s privacy and we adopt exponential
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mechanism in Algorithm 1 (named as ExP-DAP) to achievdlgorithm 1 ExP-DAP for service vendoi's own user
this protection. When service vendaeceives users’ extracted 1: Input: k € K;; m, p, A, K, €, Au, G1(t), G2(t), Gs(t).
context vectors forwarded from other service vendors,risru 2: Initialize: P* = {X}, 7. ~(0) = 0, Vk € K;, M{ (0) =0,
Algorithm 2 (named as LaP-DAP) to select videos and protect N,QC(O) =0,1=0 '
the privacy of selected videos. Two algorithms are carried o 3: for t =1,...,T, z;(t) € C do
simultaneously, although we describe them separately. 4. if 3k € M;, such thatN,;C(t) < Gy(t) then

Next we present our online learning algorithm. In sections: Selectk and observg‘,iyc(t).
VI, we will refine the proposed algorithm eometric differ- 6. else if3k € M_;, such thatVy} , . (t) < KG3(t) then

ential privacyto reduce the performance loss.

A. Algorithm Description

7 Forwardz;(t) to service vendok.
8: else if3k € M_;, such thatN,;C(t) < Go(t) then
o Forward x;(t) to service vendork and receive

frc(t).
In this subsection, we describe our differentiallyivRte 10: else’
Distributed learning with Aaptive context spaceaRition al- 1;. for all k € M, do
gorlthm (P-DAP for short) for video recomme_zn_datlon. We flrsﬁz: Plselect k] = exp ﬁéfu(t))/ S exp (a;chft))‘
introduce several useful concepts for describing the pmego kEM;
a|gorithm' 13: end for . -
« Context subspaceA context subspac€' is a subspace of 14 i'elte'(l:)tl? € M; according to computed probability
the entire context spack, i.e.,C C X. In this paper, all _ SISI r tl]Jf fon.M ‘ h thatk — —
context subspaces are created by uniformly partitioninty” electh; € M-, such thaly; = s X Tk (t):
the context space on each dimension. Thus, each context i B (_i i )
subspace is d-dimensional hypercube with side Iength?s' enge;l ksuch that, o (1) = maz (T, o (t) T, o (t) )

beingm~!, wherem is number of segmentations of each”f
dimension to be partitioned andis the partition level. 8
To be specific, when we assign = 2, d = 1 and entire =
space is[0, 1], then the entire context spade 1] is a 2 qutmon C.

level-0 subspace]0,1/2) and [1/2,1] are two level-1 2% end if

subspaces etc. 22: end for

Active context subspaceWe define a set name#*

in which all existing subspaces is collected, aft

is changing over time. For example, wheh = 1, Upon each context data arrival, service vendfirst checks
{10,1]},{[0,1/2), (1/2,1]} are two sets of active contextt0 Which subspace” in the setP? the context belongs and
subspaces. A context subspages active if it is in the the level ofC. To get accurate performance estimation of each
current context subspace set, i.e. C € P, arm k € M;, service vendoi needs to judge whethédr has
Notations. For service vendof and each active contextPeen fully explored (line 4, 5). Since service vendaioes
subspaceC € P!, the algorithm maintains a counternot know the performance service vendds videos, it needs
N} ~(t) recording the number of times whenis se- (0 _se_nd neighbor servﬁce .vendbrsome context sar_nples to
lected for contexts belong to subspace Ti o(t) es- train it and make sure it will mostly select optimal video.eTh

timates the sample mean reward of vidgofor the Nic(t) denotes the times wheh € M_; is selected for

context subspac€’ up to timet. We haver, (t) = training. In the training process, service venddose not need

D (ec fi ( )/N,i «(t). The algorithm also maintains ato communicate with service vendérto observe the reward
z(t) € ,x(t ) '

: i i i _
counterM¢.(t) that records the number of context arrival k-,z(t)(t,) (line 6, 7.)' If each service vendére M_; has been
to C up to timet. ully trained, service vendarstart to explore the performance

of leanerk € M_; and observe the reward of eakHline 8,

Update M, (t), Nj, o (t), 7, o (t).
19: if ME > AmP! then

To begin with, we present our Algorithm 1 in the foIIowingg)_ The control function; (¢), G(t) and Gs(t) ensure that

3 phasesPhase 1: Exploration and Reward Estimation

X2 a

video is selected sufficiently many number of times so that th

Partition at t2 sample mean estimat@%)c(t) are accurate enough. And we

set different control function fok € M_; andk € M,, i.e.,

G- (t) is larger thani, (t). Because fok € M_;, the reward

T, c(t) is added with noise, we need more times to evaluate

performance of € M _;.

/ t Phase 2: Decision with Privacy Protection

7 €/ For subspac&’, when all arms have been fully explored,

s J/ there are accurate sample mean estimations for each arm. In

g . ,/ O'gesv‘;t:ﬁ;eaggggﬁed traditional bandit algorithms, the learners (service w@nid
Current context ** this case) usually select the arm with the highest samplemea

reward. However, the optimal arm will expose the individual

o0
o\
b

v\\ "y
é‘?P‘m Partition at t1

Initial Partition

subspace
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first rand0m|y choose one ary, € M, according to the Algorlthm 2 LaP-DAP for other service vendors’ users
computed probability distribution, wherku is the sensitivity  1: Input: k € M;; m, p, A, T, €, G5(t).

of exponential mechanism (line 11-14). Then, it selecthaot 2: Initialize P* = {X}, | = 0, M} (0) = 0, Yk € M,,
arm k; € M_; with the highest estimated reward. Finally 7} ~(0) = 0, N{ (0) =0, F]i,mi(t) 0)=0

service vendoi compare the estimated reward iof andk;,  3: Create empty binary treEree;, with T-leaves vk € M;.
then it select the one with higher estimated reward for odnte 4: for t = 1,....,T, z;(t) € C do

z;(t) (line 15, 16). We will prove this randomly selection 5 if 3k € M;, such thatV; » < Gs(t) then

scenario guaranteedifferential privacy in next our analysis 6: Selectk and insert observed; ().
section. 7. else _ .
. 8: Selectk™ = arg max 7y, - (t) and observefy. .. ().

Phase 3: Update and Partition the Context Subspace _ keM; !

At the end of each time slot, the algorithm first up- 9 |”5_eftF;$*,wj(t)(t)Zf;i*,wj(t)(t)JrLap(%) to Treey-
dates M¢, (t), 7} o(t) and Nj (t), where M (1) = 1O endif _ _
Mi(t) + 1, Nio(t) = Nio(t) +1 and 7 o(t) = 1 UpdateMe (@), 7 o(t), Njc(t).
> eiec fh o/ Ni.co(t). Then the algorithm decides whether!? if M¢ > Am?! then
to further partition the current subspacg depending on 13 PartitionC'.

whether we have sufficient context vectors arrivalsGn 14 end if

Specifically, if M (t) > Am?! at timet, C will be further 15: end for

partitioned, wherep and m are positive numbers. When

partitioning is needed{' is uniformly partitioned intom?

smaller hypercubes. Each hypercube is a |€éi/€?ﬂ) subspace we selec;t the vide&* with highest accuracy and observed the

with side-lengthl/m of that of C. ThenC is removed from rewardf;. . . (t). Because after the training process, service

the current context sé?*. New subspaces are added idtb. vendorj can gain access to this observed reward of service

Fig. 3 provides us an illustration of this partition procedsen vendori and make evaluation based on it. To preserve the

m=2d=2. privacy of service vendarregarding this information, we add
Then, we describe Algorithm 2 as follows. In our problerhaplace noise with deviation = K'log(T')/e to fy. .. ()

setting, in order to protect the privacy of neighbor serviddine 7-9). Finally we update some counters and judge whethe

vendors, we face a big challenge that traditional diffeéeént to partition theC' as described ifPhase 3(line 11-14).

privacy only apply to static database. By contrast, thesidsa

we want to protect are dynamically releasing over time.

In detail, suppose at every time stepe [T], one entry

from datasetD, f; . € {0,1} arrives and the task is to

outputv, = Zizl fr,(=) While ensuring the complete output L LT

sequencéuvy, ..., vr) is e-differential private. To overcome this O . Q o O O ce ‘ . Q

challenge, we use @ee based aggregatiomethod initially i fi fr S u Ir

proposed by Dwork[36], Cham [35]. Fig. 4: An illustration of tree-based aggregati@ree(D) and

Tree based aggregationAssume for simplicity thal” = 7,.¢c(D’) are two databases that differ in one component.
2¢ for some positive integet.. We create a binary tree, i.e.,

Treey, for each videok € M; with its leaf nodes being

f1, ..., fr. As illustrated in Fig. 4, at each time slot, when news Algorithm Analysis

reward is produced, we insert the value of the reward into the ] ] ]
leaf node. Over the entire time sequerid, the rewards are "€ Pproperties of the proposed algorithm are analyzed in
inserted sequentially. Each internal nadin Treey, stores the this subsection. For simplicity of presentation, we replac
sum of all the leaf nodes in the tree rootedratFirst notice S€rvice vendors with learners. We prove that the regret is
that one can compute any using at mostog(7) nodes of sgbllnea_r con_verged over the time, and our P-DAP guarantees
Treex. Second, notice that for any two neighboring datagets differential privacy.

and D’ different in leaf nodef; and f;" at mostlog(7") nodes 1) Regret Bound:For each subspac€’, let uyc =

in Tree), gets modified. So, if we flatten the complete tree @8Pzectk,e ANy, ¢ = infrecuy, .. Leta™ be the context at

a vector then for any neighboring datasétsand D’ one can the center of the hyperculteé. We define the optlmgl arm for
easily show tha|T'ree(D) — Tree(D')|, < log(T). We will subspcel ask* = arlzge%;x ug,z+. Then the suboptimal arms
further bound the amount of the noise added to each treefaﬁ learner: in Subspacé’] can be written as follows:

section V when evaluating the performance of our algorithm.

Tree(D) Tree(D')

- . . S =1{k:up o —a Bm~} 7
LaP-DAP Description. When service vendoi receives 08 = {k: g0 — o > Bm™} (")

contextz;(t) from service vendorj, service vendor first where B is a constant and > 0. We will bound B to get
determines the subspacgto which this context belongs andoptimal solution. The regret in (2) can be written as the sum
the levell of it. Then we want to make sure whether each videsf three components:

k € M; has been selected for enough times for accurate esti-

mation (line4-6). If each video has been explored suffityent R(T) < Ro(T) + Rs (T) + R (T), (8)
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where R, (T') is the regret due to selecting suboptimal arm®llowing holds:

from M, by time T, R, (T) is the regret due to selecting

suboptimal arms from\_; and R,, (T') is the regret of near Tr,c(t) = ke + Hi, (12)
optimal selections by tim&'. Next, we bound each of these

terms separately. Treo(t) < Upe o — Hy, (13)
Theorem 2. For every level-l context subspacg, with
tcontrr]ol fu.nctiongl (f.) =Im2(:;ln(T/)\,/lthe ngpt?ctEd regrec: due Pro(t) > Frec(t), (14)
o choosing suboptimal armt € M, e bounded as _ _ _
follows: ing su Pl w u Tk,C(t) < Ug,c + Hta Tk*,C(t)> Qk*,c - Ht-
ol 2 Then the probability when suboptimal arnis picked can
E [Reg} o (T)] <m**'in (T) + 3 be written as follows:
2Lm~ L
4 2em [In(K)+In(T)]. (9) Plk is picked N Case2.]

] ] <P[fk0()>ﬂkC+Ht]
Proof: The regret of[Regy, - (T')] is due to: 1) inherent + Pl oft) < u —H]
gap of bandit algorithm between the optimal selections aed t k", O =k*.C ¢
suboptimal selections; 2) the gap between approximately op + Plrr,c(t) = ke ,0(t), e o () < Uk, + Hi,
timal reward applying exponential mechanism and suboptima Tre () > Wpe o — Hyl.

selections (line 11-14 in Algorithm 1): } _
We denotew;, ~(t) the set of rewards of arrh in subspace

E [Regp o (T)] < Ezt ) (U 2(t) = Ues (2(t))(t)) C. Let O;.c(t) be the event that at most samples in
w}, .(t) are collected from suboptimal process functions of
< Ezt 1 Uk a(t) = uk,m(t)) the k-th arm. Different from classical finite-time bandit thepry
these samples are not identically distributed. Enlighdelnyg
+ EZ “k a(t) T Ueg (2(1)), (t>) [31], in order to facilitate our analysis of the regret, weaal

=F [Regk.c (T)} 4+ FE [Regk,c (T)] . (10) generate two different artificial i.i.d. processes to botinel

' probabilities related toy, - (t), k € M,. The first one is the
Next, we will bound the two part of thé’[Reg; ~ (T)] best process in which rewards are generated according to a

separately: bounded i.i.d. process with expected rewarndc-, the other
Lemma 1. The inherent regret gap of bandit algorithmone is the worst process in which the rewards are generated
between optimal arms and suboptimal arfifReg; . (T)] is according to a bounded i.i.d. process with expected reward

bounded as follows: Uy - Let rbest( ) denote the sample mean of thesamples
) from the best process amg‘”st ) denote the sample mean of
E [Regp o (T)] < m**!in (T) + T (11) thezsamples from the worst process. Thus, combining (7), for
’ - 3

any suboptimal arm we havB(7y ¢ (t) > T+ ¢ (t), Tr,c (t) <

Proof: We denoteF},(T) the number of times that sub-Tx,c + H, Tr ¢ (t) > upe o(t) — Hy) < P(fzeétﬂwli,c(tﬂ) >
Eptimal armk is selected by tim&'. Forz € C, let Aug ¢ = Tw*orcstﬂwk o) —9), leieétﬂw};,c(t)l) <To +L(%)a .
Uk ,c — Uy o be the gap of reward between suboptimal arm N Vive
k and optimal armk* in subspace’. As initially defined, the Hi+ 5,706 (|wi- c(t).D > wy- o — L(35F) _HtvcjlseQ))~
regret of choosing suboptimal arkris the expected number of Since k is a suboptimal arm, we have,. ¢ — ur.c >

al .
tlmes whenk is selected times the gap of mean rewards. Thim ' and:

[Regk,C( )] ZtZI Fk( ) AU}C_’C S Zt:l Fk(T) —worst \/E (e
for Auyc < 1. Inequality (11) results from the fact that TG (Wi o (O]) > g o = L(-)" = H,
F(T) will not be larger thanm?*!in (T) with the high _ V..
probability. Now we discuss the result in inequality (113en e (lwh.c@®)]) < e + L(— - )"+ Hy + -

two circumstance. . N
Casel.Fy(T) < m?*n(T). Under this circumstance, (11) Given the condition:
holds correctly. Now we focus on case2. Va

a a —al
2L(X= 2H, + 2= — B <0, 15
Case2.Fy(t1) = m?*in(T) whent, < T. Then we have (ml) ety o= (19)
T we have :

1 . . .
Reg; o (T) < t; I (k is picked at time t) Rest (i o)) < Fworst(|w o)) a

<m2n (T) + 7 oI (k is picked at time t RO B ATe n’

< t—mzal picked at time t).
Next we will figure out the probability that is selected ¥;/r2|é::h implies that suboptimal arms will hardly be selectgd b

under Case2.
Whent > m2™n (T), if k is selected, we havey, ¢ (t) >  PlFe.c(t) 2 Tre,c(t),Tro(t) < fir,c + He,Tre,c(t) > Uy ¢ — Hi
Tr=.c (t), this inequality holds when at least one of the =o. (16)
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In Case2. we have. > m?2*n(t). In order to make (15) which holds with a probability less tha%l. Then, we have:
hold, we assignB > 2L(X4)* + 4, a = m®in(t), H, = 2.

n T
Then, we have: E [Regi,o(D)]=EY . (ura() = e a(0).0)
T
_ 2 ol 1 2Au
Plrec(t) = fino + Hi] < e72H)"m™0nD) — < 2 [Ad) # PIAG < == (In(K) + in(T))]
T
2Au 1
_ _ )2min, 1 < — (In(K)+In(T)) & —
P, (t) < Wy o — Hy] < e 2HTmTIn(T) = 21: c T
2L —al
Thus, we have: < H; (In(K) +In(T)) ,
whereAq = u(z, k) —u(x, &5, (2)) = Uz (1) = Ues (2(t)),a(t) <
P(k is picked NCase2.) < P(rp.c(t) > tn.c + Hy) 284 (In(K) + In(T)) denotes the regret bound of exponential
+P(Fre o(t) < upe () — Hy) mechanism selection at each time slot. [ |
< t%, ’ Combining Lemma 1, Lemma 2 and inequality (10), our
Theorem 2 holds. ]
then, The above Theorem 2 implies that fore M, the proposed
L . T 5 algorithm make sure the suboptimal arms will be selectecemor
E[Regllac(T)] < m (T) + X mzatin(r) 72 thanm?2>! In(T) with very small probability.
2a s
<m>*Un(T) + % Lemma 4. For k € M_;, with control functionGz(t) =

a () + meand Gy (t) = m**!n(T), we have the
_ . regret of choosing suboptimal in subspace C by tim& as
Before we derive Lemma 3, we provide a bound on thgjiows:

sensitivity of exponential mechanism.

s 2al r al 71'2 K
Lemma 2. The sensitivity of exponential mechanism isE[Regk,c(T)] < 2m In(T) + 7m +?(1+2)l”(T)7 (19)

bounded is follows: whereT is the near maximum value of the amount of total
noise added by tim&'. We will boundl" in Lemma 5.

Proof: When we add Laplace noise to each time reward,
our estimate of the actual reward will be disturbed and our

Proof. In our framework,z; and z, are two input , per ot fimes that need to be played until finding the

data (users’ context vectors), which differ on at most one_.. , )
. ; optimal arm will be increased. But we demonstrate thatyafte
component. The unity function(z, k) represents the recom-

. . . each arm being trained (t) times, there will be no more
mendation reward depending on input contexand output 20l T al . .
. _— ; ! thanm**'In(T) + Tm®" times to be tried before finding the
video k. By Definition 3 and inequality (4), we have . AT -
optimal arm with a high probability.

Fork € M_;, we definek is the supoptimal arm, and" is

Au < Lm~ . (17)

Au = max max lg(z1, k) — q(22, k)] i | )
kEMi z1 a0 |21 —22||, <1 the optimal arm for subspadg. At t-th time slot, suboptimal
— max max [Ukzy — Uk armk is selected ovek™ if 7y c(t) > Ti= c(t) is true. Here,
keMi zy,z2:(|z1 — el <1 the reward;, ¢ (t) > T+ ¢ (t) is the virtual reward that include
< max max Lz —2'|* < Lm~°, with noise for subspac€' of armk. Thus, we denoté&, ¢ (t)
kEM; w1, ||m1—wa |, <1 the true reward of arnk for subspace”. Then suboptimal
m armk is selected, only if the following holds:
Combining Lemma 2 and Theorem 1, we can derive Lemma — — r
3 as follows: Ric(t) + Ni () > Ry o(t) + Ni () (20)

Lemma 3. The regret due to the near optimal reward whem can be easily shown that (17) is true, only if one of the
applying exponential mechanism can be bounded as followgjiowing equations holds:

—al DY —
B [Regt o (1) < 22" i (k) + i (r) . 19) fieclt) = fe 40 e
€ Rp= c(t) < Upx ¢ — Hy, (22)
Proof: At each time slot, we do not choose the arm with
highest reward. Instead, we assign each arm a probabiliig to Ri.c(t) < Up.c + Hy, Rir o(t) > upe o — Hy,
chosen. Thus, at each time slot, there exists the gap of dewar _ r _ r
when applying the randomly selection. By using Theorem 1, Ryc(t) + W > Ry o(t) + W (23)

in inequality (6), we havéR| = K, |Ropr| = 1 (we only have
one optimal arm). Then, we set In(T). Thus, at each time
slot, we have the regret by randomly selection as follows:

As we have discussed above fbre M;, we also denote
best process and worst process to bound the probabilities.
Then, we have
2AU —best \/a

u(z, k) —u(w,e5,(z)) < ?(ln(K) +in(T)), Rie (lwke@®))) < Tk + L(ﬁ)a + H; + %7
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_ Therefore, from the Markov inequality we get
—=wors 7 d fe
Ry c t(|wk*,c(t)|) > Upx C—L(%) — Hy),

—best r —worst r _2 i i E[Yklc(t)] 71'2 K
Rec (ke @D+ gy = Fimic vk cODT =5 =0 PO}, (00, S6(1) £ — R < T R 2 (7).
Whenk is a suboptimal arm, we havg.. o—tix,c > Bm~ ol

Together imply that: Then, for armk € M_;, we have

Vd r r a Cwl
2L(—)% + 2H; + — - — +2— —Bm ¥ <0. T
(ml ) ' N o) N (t) n - E[Regi.c Z k is picked)

Forn > Nj (1), Ht:%andB>2L(7‘T/L_) + 4, then, :F T _
we draw the conclusion that (20) holds when the following < 2m**n(T) + SmIn(T) + > P(Se(t))
holds: 4 =

I
Vd. r a —al < 2m**'n(T) + =m™in(T)
2L(—)* + — +4— — Bm™* <0. = 4
(ml ) Ni o(t) Ni. o (t)

T
_ + 3 [P(Okc(t), SE®) + POk o (1), SE(1)]
Then we come to a conclusion that whévy ~(t) >
mQMZn(T) + %mal,.the inequglity (20) can not hold. (we < 2m2Un(T) + [mazln(F) " 77_26K(1+ E)ln(T).
use S¢(t) denote this case), directly by the use of Chernoff 3 a
bound, we can show that :

[ |
1
P(Ry,c(t) > Ty, + He) < 2 (24)  Lemma 5.For all armsk € M_; and all time stegt € [T,
w.p. > 1 — o (over the randomness), the amount of ndise

. (25) added in the total reward fok till time ¢ is at most| Ny (t)| <
2

_ t _ flog (Diog(OTlos(T)/7) | \whered is the number of arms belong

Let O}, ~(t) be the event that at most samples inw;, ~(t) to M_;.

are collected from suboptimal process functions of khth Proof: For the ease of notation, IeR, () be the true

arm. Obviously for any € M, Oz,c(_t) =, while this is  oa reward for armk until time ¢. As discussed above,
not always true fork € M_;. Combining (17) and (18), for Ni(t) = r(t) — Ry(t) is a sum of at mostog(T’) Laplace

k € M_i, we have: distributed random variabIeSap(m%(T)). By the tail prop-
PO (£). Si (1)) < 2 erty of Laplace distribution, we know that for a given random
(Oh.c(t), Sc(b) < 5 variablex ~ Lap()), with probabilityl — g, 2| < A log(1 /).

log(T')
For k € M, obviously we haveP(O% .(t)° = 0) . So, with probab|I|ty at leastl — ¢ /log(T)) <1-—o¢,

Fork € M_;, let Y} ;(t) denote the random variable, thd Nk (t)| < 2 DiealesT)/2) Taking the union bound over
number of times suboptimal function of for arm is chosen @ll k-arms and all time stefi” and settingp = o/(6T), we
when eventSi,(¢) holds. We have{Oi .(t)C,SL(t)} = havew.p. > 1 — o, for all k € M_; and for all¢t € [T7,

{Yi o(t) > a}. Applying the Markov mequallty, we have|Nk( )| < 2or (DlegGTlea@i/e), u

PO}, ¢ (t )¢, SE(t) < M Let Ej} ,(t) be the event Lemma 6. The regret due to choose near-optimal arms
that a suboptimal processing functiam € M, is called by RegZ(T') in each level-l subspace is bounded as follows:
learnerk, when it is invoked by learnerfor the ¢t-th time, we

have Regl(T) < ABm!(P=%), (26)
i wk,C(t) q 12
Yio(t) = Z I(EL (1)),

t'=1

and Proof: Due to the definition of near-optimal arms, regret
IP’ Ek o Z P (P ( m () due to selecting a near-optimlal arm is at mBsi—*!. Because
e, there could be at mosfim?" slots for a levelk subspace
according to the partitioning rule, the regret of this part i
After each videom < M, has been fully explored by gt mostABm!(®—. ™
f3( )= h m?**!in(t)/ K times, as we have proofed in Lemma Now, we combine the results in Lemma 4, Lemma 6 and
we have Theorem 2 to obtain the complete regret bound. The regret
P(E Z 9p—2(H)*m?in(t) 2K oK depends on the context arrival process and hence, we let
kol - = H(T) denote the number of levélsubspaces that have been
m k

activated by timel" of learneri. Before we derive Theorem

Together imply that 6, we provide a bound on the highest level of active subspace

ElY; Z]P’E Z2KK by time .
e 1 kol =1 Theorem 3.The complete regret of our private distributed
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learning algorithm is bounded by be the maximum level subspace under this scenario. Because
R(T) < Hi(T 20p, (T 1 12 there must be some timE’ < 7" when all subspaces are level
(T) < Xpem; 20 Hi(T) - [m n(T)+ % subspaces, we have

2 (In(K) + In(T
(in(K) +in(T)) A < T,

FE2K (14 Kln(T))] wherem® is the maximum number of levélsubspaces and
) a l . . .
+ 3, Hi(T) - ABm!(=9). AmP* is the maximum number of time SIOE tf(\gt) belong to
(27) a levell subspace. Thus, we havg,.x < %i’”fpf‘ +1.
~ Proof: Combining the result of Lemma 1 and Lemma Eombining this conclusion with the regret bound in Theorem
it is easy to see thaR,(7") is bounded as follows: 3, we get Corollary 2. n
Ro(T) < SSHH(T) S -E[Regi.o(T)] We have shown that the regret upper bound of our private
Lo EM; ) distributed learning model is sublinear in time, implyingro
< XlZHZ(T) (M -1) [mQall’fI(T) + 5 computing service vendors can select optimal videos by.time

Also, fast convergence to optimal is favorable to dynanhcal

2Lm <!
+— () +In(D))] changing big data environments.

2) Differential Privacy: We finally prove that our algorithm

By applying Lemma 4, the?,(T') is bounded by can preserve privacy of user's contextual information dred t
R(T)< Y S>H{(T)-E[Reg;.o(T)] that of each service vendor’s videos.
<k€§7i iHi(T)- [2m2*Un(T) + Eme! Theorem 4. The Algorithm 1 can preservege,0)-
Twemio, T * differential privacy for user’s contextual information.

+eX (1+§ln(T))}- Proof: Let ; and 2z, be two input context vectors
. . that differ in one single attributey, denote the reward of
Finally, R,,(T) is bounded by exponential mechanismi denotes the output (sequence of
R (T) < ZH;(T) - E[Regi(T)] < ZH;(T) . ABm/!(P=a) selected videos) space of exponential mechanism. Then
1 7 {k1 ko, ..., kpr+x—1}. We suppose that the same user’s data
Theorem is resulted of the summing of above three equati®¥eam has come folV times over time arbitrary sequence
m {t1,t2,...ta}, @s a result, our algorithm selected an arbitrary
The following corollary establishes the regret bound whegeduence of arms such théfp (z1, i, R) = {k1, ks, ... kn'}
the context arrivals are uniformly distributed over theirent at the time sequence. We dengtér:, k;) the mean reward
context space. This is the worst-case scenario because @harm#k; for contextz, at timet;. In our algorithmy (1, k;)
algorithm has to learn over the entire context space. Befd@ualsri, c(t:). C'is the active subspace to which the context
we derive Corollary 2, we provide a bound on the highegt belongs at time. If:; andx; belong to the same subspace

level of active subspace by time. C at time t;, then pu(x1,k;) = p(x2,ki). We construct a
functionI(t1,x1, x2). Whenz,, 2o belong to the same active

%ubspace, the value of the function equals one, otherwise ze

We consider the relative probability of our algorithm fovem
Proof: It is easy to see that the highest possible level ebntextz; andzs:

active subspace is achieved when all requests by time have th

Lemma 7. Given a time T , the highest level of activ
subspace is at mogtog,, (%)/P] + 1.

same context. This requireém’== < T. Therefore/ .« = P[Mp (21,0, R)={k1.k,....kn }]
] Ty/p 1 - PME (z2,p, R)={k1,k2,....kN }]
’VOgm(Z)/ -‘ + : N ezp(alu(zl’ki’)) 6zp(s u(zg,kT))
- T uni =TI ( B ) B )
Corollary 2. If the context arrival by time T is uniformly sl > eap(TEELED, S eap(Elzakl)
distributed over the context space, and we set the partition enr i g k)
parameterp much larger than similarity parametesr we N e N 2 eep(ma—)
_ e (p(xa,ki) —p(xa,ki)) k'eR
have: =[] exp( ) ( TR
: = 2A 1 > exp(S “2(21;216 ))
R(T) < Ry (T) + Ry (T) + R (T) (et
< (L) are - m2n(T) (K + M — 1) = [[ eap(EWlzrk—nzak)y  (Ker i
+(%)3+Tz . md+aAB i=1 28m szewP(%l‘ik))
'e
T\&E2=>  gip_ar N / )
+(z) z*p m 2p 1 <[] exp (% . I(ti,xl,m)) - exp (% ~I(ti,x1,x2))
+(5)T 7 -m - (K + (M - 1)e”) =t S cap(SLELED
d—a exp( L=l 2
+(§)d—+pmd*a[21§L(ln(K)+ln(T))+’*—;(M—l)eKln(T)]. x (Ken P )
(28) oD
N
Proof: First we calculate the highest level of subspace = [] exp(e’ - I(ti,z1,22))
when context arrivals are uniform. In the worst case, aklev < ;}(Ngl)
I subspaces will stay active, and then they are deactivatiild un = cap(e).

all level-(I 4+ 1) subspaces become active and so on.ll.gt
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Thus, the theorem follows. B instance. Leaf nodes presented in Fig. 5 are current active
subspaces, we set different valuecofelated to the density

Theorem 5. The Algorithm 2 can preservée,0)- of each subspaces

differential privacy for service vendors’ videos
Proof: For k € M_,; and subspace’, let [T'] = e

{1,...,T'} denotes the sequence of time slots that videos is

selected for simplicity, wheré” < T'. let D = (fy, ..., fr) be .

a data set of true rewards. We call a dataBémneighbor of

D if it differs from D in exactly one reward. We defirfé (C)

the virtual outcome (reward with noise added), then we have,

at each round, the probability of same outcome for different

armk; and ksy:

&9

gom”
Space Partition at time T

2
som™*

3a
som™

Fig. 5: An illustrative example of geometric private model:

5/\ft(k1)*Ft(C)\) . .. - .
A For simplicity, we assume dimension of context spdee 1.

P[Mp (k1,t)=F:(C)] _ exp(—

P[A'fL(kzat),:Ft(C)]  exp(— el RO, The left segment shows the partition pattern. The right tree
= exp (As_f(|ft(k2) = F(CO)] = | fe(k1) — Ft(C)I)) structure shows the partition process, where blue leaf siode
< exp(g—'. \fo(k1) — fo(ka)]) denote the active subspaces. Subspaces with differeritileve
- et different value ot.

= cap(Z fulka) = filka)],) ?

< exp(e’). The modified method works as follows. After we get enough

| bl del. th d algorith | context samples, we already have accurate estimations for
n our problem model, the proposed algorithm only aCCeSSEs, 445, From now on, for each context arrival, we first figure

the reward for its computation via the tree based aggrewatig ;+ +o which subspace it belongs. Then we judge the leoél
scenario. Learner maintainsM — 1 trees for other learner’s
re_ward ;ets rgspectlvgly. Each tree g_u_araatee e/(M — 1_) m and« are constants as we have defined previously.

differential privacy. With the composition property sttt Theorem 6. Geometric differential privacy has a lower

Corol!ary L We can draw the conclusion that our algorithm r%gret bound than uniform differential privacy as follows:
is e-differential private. [ ]

the subspace and set= sgm® for leveld subspaces, where

Theorem 4 shows that the attributes (e.g., social status,pc () < g(T) — ((%)ama B 1) (Al(%)ddfpa md—2a
hobby and age) in users’ sensitive context vectors cannot be
inferred from the recommended results. The proof of Theorem +A2(%) Ee= mda) ’
5 supports that the service vendors fail to extract inforomat
about videos in neighbor service vendors’ repositorieshay t (29)

rewards. In summary, our Theorem 4 and Theorem 5 prove tH‘éﬁ_e_reAl and A are two constants. When tinié goes i|_’1to
|Egl;|n|ty, the value of the second term on the right side of

the proposed algorithm P-DAP can preserve the both privacy" ) o .
of users and service vendors synchronously. the inequality will increase exponenpally. Thus_, the_ltemﬂ
Theorem 6 proves that our geometric differential privacg ha

greatly reduced the regret bound.
Proof: We sete = ¢pm® and the amount of noise =
In the previous section, we preserve privacy to the sa@% in the geometric differential privacy method. Thus, we
extend for all subspaces. That is to say, we set the sahwve:

V1. GEOMETRIC DIFFERENTIAL PRIVACY

value of¢ for the whole context space. This section presents RO(T) < R(T) — Lmax (M — 1)ym (Lo — _To_)
our refinedgeometric differentially privatenodel. Considering o =1 - co 2Lnion?
the sparsity and heterogeneity of big data, some context — 2.=1 K(l”(T)+l”(T))'( 0 eom™! )
subspaces are scattered with countless data points, howeve < ((Z)O‘ma _ 1) K(In(T)+In(T)) (z)%md_ga
other subspaces are nearly blank. A large and increasing — \'4 €0 A
nu_mber of statisticz?ll analyses can be_ done in a differential _,_&(Z)%md—a _
private manner while adding little noise. As also declared oA
in [4], “the larger the dataset, the less a given amount of o K(In(T)+n(T))
blurring will affect utility”. Thus, our geometric differsial FoFr simplicity, we used; and A, denote <

. . . . 0
private algorithm varies the amount of noised add to sutespa@nd <> respectively. Here the Theorem 6 holds. u
according to the size of each subspace. To be specific, we
decrease the privacy level (larger valuespfvhen the density VII. EXPERIMENTAL RESULTS AND ANALYSIS

of datasets increased (I denotes the density of subspdnes). In this section, we demonstrate the theoretical regret deun
this way, the performance loss due to the randomness broufgintour algorithms with empirical results based on very ¢arg
by differential privacy can be reduced extensively. Forear real-world datasets, which includes massive multimedia da
active subspaces, we set different valuecofelated to the and social media users-generated big data. We show that:
density [ of them. Specifically, we increase the value «of 1) regret bounds are sublinear converged over time; 2) Our
when! increases. Fig. 5 gives an illustration of this methodlifferentially private methods work well and do not come
For simplicity, we take the one-dimensional context space fat the expense of recommendation accuracyGgpmetric
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differentially private method has a lower regret bound ani oLl 0.1
higher accuracy. Finally, we use users’ context vectorseefi  sf |29 5008 2
from real datasets to test the recommendation accuracyrof  ;4; |—DAP 206 —DAP
algorithms. g3 )
2 §0.04
. 1 “0.02]
A. Experimental Setup |
0 0
'!'o_ evaluate the performance of our recommendation syste ° * No.otarvals g *® No.otamvals  xadb
training data and test data about users and videos should . _
gathered. We collect numerous user context vectors egttact (a) Regrets (b) Average Regrets
from large real datasets in Sina Microblog, a popular online Fig. 6: Regrets in CAP, DUP and DAP
social networking site in China. This datasets contain giser . AP — SAE
social prqfll_es and multlmedla content they sharegl. We.adso e =000 =0.39% R 87349
tract public information from Youku, a prevalent video shgr 10000 75 .36% 745004 90.21%
site (VSS) in China, such as video attributes, popular \8deo 20000 76.88% 74.78% 91.02%
After preprocessing, around 74000 video items, 578000 usefr__ 50000 77.34% 75.08% 92.17%
context vectors with 13900-dimension are stored. TABLE II: Average accuracies of DAP, CAP and DUP

For simplicity, we deploy the recommendation system on
a small-sized framework with four distributed video seevic
vendors. Using collected video data, we constructed a set ofStep 2. We construct our differentially private model (P-
1000 videos for each service vendor respectively, FollgwirPAP) based on step 1. As for each vendors’ own user, arms
the real situation, we arrange different video items fofedént (videos and other service vendors) are randomly selected
service vendors. We randomly sample 200000 users ( contaggording to computed probabilities. Simultaneously,lae@
vectors) from our stored datasets, and input these vectBgise is added when recommending videos to other service
to our simulative recommendation system sequentially. Wwhgendors’ users. To prove the smooth trade-off between gyiva
receiving user arrival, service vendor selects a partiotiieo and accuracy in our P-DAP, we vary the privacy constant
to recommend. At the end of this time slot, the reward of thfsom 0.01 to 1 and compare them with non-private model
selection, a binary random number (equal 0 or 1), is produd®AP). Finally, we use our extracted four groups of context
to imitate the result of user’s click action. Since our schenvectors to test the accuracy of these models.
appertains to the class of online distributed learning tech Step 3.To prove the lower regret of geometric differential
niques, we will compare our scheme against several previduévate method (GP-DAP), we set different value offor
approaches: different context subspaces. To be specific, the value of
« Centralized learning with adaptive partition (CAP)][33]VaX with the decrease of the density of data points in each
There is only one leamer in this centralized frameworg!/PSpace. Then, we compare the regrets of GP-DAP and P-
who partitions the context space dynamically over tim@AP (€=0.01) over time.
according to the number of user arrivals.
« Distributed learning with uniform partition (DUP)_[31]: B. Results and Analysis

This distributed framework contains multiple cooperative \we first evaluate DAP’s performances in terms of regret
learners. But all of them uniformly partition context spacgyss and average regret loss in Step 1. In the meanwhile, we
initially. No partition process is involved over time.  compare DAP, CAP and UAP and plot the regret lines in Fig.
« Distributed learning with adaptive partition (DAP): Thisg,
is the primal model of the proposed P-DAP. Multiple Fig. 6 (a) shows the comparison with DAP, CAP and DUP
learners in this distributed framework adaptively pastiti in terms of regrets, where the horizontal axis is the number o
the context space over time (No privacy preservation {fser arrivals. From the tendency of “Regret” lines, we cawadr
this model). the conclusion that the regret of DAP is sublinear converged
Finally, to thoroughly analyze the performance of our praver time. And obviously, DAP has lower regret loss than DUP
posed algorithms, we logically deploy our experiment by thend CAP all the time. Fig. 6 (b) records the average regrets
following 4 steps: (normalized by number of arrivals) of DAP, CAP and DUP,
Step 1. We first compare our primal model DAP withwhere the horizontal axis is the number of user arrivals. As w
previous work, i.e., CAR [33] and DUP [B1]. We input sampledan see, our primal model DAP converges fast and has lower
200000 users’ context vectors sequentially into theseethraverage accuracy then CAP and DUP. Also, results show the
models respectively. That is to say, each model will receiewerage regret of DAP in the tail of lines is extremely small
same input datasets with 200000 elements. We plot the segi@maller than 0.02 per user).
and the average regrets (to evaluate the convergence ratdjable Il records the average accuracies (total reward elivid
of each model. Afterwards, we extracted four groups (withy number of arrivals) in our tested process, wharaepre-
different size) of user context vectors from collected reaknts the number of context vectors used by test. We find that
datasets. Then, we input these four groups context vecttors ias the number of arrivals increased, the average accuracies
CAP, DUP and DAP to test the performance of each modebf each model get promoted as well. This could be resulted
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6 =10t 0.06y7 6 x10* 1
- = Private¢=0.01 . 1 - - Private¢=0.01 - - P- = . [_1P-DAP(=0.01]
5 Private¢=0.1) -7 8% PrivateE:OAl) 5 .77 1 zoof |mmceoap
_ a4} |~ ~ Privateg=1) - 4 8o0.0af v - - Private¢=1) _4 -7 <
@ | [—Non-private DA 14 » ——Non-private @ L7 808
23 P $0.03f| Y= 23 <
hd A © a e o
2 ot £0.02 2 L7 0.7
4"" . < z g
1 ”94 0.01 I <6
0 0 0
0 0.5 15 : 0 0.5 15 0 0.5 15 © 05
No. of arrivals x10° No. of arrivals x10° No. of arrivals x10° 05 1 15 2 25 3
No. of arrivals x10*
(a) Regret (b) Average Regret (a) Regret (b) Average Accuracy
Fig. 7: Regrets in P-DAP and DAP Fig. 8: Regrets and Accuracies in P-DAP and GP-DAP
P-DAP N 5000 10000 | 15000 | 20000 | 25000 | 30000
N =001 =01 =1 DAP GP-DAP | 82.44% | 84.36% | 85.23% | 86.74% | 87.33% | 88.17%
5000 77.54% 77.78% 78.96% 86.84% PDAP | 273106 | 77.87% | 78.42% | 79.14% | 80.06% | 81.64%
10000 78.75% 79.35% 79.24% 89.28% (e=0.01)
20000 79.92% 80.34% 81.06% 90.23% . :
5000 50-15%% ST16% 510 STE6 TABLE 1V: Tested average accuracies of GP-DAP and DAP

TABLE IlI: Average accuracies of DAP and P-DAP
will be greater than 88 as number of user arrivals exceed
30000.
from the fact that systems trained better as number of s@mnple
increased. Also, we can read from the table that the average
accuracy of our DAP can reach up to%_2but neither those
of CAP nor DUP can exceed 88. Finally, We can draw the

VIII. CONCLUSION

In this paper, we have presented a differential private
conclusion that DAP outperforms CAP and DUP. dlst_rlbuted _Iearnlng framework for V|d_e0 recommendation f
. . . . . ﬁnlme social networks. To tackle with the large value and
Fig.7 gives the simulation experiment results of P-DAF. : . . "
Fig.7 (a) shows both the regrets of P-DAP and DAP apeetelrogenelty of big data, we_adopt dynamic space payhhon
' t0 distributed contextual bandit. Concerned with the pywa

sublinear over time. To be specific, we can see from th(? . . .
. . : of social network users and that of video service vendors, we
tendency of regret lines that as privacy preservation Ige¢l

. i 7'S€ exponential mechanism and Laplace mechanism simulta-
increased (smallet), regrets converged more slowly. Fig.

(b) shows our differentially private P-DAP has low-regneo ( ne(_)usly. Fl_thher_more, .to all_ewate the pgrformance loss du
. . .\ to introducing differential privacy, we refine our framewor
more than 0.03 per time slot) even for a high level of priva

C S . :
preservation (e.gs = 0.01). The regret obtained by the nonfé novel geometric differentially privatemodel. We have

private algorithm has the lowest regret as expected. M theoretically analyzed our algorithms in terms of perfonce

0ss (regret) and privacy preserving. We have also evaluate
significantly, the regret gets closer to the non-privatereeg 9 P yp 9.
as its privacy preservation is weaker.

our algorithms, demonstrating their sublinear converged r
Table Il records our tested average accuracies for DAP

alg;gts, delicate trade-off between performance loss anvdgyi
P-DAP with different privacy preservation level. As we ca

serving level and extensively reduction.
read from the table, average accuracy of DAP can reach to A
91.56% and those of our P-DAP with different values ofs CKNOWLEDGMENT
greater than 8% by time. This research is supported by National Science Foundation
Fig. 8 shows our simulation results of GP-DAP and Fof China with Grant 61401169.
DAP, where we set=0.01. From Fig. 8 (a) tells us the
regret of GP-DAP is less than that of P-DAP B2%. We
can immediately c_iraw the ConC|US|On_ that GP-DAP cut ﬂ}?] Z. Wang, W. Zhu and P. Cui, “Social media recommendati@gcial
regret loss extensively. We also use different set of dath Wi = Media Retrieval. Springer London, pp. 23-42, 2013.
different volume to test the accuracies of P-DAP and GP-DAR] C. Mm}?' S(-j James and Z-_Jlle, “%_fmnﬁit'lft)_“ d&SCO\I/EE’EU?;%data of
. . . user-sharea images in social me ia,” Multimedia, ons on.
Fig. 8 (b) shows the companson_of these average accuracies, | 17, no. 9, pp. 1417-1428, 2015,
Both GP-DAP and P-DAP have high accuracy for each group} “vouTube wins its first Emmy for video recommendationsuyoan't
and the accuracies become slightly higher when increasing gizg’?;g;\//efgf-b[0n|!ﬂe]%_A\t/alIable:?Hp:/{w-t%62m/2013/
the sizes of groups. Obviously, GP-DAP always has higher . /> o>YoHHReWinSTisEemmy-loriceo-Tecoamtations-yot-
accuracy than P-DAP. [4] “Privacy by the Numbers: A New Approach to Safeguardingtd)’ Sci-
Table IV records the test result of GP-DAP and P-DAP entific American. [Online]. Available:http://www.scigfitamerican.com/
f diff fi | h article/privacy-by-the-numbers-a-new-approach-tegaarding-data/
(5_:0'_01) ordi ergnt user groups. At first glance, the accurﬂS] A. Jeckmans, M. Beye and Z. Erkin et al, * Privacy in recoemder
cies increased slightly as we add more context samples into systems,” in Social media retrieval, Springer London, [§8-281, 2013.
test group. This is due to the fact that, more samples can h&jpM. Cheung and J. She, “Bag-of-features tagging apprdacra better
bett timati f h . f ti recommendation with social big data,” in Proceedings of4ttelnterna-
systems get better estimation of each processing functions tional Conference on Advances in Information Mining and llgement,
Also, we can see that, the average accuracy of the GP-DAP pp. 83-88, 2014.
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