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Abstract—Large Internet video delivery systems serve millions to us that in a real-world system, the popularity of diffaren
of videos to tens of millions of users on daily basis, via Videon-  videos are constantly evolving.
Demand (VoD) and live streaming. Video popularity (measure A large number of factors can affect video popularity evolu-

by view count) evolves over time. It represents the workloadas .. . . .
X : ?
well as business value, of the video to the overall system. &h tion. For example, how is the video recommended? Depending

ability to predict video popularity is very helpful for impr oving ©On its type, a video can be sensitive to its age (measurecas th
service quality and operating efficiency. Previous studieadopted time since it is made available by a given content provider) t
simple (usually static) models for video popularity, or directly different extents. If it is listed on the web page of the seevi
adopted patterns from measurement studies. In this paper, & as one of the top videos (of some sort), it would tend to draw

develop a stochastic fluid model that tries to capture two hiden ttenti ickl d to if it ded vi
processes that give rise to different patterns of a given vigb’s attention quickly, compared o 11 it were recommended via

popularity evolution: (a) the information spreading process, Social networks. The type of video and its intrinsic quality
and (b) the user reaction process. Specifically, these pragses or topic can affect the level of potential interest. Givee th
model how the video is recommended to the user, the videosyolume of available catalog of (new) videos, and relatively
|nherenF attractiveness, and users reaction rate; and yiel specific constant attention (eyeballs), the rate of user reactindst¢o
popularity evolution patterns. We then validate our model by be limited at . i Th | of this study is t .
matching the predictions of the model with observed patters e limited at any given ime. The goal of this study 1S _O arnv
from our collaborator, a large content provider in China. This at some models that can capture some of the most important

model thus gives us the insight to explain the common and underlying factors, and can represent the way video poipylar

different video popularity evolution patterns and why. evolves in real systems.
There were also previous studies that considered view count
|. INTRODUCTION as a dynamic value, and tried to come up with some empirical

rules of evolution patterns from analyzing view count logs

Internet VoD streaming and live streaming are servingom real-world systems [3]=[6]. This approach, while it is
a large and increasing number of consumers. Those largere based on reality, and quite practical for the givenesyst
and established content providers maintain a huge catdlogstudied, is nevertheless quite ad hoc and does not tell us
videos and serve tens of millions of users per day. Theigsights that can be applied to different scenarios andsyst
is a variety of different video types, for example, movies, In our study, we go one step further - try to create a model
TV episodes, news clips, user generated videos, music ¥ide$ video popularity evolution based on factors that can be
(MVs), Sports and so on. New videos are added into theplained. This is then used to match the real-world view
system regularly. Some, such as news clips, may have shswtint dynamics of different videos to ensure the model does
lives, whereas others may be viewed over many years. Tiepresent what is happening in reality. In particular, wetdr
demand for a given video, over its lifetime (in the systemgapture in our model somigidden processhat is not easily
is referred to as its popularity (as a function of time). listh measurable as the view count dynamics itself. Before a user
demand can be predicted, even roughly, it can be very helpfidcides to view a video, she has to come to know the existence
for the content provider in running its operation. As can bef that video via some form of recommendation, whether it
expected, there are a large number of different patterns fervia direct marketing, or user-targeted marketing, ordwor
video popularity evolution, making the job of predictiontnoof-mouth via social networking. In other words, there is an
So trivial. underlying process to disseminate the information aboat th

Previously, in order to study strategies for system opemati video and its availability before users take actions to view
such as content replication and request scheduling, staiicdecide to ignore that video. Once a user becomes aware
workload models for accessing a catalog of videos have bewfithe availability of a video, she then makes an independent
proposed([1],[[2]. In such static models, video requestisarr decision whether to view it next, based on her interest level
and get served according to stationary stochastic progessad other factors (such as availability of other choicesg. W
and each request selects a video according to some statitt this theuser reaction proces3 hese hidden processes then
popularity distribution. Such static models certainlyvéern determine a given video’s popularity, and how it evolvesrove
purpose, and allow us to derive good insights about resoutoae. These processes can be quite complicated, depenaling o
allocation and load balancing. Yet, it is also blatantlyacle a large number of factors. In this paper, we try to keep the
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model relatively simple by considering only a few paranstervalue should be in betweenhand 1. If a video’s daily view
the rate of direct recommendation, the rate of word-of-rhoutount is stable, its normalized entropy should be close,to
recommendation, the video’s intrinsic attractiveness] te otherwise its value will be close . We plot the cumulative
user’s reaction rate. We believe by considering these fadistribution function (CDF) of 30-days normalized entrdpy
factors alone, we already have quite a rich model of evatuti@ach type of videos in Fidl] 1.

dynamics that can match the common evolution patterns

observed from our data.

In the rest of the paper, we proceed as follows. First, we [
describe the data we obtained from our collaborator, a large =TV al §
Internet content provider in China. We analyze this data and o8 s ‘ //f 0000‘59 i
give some observations about common patterns in Skc. Il & S
Then we present our stochastic fluid model of the underlying « oo Xf § /s
hidden processes we mentioned above, and derive closed-for % odl 2
solutions in Sed_1ll. The model and its solutions allow us to
plot the evolution patterns depending on the key paramefers 0l [
the model. We then go through a case study of some specific xf ------
videos and give physical interpretation of their popularit 0g : ‘ ‘ ‘
evolution based on our model in S&c V. We also pick out S S
some videos that exhibit some interesting popularity enaiu
patterns that are not captured well by our model yet. We use Fig. 1: CDF of entropy for each video type.

these cases to discuss how our model can be extended in

future studies. The related works are discussed in[Sec. V. IfAs we can see, most of the news videos have low entropy
conclusion, we will discuss the value of our work in creatingalue compared to the other three types. It implies that most
a new direction for workload and system modeling for largeews videos have a sharp increase and decrease of popularity
Internet online video distribution systems, and in appyiine in the first 30 days since their birth. The fractions of videos

results to practical systems. with low entropy for the other three types are quite small but
not zero. This implies that the change of view count does
[I. MEASUREMENT not purely depend on video type. In fact, we expect different

We begin our study by conducting a measurement study fypes of_videos are affected by the same factors. For example
a large online video system in China. This system providé‘s-rV episode recommended through front page may also have

millions of videos for tens of millions of users per day an§ Sharp view count change, Where"?‘s an interesting SO.C'&I new
the number of active users is more than 1 million duringOt recommended by content providers may have quite stable

peak hours. We measure each video’s view count based on ﬁ‘gy view count.
mobile video viewing records collected from the log servers

The dataset covers all viewing records within a six month 36 Movie 0V
period starting from December 1, 2013 to May 31, 2014. In .l . I
our study, we analyze the four most important types: movie, .«

music video (MV), News and TV episode. o

We study the daily change of view count of a video starting
from the day it is uploaded to the online system. Since
each video has a unique set of factors, e.g., recommendatio
rate, videos are expected to have different view count srace
Some videos may have a very sharp increase and decreas
of popularity; while some videos may have relatively stable 16) v 1 osf .
daily view count. To differentiate the view count evolutifor
different videos, we define a (time window based, normalized
view count entropy for each video. Let; be the number of
views of videoj on day: since it is uploaded to the online
system. Given totdl” days in the window, the entropy of video
Jis
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Fig. 2: Scatter plot of entropy and view count for each type.

1 <« vji vji To further study the relationship between entropy and view
Hy(T) = T Z ZT 0. In ZT' v counts, we show the scatter plot in Hil. 2, in which each point
=1 svi=l =1 represents a videa: axis is the entropy value ang axis is
InT is the maximum entropy value could be achieved With the total view count of 30 days. Interestingly, we find that
days. Based on the property of entropy, the normalized pptrathe popular movie and TV have large entropy while popular




news have small entropy. We conjecture that the breaking new TABLE I: List of Notations
all got great exposure from front page recommendation afar total number of users

users’ reaction is very quick such that the view count curyet: | attimet, the set of users who know and would watch video
§(t) the number of users iR
)

of pOPU|ar news has a _Very sharp peak. For pOPU|ar movie N at time ¢, the set of users who know but refuse to watch viged

and TVs, user reaction is not as fast as that of news becauge) | the number of users iy;

of their long viewing durations, which result in moderate 5((5) ?gtimet'bthe ?Et of U,SEVSaV‘(T)O do not know vidgo

. . . . . S € numper or users in s

ﬂ.ucu_Jat'on of . populanty. MV is a speC|aI type with .ShOI‘ Zy at time ¢, the set of users who know videobut do not react yet

viewing duration that tends to have fast user reaction Qut(t) | the number of users in sef;

word-of-mouth recommendation still plays an importanerol W(tt ) Eﬂe set Og users who _havgv viewed vidgan or before timet.
. . . . W € numbper of users In sev;

In Fig.[2, we can see t_hat the pattern of MVs is quite _dlffere nt, rate of direct recommendation

from the others. Motivated by the above observations, wes rate of word-of-mouth recommendation

propose a model to depict the evolution of view count in thes video attractiveness
next section o users’ reaction rate

I1l. EVOLUTION MODEL

Popularity evolution is affected by many factors. It is to& MOd?I of Informatl|on Spreading _ _
complicated to include all of them. In this paper, we model The first process is the spread of information about the
four most important factors: rate of direct recommendatioMideo. Direct recommendation and word-of-mouth recommen-

rate of word-of-mouth recommendation, video attractissnedation are two main methods of distributing a video's infor-

and user reaction rate. mation. This process can be modeled through the following

Different from all previous models about video lifetimeordinary differential equations (ODEs).
and user behaviof [3]H6], we use two processes to describe da(t

; ; : : (t)

popularity evolution. The first process depicts the sprefd o = (048(75) +58(t)$(t))q 1)
information about a video; while the second process is the dy(t)
reaction process once a user has known the video. We believe EPTR (as(t) + Bs(t)x(t)) (1-4q) 2)
that these two processes capture what goes on in the real.worl ds(t)  da(t) dy(t) @)
A. Assumptions and Notations dt dt dt

In our analysis, we make the following assumptions t§(t) iS the number of users who know vidgoand have
simplify the problem: interest in viewing videgj sooner or later; whiles(t) is the

o The total user population is fixed. In practice, user}umber of users who do not know vidgo Through direct

population at a content provider is not fixed. A Video,srecommendatlon, users i get knowledge of videg with

. . . - constant ratea. Through word-of-mouth recommendation,
views will be influenced by the change of user population

. ) ; Users leaveS; with rate Sz(t). ¢, video j’s attractiveness,
The model of popularity evolution does not consider user . ! . L L

. determines the final user population who will view vidg¢o
population churn.

« Videos are independent, i.e., each user independently 'éh_e initial conditions are(0) = 0, y(0) = 0 ands(0) = N

lects videos. In reality, a user who have watched or dislikg"'€" the fixed total user population, we have
a video may refuse to view other related videos, which N = z(t)+yt) + s(t). (4)

means user selection is not independent. We believe the _
chance of such events is low so that they are ignored Y Substituting Eql ¥ to EQII3, we can get

our model. qNg(t) — 3
« Videos are not replayed by the same users. In practice, x(t) = W ()
users may replay a good video from time to time. 1-¢
However, for most videos, previous study showed that y(t) = x(t) (6)
it is rarely replayed by the same user [5]. q (1)
Without loss of generality, we use videpto describe our s(t) = N—-—= (7)
model. The notations used to create the evolution model are 4
listed in Tablell. Here g(t) = @AMt In50x  The detailed derivation is in

Basically speaking, there are two kinds of notations. Thhe appendix.

first kind represents various user populations, classifesbt Lmea 1. As timet approaches infinityz(#) approachesVg

on their knowledge or action. The second kind consists
those parameters associated with each video, determinedﬁgm below,y(1) approaches(1 — ¢)N from below ands(t)

both intrinsic and extrinsic factors. These parameterst ieis approaches) from above.

greater thar). For exampleyy, the rate that users i&; view The proof is straightforward since each userdn either
videoj, must be greater thah v may depend on many factorsjoins X; with probability ¢ or joins ), with probability 1 — q.
such as the videg's type, duration, video content and so onAs a result,s(¢) keeps decreasing and approaches



Let 7 = a + B¢gN, by differentiatingg(¢), we have

g't) = 7g(t) >0,
g'(t) = T%g(t) >0,
9P () = 7g(t) >0

Since, only the users itk; will watch the video sooner or

Proposition 2. If « > 8gN, 2’(t) is a monotonically decreas-
ing function with timet. If BgN < a < (2 ++/3)BgN, 2'(t)
has two stages: decreases as a concave functidf, in]; de-
creases as a convex functionfin, +00). If a > (2++/3)3¢N,
2'(t) decreases as a convex function[in+oo).

The detailed proof is in the appendix. In Fid. 4(b), we plot

/
later, we focus on analyzing the evolution oft) andz/(t). the curves of:'(¢) for the casex > SqN.

Based on differentiations af(¢) together with Eq[5, we get

, 120 ‘ — 1000 ‘
dx(t t L, | = 0<a<@e-VE)mN 4 — BgN<a<(2+V3)FgN
% = #(—F)I)Q > 0, 100’,’ \‘ . (27\/5)‘1’7q;\"<niﬁ(11\"7 800, - aI>(2+\Fs)an '
803 : 1 5
. 600| &
dx(t) _ Tg()(1—g(t)) 60 % s
dt2 ﬂ(g(t) + 1)3 9 a0 “ | 400+ “‘
dx(t)  _ Tg(t)(g*(t) —4g(t) +1) 200 /% ond 2008
dt? Blg(t) + 1)1 05 500 1000 1300 3000 % 100 306 300 400 500
(@) (b)
iy L) r_ 1 BaN
Lett|?g di? O we havet , _ atBeN 1n. o o> Fig. 4: Evolution of dz(t)/dt with N =
BgN, t' < 0; while if « < BgN, t' > 0. With differenta, we 1,000,000, 8 = 0.1/N 005 o =
expect to have different curves fa(t). Lettingz® =0, we 7~ N S 4= - -

get two roots: 0.00005 or 0.0014 or 0.0055 or 0.0188.

2) Case ll:a < BgN:

oL, 2+ VBIBN

a+ BgN o Proposition 3. If o < B¢N, z(t) is a “S” curve. It increases
: N - .
oo 1 2= V3)BgN as a con\;ex function from= 0 to ¢ = ¢’ and increases as a
2T A ¥ BgN o : concave function since> t'.

The proof is straightforward. I1fv < SgN, thent’ > 0.
In [0,¢], 2”(t) > 0, which implies thatz(¢) increases as a
convex function; in[t’, +00), 2’ (t) < 0, which implies that
x(t) increases as a concave function. The curve(of in this
Proposition 1. If o > S¢N, z(t) increases as a concavecase is illustrated with dashed line in Hig. 3.
function with timet . From Propositio 11 and Propositidd 3, we can find that
direct recommendation and word-of-mouth recommendation
have different impact on the spread of video information.
If direct recommendation dominates information spreaa, i.
a > BN, z(t) is a concave curve andlz(¢) is a monotoni-
cally decreasing curve, otherwisgt) is a “S” curve and the
curve ofdx(t) is an inverse “V”.

It is trivial to show thatt, < ¢’ < t;. Now, we discuss the
evolution ofz(¢) andz’(t) in two cases.
1) Case l:a > BgN:

The proof is straightforward. Because > SqN, ' < 0.
z(t) < 0 for t > 0. Meanwhilez’(t) > 0, thusz(t) increases
as a concave function with time The curve ofz(t) in this
case is shown with solid line in Fig] 3.

6 ‘ ‘ ‘ ‘ Proposition 4. If a < pgN, 2/(t) is a monotonically in-
creasing function in[0,¢] and a monotonically decreasing
5 function in [t +o00). If a < (2 — v/3)BgN, 2/(t) has four
stages: increases as a convex functiorilnis]; increases as
4r '." ‘ 1 a concave function ifio, t']; decreases as a concave function
_ in [¢',t;]; decreases as a convex function ff,+oo). If
%=3 ; ] (2—v3)BgN < a < BgN, 2/(t) has three stages: increases as
R | a concave function iff0, t']; decreases as a concave function
in [t',t1]; decreases as a convex function[if, +c0).
1 et < [N | The detailed proof is in the appendix. Fig. 4(a) illustrates
‘ — a >[N the curves ofy/(¢) for the casex < SgN.
K 0 1000 102000 250 Corollary 1. 2/(t) has a unique maximum point, achieving

) ) ) either att =0 if a > BgN oratt =t if a < SgN.
Fig. 3: Evolution ofz(t) with N = 1,000,000, 5 = 0.1/N, N ) ) ]
¢ = 0.5, a = 0.00005 or 0.1. Intuitively speaking,«r as the direct recpmmendatlon r.ate
andg as the word-of-mouth recommendation rate have differ-

ent impacts onz/(¢). If o« dominates information spreading,



2'(0) is the maximum value; otherwisé(¢') is the maximum
value.z’ (t) will significantly affect view count. We conjecture
that if « dominates, view count evolution has light tail;
otherwise view count evolution has heavy tail.

C. Model of User Reaction

The second process depicts how users react after they kn
video j. v is the rate to watch videg by those users iri;
who have not viewed videg yet. The second process can be
captured by the following two ODEs.

120, . . 1000, . . ;
— () <0 <(2—V3)BgN L — GgN <a <(2+V3)3qN
100’,’ == (2-V3)BgN <a <N | | 800'. == a>(24V3)8N
L] .
80 . 1
b 600+
60 % 1 .
K 400}
40+ . B “
20l kY | 200} O
0 - IhE
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i il N "
500 1000 1500 2000 00

Fig. 5: Evolution of dw(t)/dt with v =
parameters the same with:(¢)/dt in Fig.[4.
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Z,; contains those users

decreases with ratez(t). w(t) is the number of users who
have viewed videgj up to timet.

i, who have not viewed videg
yet by time¢. Naturally, z(¢) increases with ratéi:”d% and

dw(t)
dt

is the number of
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views of videoj at timet and can be used to calculate videc
popularity at timet. 10
By solving Eq[8, we have

to=t
— —t to . . .
2(t) = e /t:O @'(to)e™™ dto. (10) Fig. 6: Evolution of dw(t)/dt with 4 = 0.001 and other

The derivation of E¢[_10 is in the appendix. With Eq] 10, Wgarameters the same withx(t)/dt in Fig.d.
can numerically solve(t) and dl;gt). It is quite difficult to get
the closed-form solution of(¢) from Eq.[10. By splitting time

into discrete time slots, we can still prove a useful proposi

OI
0

IV. CASE STUDY

Proposition 5. The curve ofd—lfl(t) has a unique peak value. It _One way to vahdgte _our_analyncal model of yldeo populanty
¢ (view count) evolution is via an independent simulation elod

occurs at the time no earlier than the time whéft) achieves __ . : : .
. o . This, however, does not exist and even if we build one, it
maximum value. In other words, a video’s view count either | ) . .

. . . . would involve various additional assumptions and pararsete
decreases monotonically or increases monotonically leeifor

. Instead, we turn to the measurement data collected from our
decreases monotonically.

collaborator’s real world online video distribution systeand

The detailed proof is in the appendix. Intuitively speakinguse that to give credibility to our analytical results. More
the peak of video views occurs after the peaketif). specifically, we will use typical videos’ view count history
as case studies, and match their patterns to what our model
predict using specific parameters. Based on the meaning of
these parameters and other information about these videos
known to us, we explain why the model matches with the
actual behavior.

Two typical videos are selected for each ty@ample 1

Conjecture 1. The peak oF“;l# is affected byy. With larger

v, i.e., faster users reaction, the peak time%f;ﬁ is closer
to the peak time of’(t).

Without closed-form solution of(t) or ‘“Z(t), it is difficult

to prove this conjecture rigorously. We explain and justifis

conjecture through plotting numerical solutions. is a popular video with high attractivenegsand is usually

de(t) . dw(t) recommended through front page by content providgasaple

Tdt T Tt 2 is an unpopular video with much less total views. In addition
Larger v implies that users’ reaction is fasters when thetp the discussion of normal cases that can be explained by our

know the video. In the extreme case-aapproaches infinity, model, we introduce two more cases that are not modeled

all users will play the video once they know the availabitify well. The first one is affected by constrained eyeball while

the video. In this case, the curve gﬂ;i—t) is almost the same the second one is affected by interest shift. The two adduitio

as that ofz’(t). cases indicate that the quantified factors, exgandg, are not
Fig.[3 and Fig[b show the curves 8% with different always constant and extending our model to the cover such

~. In Fig.[3, we sety = 10 a high value. As one can observecases will be our future work.

the evolution ofdﬁ—gﬂ is almost the same as the onef’%ﬁ In the case study, we plot the evolution of normalized daily

in Fig.[4, which has been stated in Corollafy 2. In [ihy. 6, weiew count. Take videg as an example, if the peak daily view

sety = 0.001 to get different evolution o%. Compared is v}, then the normalized view count of thé& day is ”Jv—(t)

with Fig.[3, for smallery the peaks ofd“;—gt) are postponed. This way, we can compare the evolution of view counts of two

Corollary 2. As~ approaches infinity:




videos with very different peak daily view counts. Note, we&ideo is the most popular TV episode in 2014 in the collected
should compare the popularity evolution with the same numbdata. It is the first episode of “Perfect Couple”, which isygld
of days. However, videos are uploaded at different timeé sumore thanl8 million times within the first 40 days. Sample
that the number of days observed for each video is differeat.is the last episode of TV “Mysterious Transfer Student”.
We will try to compare videos with about the same numbét is an unpopular TV episode with onl§0 thousand total
of observed days, though it cannot be strictly realized. views. This TV is produced by Japan. Only a small fraction
A. Normal Case Study of Chinese viewers are interested in it. We plot the evotutio

' of view counts for both episodes in Fig. 8.axis andy axis

For movies, we list two patterns of the popularity evohayve the same meaning with Fig. 7. As we can see, since
lution. The first pattern includes most popular videos Witthe information spreading rate by direct recommendation of
high attractiveness and high view count, which are usuallife most popular TV is very high, its popularity evolution is
recommended by content providers and favored by mQgry sharp. The evolution of the second one, mainly replying

users. The second pattern includes unpopular videos with Ign word-of-mouth recommendation to spread information, is
attractiveness and low total view count. We select two n&vigather stable.

both recommended by the content pro»{?deSample lis an
American movie called “Now You See Me”, directed by Louis

Leterrier. This video’s attractiveness is very high. Theng 10 v
given by those users who have viewed this vide6.is(over — Sample 1
max rating10). It is played for about 8 million times since 2 0.8 e
it is uploaded. During our observation period, the peak view 3
is about0.1 million. Sample 2 is a Chinese movie called 306
“Perfect Beyond” , also recommended by the content provider %
There are no famous Chinese stars in this movie, and thus its S 04n
attractiveness is low with no more thanl million total views. £
However, the rating of “Perfect Beyond”7s1, implying some =02
users will spread information about this movie by word-of-
mouth recommendation. We plot their normalized daily view 00 —%5 10 15 20 25 30 35 40 45
counts in Fig[7. Day
x axis is the number of days since the video is uploaded Fig. 8: Case study of TV.

andy axis is the normalized view count. As we can see, the

curve of sample 1 has a sharper peak than that of sample 2\ews is a special content type since most news lose their
Since word-of-mouth recommendation plays a more importagractiveness to users very quickly with time. We consider

role, the tail of sample 2’s evolution is heavier. two kinds of news videos with two evolution patterns. The
first pattern is for breaking news and is expected to have a
Movie large direct recommendation rate and very fast user reactio

1.0

rate. Popularity evolution should be very sharp and the peak
— Sample 1 . .
os Sample 2 shou_lq appear quite early. The_z second_ pattern is not very
= sensitive to time, e.g., popularity evolution of social sew
20.6 It is expected that the second pattern should have a stable
S evolution. Mainly relying on word-of-mouth recommendatio
EM; to spread information, the peak time should be later than
R the first pattern. In this study, sample 1 is the most popular
go_z breaking news in 2014 about the missing of MH370. It
achieves roughh80 million of total views within one week
0.0 time. Sample 2 is a social news about uncivilized behavior in

0 10 20 30 S.—Sy 50 60 70 80 Beijing subway. Normalized view counts of the two samples
are plotted in Figl 19z axis andy axis have the same meaning

with Fig.[8. From the popularity evolution, we can find that
Imost all views of sample 1 occurred in the first few days.

' ) mple 2, replying on word-of-mouth recommendation to
The first pattern includes popular TVs, usually recommendg read information, has a peak at the 27th day since its. birth

by content providers, is expected to have pppularity elaut For music videos, we also find two types of videos for case
with a sharper peak. The second pattern mchdes unpopugmdy. The first type is about the latest moves of some popular
TVs, usually not recommended by content providers. Samplest:hr_ These videos, usually recommended by content prsvide

1 Most new movies are recommended by content providers, iecepdate can attract fans’ attention in a very shqrt perlod.. Thusy th_e
speed of movies is very slow. are expected to have a very sharp peak in popularity evalutio

Fig. 7: Case study of movie.

For TV, we also give two evolution patterns as case stu



behavior deviated from our model. They serve as good leads

19 : News ‘ for us to refine our model.
H — Sample 1 The first case is caused by constrained eyeball. The time

2 08 i Sample 2 spent by each user on watching videos is limited. If there
S B are too many videos telling the same event, these videos will
.;30'6’ H compete with each other for limited user time. For example,
B ) the missing of MH370 is one of the breaking news all over
g“’ o the world in 2014. The supply of videos about MH370 is
s ol e N_‘,_.' Y overwhelming. Users with limited watching time cannot aove

oy Ul . all videos about this breaking news. We pick up 3 such videos

00 L ' and plot their view count evolution in Fig.1L1. All curves leav

30 40 50 60 70

Day

Fig. 9: Case study of news.

very sharp peak, like the news about MH370 plotted in Hig. 9.
The difference lies in the total views. These three videes ar
very unpopular with total views no more thaf00 during our
measured time window. We believe these videos compete with
each other such that their total attractiveness are camstra

The second type is the music created by singers themselves.

User reaction rate is usually not very fast and information
spreading relies on word-of-mouth recommendation. These
videos are expected to have a stable popularity evolution.
In this study, sample 1 is a song sung by famous Hong
Kong movie star Maggie Cheung Man-yuk in Shanghai. As

a movie star, Maggie Cheung is not as good as a singer.

Her MV attracted a lot of fans but was not well received.
It was played abou8 million times within one week time.
Sample 2 is a good music video with very high user rafirly
However, mainly relying on word-of-mouth recommendation
for information spreading, its total view count is not high
during our measured time window and its popularity evolutio

is quite stable. We plot two samples in F[g.] 10, which is

consistent with our analysis.
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o o
o o

N
>

Normalized View Count

o
N

0.0
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0

Fig. 10: Case study of music video.
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B. Cases not modeled well

We mainly model four factors: direct recommendatiorgttention in both industry and academia during the past few
word-of-mouth recommendation, video attractiveness a®i uyears. By assuming stationary video popularity, [L], [2hsi
reaction. For most cases, we can give a good explanatjglified the performance analysis in P2P VoD systems. Tu et al.
of the popularity evolution if videos’ view count is mainly[7] studied an efficient data scheduling scheme for P2P IPTV
affected by these four factors and these factors are uneldangystem, especially targeting those storage-limited @ésvitn
with time. However, from our data, we also found somf8], Tan et al. studied the content replication scheme in R P2
interesting cases that are not modeled well by our existisgstem consisting of ordinary user devices and set top boxes
model. We mainly show two cases, and explain why theiWang et al. [[9] proposed a P2P scheme for social network
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Fig. 11: Case with constrained eyeball.

The second case is the sudden change of video attractive-
ness. In our model, the attractiveness vajuss a constant.
However, this does not model all cases in real world. “The
Monkey King” is a very popular movie in 2014 directed by
Hong Kong director Soi Cheang Pou-Soi. It co8t§ billion
HK dollar and involves many popular stars. Preview of this
movie is very popular, played aboditmillion times within the
first month. View count evolution of this preview is plotted i
Fig.[12. Different from the normal case, there is a sharp view
count drop on the 63rd day. Actually, it is the day that thé ful
movie is uploaded. User attention moves from the preview
to the full version video such that the preview attractivsne
diminishes.

V. RELATED WORK
Large-scale video delivery over Internet has attracteatgre
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Fig. 12: Case with interest shift.

believe the fashion the video is recommended (made known)
to the viewers, and the viewers reaction rate (limited bytdini
attention span) will together play a major role. Yet other
factors could be easily added by extending our model. We
validate our model through case studies of common video
popularity evolution patterns from our measurements. Our
model is a first step towards not only explaining various gide
popularity dynamics, but also explaining why they behave so
In our validation study, we also bring out some cases that
cannot be represented well by our current model, because of
some assumptions we made to keep the model simple. For
example, the user reaction rate and video attractiveness ar
assumed to be independent and constant, whereas they may
depend on detailed marketing strategy, and may depend on
marketing of and the amount of other videos. We will consider

these angles in our future work.

based video service. Niu et dl. [10] studied a cloud bandwidt
auto-scaling scheme to meet various user demands while at th
same time minimize the bandwidth cost. However, all thesE]
works adopted over simplified popularity evolution models.
Our popularity evolution model can be used by these works
to refine their schemes. (2
Many previous works studied video popularity and popu-
larity evolution based on measurement. For example, Cha Bi
al. [3] studied the popularity distribution and evolutioar f
UGC content by collecting data traces from two large UGC
video systems. Li et al[ [4] measured user behavior in th&l
PPTV mobile video platform and developed a practical CDN
replication scheme accordingly. 1n![5], Chen et al. projpose
a lifetime model of online video popularity evolutiorl.] [6] [5]
incorporated video popularity decaying effect into P2Hicep
tion scheme so as to improve delivery performance. Howevep)
without theoretical analysis, these works cannot bringtbat
factors affecting popularity evolution. [
Epidemic model originally used to study the spreading
of disease[[11] in human society has been broadly used to
analyze information diffusion in complex networks, e[g2][1 8
Researchers have proposed several different epidemiclsnode
to study the information spreading in online social network
over the past few years. For example,|[13] proposed a line&?
influence model, which does not require the knowledge of the
underlying social network and [L4] used a branching proceldél
model to study the message spreading in a microblog service.
In [15], Jiang et al. studied how information propagates in [a1]
social network with limited user attention. Inspired by gae
works, we use epidemic model to study the spreading
video information by direct recommendation and word-of13]
mouth recommendation.

7]

VI. CONCLUSION [14]

In this paper, we analyze video popularity and how
changes over time based on data collected from a Iarge—
scaled online video content provider in China. Based on this
analysis, we come up with a stochastic fluid model to capture
the likely factors driving online video popularity dynamic
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APPENDIX

Besides the video’s intrinsic attractiveness (interestlle we Derivation of Eq. B, Eq.[8 and Eq.[T:



For simplicity, in derivation we let, y, s represent:(t),
y(t), s(t), respectively. Sincé = -4, we havey = “-Lz,
Together withz +y + s = N, we haves = N — % By
substituting it back to Ed.J1 we have

dx

pri agN + (BgN — a)z — Bx?

N / dx :/dt
agN + (BgN — )z — fa?
1 1 1
- a+ﬁqN/(x+%_:c—qN)dx_/dt
+ &
= oz—i—lﬂqu’ng—q?V‘:t—’—C
N ‘;jﬁ\f — (@ HBIN(+C) — g (4

From Lemmdlz(t) < Nq. We have

‘ x+% ‘ — I+% _ e(och,BqN)(tJrC) :g(t)
r—qN gN —x
. qNg(t) — 5
g(t)+1
Finally, by lettingz(0) = 0 we obtainC' = m In 525 and

X

g(t) = @ PN N Since 4 = -4 ands = N
we can derivey(t) and s(t) correspondingly.
Proof of Proposition [2:

If a > BgN, g(t) = &ILNe(O“FBqN)t > 1 with ¢ > 0. Thus,
2’ (t) is always less tha@with ¢t > 0, 2/(¢) is a monotonically
decreasing function with time

If BgN < a < (2+ v/3)BgN, we havet; > 0 andt, < 0.

In [0,;], 2 < 0 and2” < 0, thusz/(t) decreases as a
concave function. Irft;, +oc), (3 > 0 andz” < 0, 2/(t)
decreases as a convex function.

If a > (24 v/3)BgN, we havet; < 0 andt, < 0. Thus,
) >0 with ¢ > 0. 2/(t) decreases as a convex function.

|
Proof of Proposition [4:

If o < BgN,t >0.In]0,¢] 2" (t) > 0; while in [/, +00)
2”(t) < 0. Thus,2’(t) is monotonically increasing if0, ¢']
and monotonically decreasing [ti, +00).

If o < (2—+/3)BqN, we haved < ty < t' < t1.In[0,ts),
z®) > 0 andz” > 0, 2/(t) increases as a convex function
In (t2,t'), 2 < 0 andz” > 0, 2/(t) increases as a concav
function. In (¢, ¢,), 3 < 0 and2” < 0, 2/(t) decreases as
a concave function. Iift;, +o00), ) > 0 andz” < 0, 2/(t)
decreases as a convex function.

If (2—+/3)BgN < a < BgN, we havet, < 0 < t' < t;.
In (0,¢), 2 < 0 andz” > 0, /() increases as a concav
function. In (', t,), (3 < 0 andz” < 0, 2/(t) decreases as
a concave function. Iift;, +o00), ) > 0 andz” < 0, 2/(t)
decreases as a convex function.

|
Derivation of Eq. [10:

The time period[0,¢] is split into K time intervals, each

duration isA. During time interval, the increase af is about

equal toz(iA)A. These users are also members4AiA).
Then,

K
AKA) = > 2/(iA)Ae” (TR
i=1
Letting A approach) and KA = ¢, we get
K

z(t) = lim z(KA)= lim 2/ (iA) Ae=(t=1A)Y
A—0 A—0 Pl
to=t
= e—vt/ ' (to)e ™0 dty.
to=0

|
Proof of Proposition [3:

The time is split into time slots. Without a little bit abugin
notations, we let be a time slot. The numbers of usersdpn
and X, at the beginning of each time slot at€t) and z(t).

At the beginning of each time slot, a user makes a decision
to view the video with probabilityy. dz(t) anddz(t) are the
change of user population of; and Z; respectively. Then,
dz(t) = —yz(t) + dx(t).

If dz(t) is an increasing sequence aad) is also increas-
ing, thendz(t) < dx(t + 1) and~z(t) < dz(t). z(t + 1) =
z(t)(1—~)+dz(t) is the number of users who can make view
decision at the beginning of time slot1. Sincez(t) < dt)
we have(z(t)(1—~)+dz(t))y < dz(t) < dz(t+1) and thus
dz(t+1) = —(z(t)(1 =) + dz(t))y +dx(t+ 1) > 0. z(t) is
still an increasing sequence at time slof 1.

If dx(t) is a decreasing sequence aid) is also decreasing,
thendz(t) > dz(t4+1) andyz(t) > dxz(t). Again,z(t)(1—v)+
dz(t) is the number of users who can make view decision at
the beginning of time slot + 1. This time z(¢) > 22 sych
that (z(t)(1 — ) + dz(t))y > dx(t) > dz(t + 1) and thus
dz(t4+1) = —(2(t)(1 — ) +dx(t))y +de(t +1) < 0. 2(t) is
an decreasing sequence at time slat1.

Now, let us go back to recall Propositibh 2 and Proposi-
tion[4, there are two casest(t) is a monotonically decreasing
function;dz(t) is a monotonically increasing function 0, ¢']
and monotonically decreasing function [iri, +00).

For the first case, at the beginnin@)y < dz(t) since users
in Z; come fromA;. With time ¢t goes onz(¢) increases and
dz(t) decreases. Onceg(t) begins to decrease, together with
the fact thatdz(t) is a decreasing sequencs}) will keep

e‘Ulecreasing in the future.

For the second caséy(t) keeps increasing beforé Since
users inZ;, come fromX;, dz(t) begins to increase from=
0. Based on above argumentiit) will keeps increasing with
time ¢ until ¢’. Then,dz(t) begins to decrease andt) may

Still increase. Once(t) begins to decrease(t) will keep

decreasing in the future.
In summary, z(t) has a unique peak occurring no
earlier than the time whedzx(¢) achieves peak value. Since

‘if((f)) the trace of“;gt) is similar toz(t) except a scalay. B
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