
ar
X

iv
:1

41
2.

23
26

v1
  [

cs
.N

I] 
 7

 D
ec

 2
01

4

Modeling Dynamics of Online Video Popularity
Jiqiang Wu∗, Yipeng Zhou†, Dah Ming Chiu∗, Youwei Hua‡ and Zirong Zhu‡

∗Department of Information Engineering, The Chinese University of Hong Kong
†College of Computer Science and Software Engineer, Shenzhen University

‡Department of Online Video, Tencent, China
Email: ∗{wjq010, dmchiu}@ie.cuhk.edu.hk;†ypzhou@szu.edu.cn;‡{wwjs, chriszhu}@tencent.com

Abstract—Large Internet video delivery systems serve millions
of videos to tens of millions of users on daily basis, via Video-on-
Demand (VoD) and live streaming. Video popularity (measured
by view count) evolves over time. It represents the workload, as
well as business value, of the video to the overall system. The
ability to predict video popularity is very helpful for impr oving
service quality and operating efficiency. Previous studiesadopted
simple (usually static) models for video popularity, or directly
adopted patterns from measurement studies. In this paper, we
develop a stochastic fluid model that tries to capture two hidden
processes that give rise to different patterns of a given video’s
popularity evolution: (a) the information spreading process,
and (b) the user reaction process. Specifically, these processes
model how the video is recommended to the user, the videos
inherent attractiveness, and users reaction rate; and yield specific
popularity evolution patterns. We then validate our model by
matching the predictions of the model with observed patterns
from our collaborator, a large content provider in China. Th is
model thus gives us the insight to explain the common and
different video popularity evolution patterns and why.

I. I NTRODUCTION

Internet VoD streaming and live streaming are serving
a large and increasing number of consumers. Those large
and established content providers maintain a huge catalog of
videos and serve tens of millions of users per day. There
is a variety of different video types, for example, movies,
TV episodes, news clips, user generated videos, music videos
(MVs), Sports and so on. New videos are added into the
system regularly. Some, such as news clips, may have short
lives, whereas others may be viewed over many years. The
demand for a given video, over its lifetime (in the system),
is referred to as its popularity (as a function of time). If this
demand can be predicted, even roughly, it can be very helpful
for the content provider in running its operation. As can be
expected, there are a large number of different patterns for
video popularity evolution, making the job of prediction not
so trivial.

Previously, in order to study strategies for system operation,
such as content replication and request scheduling, static
workload models for accessing a catalog of videos have been
proposed [1], [2]. In such static models, video requests arrive
and get served according to stationary stochastic processes,
and each request selects a video according to some static
popularity distribution. Such static models certainly serve a
purpose, and allow us to derive good insights about resource
allocation and load balancing. Yet, it is also blatantly clear

to us that in a real-world system, the popularity of different
videos are constantly evolving.

A large number of factors can affect video popularity evolu-
tion. For example, how is the video recommended? Depending
on its type, a video can be sensitive to its age (measured as the
time since it is made available by a given content provider) to
different extents. If it is listed on the web page of the service
as one of the top videos (of some sort), it would tend to draw
attention quickly, compared to if it were recommended via
social networks. The type of video and its intrinsic quality
or topic can affect the level of potential interest. Given the
volume of available catalog of (new) videos, and relatively
constant attention (eyeballs), the rate of user reaction tends to
be limited at any given time. The goal of this study is to arrive
at some models that can capture some of the most important
underlying factors, and can represent the way video popularity
evolves in real systems.

There were also previous studies that considered view count
as a dynamic value, and tried to come up with some empirical
rules of evolution patterns from analyzing view count logs
from real-world systems [3]–[6]. This approach, while it is
more based on reality, and quite practical for the given system
studied, is nevertheless quite ad hoc and does not tell us
insights that can be applied to different scenarios and systems.

In our study, we go one step further - try to create a model
of video popularity evolution based on factors that can be
explained. This is then used to match the real-world view
count dynamics of different videos to ensure the model does
represent what is happening in reality. In particular, we try to
capture in our model somehidden processthat is not easily
measurable as the view count dynamics itself. Before a user
decides to view a video, she has to come to know the existence
of that video via some form of recommendation, whether it
is via direct marketing, or user-targeted marketing, or word-
of-mouth via social networking. In other words, there is an
underlying process to disseminate the information about the
video and its availability before users take actions to view
or decide to ignore that video. Once a user becomes aware
of the availability of a video, she then makes an independent
decision whether to view it next, based on her interest level
and other factors (such as availability of other choices). We
call this theuser reaction process. These hidden processes then
determine a given video’s popularity, and how it evolves over
time. These processes can be quite complicated, depending on
a large number of factors. In this paper, we try to keep the
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model relatively simple by considering only a few parameters:
the rate of direct recommendation, the rate of word-of-mouth
recommendation, the video’s intrinsic attractiveness, and the
user’s reaction rate. We believe by considering these four
factors alone, we already have quite a rich model of evolution
dynamics that can match the common evolution patterns
observed from our data.

In the rest of the paper, we proceed as follows. First, we
describe the data we obtained from our collaborator, a large
Internet content provider in China. We analyze this data and
give some observations about common patterns in Sec. II.
Then we present our stochastic fluid model of the underlying
hidden processes we mentioned above, and derive closed-form
solutions in Sec. III. The model and its solutions allow us to
plot the evolution patterns depending on the key parametersof
the model. We then go through a case study of some specific
videos and give physical interpretation of their popularity
evolution based on our model in Sec. IV. We also pick out
some videos that exhibit some interesting popularity evolution
patterns that are not captured well by our model yet. We use
these cases to discuss how our model can be extended in
future studies. The related works are discussed in Sec. V. In
conclusion, we will discuss the value of our work in creating
a new direction for workload and system modeling for large
Internet online video distribution systems, and in applying the
results to practical systems.

II. M EASUREMENT

We begin our study by conducting a measurement study on
a large online video system in China. This system provides
millions of videos for tens of millions of users per day and
the number of active users is more than 1 million during
peak hours. We measure each video’s view count based on the
mobile video viewing records collected from the log servers.
The dataset covers all viewing records within a six month
period starting from December 1, 2013 to May 31, 2014. In
our study, we analyze the four most important types: movie,
music video (MV), News and TV episode.

We study the daily change of view count of a video starting
from the day it is uploaded to the online system. Since
each video has a unique set of factors, e.g., recommendation
rate, videos are expected to have different view count traces.
Some videos may have a very sharp increase and decrease
of popularity; while some videos may have relatively stable
daily view count. To differentiate the view count evolutionfor
different videos, we define a (time window based, normalized)
view count entropy for each video. Letvji be the number of
views of videoj on day i since it is uploaded to the online
system. Given totalT days in the window, the entropy of video
j is

Hj(T ) = − 1

lnT

T
∑

i=1

vji
∑T

i=1 vji
ln

vji
∑T

i=1 vji
.

lnT is the maximum entropy value could be achieved withT
days. Based on the property of entropy, the normalized entropy

value should be in between0 and 1. If a video’s daily view
count is stable, its normalized entropy should be close to1,
otherwise its value will be close to0. We plot the cumulative
distribution function (CDF) of 30-days normalized entropyfor
each type of videos in Fig. 1.
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Fig. 1: CDF of entropy for each video type.

As we can see, most of the news videos have low entropy
value compared to the other three types. It implies that most
news videos have a sharp increase and decrease of popularity
in the first 30 days since their birth. The fractions of videos
with low entropy for the other three types are quite small but
not zero. This implies that the change of view count does
not purely depend on video type. In fact, we expect different
types of videos are affected by the same factors. For example,
a TV episode recommended through front page may also have
a sharp view count change, whereas an interesting social news
not recommended by content providers may have quite stable
daily view count.

Fig. 2: Scatter plot of entropy and view count for each type.

To further study the relationship between entropy and view
counts, we show the scatter plot in Fig. 2, in which each point
represents a video.x axis is the entropy value andy axis is
the total view count of 30 days. Interestingly, we find that
the popular movie and TV have large entropy while popular



news have small entropy. We conjecture that the breaking news
all got great exposure from front page recommendation and
users’ reaction is very quick such that the view count curve
of popular news has a very sharp peak. For popular movies
and TVs, user reaction is not as fast as that of news because
of their long viewing durations, which result in moderate
fluctuation of popularity. MV is a special type with short
viewing duration that tends to have fast user reaction but
word-of-mouth recommendation still plays an important role.
In Fig. 2, we can see that the pattern of MVs is quite different
from the others. Motivated by the above observations, we
propose a model to depict the evolution of view count in the
next section.

III. E VOLUTION MODEL

Popularity evolution is affected by many factors. It is too
complicated to include all of them. In this paper, we model
four most important factors: rate of direct recommendation,
rate of word-of-mouth recommendation, video attractiveness
and user reaction rate.

Different from all previous models about video lifetime
and user behavior [3]–[6], we use two processes to describe
popularity evolution. The first process depicts the spread of
information about a video; while the second process is the
reaction process once a user has known the video. We believe
that these two processes capture what goes on in the real world.

A. Assumptions and Notations

In our analysis, we make the following assumptions to
simplify the problem:

• The total user population is fixed. In practice, user
population at a content provider is not fixed. A video’s
views will be influenced by the change of user population.
The model of popularity evolution does not consider user
population churn.

• Videos are independent, i.e., each user independently se-
lects videos. In reality, a user who have watched or dislike
a video may refuse to view other related videos, which
means user selection is not independent. We believe the
chance of such events is low so that they are ignored in
our model.

• Videos are not replayed by the same users. In practice,
users may replay a good video from time to time.
However, for most videos, previous study showed that
it is rarely replayed by the same user [5].

Without loss of generality, we use videoj to describe our
model. The notations used to create the evolution model are
listed in Table I.

Basically speaking, there are two kinds of notations. The
first kind represents various user populations, classified based
on their knowledge or action. The second kind consists of
those parameters associated with each video, determined by
both intrinsic and extrinsic factors. These parameters must be
greater than0. For example,γ, the rate that users inZt view
videoj, must be greater than0. γ may depend on many factors
such as the videoj’s type, duration, video content and so on.

TABLE I: List of Notations

N total number of users
Xt at time t, the set of users who know and would watch videoj
x(t) the number of users inXt

Yt at time t, the set of users who know but refuse to watch videoj
y(t) the number of users inYt

S(t) at time t, the set of users who do not know videoj
s(t) the number of users in setS(t)
Zt at time t, the set of users who know videoj but do not react yet
z(t) the number of users in setZt

Wt the set of users who have viewed videoj on or before timet.
w(t) the number of users in setWt

α rate of direct recommendation
β rate of word-of-mouth recommendation
q video attractiveness
γ users’ reaction rate

B. Model of Information Spreading

The first process is the spread of information about the
video. Direct recommendation and word-of-mouth recommen-
dation are two main methods of distributing a video’s infor-
mation. This process can be modeled through the following
ordinary differential equations (ODEs).

dx(t)

dt
=

(

αs(t) + βs(t)x(t)
)

q (1)

dy(t)

dt
=

(

αs(t) + βs(t)x(t)
)

(1− q) (2)

ds(t)

dt
= −dx(t)

dt
− dy(t)

dt
(3)

x(t) is the number of users who know videoj and have
interest in viewing videoj sooner or later; whiles(t) is the
number of users who do not know videoj. Through direct
recommendation, users inSt get knowledge of videoj with
constant rateα. Through word-of-mouth recommendation,
users leaveSt with rate βx(t). q, video j’s attractiveness,
determines the final user population who will view videoj.
The initial conditions arex(0) = 0, y(0) = 0 ands(0) = N .
Given the fixed total user population, we have

N = x(t) + y(t) + s(t). (4)

By substituting Eq. 4 to Eq. 1-3, we can get

x(t) =
qNg(t)− α

β

g(t) + 1
(5)

y(t) =
1− q

q
x(t) (6)

s(t) = N − x(t)

q
(7)

Here g(t) = e(α+βqN)t+ln α
βqN . The detailed derivation is in

the appendix.

Lemma 1. As timet approaches infinity,x(t) approachesNq
from below,y(t) approaches(1 − q)N from below ands(t)
approaches0 from above.

The proof is straightforward since each user inSt either
joins Xt with probabilityq or joinsYt with probability1− q.
As a result,s(t) keeps decreasing and approaches0.



Let τ = α+ βqN , by differentiatingg(t), we have

g′(t) = τg(t) > 0,

g′′(t) = τ2g(t) > 0,

g(3)(t) = τ3g(t) > 0.

Since, only the users inXt will watch the video sooner or
later, we focus on analyzing the evolution ofx(t) andx′(t).
Based on differentiations ofg(t) together with Eq. 5, we get

dx(t)

dt
=

τ2g(t)

β(g(t) + 1)2
> 0,

d2x(t)

dt2
=

τ3g(t)(1− g(t))

β(g(t) + 1)3
,

d3x(t)

dt3
=

τ4g(t)(g2(t)− 4g(t) + 1)

β(g(t) + 1)4
.

Letting d2x(t)
dt2

= 0, we havet′ = 1
α+βqN

ln βqN
α

. If α >
βqN , t′ < 0; while if α < βqN , t′ > 0. With differentα, we
expect to have different curves forx(t). Letting x(3) = 0, we
get two roots:

t1 =
1

α+ βqN
ln

(2 +
√
3)βqN

α
,

t2 =
1

α+ βqN
ln

(2−
√
3)βqN

α
.

It is trivial to show thatt2 < t′ < t1. Now, we discuss the
evolution ofx(t) andx′(t) in two cases.

1) Case I:α > βqN :

Proposition 1. If α > βqN , x(t) increases as a concave
function with timet .

The proof is straightforward. Becauseα > βqN , t′ < 0.
x′′(t) < 0 for t > 0. Meanwhilex′(t) > 0, thusx(t) increases
as a concave function with timet. The curve ofx(t) in this
case is shown with solid line in Fig. 3.
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Fig. 3: Evolution ofx(t) with N = 1, 000, 000, β = 0.1/N ,
q = 0.5, α = 0.00005 or 0.1.

Proposition 2. If α > βqN , x′(t) is a monotonically decreas-
ing function with timet. If βqN < α < (2 +

√
3)βqN , x′(t)

has two stages: decreases as a concave function in[0, t1]; de-
creases as a convex function in[t1,+∞). If α > (2+

√
3)βqN ,

x′(t) decreases as a convex function in[0,+∞).

The detailed proof is in the appendix. In Fig. 4(b), we plot
the curves ofx′(t) for the caseα > βqN .
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Fig. 4: Evolution of dx(t)/dt with N =
1, 000, 000, β = 0.1/N , q = 0.05, α =
0.00005 or 0.0014 or 0.0055 or 0.0188.

2) Case II:α < βqN :

Proposition 3. If α < βqN , x(t) is a “S” curve. It increases
as a convex function fromt = 0 to t = t′ and increases as a
concave function sincet > t′.

The proof is straightforward. Ifα < βqN , then t′ > 0.
In [0, t′], x′′(t) > 0, which implies thatx(t) increases as a
convex function; in[t′,+∞), x′′(t) < 0, which implies that
x(t) increases as a concave function. The curve ofx(t) in this
case is illustrated with dashed line in Fig. 3.

From Proposition 1 and Proposition 3, we can find that
direct recommendation and word-of-mouth recommendation
have different impact on the spread of video information.
If direct recommendation dominates information spread, i.e.,
α > βqN , x(t) is a concave curve anddx(t) is a monotoni-
cally decreasing curve, otherwisex(t) is a “S” curve and the
curve ofdx(t) is an inverse “V”.

Proposition 4. If α < βqN , x′(t) is a monotonically in-
creasing function in[0, t′] and a monotonically decreasing
function in [t′,+∞). If α < (2 −

√
3)βqN , x′(t) has four

stages: increases as a convex function in[0, t2]; increases as
a concave function in[t2, t′]; decreases as a concave function
in [t′, t1]; decreases as a convex function in[t1,+∞). If
(2−

√
3)βqN < α < βqN , x′(t) has three stages: increases as

a concave function in[0, t′]; decreases as a concave function
in [t′, t1]; decreases as a convex function in[t1,+∞).

The detailed proof is in the appendix. Fig. 4(a) illustrates
the curves ofx′(t) for the caseα < βqN .

Corollary 1. x′(t) has a unique maximum point, achieving
either at t = 0 if α > βqN or at t = t′ if α < βqN .

Intuitively speaking,α as the direct recommendation rate
andβ as the word-of-mouth recommendation rate have differ-
ent impacts onx′(t). If α dominates information spreading,



x′(0) is the maximum value; otherwisex′(t′) is the maximum
value.x′(t) will significantly affect view count. We conjecture
that if α dominates, view count evolution has light tail;
otherwise view count evolution has heavy tail.

C. Model of User Reaction

The second process depicts how users react after they know
video j. γ is the rate to watch videoj by those users inXt

who have not viewed videoj yet. The second process can be
captured by the following two ODEs.

dz(t)

dt
= −γz(t) +

dx(t)

dt
(8)

dw(t)

dt
= γz(t) (9)

Zt contains those users inXt who have not viewed videoj
yet by time t. Naturally, z(t) increases with ratedx(t)

dt
and

decreases with rateγz(t). w(t) is the number of users who
have viewed videoj up to time t. dw(t)

dt
is the number of

views of videoj at timet and can be used to calculate video
popularity at timet.

By solving Eq. 8, we have

z(t) = e−γt

∫ t0=t

t0=0

x′(t0)e
γt0dt0. (10)

The derivation of Eq. 10 is in the appendix. With Eq. 10, we
can numerically solvez(t) and dw(t)

dt
. It is quite difficult to get

the closed-form solution ofz(t) from Eq. 10. By splitting time
into discrete time slots, we can still prove a useful proposition.

Proposition 5. The curve ofdw(t)
dt

has a unique peak value. It
occurs at the time no earlier than the time whenx′(t) achieves
maximum value. In other words, a video’s view count either
decreases monotonically or increases monotonically before it
decreases monotonically.

The detailed proof is in the appendix. Intuitively speaking,
the peak of video views occurs after the peak ofx′(t).

Conjecture 1. The peak ofdw(t)
dt

is affected byγ. With larger
γ, i.e., faster users reaction, the peak time ofdw(t)

dt
is closer

to the peak time ofx′(t).

Without closed-form solution ofz(t) or dw(t)
dt

, it is difficult
to prove this conjecture rigorously. We explain and justifythis
conjecture through plotting numerical solutions.

Corollary 2. As γ approaches infinity,dx(t)
dt

≈ dw(t)
dt

.

Larger γ implies that users’ reaction is fasters when they
know the video. In the extreme case asγ approaches infinity,
all users will play the video once they know the availabilityof
the video. In this case, the curve ofdw(t)

dt
is almost the same

as that ofx′(t).
Fig. 5 and Fig. 6 show the curves ofdw(t)

dt
with different

γ. In Fig. 5, we setγ = 10 a high value. As one can observe,
the evolution ofdw(t)

dt
is almost the same as the one ofdx(t)

dt

in Fig. 4, which has been stated in Corollary 2. In Fig. 6, we
set γ = 0.001 to get different evolution ofdw(t)

dt
. Compared

with Fig. 5, for smallerγ the peaks ofdw(t)
dt

are postponed.
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Fig. 5: Evolution of dw(t)/dt with γ = 10 and other
parameters the same withdx(t)/dt in Fig. 4.
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IV. CASE STUDY

One way to validate our analytical model of video popularity
(view count) evolution is via an independent simulation model.
This, however, does not exist and even if we build one, it
would involve various additional assumptions and parameters.
Instead, we turn to the measurement data collected from our
collaborator’s real world online video distribution system, and
use that to give credibility to our analytical results. More
specifically, we will use typical videos’ view count history
as case studies, and match their patterns to what our model
predict using specific parameters. Based on the meaning of
these parameters and other information about these videos
known to us, we explain why the model matches with the
actual behavior.

Two typical videos are selected for each type.Sample 1
is a popular video with high attractivenessq and is usually
recommended through front page by content providers.Sample
2 is an unpopular video with much less total views. In addition
to the discussion of normal cases that can be explained by our
model, we introduce two more cases that are not modeled
well. The first one is affected by constrained eyeball while
the second one is affected by interest shift. The two additional
cases indicate that the quantified factors, e.g.,α andq, are not
always constant and extending our model to the cover such
cases will be our future work.

In the case study, we plot the evolution of normalized daily
view count. Take videoj as an example, if the peak daily view
is v∗j , then the normalized view count of thetth day is vj(t)

v∗

j
.

This way, we can compare the evolution of view counts of two



videos with very different peak daily view counts. Note, we
should compare the popularity evolution with the same number
of days. However, videos are uploaded at different times such
that the number of days observed for each video is different.
We will try to compare videos with about the same number
of observed days, though it cannot be strictly realized.

A. Normal Case Study

For movies, we list two patterns of the popularity evo-
lution. The first pattern includes most popular videos with
high attractiveness and high view count, which are usually
recommended by content providers and favored by most
users. The second pattern includes unpopular videos with low
attractiveness and low total view count. We select two movies,
both recommended by the content provider1. Sample 1 is an
American movie called “Now You See Me”, directed by Louis
Leterrier. This video’s attractiveness is very high. The rating
given by those users who have viewed this video is9.2 (over
max rating10). It is played for about 8 million times since
it is uploaded. During our observation period, the peak view
is about 0.1 million. Sample 2 is a Chinese movie called
“Perfect Beyond” , also recommended by the content provider.
There are no famous Chinese stars in this movie, and thus its
attractiveness is low with no more than0.4 million total views.
However, the rating of “Perfect Beyond” is7.1, implying some
users will spread information about this movie by word-of-
mouth recommendation. We plot their normalized daily view
counts in Fig. 7.
x axis is the number of days since the video is uploaded

andy axis is the normalized view count. As we can see, the
curve of sample 1 has a sharper peak than that of sample 2.
Since word-of-mouth recommendation plays a more important
role, the tail of sample 2’s evolution is heavier.
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Fig. 7: Case study of movie.

For TV, we also give two evolution patterns as case study.
The first pattern includes popular TVs, usually recommended
by content providers, is expected to have popularity evolution
with a sharper peak. The second pattern includes unpopular
TVs, usually not recommended by content providers. Sample 1

1 Most new movies are recommended by content providers, sincethe update
speed of movies is very slow.

video is the most popular TV episode in 2014 in the collected
data. It is the first episode of “Perfect Couple”, which is played
more than18 million times within the first 40 days. Sample
2 is the last episode of TV “Mysterious Transfer Student”.
It is an unpopular TV episode with only40 thousand total
views. This TV is produced by Japan. Only a small fraction
of Chinese viewers are interested in it. We plot the evolution
of view counts for both episodes in Fig. 8.x axis andy axis
have the same meaning with Fig. 7. As we can see, since
the information spreading rate by direct recommendation of
the most popular TV is very high, its popularity evolution is
very sharp. The evolution of the second one, mainly replying
on word-of-mouth recommendation to spread information, is
rather stable.
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Fig. 8: Case study of TV.

News is a special content type since most news lose their
attractiveness to users very quickly with time. We consider
two kinds of news videos with two evolution patterns. The
first pattern is for breaking news and is expected to have a
large direct recommendation rate and very fast user reaction
rate. Popularity evolution should be very sharp and the peak
should appear quite early. The second pattern is not very
sensitive to time, e.g., popularity evolution of social news.
It is expected that the second pattern should have a stable
evolution. Mainly relying on word-of-mouth recommendation
to spread information, the peak time should be later than
the first pattern. In this study, sample 1 is the most popular
breaking news in 2014 about the missing of MH370. It
achieves roughly80 million of total views within one week
time. Sample 2 is a social news about uncivilized behavior in
Beijing subway. Normalized view counts of the two samples
are plotted in Fig. 9.x axis andy axis have the same meaning
with Fig. 8. From the popularity evolution, we can find that
almost all views of sample 1 occurred in the first few days.
Sample 2, replying on word-of-mouth recommendation to
spread information, has a peak at the 27th day since its birth.

For music videos, we also find two types of videos for case
study. The first type is about the latest moves of some popular
star. These videos, usually recommended by content providers,
can attract fans’ attention in a very short period. Thus, they
are expected to have a very sharp peak in popularity evolution.
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Fig. 9: Case study of news.

The second type is the music created by singers themselves.
User reaction rate is usually not very fast and information
spreading relies on word-of-mouth recommendation. These
videos are expected to have a stable popularity evolution.
In this study, sample 1 is a song sung by famous Hong
Kong movie star Maggie Cheung Man-yuk in Shanghai. As
a movie star, Maggie Cheung is not as good as a singer.
Her MV attracted a lot of fans but was not well received.
It was played about3 million times within one week time.
Sample 2 is a good music video with very high user rating9.2.
However, mainly relying on word-of-mouth recommendation
for information spreading, its total view count is not high
during our measured time window and its popularity evolution
is quite stable. We plot two samples in Fig. 10, which is
consistent with our analysis.
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Fig. 10: Case study of music video.

B. Cases not modeled well

We mainly model four factors: direct recommendation,
word-of-mouth recommendation, video attractiveness and user
reaction. For most cases, we can give a good explanation
of the popularity evolution if videos’ view count is mainly
affected by these four factors and these factors are unchanged
with time. However, from our data, we also found some
interesting cases that are not modeled well by our existing
model. We mainly show two cases, and explain why their

behavior deviated from our model. They serve as good leads
for us to refine our model.

The first case is caused by constrained eyeball. The time
spent by each user on watching videos is limited. If there
are too many videos telling the same event, these videos will
compete with each other for limited user time. For example,
the missing of MH370 is one of the breaking news all over
the world in 2014. The supply of videos about MH370 is
overwhelming. Users with limited watching time cannot cover
all videos about this breaking news. We pick up 3 such videos
and plot their view count evolution in Fig. 11. All curves have
very sharp peak, like the news about MH370 plotted in Fig. 9.
The difference lies in the total views. These three videos are
very unpopular with total views no more than4000 during our
measured time window. We believe these videos compete with
each other such that their total attractiveness are constrained.
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Fig. 11: Case with constrained eyeball.

The second case is the sudden change of video attractive-
ness. In our model, the attractiveness valueq is a constant.
However, this does not model all cases in real world. “The
Monkey King” is a very popular movie in 2014 directed by
Hong Kong director Soi Cheang Pou-Soi. It costs0.6 billion
HK dollar and involves many popular stars. Preview of this
movie is very popular, played about3 million times within the
first month. View count evolution of this preview is plotted in
Fig. 12. Different from the normal case, there is a sharp view
count drop on the 63rd day. Actually, it is the day that the full
movie is uploaded. User attention moves from the preview
to the full version video such that the preview attractiveness
diminishes.

V. RELATED WORK

Large-scale video delivery over Internet has attracted great
attention in both industry and academia during the past few
years. By assuming stationary video popularity, [1], [2] sim-
plified the performance analysis in P2P VoD systems. Tu et al.
[7] studied an efficient data scheduling scheme for P2P IPTV
system, especially targeting those storage-limited devices. In
[8], Tan et al. studied the content replication scheme in a P2P
system consisting of ordinary user devices and set top boxes.
Wang et al. [9] proposed a P2P scheme for social network
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Fig. 12: Case with interest shift.

based video service. Niu et al. [10] studied a cloud bandwidth
auto-scaling scheme to meet various user demands while at the
same time minimize the bandwidth cost. However, all these
works adopted over simplified popularity evolution models.
Our popularity evolution model can be used by these works
to refine their schemes.

Many previous works studied video popularity and popu-
larity evolution based on measurement. For example, Cha et
al. [3] studied the popularity distribution and evolution for
UGC content by collecting data traces from two large UGC
video systems. Li et al. [4] measured user behavior in the
PPTV mobile video platform and developed a practical CDN
replication scheme accordingly. In [5], Chen et al. proposed
a lifetime model of online video popularity evolution. [6]
incorporated video popularity decaying effect into P2P replica-
tion scheme so as to improve delivery performance. However,
without theoretical analysis, these works cannot bring outthe
factors affecting popularity evolution.

Epidemic model originally used to study the spreading
of disease [11] in human society has been broadly used to
analyze information diffusion in complex networks, e.g. [12].
Researchers have proposed several different epidemic models
to study the information spreading in online social network
over the past few years. For example, [13] proposed a linear
influence model, which does not require the knowledge of the
underlying social network and [14] used a branching process
model to study the message spreading in a microblog service.
In [15], Jiang et al. studied how information propagates in a
social network with limited user attention. Inspired by these
works, we use epidemic model to study the spreading of
video information by direct recommendation and word-of-
mouth recommendation.

VI. CONCLUSION

In this paper, we analyze video popularity and how it
changes over time based on data collected from a large-
scaled online video content provider in China. Based on this
analysis, we come up with a stochastic fluid model to capture
the likely factors driving online video popularity dynamics.
Besides the video’s intrinsic attractiveness (interest level), we

believe the fashion the video is recommended (made known)
to the viewers, and the viewers reaction rate (limited by finite
attention span) will together play a major role. Yet other
factors could be easily added by extending our model. We
validate our model through case studies of common video
popularity evolution patterns from our measurements. Our
model is a first step towards not only explaining various video
popularity dynamics, but also explaining why they behave so.
In our validation study, we also bring out some cases that
cannot be represented well by our current model, because of
some assumptions we made to keep the model simple. For
example, the user reaction rate and video attractiveness are
assumed to be independent and constant, whereas they may
depend on detailed marketing strategy, and may depend on
marketing of and the amount of other videos. We will consider
these angles in our future work.

REFERENCES

[1] D. Wu, Y. Liu, and K. W. Ross, “Queueing network models formulti-
channel p2p live streaming systems,” inProceedings of IEEE Infocom,
2009.

[2] Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “A unifying model and analysis of
p2p vod replication and scheduling,” inProceedings of IEEE Infocom,
2012.

[3] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing
the video popularity charateristics of large-scale user generated content
systems,”IEEE/ACM Transactions on Networking (TON), vol. 17, no. 5,
pp. 1357–1370, 2009.

[4] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M.-A. Kaafar, Y. Jin, and
G. Peng, “Watching videos from everywhere: a study of the pptv mobile
vod system,” inProceedings of the 2012 ACM conference on Internet
measurement conference. ACM, 2012, pp. 185–198.

[5] L. Chen, Y. Zhou, and D. M. Chiu, “A lifetime model of online video
popularity,” in 23rd International Conference on Computer Communi-
cations and Networks (ICCCN), 2014. IEEE, 2014, pp. 1–7.

[6] F. Chen, H. Li, and J. Liu, “On the impact of popularity decays in peer-
to-peer vod systems,” inIEEE/ACM 21st International Symposium on
Quality of Service (IWQoS), 2013.

[7] X. Tu, H. Jin, J. Cao, S. Guo, L. Zheng, and Z. Lv, “An efficient
data scheduling scheme for p2p storage-constrained iptv system,” IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYS-
TEMS, vol. 43, no. 2, pp. 379–389, 2013.

[8] B. Tan and L. Massoulie, “Optimal content placement for peer-to-peer
video-on-demand systems,”IEEE/ACM Transactions on Networking
(TON), vol. 21, no. 2, pp. 566–579, 2013.

[9] Z. Wang, C. Wu, L. Sun, and S. Yang, “Peer-assisted socialmedia
streaming with social reciprocity,”IEEE Transactions on Network and
Service Management, vol. 10, no. 1, pp. 84–94, 2013.

[10] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloudbandwidth
auto-scaling for video-on-demand applications,” inProceedings of IEEE
Infocom, 2012.

[11] D. J. Daley and J. Gani,Epidemic Modeling: An Introduction. Cam-
bridge University Press, 2001.

[12] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,”Phys. Rev. Lett., vol. 86, pp. 3200–3203, 2001.

[13] J. Yang and J. Leskovec, “Modeling information diffusion in implicit
networks,” in Proceedings of 10th IEEE International Conference on
Data Mining (ICDM), 2010.

[14] D. Wang, H. Park, G. Xie, S. Moon, M.-A. Kaffar, and K. Salamatian,
“A genealogy of information spreading on microblogs: a galton-watson-
based explicative model,” inProceedings of IEEE Infocom, 2013.

[15] B. Jiang, N. Hegde, L. Massoulie, and D. Towsley, “How tooptimally
allocate your budget of attention in social networks,” inProceedings of
IEEE Infocom, 2013.

APPENDIX

Derivation of Eq. 5, Eq. 6 and Eq. 7:



For simplicity, in derivation we letx, y, s representx(t),
y(t), s(t), respectively. Sincedy

dx
= 1−q

q
, we havey = 1−q

q
x.

Together withx + y + s = N , we haves = N − x
q
. By

substituting it back to Eq. 1 we have

dx

dt
= αqN + (βqN − α)x − βx2

⇒
∫

dx

αqN + (βqN − α)x− βx2
=

∫

dt

⇒ 1

α+ βqN

∫

( 1

x+ α
β

− 1

x− qN

)

dx =

∫

dt

⇒ 1

α+ βqN
ln
∣

∣

∣

x+ α
β

x− qN

∣

∣

∣
= t+ C

⇒
∣

∣

∣

x+ α
β

x− qN

∣

∣

∣
= e(α+βqN)(t+C) = g(t)

From Lemma 1,x(t) ≤ Nq. We have
∣

∣

∣

x+ α
β

x− qN

∣

∣

∣
=

x+ α
β

qN − x
= e(α+βqN)(t+C) = g(t)

⇒ x =
qNg(t)− α

β

g(t) + 1

Finally, by lettingx(0) = 0 we obtainC = 1
α+βqN

ln α
βqN

and

g(t) = e(α+βqN)t+ln α
βqN . Since dy

dx
= 1−q

q
and s = N − x

q
,

we can derivey(t) ands(t) correspondingly.
Proof of Proposition 2:

If α > βqN , g(t) = α
βqN

e(α+βqN)t > 1 with t ≥ 0. Thus,
x′′(t) is always less than0 with t > 0, x′(t) is a monotonically
decreasing function with timet.

If βqN < α < (2 +
√
3)βqN , we havet1 > 0 and t2 < 0.

In [0, t1], x(3) ≤ 0 and x′′ < 0, thus x′(t) decreases as a
concave function. In[t1,+∞), x(3) ≥ 0 and x′′ < 0, x′(t)
decreases as a convex function.

If α > (2 +
√
3)βqN , we havet1 < 0 and t2 < 0. Thus,

x(3) ≥ 0 with t > 0. x′(t) decreases as a convex function.

Proof of Proposition 4:
If α < βqN , t′ > 0. In [0, t′] x′′(t) > 0; while in [t′,+∞)

x′′(t) < 0. Thus,x′(t) is monotonically increasing in[0, t′]
and monotonically decreasing in[t′,+∞).

If α < (2−
√
3)βqN , we have0 < t2 < t′ < t1. In [0, t2),

x(3) > 0 and x′′ > 0, x′(t) increases as a convex function.
In (t2, t

′), x(3) < 0 andx′′ > 0, x′(t) increases as a concave
function. In (t′, t1), x(3) < 0 andx′′ < 0, x′(t) decreases as
a concave function. In(t1,+∞), x(3) > 0 andx′′ < 0, x′(t)
decreases as a convex function.

If (2 −
√
3)βqN < α < βqN , we havet2 < 0 < t′ < t1.

In (0, t′), x(3) < 0 andx′′ > 0, x′(t) increases as a concave
function. In (t′, t1), x(3) < 0 andx′′ < 0, x′(t) decreases as
a concave function. In(t1,+∞), x(3) > 0 andx′′ < 0, x′(t)
decreases as a convex function.

Derivation of Eq. 10:
The time period[0, t] is split into K time intervals, each

duration is∆. During time intervali, the increase ofx is about

equal tox(i∆)∆. These users are also members inZ(i∆).
Then,

z(K∆) =

K
∑

i=1

x′(i∆)∆e−(t−i∆)γ .

Letting ∆ approach0 andK∆ = t, we get

z(t) = lim
∆→0

z(K∆) = lim
∆→0

K
∑

i=1

x′(i∆)∆e−(t−i∆)γ

= e−γt

∫ t0=t

t0=0

x′(t0)e
γt0dt0.

Proof of Proposition 5:
The time is split into time slots. Without a little bit abusing

notations, we lett be a time slot. The numbers of users inZt

andXt at the beginning of each time slot arez(t) andx(t).
At the beginning of each time slot, a user makes a decision
to view the video with probabilityγ. dx(t) anddz(t) are the
change of user population ofXt and Zt respectively. Then,
dz(t) = −γz(t) + dx(t).

If dx(t) is an increasing sequence andz(t) is also increas-
ing, thendx(t) < dx(t + 1) andγz(t) < dx(t). z(t + 1) =
z(t)(1−γ)+dx(t) is the number of users who can make view
decision at the beginning of time slott+1. Sincez(t) < dx(t)

γ
,

we have(z(t)(1−γ)+dx(t))γ < dx(t) < dx(t+1) and thus
dz(t+1) = −(z(t)(1− γ)+ dx(t))γ + dx(t+1) > 0. z(t) is
still an increasing sequence at time slott+ 1.

If dx(t) is a decreasing sequence andz(t) is also decreasing,
thendx(t) > dx(t+1) andγz(t) > dx(t). Again,z(t)(1−γ)+
dx(t) is the number of users who can make view decision at
the beginning of time slott+ 1. This timez(t) > dx(t)

γ
such

that (z(t)(1 − γ) + dx(t))γ > dx(t) > dx(t + 1) and thus
dz(t+1) = −(z(t)(1− γ)+ dx(t))γ + dx(t+1) < 0. z(t) is
an decreasing sequence at time slott+ 1.

Now, let us go back to recall Proposition 2 and Proposi-
tion 4, there are two cases:dx(t) is a monotonically decreasing
function;dx(t) is a monotonically increasing function in[0, t′]
and monotonically decreasing function in[t′,+∞).

For the first case, at the beginningz(t)γ < dx(t) since users
in Zt come fromXt. With time t goes on,z(t) increases and
dx(t) decreases. Oncez(t) begins to decrease, together with
the fact thatdx(t) is a decreasing sequence,z(t) will keep
decreasing in the future.

For the second case,dx(t) keeps increasing beforet′. Since
users inZt come fromXt, dz(t) begins to increase fromt =
0. Based on above argument,z(t) will keeps increasing with
time t until t′. Then,dx(t) begins to decrease andz(t) may
still increase. Oncez(t) begins to decrease,z(t) will keep
decreasing in the future.

In summary, z(t) has a unique peak occurring no
earlier than the time whendx(t) achieves peak value. Since
dw(t)
γz(t) , the trace ofdw(t)

dt
is similar toz(t) except a scalarγ.
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