arXiv:1406.1725v2 [cs.IT] 5 Aug 2015

Bi-level Protected Compressive Sampling

Leo Yu Zhang,Student Member, IEEBKwok-Wo Wong,Senior Member, IEEE
Yushu Zhang, Jiantao Zhotember, IEEE

Abstract—Some pioneering works have investigated embedding to be sampled, the measurement vector and the measurement

cryptographic properties in compressive sampling (CS) in avay  matrix are treated as the plaintext, the ciphertext andebees
similar to one-time pad symmetric cipher. This paper tackles the key, respectively

roblem of constructing a CS-based symmetric cipher underhe . . . .
Eey reuse circumstanc?e ie the cipger is resistgnt to camon It is a favorable characteristic that certain kind of data
attacks even a fixed measurement matrix is used multiple time  Protection mechanism can be embedded into the data acquisi-

To this end, we suggest a bi-level protected CS (BLP-CS) mole tion stage. Such a property of CS is of particular importance
which makes use of the advantage of the non-RIP measurementfor data acquisition systems in sensor networks, where each
matrix construction. Specifically, two kinds of artificial basis sensor is usually resource-limited and a separate cryapbir
mismatch techniques are investigated to construct key-rated . . .

sparsifying bases. It is demonstrated that the encoding press layer is too expensive for secure data transmission. Exam-
of BLP-CS is simply a random linear projection, which is the Ple applications work under this circumstance include afisu
same as the basic CS model. However, decoding the linearsensor networks [5], video surveillance networkss [6] ard et
measurements requires knowledge of both the key-dependentMeanwhile, CS paradigm also found to be useful for medical

sensing matrix and its sparsifying basis. The proposed modiés systems, especially in the case that sampling speed [7] and
exemplified by sampling images as a joint data acquisition ah . _ .
privacy [€] are two major concerns.

protection layer for resource-limited wireless sensors. igulation

results and numerical analyses have justified that the new nuel There are a number of studies exploring the security that
can be applied in circumstances where the measurement maki a CS-based symmetric cipher can provide from the com-
can be re-used. putation point of view. For example, it was shown in [9]

Index Terms—compressive sampling, restricted isometry prop- that the measurement matrix leads to computational secrecy
erty, encryption, known/chosen-plaintext attack, randomprojec- under some attack scenarios, such as brute-force attack and
ton- ciphertext only attack (COA). Based on this result, thereewe
many attempts in establishing secure measurement matrices
In [10Q], constructing the measurement matrix using physica

Compressive sampling (CS) has received extensive resqu%r properties and linear feedback shift register (LFSR)
attention in the last decade! [1]+-[3]. By utilizing the fabat \\iih the correspondingn-sequence was proposed. [0 [11],
natural signals are either sparse or compressible, the €@Byth 1ong et al. suggested constructing CS measurement matrix by
demonstrates that such signals can be faithfully recovieoet  .j,50tic sequence for privacy protection in video sequeince.

a small set of linear, nonadaptive measurements, aIIowi[‘@]’ Cambareriet al. employed CS to provide two access
sampling at a rate lower than that required by the Nyquigkyels py artificially carrying out sign flips to a subset oéth
Shannon sampling theorem. measurement matrix. In this way, the first-class decodeq, wh

The use of CS for security purposes was first outlinethn access full knowledge of the measurement matrix, can
in one of the foundation papersl[4], in which Candes andtrieve the signal faithfully while the second-class diso
Tao suggested that the measurement vector obtained frig#o can only access partial knowledge of the measurement
random subspace linear projection can be treated as aiphermatrix, subjects to a quality degradation during recormsion.
since the unauthorized user would not be able to decoderfie work was later extended to multi-class low-complexity
unless he knows in which random subspace the coefficiegi§-pased encryption [13].
are expressed. In this way, the entire CS scheme can b@nother research area of the secrecy of CS lies in the
considered as a variant of symmetric cipher, where the bigiygormation theory frame. It is shown i [14] that CS-based

cryptosystems fail to satisfy both Shannon’s and Wyner's

, . perfect Secrecy. In this context, Cambareti al. [13] de-
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as the ciphertext will lead to a perfect “securized” CS-blasas we mentioned earlier, a standalone encryption layer ean b
cipher with the help of an auxiliary secure channel to trahsmoo costly for a CS sensor and this approach does not take
the energy of the real measurement vector. advantage of the confidentiality provided by CS itself.

It should be noted that all the above security features of Another approach to achieve this goal is to embed other
CS-based ciphers are obtained under limited attack modeaificient cryptographic primitives in the the CS encoding
i.e., the adversary is permitted to work out the secret key process. This is exactly the idea of product cipher intreduc
plaintext from ciphertext only or to search the entire kegcg by Shannon[[16], who suggested combining two or more
Under more threatening scenarios, such as known-plaintergptographic primitives together such that the produntise
attack (KPA) and chosen-plaintext attack (CPA), the adargrs secure than individual component against cryptanalysis.

can easily reveal the measurement matrix (secret key in gp [20], Zenget al. proposed a speech encryption algorithm
CS-based cipher) if he is able to collect sufficient amount gf; scrambling the CS measurements. A similar idea was later
independent plaintexts. As such, to maintain their resgectzppjied for secure remote image sensing [21]. For the perpos
security features, all the results mentioned above musk wqys image acquisition and confidentiality, Zharg al. [22]
in a one-time-sampling (OTS) manner, i.e., the measuremegggested scrambling the frequency coefficients befor€ge
matrix is never re-used. encoding instead of scrambling the CS samples. Note that
Assume that aK’ x M measurement matrix is producedscrambling the frequency coefficients is a mature technique
by using a secure deterministic random number generafor multimedia confidentiality in traditional coding syste
(SDRNG) from a secret key shared between the encoder 48d], the main advantage of employing this technique in the
decoder. We note that this is exactly the case of the tranditio CS paradigm is that a so-called “acceptable” permutation
one-time-pad (OTP) cipher [16]. If a sparse signal beloings tan make the column (or row) sparsity level 2D signals
{0,1}M, it requires exactlyM bits to perfectly protect this uniform [24], thus relaxing the restricted isometry prdger
signal when OTP cipher is applied. For the case of OTS, (RIP) of the measurement matrix and flavoring a parallel CS
requires at leask( x M bits (if the Bernoulli matrix is used) (PCS) reconstruction model. The same technique is also used
to sample (encrypt) the signal. From this sense, the OTS 8r privacy protection in cloud-assisted image service].[25
based cipher indeed reduces the service life of the SDRN@other popular approach to form product cipher for MTS
Meanwhile, generating a different measurement matrix fosage of compressive imaging is to employ an optical encryp-
every signal could be energy-consuming. Additionally, fation primitive, i.e., double-random phase encoding (DRPE)
engineering practice, using the same measurement matrix technique, such as those proposed_in [26]-[28]. There &5 als
multiple signals or signal segments flavors the subsequerdrk that try to embed low-complexity nonlinear diffusion
source coding stage of multimedia data sensing, as distussto the measurements quantization stage to enhance tyecuri
in [17], [18]. Based on these observations, it is concluded CS-based cipher [29].

that investigating the behavior of CS-based cipher under th aAjthough the above mentioned product ciphers are efficient,
multi-time-sampling (MTS) scenario is both important fromyenerally they cannot resist CPA in MTS scenario (this issue
the cryptographic and engineering point of view. will be discussed in detail in Sec_TB afid1I-C). The reason

The work presented in_[19] offers an intimate view fofor the difficulty in applying CS-based cipher for MTS usage
MTS CS-based cipher, where a second-class user in thedue to the characteristic of CS itself: 1) the signal to be
two-class CS encryptiori [13] tries to upgrade the recovesgnsed must be sparse; 2) the encoding process is linear. For
quality by studying only one pair of known-plaintext andhis reason, embedding some high-security primitives fdgefo
ciphertext. Restricting the measurement matrix to the for@S encoding will probably make the signal noise-like and not
of Bernoulli matrix, it is shown in[[19] that the number ofsparse anymore. On the other hand, the introduction of any
candidate measurement matrices matching a single pairnoi-linear cryptographic primitive in CS paradigm will bke
known plaintext and ciphertext is too huge for the adversatiye linearity of the sampling process and make the recovery
to search for the true one. Still, the result only holds fdnfeasible.

a single plaintext-ciphertext pair while in typical KPA the our work moves one step further for the usage of CS-based
adversary can access a large amount of plaintexts and #¢her under MTS scenario. Start with a RIPless reconsemict
corresponding ciphertexts. Thus, the true measuremembmagpservation, we study how to embed security features in
may be determined uniquely. The same argument also appkgsysifying bases under the sparse constraint. In mord,deta
to the case of CPA. we suggest a bi-level protected CS (BLP-CS) framework,
A straight forward solution to support the usage of CS iwhich can be viewed as a product cipher of the basic CS model
MTS scenario is to encrypt the entire or only the significamnd transform-domain encryption technique under the spars
part of the quantized measurement vector using some conveonrstraint. In particular, we propose several techniques t
tional cryptographic method, such as AES or RSA. Howevampnstruct secret key-related sparsifying basis and irratp



them into our BLP-CS model. At the encoding stage, thi§ the sampling is perform in the space/time domain, or
model can be viewed as a new design of the measuremequivalently

matrix, thus the encoding is the same as that of the origial C y=®s=dV 'x = As, (2)
model. However, a successful decoding requires knowlefige o

the key-dependent sensing matrix and key-related spii'rgifyIf the sampllng IS performed n the_ frequency d_omalr?.
basis. In this way, the new product cipher can resist CPA. The revolutionary finding of CS is that th€ dimensional

measurement vectgrreserves all the information required for

This paper makes two contributions in the area of emmique and stable recovery gfeven ifk < K < M provided
bedding secrecy in CS. On the one hand, we proposethdat the measurement matriA obeys some information-
CPA-resistant product cipher by utilizing the confiderityal preserving guarantees [4], [30]=[32]. Since the lineatesys
provided by CS. To the best of our knowledge, this is the firgl)) and [2) are undetermined, both of them have infinite
reprot that the CS-based (product) cipher can resist CPA. @lutions. Considering the signal is sparse, the intuititay
the other hand, we incorporate a cryptographic permutatignrestorex is to solve thel, optimization problem
to the CS encoding stage, thus relaxing the RIP of the
measurement matrix and flavoring a PCS reconstruction for

2D sparse signals. In this sense, our work can be considefgdyptains and then recovei by x = Ws. As stated in
as an extension of the work presented(ini [24]. [33], solving this problem is NP-hard because it requires an

The rest of this paper is organized as follows. In $gc. ffxhaustive search over all subsets of columng.of
we first review the CS framework and present the CPA on The convex relaxed form of problern] (3) can be expressed
CS-based product ciphers. In Séc] lil, two techniques féf
constructing secret key-related sparsifying basis arpqsed min ||s[|; subject toy = As. (4)

o estal_alish the bi-level protection m(_)del. Skcl IV preseniq proved in[[4], the solution of tha problem [4) is identical
comparisons of the OTS CS-based cipher and our BLP-GS,5; of [3) with overwhelming probability provided that
model from complexity and security point of view. As afsfies RIP, Examples of widely accepted matrices séipfy

application example, the new model is used to sample digifg}p inciyding Gaussian ensemble and Bernoulli ensemble wit
images in Sed. V. The superiority of the new CS-based image_ O(k log M) rows. Up to a logarithmic factor, the number

cipher is justified by both theoretical analyses and sinwtat of measurements is optimall[4]. Here we note that all the
results. Our work is concluded in Séc.] V. previously mentioned approaches of embedding secrecy into
CS-based (product) ciphers work with RIP.

min ||s||o subject toy = As, ()

Il. SECURITY DEFECTS OFEXISTING CS-BASED CIPHERS
IN MTS SCENARIO Definition 1. [B0] A matrix A of sizeK x M is said to satisfy

the restricted isometry property of ordér if there exists a
As we mentioned earlier, there exists some effort to SUPPBnstants;, (0,1) such that

CS-based cipher for MTS usade [20]-[22], [25]2[28]. In this
section, we report the fact that all of them fail to resist CPA (1- 5k)|\X(T)||§ < HA(T)X(T)Hg <(1+ 5k)||X(T)H§

To begin with, we briefly review the theory of compressiv%OIdS for all column indices sefE with #T < k, whereA ()
sampling. is a K x #T matrix composed of the columns indexediby
x(T) is a vector obtained by retaining only the entries indexed
by T and || - ||» denotes thé, norm of a vector.

We denote aD discrete signal to be sampled as a column

A. CS Preliminaries

forx — T 9D sianals of sizelf — More generally, let the rows of A, i.e.,af, -+, ak, be
\}/(eior;_ gﬂ’m’ - ’Ié\f) ) ; ggr;a;g fSIZ t_ nxg, i.i.d. random vectors drawn from a distribution, sy The
= i-ﬂ']izl-j:l' can be veclorize ormat asx Dy recently developed RIPless CS theory states that the spluti

stacking the columns &, i.e.,x = vec(X). x is said to bek-

of problem is unique and equal to that of probl 3
sparse undeW if there exists a certain sparsifying badis= P (3) d a probléh (3)

MM B B ‘ ~ if the number of measurements grows proportionally to the
{wlij.}i:mgl iu;h thaj\tj; _H ¥s and HSHOh_ .#{a:lptp s} I_ roduct of coherence parameter and the condtion number of
#{i: si # 0} =k << M. Here, we emphasize that in almos he covariance matriXx [31][32], as given by Theorgm 1.
all of the works about the secrecy of CS, suchlégs [9]] [13],

[15], [19], [20], [28], the role of the basis is ignored or gilm  Theorem 1. [32] Let s be a k-sparse vector andy > 1.
treated as an orthnormal matrix. We relax the requirement Biie solution of problem{4) is unique and equal to that of
the basis to an invertible matrix in this work. The encodingroblem [3) with probability at least — e~ if the number of
process during CS is a linear projection, i.e., measurements fulfills

y = &x = s = As, (1) K = O(u(F)8 - w’klog M),



wherey, the coherence parameter, is the smallest number thatAccording to Eq.[(IL), class | CS-based product cipher can
be expressed as

max [ <ale; > | < u(F) P
- ¥ =Pxy = Px®ix =Prdy¥s, (5)
and @ is the condition number of the covariance matkix=

Elaa”]*/2 with a” being a generic row random vector drawWherex is ak-sparse signal with dimensiaif to be sampled

from F and e; being the canonical basis vector of dimensiofencrypted)¥ is a orthnormal sparsifying basiBx is a K x
M. K permutation matrix® x is the Gaussian ensemble afpds
the ciphertext to be transmitted or store. A difference leetw
What concerns us about the RIP CS and RiPless Cstﬁ?s class of product cipher and the basic CS-based ciphers

that the quantity.(£)¢ that governs the .nun_1be.r of reqwreols that the (equivalent) secret key for the product cipher is
measurements for successfukreconstruction is different. For the permutation matri 5 and the measurement matsi;

Gaussian, Bernoulli and partial Fourier matrices, it isvamo while only measurement matrix can be utilized as the key in

that u(F)8 = O(1) in [B1]. Moreover, it is easy to find out basic CS-based ciphers. Ideally (from the designer’s pafint

that = 1 for unitary matrix andd > 1 for generic matn@. view), the decoding (decryption) is composed of a two-step
Moreover, the larger the value pf )6, the more the samples reconstruction. i.e

we need for exact reconstruction in the RIPless setting. We
make us of this fact to design the measurement matrix for y =Pky,
security purpose. min ||s||; subject toy = @ Us.

In the subsequent sections, we will show that almost all
the CS-based product ciphers mentioned above, i.e., th§i&vever, since botPx and ¥ are orthonormalP @ x ¥,
proposed in[[2014]22][[25]5[28], fail to resist the CPA werd which is a rotation of®g, possess the distribution of a
MTS scenario due to the fact that these product ciphers wda@ussian ensemble. Governed by the RIP theory, we can
only under the RIP framework. simplify the decoding as a single-step optimization

B. Scrambling in the Measurements Domain or the Frequency min ||s||; subject toy = Px®x¥s = PP xx.

Domain

. . . . o An unauthorized decoder, who can collect ciphertext for an
As described in the previous sections, it is more practical i P y

. . . plaintext in CPA scenario, submits a series of artificiahsig

the same measurement matrix can be re-used multiple t|mfs. M VM _
. . . %}t = {(0,---,0,1;,0,---,0)" };Z; to the encryption
To this end, there are some attempts trying to mcorporalaierotOraCle and concludeB @1 = [§ 721] using Eq. [5)
low-complexity cryptographic primitives to fix the intriics KPK = Y1 YM g £9.L5).

) . . It is clear that any further using of the same measurement and
security defect of CS in a manner of constructing product Y g

ciphers [20]-[22], [25]. A common cryptographic teChniqugermutatmn matrices for security purpose is doomed to fail

suitable for this purpose is scrambling (also known as remdo For the class Il CS-based product ciphers, the same treat-

permutation), which has been widely used in the field @fent can be applied. According to model (2), we can rewrite

mentioned here and Sdc. 1I-C are based on the RIP theory. .
Here, we treat the measurement matrix as Gaussian matrix for y=®xPgs = PxPr¥ x.

simplicity. Once again® x P can jointly working as the measurement

Roughly speaking, existing works utilizing scrambling fofnatrix and it can be revealed byl independent chosen
MTS usage of CS can be divided into two cIaEses plaintexts and their corresponding ciphertexts.

I. Scrambling is performed on the measurements, such as

[20], [21]; In the following discussion, we will explain how scram-
Il. Scrambling is done in the frequency domain, such dding (known as “acceptable permutation in[24]) relaxes th
[22], [25]. RIP requirement of the measurement matrix #» sparse

n,n

The scrambling process can be characterized by a pernmutafignals. Without loss of generality, 1&X = [X;;];"
matrix, which is a square binary matrix that has exactly offt¢ @2D signal sparse in the canonic sparsifying basis and

non-zero element with value in each row and each columnk = (k1, k2, - - - , k) be a row vector whose entry denotes the

and0s elsewhere. number of nonzero elements of the columnsXafA column
N o _ _ by column sampling process & can be summarized as
Recall that condition number is the absolute value of th® fagtween
the largest and smallest singular values.
2This simplification will not affect the security level of thdiscussed
product cipher. )
3Note that embedding scrambling in the time domain actualipgs no ©OF equivalently
benefit to security enhancement, but it helps the construaif a structural T _ _
sampling ensemblé [34]. vee(Y) = [y1,y2,- - ,¥n)] = ®vec(X) = ®[x1,X2, " ,Xp,

Y: [ylayQa"' ayn] :@X:@[xtha”' 7xn]7

]T

)



where where the last inequality is obtained by applying Hoeffding
& inequality. Hence finishes the proof. ]

03] C. Concatenation of CS and DRPE

As one of the optical information processing technique,
& image encryption using DRPE has received a lot of research
attention since its first appearance inl[35],/[36]. This eiph
was found insecure against various plaintext attacks [39],

L=l
Il

The corresponding parallel (column by column) reconstonct

is given by In a different context, CS offers a new approach for hologram
min ||x;[; subject toy; = ®x;, (6) compression and sensing in the optical domain [39]/ [40].

. _ _ On the one hand, the concatenation of CS and DRPE enjoys
wherej € {1,2,---,n} and ® being a typical RIP mea- 5 g|l-optical implementation and substantially data vaum

surement matrix withO(|[k|| - logn) rows. As we can see, reduction. On the other hand, the secrecy provided by CS may
the accurate reconstruction is proportional|id|w [24]. The enhance the security level of DRPE, and vice visa. These rea-
smaller| k|| is, the fewer rowsb require for correct recovery sons making cascading CS and DRPE a noticeable alternative
or the worse RIP constard can stand. to support the MTS usage of CS. In the following discussion,

The remaining work is to demonstrate th|.c of X will e will point out that the later argument is questionable in
decrease with large probability X is randomly scrambled. \jTs scenario since the CPA complexity of this model is

Letvec(X) = P-vec(X) andk = (k1 -+ , kn) be the sparsity gyactly the same as that of the basic CS model.
vector of X, we define an acceptable permutation as follows: cqnsidering a discrete and bounle® datal — 1], the

Definition 2. An?xn? permutationP is said to be acceptable DRPE encryption can be formulated as

if the following two rules are satisfied: ) )
g - Ci; =TF (FT (Li; - exp(j27pi;)) - exp(j2mqu,v))
1) the expectations of the column sparsityXoére the same,

i.e., each column expects the same sparsity level, where the random spatial phase m#sk= [exp(j27p; ;)] and
2) the probability that||k||., deviates from the expectedthe random frequency phase ma3k= [exp(j27q.. )] are the
sparsity level observe a power law decay. secret keys, an@7 (X) = FXF* with -* being the conjugate

anspose and F being the inverse Fourier transform. The

: . L . RPE decryption is omitted here since it is similar to the
random scrambling fa2D signals which is sparse in space. B ) ) . -
ncryption process. With these notations, we can also alivid

swapping time and frequency, reconstruction model (6) @n X ,
ppIng d y © the encryption schemes based on concatenation of CS and

applied to naturalD signals, such as images. The examples

demonstrating this phenomenon will be provided in $dc. V.DRPE into two classes:
I. CS encryption followed by DRPE._[26];

Property 1. Uniform random permutation is an acceptable Il. DRPE followed by CS encryption [27].[28]
permutation for anyn x n 2D sparse signalX. T

The following property demonstrates the role of (secre&

Considering &D imageX with M = n xn pixels is sensed
Proof: To prove this, we recall that uniform randompy CS with X = m x m measurements, the algorithms of class

permutation refers to choosing a permutation from all thecan be modeled as a separate two-step process, i.e.,
(n?)! candidates with equal probability. In other words, each

non-zero entry ofX will appear at any location oX with vec(Y) = @ vec(X),
probability 1/n? when X is processed by uniform random  C =ZF (FT (Y, ; - exp(j2mp; ;)) - exp(j27quw)), (7)

ermutation. .
P where ®,,,2,2, Prxm = [exp(j27p; ;)] and Quuxm =

Since there ardk||; non-zero entries oK in total, each _ . .
. L . . lexp(j2mqy.»)] serve as the (equivalent) secret key in the
entry of its permutated version is nonzero with probabilit ’ . . . .

ole process and€ is the ciphertext to deliver or display.

k 2. Apparently, the expected sparsity levelsofis n x , ) ,
I‘\‘k‘l‘\f/n Pp .y P p. Y otis n As claimed in [[26], decodingC should observe a separate
=2+ = |/k[|1/n, which meets the requirements of rule 1). ) .
Treat each column oK as realization ofn independent DRPE decryption and CS reconstruction, or by a reversed
identically distributed random variables, the probapitihat prder in algorithms belonging to clgss [L]27].128]. As suith
is demonstrated that an unauthorized user who cannot access

|kl deviates from the expectatiolk|/;/n by ¢ can be i
characterized by full knowledge of ®, P and Q is not able decrypX [26]-
[28].

Prob((||k|/e — ||k >t
rob(([lk| ﬂ lh/n=?) We investigate the real strength against CPA for the ap-

= Pr"b((m?x(kj) = lIkll1/n) = 1) proaches mentioned above by first rewriting 4. (7) as a matri
Prob((kj — |[kl[1/n) > t)

<
N ont? 4This always holds true given that continuous data can be uately
<e

, sampled.



form [38], i.e., In summary, u(F)§ = O(max;(d3)/ min;(d;)) is a non-
C) =T v negligible term and the following straightforward recoyer
vee(C) = - VEC_(_ ), dominated by RIPless theory (see Theorem 1 for detail)
=F*QFP - vec(Y),
_ min ||X[|; subject toy = &%

where F,,,2n2 is the Kronecker product of the Fourier _

matricesF* andF, P22 = diag(vec(P)) andQ, 2,z = '€lUNs a solutionx  # x. Set A = @D = &

diag(vec(Q)) are the DRPE secret key. By constructigh, diag(l/di,---,1/da), the reconstruction can also trans-

and Q are unitary matrices. So, it is concludatiis also a formed to a two-step reconstruction compliance with RIP

unitary matrices. In this concer{® must be a RIP matrix theory after realizing thaA is a Bernoulli matrix, i.e.,

and thus a single-step optimization can be formulat@d as min [|&]; subject toy = (AD~)x = A%

X,

min ||[® ! - vec(X)||; subject tovec(C) = T® vec(X). % = Dx.

Once again, the attacker who works under CPA assumptidfe compare the recovery techniques described above. Eigure
can retrieveT® faithfully from M independent plaintexts depicts a typical reconstruction result widy < [1,60],

and the corresponding ciphertexts. Moreover, he can use thom which we can see that the recovery in the RIP case is
information to decode (decrypt) any subsequent ciphestex¢xact but the RIPless case is not due to a lack of sufficient
Similarly, we can apply the analyses to class Il algorithnteeasurements.

and obtain the same conclusion.

RIPless recovery RIP recovery
[1l. THE PROPOSEDSCHEME 2 o =
riginal % Original
15 —© Recovered

As reviewed in the previous section, existing proposa
[20]-[22], [25]-{28] targeting the MTS usage of CS as join
sampling and data protection mechanism fail to resist fatn 05
attacks. Similarly, it can be concludes that cascading C
scrambling and DRPE also suffer from the same defect, su 05}
as the one suggested in [42]. The underlying reason is thaut
all these three cryptographic primitives are linear and & Crig. 1. Example of RIPless reconstruction and RIP recoottms.
always translate the encoding components to a (equivalent)

RIP-based measurement matrix. Therefore, the key question he ab | id q di
is whether it is possible to construct a more secure CS-base e above example provides a preparatory understanding

product cipher without introducing any computing-intemesi OfF:(;W a R”SDI_T;SS matrix ct())nstruct_g)n ij be tranzf(ér;nzd tod
cryptographic primitives. We will give a positive solutida a one. Still, it cannot be considered as a goo -base

this problem by switching from the RIP measurement matri\fé/lpher smcteh_ant atthac_ker canl rev@it(lfrcf)m @ bty d; : |‘_I)ia-7'|'
construction to the RIPless matrix construction. We stafyw ' 0 cOVE IS technique only works for vector who IS sparse

the following example. in thg canonical basis, Whlch_ls .not. practical for real signa
. . In this concern, we apply this finding to the CS moddl (2)
Consider a column vectax of length M = 500 taking . X .
. and devise a so called bi-level protected CS model in a way
values from{0,1} has a sparsity levet = 10. Let F' de- o .
. o . . that the measurement matrix is non-RIP and the reconstructi
note an independent multivariate antipodal distributiwhich

o . works under RIP theory.
is given by F = {+di} x {£ds} x --- x {£dp} with ) ) ) )
Prob(d;) = Prob(—d;) = 1/2 and {d;}}, be positive The BLP-CS model will be described in Séc.TIl-A, which

! ’ I d can be viewed as product of the CS-based cipher and a

get a measurement matri which is further used to sampletranSfOrm encryp_tio_n. Then we propose two methods  for
x. By Definition 1, ® cannot guarantee energy—preservir\1/éey'relateOI sparsifying transformation design, nameyye |
property thus it is a non-RIP matrix. By construction, we da ecret BasimndType Il Secret Basis

6 = O(max;(d;)/ min;(d;)) and A. Bi-level Protection Model

integers. We také0 sensing vecto&rom this distribution an

w(F) > max | < o7, e; > | The block diagram of this model is shown in Fig. 2, where
1sisM we suggest using key-dependent sensing matix;, and
secret-related sparsifying basi¥,x, to determine the mea-
surement matrix® = AK\IJ;Q. Recalling the above example,
SWe note that the multiple measurement vector CS madel [4alishbe  we are interested in the phenomenon that the measurement
adopted sincel is a complex matrix. matrix & does not satisfy the RIP requirement, while the key-

SHere, we takeK = 60 becauseK > 4k is an empirical threshold for ) 4 i ) ) .
exact CS recovery in the RIP theofy [2]. dependent sensing matriy itself is a RIP matrix. Referring

= max;(d;).



to Eq. [2), the sampling procedure can be expressed as [47]. Here, we present a parameterized transform based on

1 Fractional Fourier Transform (FrFT) as an example.
The use of FrFT for security purpose can be dated back

It should be noted that the number of measurements (sampligg/ear2000, when Unnikrishnaret al. [48] suggested to use
rate) is on the order ofk log M) even though® is a non-RIP  FrFT for DRPE instead of the ordinary Fourier transform [35]
measurement matrix. This number of measurements failsj#oorder to benefit from its extra degrees of freedom provided
meet the minimum requirement defined in Theofem 1, thyy the fractional orders. Generally speaking, performing a
makes the correct decoding frodn an impossible task. ordera FrFT on a signal can be viewed as a rotation operation
on the time-frequency or space-frequency distributionrat a
original Basis | anglea. Though FrFT is very popular in optics for its easy

@ g implementation, it is not preferred in digital world since
complex numbers always cause extra computational load.

v To this end, Venturinet al. proposed a method to construct

Sermm T a———. Modified Basis | Reality-Preserving FrFT of arbitrary order [49]. Here, we

Ag T o=aA 0w s deduce the Reality-Preserving Fractional Cosine Transfor

(RPFrCT) by the virtue of their method. Denote the discrete
cosine transform_[50] of size x n by

A 4

Signal X > Compresiive Sampling > Measug]ements 1 (2Z + 1) I
y=P& C=(—¢cos(2r—) |,
Plaintext Ciphertext vn 4dn

wherei =0~n—1,l=0~n—1,¢g=1ande = 2

Fig. 2. Block diagram of BLP-CS. ] g
for [ > 0. The unitary property ofC assures that it can be

To correctly decode (decrypy), a legitimate user should diagonalized as
first deriveA - and ¥ i from the key scheduling process and C=UAU", (8)

then refer to the following two-step reconstruction whereU = {u;}7_, is composed of: orthonormal eigenvec-

min ||s||; subject toy = &x = Ags, tors, i.e,upu; = i and A = diag(Ar, -+, Ai o, An)
with \; = exp(jp;). Replace); with its a-th power A$

x = Pxs. in Eg. (8), we can express the Discrete Fractional Cosine
or equivalently Transform (DFrCT) matrixC,, of order « in the compact
] . _ form
min || ¥ x|1 sSubject toy = ®x, C. = UA°U".

To fulfill the security requirement, the remaining task is t?—iaving definedC

. i L «,» We can derive the RPFrCT matRR,, as
design two matriced\ x and ¥ i satisfying:

follows:
RULE a. A is a key-related matrix satisfy RIP;
RULE b. ¥ is a key-related sparsifying basis; « Forany real signat = {z;}}!, of lengthM (M is even),
RULE c. AK\IIE(1 is a structural non-RIP matrix. construct a complex signal of lengff/2 by

The work of designing a RIP matrix is trivial since it
is already clear that Guussian/Bernoulll [4] and strudtyra
random matrices [34] are competent for this task with over-+ Computey = B,x, whereB,, is a DFrCT matrix of size
whelming probability. Therefor, we focus our attention e t (M/2 x M/2), namely,B, = C, ar/2-
designing of ¥ x in the following discussions. It is worth e« Determine the RPFrCT matriR., by
mentioning that the work of designing i satisfying RULE b

X = {1 + /241, T2 + JTarj242, 0 s Tarje +IT )

= ). Im(¥))¥
(also known as transform encryption) is very popular in the Y (Riw’ m(;:))N (B Imn(%
filed of multimedia encryption, examples can be foundin43] = ( ; e(B“) Re()f) - I;n(Ba) Im(f) )
[45]. However, the work of designing. x and ¥ satisfying m(Ba) Re(X) + Re(Ba) m(X)N
RULE c is totally new. _ ( Re(Ba) —Im(Ba) ) _ ( Re(x) >
B. Type | Secret Basis N Im(Ba)  Re(Ba) Im (%)
= aX.

The first type of secret basis that drawn our attention is
the parameterized construction of some familiar transform From the construction process listed above, we can conclude
such as parameterized discrete wavelet transform (DWT]) [4that R, is orthogonal, reality preserving and periodic. Then,
[46] and directional discrete cosine transfrom (DCT)I[43the Reality-Preserving Fractional Cosine Transform ofgatali



imageX is given by Property 2. ¥’ and ¥ are equivalent sparsifying bases if
S = R, XR}, 9) U =T (D)

where ()T represents the transpose operater,and 3 are = (i, dopa, - dypy, - dupm),
the.ord(_ers of the Frgctional C_osine Transform alangtr_1d where {d;}}/, are non-zero constants and; is the j-th
y directions, respectively. Equivalently, we can express thegjumn of .

formula as

Proof: Sets’, = L s, and we havé|s||y = ||s/|lo. ]
Vec(S) =y ! VeC(X), / ;™ q‘ HO H ”0
We demonstrate that we are able to construct a non-RIP

where®~! = 7 = (Rs ® R,). To study the sparsifying measurement matrix satisfying RULE c. Assurie is an
capability of the proposed parameterized basis, we caoti¢d grthonormal basis and set

experiments on digital images at different fractional osde ,

« and 8 by using the besk-term approximation, i.e., keep v = "D,

the s largest coefficients and set the remaining ones t0 ze{here D — diag(1/dy,1/dy, -+, 1/dy) and {d;})1, are
3 ) 3 ]:

The recovered result of RPFrCT is compared with that ofysitive integers drawn from certain distribution indepen

DCT?2 using the ratio between their peak signal-to-noise ratiggqy. LetA denote a Gaussian matrix with i.i.d. entries and
(PSNRs). As expected, the sparsifying capability of RPFrCI,culated® as

raises whena or 3 increases, as shown in F[d 3. When
o, B8 € (0.9,1], the sparsifying capability of RPFrCT is ® = A(¥D) ',
comparable to that of DCT2. It is worth mentioning that a = AD 19T,

similar sparsifying capability was also observed when this ) - ) _
transform is applied tdD signals [49]. Once again, the effect of* can be viewed as a rotation of

AD~! in a M dimensional space, which is energy preserving.
By construction® is a non-RIP matrix.

Property 3. ¥’ and ¥ are equivalent sparsifying bases if
U = Fy(¥) = UP,

whereP is a random permutation matrix.

Proof: Since s = ¥(PPT)s = ¥/ (P7s) = ¥'s’
Is"llo = IP*s]lo = Islo- L
In the 1D case, this property implies that random scrambling
does not cause any loss of the sparsity level of any given
signal. In the2D case, as we have shown in Sec._]I-B, it
helps to uniform the column (or row) sparsity level and thus

flavors a parallel CS reconstruction technique, which wél b
Fig. 3. Comparison between the recovery result of RPFrCTROd2 using if ;
the bests-term approximation at different fractional orders. exempllfled in Se€V.

In addition, if we know or partially know thagsupp(s)
is localized in a certaink-dimensional subspacerather than
uniformly distributed inR"V, we can embed more secrets into
We have demonstrated a technique for parameterized sghe sparsifying basis, as stated in PropEity 4. Here we assum
sifying basis construction, where the free parameter can that ¥ is an orthonormal sparsifying basis for simplicity.
used as the secret key in the BLP-CS model. In this way,
the resultant basis satisfies RULE b. However, it still ssffeProperty 4. ¥’ and ¥ are equivalent sparsifying bases if
from the same CPA shown in Sdc] Il since it fails to meet W' = Fa(¥)
RULE c. In the subsequent discussions, we propose three kind = (Y1, i1, a5 + b, Vg, Um),
of operations on an existing basis to make it fulfill RULE c.

. . . e h b - tant dk € s i,k
We start the deviation by defining equivalent sparsifyingdsa \S’\;pe;(e:;’ are non-zero constants andk € supp(s) or j, k ¢

C. Type Il Secret Basis

Definition 3. Two basis matrices¥ and ¥’ are equivalent
sparsifying bases ik = s = ¥'s’, ||s|o = ||s’|lo = k holds
for any signalx.

Proof: Since ¥ is orthonormal,s; = (¢;,x) = ijx
and we knows; = 0 whenj ¢ supp(s). Then the proof
for j,k ¢ supp(s) is trivial. For j,k € supp(s), sets’ =



(84, 8y s sy by, syt with as a joint data acquisition and protection model for MTS

sifa if i=j, purpose. This section aims to compare the basic OTS CS
s; =14 8 —sjbla ifi=k, (10) cipher and BLP-CS cipher from the viewpoints of complexity
s; otherwise and security.
Then we have A. Complexity
x=WUs Suppose we have constructed a RPFrCT maRix with

N

= Z siti + 85105 + sk

appropriate fractional ordet, a M x 1 signal x can be
sparsified byR,x = s. All the techniques on manipulating the

1=1
i#k sparsifying basiR? introduciﬁ; in Sed_III-=C can be unified
N . . . .
S bs; to the following matrix notatiafy i.e.,
=Y sahi+ ;](C“/)j + bhy) + (s — 7])1/)1@
ik ¥x =R,PDQ,
=¥'s' whereD, P andQ are matrices determined by operat&¥s

Fo andF3, respectively. It worth mentioning that= ¥ s’ =

By Eq. , we conclude thads’||o = ||s|lo, hence completes
Y Ea. (10) o = lisllo P RZs with ||s’|lo = ||s|lo- Recall from SedIl-A, the encoding

the proof. ] .
Obviously, the operatoF3(-) can be applied to three ormc BLP-CS is governed by
more columns as long as all of the chosen columns are either y=®x=Ax¥.'x, (11)

in supp(s) or not. Finally, we provide an example to further

illustrate Property 4. The grayscale image “Lena’ with siz8nd the decoding should follow a two-step reconstructien, i
512 x 512, as shown in Fi§l4a), is transformed using RPFrCT min ||s'[|; subject toy = ®x = As’,

with ordersa = 0.99 and 8 = 0.95. Figure[4b) shows the ,

absolute value of the RPFrCT coefficients under the logarith x = Wis. (12)
base. It is clear that the energy of the RPFrCT coefficientince a well-designed key schedule is gﬁ;ea trusted third
matrix is localized, specifically, they are concentratedh@ party can produceb, Ay and ¥y faithfully and transmit
upper-left corner of the four sub-blocks. Thus, we can appiiem to the encoder and decoder. An alternative option is tha
Property 4 to the RPFrCT basls = (Rs®R.,)” accordingly. the encoder and decoder produce their own matrix key on the
A similar effect can be observed in the parameterized DWdir using the agreed key schedule from the same root key. We
and DCT settings. assume the OTS CS model also adopts the same matrix key
generation process for a fair comparison.

We first take a look at the encoder side. For the former
situation, where the matrix key is produced by the trustetypa
and then delivered to both the CS encoder and decoder, the
encoding complexity of the BLP-CS model outperforms that of
the OTS CS model since it does not bring extra communication
cost once the key is set. For the later situation, the engodin
complexity of the OTS CS model is lower than that of the
BLP-CS model at the first glimpse due to the reason that
the encoding process of the second model involves a matrix
multiplication, i.e., Ax ¥, in the key generation process.
Nevertheless, since the OTS CS system requires updating the
i measurement matrix in every sampling, the BLP-CS model
B " i outperforms OTS CS after samplifgy’ + f)/f’ times. Here,

f and f’ refer to the complexity of the matrix multiplication
and the matrix key generation, respectively.

At the decoder side, the Moore-Penrose pseudoinverse of the
b) sensing matrixA x need to be calculated in every iteration of
somel; optimization algorithms [51], for example, orthogonal

Fig. 4. a) Original image “Lena”; b) Energy distribution ofPRrCT
coefficients of “Lena” using logarithm base.
"We are aware of the fact that any parameterized orthonomaasform
with good sparsifying capability can play the role BfL.
1IV. DISCUSSIONS ANDSECURITY ANALYSIS 8The design of an effective key scheduling process is notidered in this
paper since our concern is only the secrecy of CS paradigmalgée note
We have demonstrated the possibility of using BLP-CfBat this is a common treatment for all the state-of-theagtks on this topic.
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observed. The BLP-CS and the OTS CS ciphers have
the following major difference: when multiple ciphertexts
are observed by the attacker, he is aware of the fact
that two plaintexts must be similar if their corresponding
ciphertexts are close to each other in the Euclidean space.
This is caused by the multi-time usage of the same
measurement matrix and the linear encoder. Surely the
OTS CS cipher is more secure then the BLP-CS cipher

matching pursuit [52]. The complexity of this operation dom
inates the overall complexity in CS reconstruction. As such
if some off-line techniques can be employed to calculate the
pseudoinverse oA g, the complexity of the reconstruction can
be largely reduced. For the OTS CS system, this is impossible
since the measurement matrix is never re-used.

B. Security
I. Brute-force and Ciphertext-only Attacks

We employ the existing results presented[ih [9],] [13] to
show that the BLP-CS preserves most secrecy features
of the OTS CS-based cipher under these two attacks.

Theorem 2. [8] Theorem 1 and Corollary 1] LeA and
A’ be K x M Gaussian matrices. Let be k-sparse with
respect to the canonic basis agd= Ax. If K > k, then
lo problem [[B) and; problem [(4) will yield ankK -sparse
solutionx’ with probability one such thay = A'x’.

We first examine the case of brute-force attack, i.e.,
the attacker try to guess possible measurement matrices
and use them for decoding. Referring to Theorgm 2,
the Iy or Iy recovery governed by a wrong sensing
matrix A x will lead to an incorrect reconstruction with
probability one. Thus the OTS CS-based cipher can
guarantee computational secrecy if the key space is large
enough to make systematic search of all the keys (sensing,
matrices) impossible. This result can be directly applied
to our BLP-CS model. According Eqd._(11) ard](12),
we can conclude that BLP-CS is computationally strong
even if the attacker can successfully retrieved the secret
sparsifying basis®@ . In this concern, the transform
encryption approach enhances the security level of the
basic CS paradigm.

An interesting security feature of the OTS CS cryp-
tosystem under ciphertext-only attack is the asymptotic
spherical secrecy [13]. This type of secrecy states that
any two different plaintexts (sparse signals to be sampled
in this context) with equal power remain approximately
indistinguishable from their measurement vectors when
CS operates under the RIP framework. Alternatively, we
can intercept this property as only the energy of the
measurements carries information about the signal. A
bird's-eye view of why this asymptotic spherical secrecy
holds for the OTS CS cipher may refer to the definition of
RIP, which states that the CS encoding should obey an
energy-preserving guarantee. A theoretical proof about
this property can be found in [13].

As we demonstrated in Eq$. (11) and](12), the proposed
BLP-CS model works under the seemingly RIPless the-
ory if one cannot determind  and Wx. Therefore,

the energy-preserving constraint introduced by RIP is
unapplicable to this setting. As such, we can conclude
that the measurements (ciphertext) carries no informatigpn

from this point of view. Nevertheless, as mentioned in
Sec.[, this is a favorable property that promotes the
source coding gain from a system point-of-view |[17].
This property also finds its way in privacy-preserving
video surveillance systems [11]: assume the attacker
happens to know some pairs of plaintext and ciphertext,
such as static video scenes and their corresponding
measurement vectors, and he want to retrieve privacy-
sensitive data from a new intercepted ciphertext. After
studying the Euclidean distance of the new ciphertext, he
comes to realize that plaintext corresponding to the new
ciphertext contains privacy-sensitive data. However, the
decryption of this ciphertext requires full knowledge of
the matrix keyA x and® k. This leads to our discussion
of resistance of the BLP-CS cipher with respect to
plaintext attacks.

Plaintext Attacks

As discussed in Sel]ll, the data complexity of retrieving
a general measurement matrix (the secret key)/isn-
dependent plaintexts and their corresponding ciphertexts
in any basic CS-based cipher. If the used measurement
matrix is Bernoulli, a single plaintext in the form =
(20,21 ... 2M)T and the corresponding ciphertext can
be utilized to recover the Bernoulli measurement matrix
completelﬁ. Based on these knowledge, investigating the
resistance of the OTS CS cryptosystem is a trivial work.
We hereby focus on the BLP-CS cipher. Referring to
Eqg. (11), the attacker can retrie®efrom M independent
plaintext-ciphertext pairs. By constructio®, is a non-
RIP matrix. Thus the conclusion drawn from Theofgm 1
assures that a straightforward uBén the!l; optimization
problem [(4) is not applicable. Considering that the
optimization problem[{3) is NP-hard [33], the attacker
tries to decompos@ with the form® = EF, with the
constraint that entries di should observe certain kind
of distribution (Gaussian or Bernoulli). In particul&t,is

the product of an elementary matrix and an orthonormal
matrix.

If the decomposition is unique or the possible number of
decompositions is very limited, i.e., polynomial function
of M, the attacker can determine the matrix klAy

and \Il}l and the BLP-CS cryptosystem is regarded

90ne can imagine the role offai-1, —1} matrix as that of §0, 1} matrix,
proof can be found in19]. A vector composed{lily 1} can be recovered

about the signal (plaintext) when a single ciphertext igom the inner product of this vector and
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as fail to resist plaintext attacks. To summarize, wior all j € {1,2,--- ,n}. Finally, the recovered image is given
conclude that the number of decompositions should Iy vec(X) = ¥x vec(S). A block diagram of the whole

at leastO(M!), thus making the search for the true onsystem is depicted in Fidl 5. In summary, this system is a
inconclusiv. The conclusion is based on the simplénstance of the simplified BLP-CS model.

fact EF = (EP)(PTF), whereP is aM x M random
permutation matrix. As we can see, distribution of all the manex I @ ) - N
entries of(EP) is exactly the same as that BfandP”

represents elementary row operation®nAs such, the
attacker cannot distinguish the decomposition result

andF from (EP) and (PTF).

BLP-CS Encoder

S,

1

S,

- A, 2 _
V. BLP-CSFORDIGITAL IMAGES E s

Basis V'
In this section, the proposed BLP-CS model is applie i

as a joint data acquisition and protection layer for digita : S,

images. The aim is to provide an intuitive interpretation o

how a cryptographic random scrambling can relax RIP o BLP-CS Decoder

the measurement matrix and substantially reduce the degodi

complexity, i.e., parallel reconstruction. Moreover, soather 9+ 5 Block diagram of BLP-CS for digital images.

features owned by a basic CS paradigm, such as robust t§, fyrther illustrate how the random scramblifgrelaxes

packet loss and noise, are also observed. the RIP requirement of the sensing matex we consider
We now consider @D imageX with M = n x n pixels. If ~another sampling configuration

the chosen parameterized transform is RPFrCT, the basis for

X is (Rg ® RYT) according to Eq.[{9). Following the same

vec(Y) = ® vec(X),

approach adopted in [53], the encoding stage can be writtgRere & — Ax¥ ! with Ag is the same as defined
as above and¥,' = D YR @ RY). Here, we note that
vee(Y) = [y1,y2, -, yn]” = ®vee(X), the only difference of® ;' and ¥ is the permutation

matrix P. The reconstruction is exactly the same as that of
where® is the product of thek' x M key-dependent sensingeq. (I3). By construction, this is a special form of block-
matrix A 5 and the)M x M key-dependent basi¥ ' having based compressive sampling (BCS)I[54], where each block is
the form a column of the frequency coefficients, together with block
\II;} _ D‘IPT(Rg ® RZ), independent_ recovery. We call thi§ model BCS-In. We also
note that using the smoothed projected Landweber operator
and can largely improve the BCS reconstrution quality at reédyi
A, low extra computation overhead [55]. However, the study of
A, embedding the smoothed projected Landweber operator in the
Ak = ) BLP-CS reconstruction is out of the scope of this paper.
& Four representative images, “Lena”, “Peppers”, “Camera-
An man” and “Baboon” of size&512 x 512 are used as our test
with A; = A for j € {1,---n} being Gaussian matrices.images. The tests are carried out under different sampéiteg r
As we discussed in Se€_IVIA, repeatedly using the san®® = % x 100%. The reconstruction quality is evaluated in

sensing matrix for different signal segments can speed igims of averadld peak signal-to-noise ratio, APSNR (dB)

the reconstruction if some off-line mechanism is allowed t& 10 - log;, E (%) The results are listed in
calculate the pseudoinverse Af in advance. Table[] and they support the conclusion of propérfty 1, i.e.,
According to Secs.[NIEB  and[CIIEC, vec(S) = a cryptographic random scrambling helps make the column

81,80, ,8n]T = \I,; vec(X) is sparse in the canonicaI_SparSity level ofS unifo_rm. .The _Iast point wo_rth mentioning
basis. Referring to property]1 and E] (6), a parallé? that ran(_zlom scramb_lln_g is suna_b_le for all kindaid sparsg
construction is applied as data (all kind of sparsifying coefficients under parametsti
orthonormal transform), which extends the result thatzag-
min [[s;[|; subject toy; = As;. (13) scrambling works for DCT coefficients [24].
The basic CS paradigm that works under RIP theory is

known to be robust with respect to transmission imperfestio
10This is even worse than directly solving the NP-h&rgroblem [3), who
has a complexity(lzf ) 11E denotes calculate average ou@0 tests.
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TABLE |
COMPARISON BETWEENBLP-CSAND BCS-IN IN TERMS OFAPSNRAT DIFFERENT SRS.

SR 10% 30% 50% 70%
Model BLP-CS| BCS-In BLP-CS| BCS-In BLP-CS| BCS-In BLP-CS| BCS-In
“Lena” 21.6 15.5 27.5 23.3 31.4 27.3 35.7 32.1

“Peppers” 20.9 14.4 27.2 22.6 30.9 27.9 34.7 32.5
“Cameraman”| 19.2 13.0 24.8 21.5 28.6 27.4 32.9 32.8
“Baboon” 17.8 9.7 20.2 17.6 22.6 21.3 25.8 25.2

such as noise or packet loss [56], [[57]. Since the nesecrecy of CS is revealed.

proposal works under the RIPless theory at only the encodefhe security of the BLP-CS model is discussed from various
but RIP theory at the decoder, we expect the same propedigpects, such as brute-force attack, ciphertext-onlgkatiad

in our approach. To quantitatively study this, we evaluajslaintext attacks. Special attention has been paid to thia-pl
the robustness of the proposed framework with respect ttxt attacks since it is widely accepted that basic CS madel i
additive white Gaussian noise (AWGN) and various packghmune to brute-force attack and ciphertext-only attadk [9
loss rates (PLRs). In the former case, we artificially add [@3]. Under plaintext attacks, we have demonstrated that th
zero-mean normal distribution random sequence with vaeamumber of candidate sensing matrices and sparsifying basis
1 to the measurements while in the latter we randomly discamghtrices that match the information inferred by the attadke
certain number of measurements governed by PLR. Then tugge. Therefore, the searching of the true sensing matdx an
perform reconstruction on the corrupted measurementgai rsparsifying basis matrix is impossible.

applications, PLR can be up ®0% [68] and we measure Finally, we apply the proposed model for the purpose of
the quality of the reconstruction in terms of APSNR18af%, secure compressive image sampling. Both theoretical sesly
20% and 30% PLR, respectively. These tests were carriegind experimental results support our expectation, i.ado

out using the “Lena” image, but similar results were obtdinescrambling plays a critical role in relaxing the RIP requiemt
using other images. As observed from Tdble Il, our schemegsthe measurement matrix and flavoring a PCS reconstruction
almost immune to AWGN when we compare the APSNR dbr 2D sparse signals. Other features of a basic CS system,
the ideal case and the one with AWGN. In addition, comparingich as robust to packet loss and noise, are also observed.
the APSNRs at different levels of PLR, we found that the

reduction rate of APSNR is linear to the increasing rate of

PLR, which implies that all measurements are of the samigl P-L- Donoho, “Compressed sensing£EE Trans. Inf. Theoryvol. 52,
. no. 4, pp. 1289-1306, Apr. 2006.
importance([57]. [2] E. J. Candes and M. B. Wakin, “An introduction to compiess

sampling,”IEEE Signal Process. Magvol. 25, no. 2, pp. 21-30, Mar.
TABLE Il 2008.
APSNROF THE RECONSTRUCTIONS UNDERAWGN AND VARIOUS PLRs. [3] R. Baraniuk, “Compressive sensing/EEE Signal Process. Mag.

vol. 24, no. 4, pp. 118-121, Jul. 2007.
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