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Abstract—Some pioneering works have investigated embedding
cryptographic properties in compressive sampling (CS) in away
similar to one-time pad symmetric cipher. This paper tackles the
problem of constructing a CS-based symmetric cipher under the
key reuse circumstance, i.e., the cipher is resistant to common
attacks even a fixed measurement matrix is used multiple times.
To this end, we suggest a bi-level protected CS (BLP-CS) model
which makes use of the advantage of the non-RIP measurement
matrix construction. Specifically, two kinds of artificial basis
mismatch techniques are investigated to construct key-related
sparsifying bases. It is demonstrated that the encoding process
of BLP-CS is simply a random linear projection, which is the
same as the basic CS model. However, decoding the linear
measurements requires knowledge of both the key-dependent
sensing matrix and its sparsifying basis. The proposed model is
exemplified by sampling images as a joint data acquisition and
protection layer for resource-limited wireless sensors. Simulation
results and numerical analyses have justified that the new model
can be applied in circumstances where the measurement matrix
can be re-used.

Index Terms—compressive sampling, restricted isometry prop-
erty, encryption, known/chosen-plaintext attack, randomprojec-
tion.

I. I NTRODUCTION

Compressive sampling (CS) has received extensive research
attention in the last decade [1]–[3]. By utilizing the fact that
natural signals are either sparse or compressible, the CS theory
demonstrates that such signals can be faithfully recoveredfrom
a small set of linear, nonadaptive measurements, allowing
sampling at a rate lower than that required by the Nyquist-
Shannon sampling theorem.

The use of CS for security purposes was first outlined
in one of the foundation papers [4], in which Candes and
Tao suggested that the measurement vector obtained from
random subspace linear projection can be treated as ciphertext
since the unauthorized user would not be able to decode it
unless he knows in which random subspace the coefficients
are expressed. In this way, the entire CS scheme can be
considered as a variant of symmetric cipher, where the signal
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to be sampled, the measurement vector and the measurement
matrix are treated as the plaintext, the ciphertext and the secret
key, respectively.

It is a favorable characteristic that certain kind of data
protection mechanism can be embedded into the data acquisi-
tion stage. Such a property of CS is of particular importance
for data acquisition systems in sensor networks, where each
sensor is usually resource-limited and a separate cryptographic
layer is too expensive for secure data transmission. Exam-
ple applications work under this circumstance include visual
sensor networks [5], video surveillance networks [6] and etc.
Meanwhile, CS paradigm also found to be useful for medical
systems, especially in the case that sampling speed [7] and
privacy [8] are two major concerns.

There are a number of studies exploring the security that
a CS-based symmetric cipher can provide from the com-
putation point of view. For example, it was shown in [9]
that the measurement matrix leads to computational secrecy
under some attack scenarios, such as brute-force attack and
ciphertext only attack (COA). Based on this result, there were
many attempts in establishing secure measurement matrices.
In [10], constructing the measurement matrix using physical
layer properties and linear feedback shift register (LFSR)
with the correspondingm-sequence was proposed. In [11],
Tonget al. suggested constructing CS measurement matrix by
chaotic sequence for privacy protection in video sequence.In
[12], Cambareriet al. employed CS to provide two access
levels by artificially carrying out sign flips to a subset of the
measurement matrix. In this way, the first-class decoder, who
can access full knowledge of the measurement matrix, can
retrieve the signal faithfully while the second-class decoder,
who can only access partial knowledge of the measurement
matrix, subjects to a quality degradation during reconstruction.
The work was later extended to multi-class low-complexity
CS-based encryption [13].

Another research area of the secrecy of CS lies in the
information theory frame. It is shown in [14] that CS-based
cryptosystems fail to satisfy both Shannon’s and Wyner’s
perfect Secrecy. In this context, Cambareriet al. [13] de-
fined an achievable security metric, i.e., asymptotic spherical
security, for CS-based cipher. Basically, it states that the
statistical properties of the random measurements only leak
information about the plaintexts’ energy. Based on this obser-
vation, Bianchiet al. [15] suggested that re-normalizing every
measurement vector and treating the normalized measurements
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as the ciphertext will lead to a perfect “securized” CS-based
cipher with the help of an auxiliary secure channel to transmit
the energy of the real measurement vector.

It should be noted that all the above security features of
CS-based ciphers are obtained under limited attack models,
i.e., the adversary is permitted to work out the secret key or
plaintext from ciphertext only or to search the entire key space.
Under more threatening scenarios, such as known-plaintext
attack (KPA) and chosen-plaintext attack (CPA), the adversary
can easily reveal the measurement matrix (secret key in a
CS-based cipher) if he is able to collect sufficient amount of
independent plaintexts. As such, to maintain their respective
security features, all the results mentioned above must work
in a one-time-sampling (OTS) manner, i.e., the measurement
matrix is never re-used.

Assume that aK × M measurement matrix is produced
by using a secure deterministic random number generator
(SDRNG) from a secret key shared between the encoder and
decoder. We note that this is exactly the case of the traditional
one-time-pad (OTP) cipher [16]. If a sparse signal belongs to
{0, 1}M , it requires exactlyM bits to perfectly protect this
signal when OTP cipher is applied. For the case of OTS, it
requires at leastK ×M bits (if the Bernoulli matrix is used)
to sample (encrypt) the signal. From this sense, the OTS CS-
based cipher indeed reduces the service life of the SDRNG.
Meanwhile, generating a different measurement matrix for
every signal could be energy-consuming. Additionally, for
engineering practice, using the same measurement matrix for
multiple signals or signal segments flavors the subsequent
source coding stage of multimedia data sensing, as discussed
in [17], [18]. Based on these observations, it is concluded
that investigating the behavior of CS-based cipher under the
multi-time-sampling (MTS) scenario is both important from
the cryptographic and engineering point of view.

The work presented in [19] offers an intimate view for
MTS CS-based cipher, where a second-class user in the
two-class CS encryption [13] tries to upgrade the recovery
quality by studying only one pair of known-plaintext and
ciphertext. Restricting the measurement matrix to the form
of Bernoulli matrix, it is shown in [19] that the number of
candidate measurement matrices matching a single pair of
known plaintext and ciphertext is too huge for the adversary
to search for the true one. Still, the result only holds for
a single plaintext-ciphertext pair while in typical KPA the
adversary can access a large amount of plaintexts and the
corresponding ciphertexts. Thus, the true measurement matrix
may be determined uniquely. The same argument also applies
to the case of CPA.

A straight forward solution to support the usage of CS in
MTS scenario is to encrypt the entire or only the significant
part of the quantized measurement vector using some conven-
tional cryptographic method, such as AES or RSA. However,

as we mentioned earlier, a standalone encryption layer can be
too costly for a CS sensor and this approach does not take
advantage of the confidentiality provided by CS itself.

Another approach to achieve this goal is to embed other
efficient cryptographic primitives in the the CS encoding
process. This is exactly the idea of product cipher introduced
by Shannon [16], who suggested combining two or more
cryptographic primitives together such that the product ismore
secure than individual component against cryptanalysis.

In [20], Zenget al. proposed a speech encryption algorithm
by scrambling the CS measurements. A similar idea was later
applied for secure remote image sensing [21]. For the purpose
of image acquisition and confidentiality, Zhanget al. [22]
suggested scrambling the frequency coefficients before theCS
encoding instead of scrambling the CS samples. Note that
scrambling the frequency coefficients is a mature technique
for multimedia confidentiality in traditional coding system
[23], the main advantage of employing this technique in the
CS paradigm is that a so-called “acceptable” permutation
can make the column (or row) sparsity level of2D signals
uniform [24], thus relaxing the restricted isometry property
(RIP) of the measurement matrix and flavoring a parallel CS
(PCS) reconstruction model. The same technique is also used
for privacy protection in cloud-assisted image service [25].
Another popular approach to form product cipher for MTS
usage of compressive imaging is to employ an optical encryp-
tion primitive, i.e., double-random phase encoding (DRPE)
technique, such as those proposed in [26]–[28]. There is also
work that try to embed low-complexity nonlinear diffusion
into the measurements quantization stage to enhance security
of CS-based cipher [29].

Although the above mentioned product ciphers are efficient,
generally they cannot resist CPA in MTS scenario (this issue
will be discussed in detail in Sec. II-B and II-C). The reason
for the difficulty in applying CS-based cipher for MTS usage
is due to the characteristic of CS itself: 1) the signal to be
sensed must be sparse; 2) the encoding process is linear. For
this reason, embedding some high-security primitives before
CS encoding will probably make the signal noise-like and not
sparse anymore. On the other hand, the introduction of any
non-linear cryptographic primitive in CS paradigm will break
the linearity of the sampling process and make the recovery
infeasible.

Our work moves one step further for the usage of CS-based
cipher under MTS scenario. Start with a RIPless reconstruction
observation, we study how to embed security features in
sparsifying bases under the sparse constraint. In more detail,
we suggest a bi-level protected CS (BLP-CS) framework,
which can be viewed as a product cipher of the basic CS model
and transform-domain encryption technique under the sparse
constraint. In particular, we propose several techniques to
construct secret key-related sparsifying basis and incorporate
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them into our BLP-CS model. At the encoding stage, this
model can be viewed as a new design of the measurement
matrix, thus the encoding is the same as that of the original CS
model. However, a successful decoding requires knowledge of
the key-dependent sensing matrix and key-related sparsifying
basis. In this way, the new product cipher can resist CPA.

This paper makes two contributions in the area of em-
bedding secrecy in CS. On the one hand, we propose a
CPA-resistant product cipher by utilizing the confidentiality
provided by CS. To the best of our knowledge, this is the first
reprot that the CS-based (product) cipher can resist CPA. On
the other hand, we incorporate a cryptographic permutation
to the CS encoding stage, thus relaxing the RIP of the
measurement matrix and flavoring a PCS reconstruction for
2D sparse signals. In this sense, our work can be considered
as an extension of the work presented in [24].

The rest of this paper is organized as follows. In Sec. II,
we first review the CS framework and present the CPA on
CS-based product ciphers. In Sec. III, two techniques for
constructing secret key-related sparsifying basis are proposed
to establish the bi-level protection model. Sec. IV presents
comparisons of the OTS CS-based cipher and our BLP-CS
model from complexity and security point of view. As an
application example, the new model is used to sample digital
images in Sec. V. The superiority of the new CS-based image
cipher is justified by both theoretical analyses and simulation
results. Our work is concluded in Sec. VI.

II. SECURITY DEFECTS OFEXISTING CS-BASED CIPHERS

IN MTS SCENARIO

As we mentioned earlier, there exists some effort to support
CS-based cipher for MTS usage [20]–[22], [25]–[28]. In this
section, we report the fact that all of them fail to resist CPA.
To begin with, we briefly review the theory of compressive
sampling.

A. CS Preliminaries

We denote a1D discrete signal to be sampled as a column
vectorx = (x1, x2, · · · , xM )T . 2D signals of sizeM = n×n,
X = [Xi,j ]

n,n
i=1,j=1, can be vectorized to1D format asx by

stacking the columns ofX, i.e.,x = vec(X). x is said to bek-
sparse underΨ if there exists a certain sparsifying basisΨ =

{ψi,j}M,M
i=1,j=1 such thatx = Ψs and ‖s‖0 = #{supp s} =

#{i : si 6= 0} = k << M . Here, we emphasize that in almost
all of the works about the secrecy of CS, such as [9], [13],
[15], [19], [20], [28], the role of the basis is ignored or simply
treated as an orthnormal matrix. We relax the requirement of
the basis to an invertible matrix in this work. The encoding
process during CS is a linear projection, i.e.,

y = Φx = ΦΨs = As, (1)

if the sampling is perform in the space/time domain, or
equivalently

y = Φs = ΦΨ−1x = As, (2)

if the sampling is performed in the frequency domain.

The revolutionary finding of CS is that theK dimensional
measurement vectory reserves all the information required for
unique and stable recovery ofx even ifk < K ≪M provided
that the measurement matrixA obeys some information-
preserving guarantees [4], [30]–[32]. Since the linear systems
(1) and (2) are undetermined, both of them have infinite
solutions. Considering the signal is sparse, the intuitiveway
to restorex is to solve thel0 optimization problem

min ‖s‖0 subject toy = As, (3)

to obtain s and then recoverx by x = Ψs. As stated in
[33], solving this problem is NP-hard because it requires an
exhaustive search over all subsets of columns ofA.

The convex relaxed form of problem (3) can be expressed
as

min ‖s‖1 subject toy = As. (4)

As proved in [4], the solution of thel1 problem (4) is identical
to that of (3) with overwhelming probability provided thatA
satisfies RIP. Examples of widely accepted matrices satisfying
RIP including Gaussian ensemble and Bernoulli ensemble with
K = O(k logM) rows. Up to a logarithmic factor, the number
of measurements is optimal [4]. Here we note that all the
previously mentioned approaches of embedding secrecy into
CS-based (product) ciphers work with RIP.

Definition 1. [30] A matrix A of sizeK×M is said to satisfy
the restricted isometry property of orderk if there exists a
constantδk ∈ (0, 1) such that

(1 − δk)‖x(T )‖22 ≤ ‖A(T )x(T )‖22 ≤ (1 + δk)‖x(T )‖22
holds for all column indices setsT with #T < k, whereA(T )

is aK ×#T matrix composed of the columns indexed byT ,
x(T ) is a vector obtained by retaining only the entries indexed
by T and ‖ · ‖2 denotes thel2 norm of a vector.

More generally, let theK rows ofA, i.e., aT1 , · · · , aTK , be
i.i.d. random vectors drawn from a distribution, sayF . The
recently developed RIPless CS theory states that the solution
of problem (4) is unique and equal to that of problem (3)
if the number of measurements grows proportionally to the
product of coherence parameter and the condtion number of
the covariance matrix [31], [32], as given by Theorem 1.

Theorem 1. [32] Let s be a k-sparse vector andω ≥ 1.
The solution of problem (4) is unique and equal to that of
problem (3) with probability at least1− e−ω if the number of
measurements fulfills

K = O(µ(F )θ · ω2k logM),
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whereµ, the coherence parameter, is the smallest number that

max
1≤i≤M

| < aT , ei > | ≤ µ(F )

and θ is the condition number of the covariance matrixΣ =

E[aaT ]1/2 with aT being a generic row random vector draw
from F and ei being the canonical basis vector of dimension
M .

What concerns us about the RIP CS and RIPless CS is
that the quantityµ(F )θ that governs the number of required
measurements for successfull1 reconstruction is different. For
Gaussian, Bernoulli and partial Fourier matrices, it is shown
that µ(F )θ = O(1) in [31]. Moreover, it is easy to find out
that θ = 1 for unitary matrix andθ > 1 for generic matrix1.
Moreover, the larger the value ofµ(F )θ, the more the samples
we need for exact reconstruction in the RIPless setting. We
make us of this fact to design the measurement matrix for
security purpose.

In the subsequent sections, we will show that almost all
the CS-based product ciphers mentioned above, i.e., those
proposed in [20]–[22], [25]–[28], fail to resist the CPA under
MTS scenario due to the fact that these product ciphers work
only under the RIP framework.

B. Scrambling in the Measurements Domain or the Frequency
Domain

As described in the previous sections, it is more practical if
the same measurement matrix can be re-used multiple times.
To this end, there are some attempts trying to incorporate other
low-complexity cryptographic primitives to fix the intrinsic
security defect of CS in a manner of constructing product
ciphers [20]–[22], [25]. A common cryptographic technique
suitable for this purpose is scrambling (also known as random
permutation), which has been widely used in the field of
multimedia security [6], [23]. It should be noted that the works
mentioned here and Sec. II-C are based on the RIP theory.
Here, we treat the measurement matrix as Gaussian matrix for
simplicity2.

Roughly speaking, existing works utilizing scrambling for
MTS usage of CS can be divided into two classes3:

I. Scrambling is performed on the measurements, such as
[20], [21];

II. Scrambling is done in the frequency domain, such as
[22], [25].

The scrambling process can be characterized by a permutation
matrix, which is a square binary matrix that has exactly one
non-zero element with value1 in each row and each column
and0s elsewhere.

1Recall that condition number is the absolute value of the ratio between
the largest and smallest singular values.

2This simplification will not affect the security level of thediscussed
product cipher.

3Note that embedding scrambling in the time domain actually brings no
benefit to security enhancement, but it helps the construction of a structural
sampling ensemble [34].

According to Eq. (1), class I CS-based product cipher can
be expressed as

ŷ = PKy = PKΦKx = PKΦKΨs, (5)

wherex is ak-sparse signal with dimensionM to be sampled
(encrypted),Ψ is a orthnormal sparsifying basis,PK is aK×
K permutation matrix,ΦK is the Gaussian ensemble andŷ is
the ciphertext to be transmitted or store. A difference between
this class of product cipher and the basic CS-based ciphers
is that the (equivalent) secret key for the product cipher is
the permutation matrixPK and the measurement matrixΦK

while only measurement matrix can be utilized as the key in
basic CS-based ciphers. Ideally (from the designer’s pointof
view), the decoding (decryption) is composed of a two-step
reconstruction, i.e.,

y = PK ŷ,

min ‖s‖1 subject toy = ΦKΨs.

However, since bothPK andΨ are orthonormal,PKΦKΨ,
which is a rotation ofΦK , possess the distribution of a
Gaussian ensemble. Governed by the RIP theory, we can
simplify the decoding as a single-step optimization

min ‖s‖1 subject toŷ = PKΦKΨs = PKΦKx.

An unauthorized decoder, who can collect ciphertext for any
plaintext in CPA scenario, submits a series of artificial signals
{xj}Mj=1 = {(0, · · · , 0, 1j, 0, · · · , 0)T }Mj=1 to the encryption
oracle and concludesPKΦK = [ŷ1, · · · , ŷM ] using Eq. (5).
It is clear that any further using of the same measurement and
permutation matrices for security purpose is doomed to fail.

For the class II CS-based product ciphers, the same treat-
ment can be applied. According to model (2), we can rewrite
the encoding (encryption) process as

ŷ = ΦKPKs = ΦKPKΨ−1x.

Once again,ΦKPK can jointly working as the measurement
matrix and it can be revealed byM independent chosen
plaintexts and their corresponding ciphertexts.

In the following discussion, we will explain how scram-
bling (known as “acceptable permutation in [24]) relaxes the
RIP requirement of the measurement matrix for2D sparse
signals. Without loss of generality, letX = [Xi,j ]

n,n
i=1,j=1

be a 2D signal sparse in the canonic sparsifying basis and
k = (k1, k2, · · · , kn) be a row vector whose entry denotes the
number of nonzero elements of the columns ofX. A column
by column sampling process ofX can be summarized as

Y = [y1,y2, · · · ,yn] = ΦX = Φ [x1,x2, · · · ,xn] ,

or equivalently

vec(Y) = [y1,y2, · · · ,yn]
T
= Φ̄ vec(X) = Φ̄ [x1,x2, · · · ,xn]

T
,
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where

Φ̄ =




Φ

Φ

. . .

Φ


 .

The corresponding parallel (column by column) reconstruction
is given by

min ‖xj‖1 subject toyj = Φxj , (6)

where j ∈ {1, 2, · · · , n} and Φ being a typical RIP mea-
surement matrix withO(‖k‖∞ · logn) rows. As we can see,
the accurate reconstruction is proportional to‖k‖∞ [24]. The
smaller‖k‖∞ is, the fewer rowsΦ require for correct recovery
or the worse RIP constantΦ can stand.

The remaining work is to demonstrate that‖k‖∞ of X will
decrease with large probability ifX is randomly scrambled.
Let vec(X̄) = P ·vec(X) andk̄ = (k̄1, · · · , k̄n) be the sparsity
vector ofX̄, we define an acceptable permutation as follows:

Definition 2. A n2×n2 permutationP is said to be acceptable
if the following two rules are satisfied:

1) the expectations of the column sparsity ofX̄ are the same,
i.e., each column expects the same sparsity level;

2) the probability that‖k̄‖∞ deviates from the expected
sparsity level observe a power law decay.

The following property demonstrates the role of (secret)
random scrambling for2D signals which is sparse in space. By
swapping time and frequency, reconstruction model (6) can be
applied to natural2D signals, such as images. The examples
demonstrating this phenomenon will be provided in Sec. V.

Property 1. Uniform random permutation is an acceptable
permutation for anyn× n 2D sparse signalX.

Proof: To prove this, we recall that uniform random
permutation refers to choosing a permutation from all the
(n2)! candidates with equal probability. In other words, each
non-zero entry ofX will appear at any location of̄X with
probability 1/n2 when X is processed by uniform random
permutation.

Since there are‖k‖1 non-zero entries ofX in total, each
entry of its permutated version is nonzero with probability
‖k‖1/n2. Apparently, the expected sparsity level ofx̄j is n×
‖k‖1

n2 = ‖k‖1/n, which meets the requirements of rule 1).
Treat each column of̄X as realization ofn independent,

identically distributed random variables, the probability that
‖k̄‖∞ deviates from the expectation‖k‖1/n by t can be
characterized by

Prob((‖k̄‖∞ − ‖k‖1/n ≥ t)

= Prob((max
j

(k̄j)− ‖k‖1/n) ≥ t)

≤ Prob((k̄j − ‖k‖1/n) ≥ t)

≤ e−2nt2 ,

where the last inequality is obtained by applying Hoeffding
inequality. Hence finishes the proof.

C. Concatenation of CS and DRPE

As one of the optical information processing technique,
image encryption using DRPE has received a lot of research
attention since its first appearance in [35], [36]. This cipher
was found insecure against various plaintext attacks [37],[38].
In a different context, CS offers a new approach for hologram
compression and sensing in the optical domain [39], [40].
On the one hand, the concatenation of CS and DRPE enjoys
a all-optical implementation and substantially data volume
reduction. On the other hand, the secrecy provided by CS may
enhance the security level of DRPE, and vice visa. These rea-
sons making cascading CS and DRPE a noticeable alternative
to support the MTS usage of CS. In the following discussion,
we will point out that the later argument is questionable in
MTS scenario since the CPA complexity of this model is
exactly the same as that of the basic CS model.

Considering a discrete and bounded4 2D dataI = [Ii,j ], the
DRPE encryption can be formulated as

Ci,j = IF (FT (Ii,j · exp(j2πpi,j)) · exp(j2πqu,v)) ,

where the random spatial phase maskP = [exp(j2πpi,j)] and
the random frequency phase maskQ = [exp(j2πqu,v)] are the
secret keys, andFT (X) = FXF∗ with ·∗ being the conjugate
transpose andIF being the inverse Fourier transform. The
DRPE decryption is omitted here since it is similar to the
encryption process. With these notations, we can also divide
the encryption schemes based on concatenation of CS and
DRPE into two classes:

I. CS encryption followed by DRPE [26];
II. DRPE followed by CS encryption [27], [28].

Considering a2D imageX with M = n×n pixels is sensed
by CS withK = m×m measurements, the algorithms of class
I can be modeled as a separate two-step process, i.e.,

vec(Y) = Φ vec(X),

C = IF (FT (Yi,j · exp(j2πpi,j)) · exp(j2πqu,v)) , (7)

where Φm2×n2 , Pm×m = [exp(j2πpi,j)] and Qm×m =

[exp(j2πqu,v)] serve as the (equivalent) secret key in the
whole process andC is the ciphertext to deliver or display.
As claimed in [26], decodingC should observe a separate
DRPE decryption and CS reconstruction, or by a reversed
order in algorithms belonging to class II [27], [28]. As such, it
is demonstrated that an unauthorized user who cannot access
full knowledge ofΦ, P andQ is not able decryptX [26]–
[28].

We investigate the real strength against CPA for the ap-
proaches mentioned above by first rewriting Eq. (7) as a matrix

4This always holds true given that continuous data can be adequately
sampled.
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form [38], i.e.,

vec(C) = T vec(Y),

= F̄∗Q̄F̄P̄ · vec(Y),

where F̄m2×m2 is the Kronecker product of the Fourier
matricesF∗ andF, P̄m2×m2 = diag(vec(P)) andQ̄m2×m2 =

diag(vec(Q)) are the DRPE secret key. By construction,P̄

and Q̄ are unitary matrices. So, it is concludedT is also a
unitary matrices. In this concern,TΦ must be a RIP matrix
and thus a single-step optimization can be formulated as5

min ‖Ψ−1 · vec(X)‖1 subject tovec(C) = TΦ vec(X).

Once again, the attacker who works under CPA assumption
can retrieveTΦ faithfully from M independent plaintexts
and the corresponding ciphertexts. Moreover, he can use this
information to decode (decrypt) any subsequent ciphertexts.
Similarly, we can apply the analyses to class II algorithms
and obtain the same conclusion.

III. T HE PROPOSEDSCHEME

As reviewed in the previous section, existing proposals
[20]–[22], [25]–[28] targeting the MTS usage of CS as joint
sampling and data protection mechanism fail to resist plaintext
attacks. Similarly, it can be concludes that cascading CS,
scrambling and DRPE also suffer from the same defect, such
as the one suggested in [42]. The underlying reason is that
all these three cryptographic primitives are linear and we can
always translate the encoding components to a (equivalent)
RIP-based measurement matrix. Therefore, the key question
is whether it is possible to construct a more secure CS-based
product cipher without introducing any computing-intensive
cryptographic primitives. We will give a positive solutionto
this problem by switching from the RIP measurement matrix
construction to the RIPless matrix construction. We start with
the following example.

Consider a column vectorx of length M = 500 taking
values from{0, 1} has a sparsity levelk = 10. Let F de-
note an independent multivariate antipodal distribution,which
is given by F = {±d1} × {±d2} × · · · × {±dM} with
Prob(dj) = Prob(−dj) = 1/2 and {dj}Mj=1 be positive
integers. We take60 sensing vectors6 from this distribution and
get a measurement matrixΦ which is further used to sample
x. By Definition 1, Φ cannot guarantee energy-preserving
property thus it is a non-RIP matrix. By construction, we have
θ = O(maxj(dj)/minj(dj)) and

µ(F ) ≥ max
1≤i≤M

| < φT , ei > |

= maxj(dj).

5We note that the multiple measurement vector CS model [41] should be
adopted sinceT is a complex matrix.

6Here, we takeK = 60 becauseK > 4k is an empirical threshold for
exact CS recovery in the RIP theory [2].

In summary,µ(F )θ = O(maxj(d
2
j )/minj(dj)) is a non-

negligible term and the following straightforward recovery
dominated by RIPless theory (see Theorem 1 for detail)

min ‖x̄‖1 subject toy = Φx̄

returns a solutionx̄ 6= x. Set A = ΦD = Φ ·
diag(1/d1, · · · , 1/dM ), the reconstruction can also trans-
formed to a two-step reconstruction compliance with RIP
theory after realizing thatA is a Bernoulli matrix, i.e.,

min ‖x̂‖1 subject toy = (AD−1)x = Ax̂,

x̄ = Dx̂.

We compare the recovery techniques described above. Figure1
depicts a typical reconstruction result withdj ∈ [1, 60],
from which we can see that the recovery in the RIP case is
exact but the RIPless case is not due to a lack of sufficient
measurements.
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Fig. 1. Example of RIPless reconstruction and RIP reconstructions.

The above example provides a preparatory understanding
of how a RIPless matrix construction can be transformed to
a RIP one. Still, it cannot be considered as a good CS-based
cipher since an attacker can revealD from Φ by dj = |Φi,j |.
Moreover, this technique only works for vector who is sparse
in the canonical basis, which is not practical for real signals.
In this concern, we apply this finding to the CS model (2)
and devise a so called bi-level protected CS model in a way
that the measurement matrix is non-RIP and the reconstruction
works under RIP theory.

The BLP-CS model will be described in Sec. III-A, which
can be viewed as product of the CS-based cipher and a
transform encryption. Then we propose two methods for
key-related sparsifying transformation design, namely,Type I
Secret BasisandType II Secret Basis.

A. Bi-level Protection Model

The block diagram of this model is shown in Fig. 2, where
we suggest using key-dependent sensing matrix,AK , and
secret-related sparsifying basis,ΨK , to determine the mea-
surement matrixΦ = AKΨ−1

K . Recalling the above example,
we are interested in the phenomenon that the measurement
matrixΦ does not satisfy the RIP requirement, while the key-
dependent sensing matrixAK itself is a RIP matrix. Referring
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to Eq. (2), the sampling procedure can be expressed as

y = Φx = AKΨ−1
K (ΨKs) = AKs.

It should be noted that the number of measurements (sampling
rate) is on the order of(k logM) even thoughΦ is a non-RIP
measurement matrix. This number of measurements fails to
meet the minimum requirement defined in Theorem 1, thus
makes the correct decoding fromΦ an impossible task.
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Ψ

zΨ{|
} ~��Φ ⋅ Ψ

y
y = xΦ⋅

Fig. 2. Block diagram of BLP-CS.

To correctly decode (decrypt)y, a legitimate user should
first deriveAK andΨK from the key scheduling process and
then refer to the following two-step reconstruction

min ‖s‖1 subject toy = Φx = AKs,

x = ΨKs.

or equivalently

min ‖Ψ−1
K x‖1 subject toy = Φx,

To fulfill the security requirement, the remaining task is to
design two matricesAK andΨK satisfying:

RULE a. AK is a key-related matrix satisfy RIP;
RULE b. ΨK is a key-related sparsifying basis;
RULE c. AKΨ−1

K is a structural non-RIP matrix.

The work of designing a RIP matrix is trivial since it
is already clear that Guussian/Bernoulli [4] and structurally
random matrices [34] are competent for this task with over-
whelming probability. Therefor, we focus our attention on the
designing ofΨK in the following discussions. It is worth
mentioning that the work of designingΨK satisfying RULE b
(also known as transform encryption) is very popular in the
filed of multimedia encryption, examples can be found in [43]–
[45]. However, the work of designingAK andΨK satisfying
RULE c is totally new.

B. Type I Secret Basis

The first type of secret basis that drawn our attention is
the parameterized construction of some familiar transform,
such as parameterized discrete wavelet transform (DWT) [44],
[46] and directional discrete cosine transfrom (DCT) [43],

[47]. Here, we present a parameterized transform based on
Fractional Fourier Transform (FrFT) as an example.

The use of FrFT for security purpose can be dated back
to year2000, when Unnikrishnanet al. [48] suggested to use
FrFT for DRPE instead of the ordinary Fourier transform [35],
in order to benefit from its extra degrees of freedom provided
by the fractional orders. Generally speaking, performing an
orderα FrFT on a signal can be viewed as a rotation operation
on the time-frequency or space-frequency distribution at an
angleα. Though FrFT is very popular in optics for its easy
implementation, it is not preferred in digital world since
complex numbers always cause extra computational load.

To this end, Venturiniet al. proposed a method to construct
Reality-Preserving FrFT of arbitrary order [49]. Here, we
deduce the Reality-Preserving Fractional Cosine Transform
(RPFrCT) by the virtue of their method. Denote the discrete
cosine transform [50] of sizen× n by

C =

(
1√
n
ǫl cos(2π

(2i+ 1)l

4n
)

)
,

wherei = 0 ∼ n − 1, l = 0 ∼ n − 1, ǫ0 = 1 and ǫl =
√
2

for l > 0. The unitary property ofC assures that it can be
diagonalized as

C = UΛU∗, (8)

whereU = {ui}ni=1 is composed ofn orthonormal eigenvec-
tors, i.e.,u∗

mui = δmi and Λ = diag(λ1, · · · , λi, · · · , λn)
with λi = exp(jϕi). Replaceλi with its α-th power λαi
in Eq. (8), we can express the Discrete Fractional Cosine
Transform (DFrCT) matrixCα of order α in the compact
form

Cα = UΛαU∗.

Having definedCα, we can derive the RPFrCT matrixRα as
follows:

• For any real signalx = {xl}Ml=1 of lengthM (M is even),
construct a complex signal of lengthM/2 by

x̃ = {x1 + jxM/2+1, x2 + jxM/2+2, · · · , xM/2 + jxM}.

• Computẽy = Bαx̃, whereBα is a DFrCT matrix of size
(M/2×M/2), namely,Bα = Cα,M/2.

• Determine the RPFrCT matrixRα by

y = (Re(ỹ), Im(ỹ))T

=

(
Re(Bα)Re(x̃)− Im(Bα) Im(x̃)

Im(Bα)Re(x̃) + Re(Bα) Im(x̃)

)

=

(
Re(Bα) − Im(Bα)

Im(Bα) Re(Bα)

)
·
(

Re(x̃)

Im(x̃)

)

= Rαx.

From the construction process listed above, we can conclude
thatRα is orthogonal, reality preserving and periodic. Then,
the Reality-Preserving Fractional Cosine Transform of a digital
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imageX is given by

S = RαXRT
β , (9)

where (·)T represents the transpose operator,α and β are
the orders of the Fractional Cosine Transform alongx and
y directions, respectively. Equivalently, we can express this
formula as

vec(S) = Ψ−1 vec(X),

whereΨ−1 = ΨT = (Rβ ⊗ Rα). To study the sparsifying
capability of the proposed parameterized basis, we carriedout
experiments on digital images at different fractional orders
α and β by using the bests-term approximation, i.e., keep
the s largest coefficients and set the remaining ones to zero.
The recovered result of RPFrCT is compared with that of
DCT2 using the ratio between their peak signal-to-noise ratios
(PSNRs). As expected, the sparsifying capability of RPFrCT
raises whenα or β increases, as shown in Fig 3. When
α, β ∈ (0.9, 1], the sparsifying capability of RPFrCT is
comparable to that of DCT2. It is worth mentioning that a
similar sparsifying capability was also observed when this
transform is applied to1D signals [49].
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Fig. 3. Comparison between the recovery result of RPFrCT andDCT2 using
the bests-term approximation at different fractional orders.

C. Type II Secret Basis

We have demonstrated a technique for parameterized spar-
sifying basis construction, where the free parameter can be
used as the secret key in the BLP-CS model. In this way,
the resultant basis satisfies RULE b. However, it still suffers
from the same CPA shown in Sec. II since it fails to meet
RULE c. In the subsequent discussions, we propose three kind
of operations on an existing basis to make it fulfill RULE c.
We start the deviation by defining equivalent sparsifying bases.

Definition 3. Two basis matrices,Ψ and Ψ′ are equivalent
sparsifying bases ifx = Ψs = Ψ′s′, ‖s‖0 = ‖s′‖0 = k holds
for any signalx.

Property 2. Ψ′ andΨ are equivalent sparsifying bases if

Ψ′ = F1(Ψ)

= (d1ψ1, d2ψ2, · · · , djψj , · · · , dMψM ),

where {dj}Mj=1 are non-zero constants andψj is the j-th
column ofΨ.

Proof: Sets′j =
1
dj
sj and we have‖s‖0 = ‖s′‖0.

We demonstrate that we are able to construct a non-RIP
measurement matrix satisfying RULE c. AssumeΨ is an
orthonormal basis and set

Ψ′ = ΨD,

where D = diag(1/d1, 1/d2, · · · , 1/dM ) and {dj}Mj=1 are
positive integers drawn from certain distribution indepen-
dently. LetA denote a Gaussian matrix with i.i.d. entries and
calculateΦ as

Φ = A(ΨD)−1,

= AD−1ΨT .

Once again, the effect ofΨT can be viewed as a rotation of
AD−1 in aM dimensional space, which is energy preserving.
By construction,Φ is a non-RIP matrix.

Property 3. Ψ′ andΨ are equivalent sparsifying bases if
Ψ′ = F2(Ψ) = ΨP,

whereP is a random permutation matrix.

Proof: SinceΨs = Ψ(PPT )s = Ψ′(PT s) = Ψ′s′ ,
‖s′‖0 = ‖PT s‖0 = ‖s‖0.

In the1D case, this property implies that random scrambling
does not cause any loss of the sparsity level of any given
signal. In the2D case, as we have shown in Sec. II-B, it
helps to uniform the column (or row) sparsity level and thus
flavors a parallel CS reconstruction technique, which will be
exemplified in Sec V.

In addition, if we know or partially know thatsupp(s)
is localized in a certaink-dimensional subspacerather than
uniformly distributed inRN , we can embed more secrets into
the sparsifying basis, as stated in Property 4. Here we assume
thatΨ is an orthonormal sparsifying basis for simplicity.

Property 4. Ψ′ andΨ are equivalent sparsifying bases if
Ψ′ = F3(Ψ)

= (ψ1, · · · , ψj−1, aψj + bψk, ψj+1, · · · , ψM ),

wherea, b are non-zero constants andj, k ∈ supp(s) or j, k /∈
supp(s).

Proof: SinceΨ is orthonormal,sj = (ψj ,x) = ψT
j x

and we knowsj = 0 when j /∈ supp(s). Then the proof
for j, k /∈ supp(s) is trivial. For j, k ∈ supp(s), set s′ =
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(s′1, s
′
2, · · · , s′j , · · · , s′k, · · · , s′M )T with

s′i =





si/a if i = j,

si − sjb/a if i = k,

si otherwise.
(10)

Then we have
x = Ψs

=
N∑

i=1
i6=j,k

siψi + sjψj + skψk

=

N∑

i=1
i6=j,k

siψi +
sj
a
(aψj + bψk) + (sk −

bsj
a

)ψk

= Ψ′s′

By Eq. (10), we conclude that‖s′‖0 = ‖s‖0, hence completes
the proof.

Obviously, the operatorF3(·) can be applied to three or
more columns as long as all of the chosen columns are either
in supp(s) or not. Finally, we provide an example to further
illustrate Property 4. The grayscale image “Lena” with size
512× 512, as shown in Fig 4a), is transformed using RPFrCT
with ordersα = 0.99 and β = 0.95. Figure 4b) shows the
absolute value of the RPFrCT coefficients under the logarithm
base. It is clear that the energy of the RPFrCT coefficients
matrix is localized, specifically, they are concentrated atthe
upper-left corner of the four sub-blocks. Thus, we can apply
Property 4 to the RPFrCT basisΨ = (Rβ⊗Rα)

T accordingly.
A similar effect can be observed in the parameterized DWT
and DCT settings.

a)

b)
Fig. 4. a) Original image “Lena”; b) Energy distribution of RPFrCT
coefficients of “Lena” using logarithm base.

IV. D ISCUSSIONS ANDSECURITY ANALYSIS

We have demonstrated the possibility of using BLP-CS

as a joint data acquisition and protection model for MTS
purpose. This section aims to compare the basic OTS CS
cipher and BLP-CS cipher from the viewpoints of complexity
and security.

A. Complexity

Suppose we have constructed a RPFrCT matrixRα with
appropriate fractional orderα, a M × 1 signal x can be
sparsified byRαx = s. All the techniques on manipulating the
sparsifying basisRT

α introduced in Sec. III-C can be unified
to the following matrix notation7, i.e.,

ΨK = RT
αPDQ,

whereD, P andQ are matrices determined by operatorsF1,
F2 andF3, respectively. It worth mentioning thatx = ΨKs′ =

RT
αs with ‖s′‖0 = ‖s‖0. Recall from Sec. III-A, the encoding

of BLP-CS is governed by

y = Φx = AKΨ−1
K x, (11)

and the decoding should follow a two-step reconstruction, i.e.,

min ‖s′‖1 subject toy = Φx = AKs′,

x = ΨKs′. (12)

Once a well-designed key schedule is given8, a trusted third
party can produceΦ, AK and ΨK faithfully and transmit
them to the encoder and decoder. An alternative option is that
the encoder and decoder produce their own matrix key on the
air using the agreed key schedule from the same root key. We
assume the OTS CS model also adopts the same matrix key
generation process for a fair comparison.

We first take a look at the encoder side. For the former
situation, where the matrix key is produced by the trusted party
and then delivered to both the CS encoder and decoder, the
encoding complexity of the BLP-CS model outperforms that of
the OTS CS model since it does not bring extra communication
cost once the key is set. For the later situation, the encoding
complexity of the OTS CS model is lower than that of the
BLP-CS model at the first glimpse due to the reason that
the encoding process of the second model involves a matrix
multiplication, i.e.,AKΨ−1

K , in the key generation process.
Nevertheless, since the OTS CS system requires updating the
measurement matrix in every sampling, the BLP-CS model
outperforms OTS CS after sampling(2f ′+f)/f ′ times. Here,
f andf ′ refer to the complexity of the matrix multiplication
and the matrix key generation, respectively.

At the decoder side, the Moore-Penrose pseudoinverse of the
sensing matrixAK need to be calculated in every iteration of
somel1 optimization algorithms [51], for example, orthogonal

7We are aware of the fact that any parameterized orthonormal transform
with good sparsifying capability can play the role ofR

T
α .

8The design of an effective key scheduling process is not considered in this
paper since our concern is only the secrecy of CS paradigm. Wealso note
that this is a common treatment for all the state-of-the-artworks on this topic.
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matching pursuit [52]. The complexity of this operation dom-
inates the overall complexity in CS reconstruction. As such,
if some off-line techniques can be employed to calculate the
pseudoinverse ofAK , the complexity of the reconstruction can
be largely reduced. For the OTS CS system, this is impossible
since the measurement matrix is never re-used.

B. Security

I. Brute-force and Ciphertext-only Attacks
We employ the existing results presented in [9], [13] to
show that the BLP-CS preserves most secrecy features
of the OTS CS-based cipher under these two attacks.

Theorem 2. [9, Theorem 1 and Corollary 1] LetA and
A′ beK×M Gaussian matrices. Letx bek-sparse with
respect to the canonic basis andy = Ax. If K > k, then
l0 problem (3) andl1 problem (4) will yield anK-sparse
solutionx′ with probability one such thaty = A′x′.

We first examine the case of brute-force attack, i.e.,
the attacker try to guess possible measurement matrices
and use them for decoding. Referring to Theorem 2,
the l0 or l1 recovery governed by a wrong sensing
matrix AK will lead to an incorrect reconstruction with
probability one. Thus the OTS CS-based cipher can
guarantee computational secrecy if the key space is large
enough to make systematic search of all the keys (sensing
matrices) impossible. This result can be directly applied
to our BLP-CS model. According Eqs. (11) and (12),
we can conclude that BLP-CS is computationally strong
even if the attacker can successfully retrieved the secret
sparsifying basisΨK . In this concern, the transform
encryption approach enhances the security level of the
basic CS paradigm.
An interesting security feature of the OTS CS cryp-
tosystem under ciphertext-only attack is the asymptotic
spherical secrecy [13]. This type of secrecy states that
any two different plaintexts (sparse signals to be sampled
in this context) with equal power remain approximately
indistinguishable from their measurement vectors when
CS operates under the RIP framework. Alternatively, we
can intercept this property as only the energy of the
measurements carries information about the signal. A
bird’s-eye view of why this asymptotic spherical secrecy
holds for the OTS CS cipher may refer to the definition of
RIP, which states that the CS encoding should obey an
energy-preserving guarantee. A theoretical proof about
this property can be found in [13].
As we demonstrated in Eqs. (11) and (12), the proposed
BLP-CS model works under the seemingly RIPless the-
ory if one cannot determineAK and ΨK . Therefore,
the energy-preserving constraint introduced by RIP is
unapplicable to this setting. As such, we can conclude
that the measurements (ciphertext) carries no information
about the signal (plaintext) when a single ciphertext is

observed. The BLP-CS and the OTS CS ciphers have
the following major difference: when multiple ciphertexts
are observed by the attacker, he is aware of the fact
that two plaintexts must be similar if their corresponding
ciphertexts are close to each other in the Euclidean space.
This is caused by the multi-time usage of the same
measurement matrix and the linear encoder. Surely the
OTS CS cipher is more secure then the BLP-CS cipher
from this point of view. Nevertheless, as mentioned in
Sec. I, this is a favorable property that promotes the
source coding gain from a system point-of-view [17].
This property also finds its way in privacy-preserving
video surveillance systems [11]: assume the attacker
happens to know some pairs of plaintext and ciphertext,
such as static video scenes and their corresponding
measurement vectors, and he want to retrieve privacy-
sensitive data from a new intercepted ciphertext. After
studying the Euclidean distance of the new ciphertext, he
comes to realize that plaintext corresponding to the new
ciphertext contains privacy-sensitive data. However, the
decryption of this ciphertext requires full knowledge of
the matrix keyAK andΦK . This leads to our discussion
of resistance of the BLP-CS cipher with respect to
plaintext attacks.

II. Plaintext Attacks
As discussed in Sec. II, the data complexity of retrieving
a general measurement matrix (the secret key) isM in-
dependent plaintexts and their corresponding ciphertexts
in any basic CS-based cipher. If the used measurement
matrix is Bernoulli, a single plaintext in the formx =

(20, 21, · · · , 2M )T and the corresponding ciphertext can
be utilized to recover the Bernoulli measurement matrix
completely9. Based on these knowledge, investigating the
resistance of the OTS CS cryptosystem is a trivial work.
We hereby focus on the BLP-CS cipher. Referring to
Eq. (11), the attacker can retrieveΦ fromM independent
plaintext-ciphertext pairs. By construction,Φ is a non-
RIP matrix. Thus the conclusion drawn from Theorem 1
assures that a straightforward useΦ in thel1 optimization
problem (4) is not applicable. Considering that thel0
optimization problem (3) is NP-hard [33], the attacker
tries to decomposeΦ with the formΦ = EF, with the
constraint that entries ofE should observe certain kind
of distribution (Gaussian or Bernoulli). In particular,F is
the product of an elementary matrix and an orthonormal
matrix.
If the decomposition is unique or the possible number of
decompositions is very limited, i.e., polynomial function
of M , the attacker can determine the matrix keyAK

and Ψ−1
K and the BLP-CS cryptosystem is regarded

9One can imagine the role of a{+1,−1} matrix as that of a{0, 1} matrix,
the proof can be found in [19]. A vector composed by{0, 1} can be recovered
from the inner product of this vector andx.
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as fail to resist plaintext attacks. To summarize, we
conclude that the number of decompositions should be
at leastO(M !), thus making the search for the true one
inconclusive10. The conclusion is based on the simple
fact EF = (EP)(PTF), whereP is aM ×M random
permutation matrix. As we can see, distribution of all the
entries of(EP) is exactly the same as that ofE andPT

represents elementary row operation onF. As such, the
attacker cannot distinguish the decomposition resultE

andF from (EP) and (PTF).

V. BLP-CSFOR DIGITAL IMAGES

In this section, the proposed BLP-CS model is applied
as a joint data acquisition and protection layer for digital
images. The aim is to provide an intuitive interpretation of
how a cryptographic random scrambling can relax RIP of
the measurement matrix and substantially reduce the decoding
complexity, i.e., parallel reconstruction. Moreover, some other
features owned by a basic CS paradigm, such as robust to
packet loss and noise, are also observed.

We now consider a2D imageX with M = n×n pixels. If
the chosen parameterized transform is RPFrCT, the basis for
X is (RT

β ⊗ RT
α) according to Eq. (9). Following the same

approach adopted in [53], the encoding stage can be written
as

vec(Y) = [y1,y2, · · · ,yn]
T = Φ vec(X),

whereΦ is the product of theK ×M key-dependent sensing
matrix AK and theM ×M key-dependent basisΨ−1

K having
the form

Ψ−1
K = D−1PT (RT

β ⊗RT
α),

and

AK =




A1

A2

. . .

An




with Aj = A for j ∈ {1, · · ·n} being Gaussian matrices.
As we discussed in Sec. IV-A, repeatedly using the same
sensing matrix for different signal segments can speed up
the reconstruction if some off-line mechanism is allowed to
calculate the pseudoinverse ofA in advance.

According to Secs. III-B and III-C, vec(S) =

[s1, s2, · · · , sn]T = Ψ−1
K vec(X) is sparse in the canonical

basis. Referring to property 1 and Eq (6), a parallel
construction is applied as

min ‖sj‖1 subject toyj = Asj . (13)

10This is even worse than directly solving the NP-hardl0 problem (3), who
has a complexity

(

M

k

)

.

for all j ∈ {1, 2, · · · , n}. Finally, the recovered image is given
by vec(X̄) = ΨK vec(S). A block diagram of the whole
system is depicted in Fig. 5. In summary, this system is a
instance of the simplified BLP-CS model.

Fig. 5. Block diagram of BLP-CS for digital images.

To further illustrate how the random scramblingP relaxes
the RIP requirement of the sensing matrixA, we consider
another sampling configuration

vec(Y) = Φ vec(X),

where Φ = AKΨ̂−1
K with AK is the same as defined

above andΨ̂−1
K = D−1(RT

β ⊗ RT
α). Here, we note that

the only difference ofΨ−1
K and Ψ̂−1

K is the permutation
matrix P. The reconstruction is exactly the same as that of
Eq. (13). By construction, this is a special form of block-
based compressive sampling (BCS) [54], where each block is
a column of the frequency coefficients, together with block
independent recovery. We call this model BCS-In. We also
note that using the smoothed projected Landweber operator
can largely improve the BCS reconstrution quality at relatively
low extra computation overhead [55]. However, the study of
embedding the smoothed projected Landweber operator in the
BLP-CS reconstruction is out of the scope of this paper.

Four representative images, “Lena”, “Peppers”, “Camera-
man” and “Baboon” of size512 × 512 are used as our test
images. The tests are carried out under different sampling rate
SR = K

M × 100%. The reconstruction quality is evaluated in
terms of average11 peak signal-to-noise ratio, APSNR (dB)
= 10 · log10 E

(
M2552

‖ vec(X)−vec(X̄)‖2

2

)
. The results are listed in

Table I and they support the conclusion of property 1, i.e.,
a cryptographic random scrambling helps make the column
sparsity level ofS uniform. The last point worth mentioning
is that random scrambling is suitable for all kind of2D sparse
data (all kind of sparsifying coefficients under parameterized
orthonormal transform), which extends the result that zig-zag
scrambling works for DCT2 coefficients [24].

The basic CS paradigm that works under RIP theory is
known to be robust with respect to transmission imperfections

11
E denotes calculate average over100 tests.
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TABLE I
COMPARISON BETWEENBLP-CSAND BCS-IN IN TERMS OFAPSNRAT DIFFERENT SRS.

SR 10% 30% 50% 70%
Model BLP-CS BCS-In BLP-CS BCS-In BLP-CS BCS-In BLP-CS BCS-In

“Lena” 21.6 15.5 27.5 23.3 31.4 27.3 35.7 32.1
“Peppers” 20.9 14.4 27.2 22.6 30.9 27.9 34.7 32.5

“Cameraman” 19.2 13.0 24.8 21.5 28.6 27.4 32.9 32.8
“Baboon” 17.8 9.7 20.2 17.6 22.6 21.3 25.8 25.2

such as noise or packet loss [56], [57]. Since the new
proposal works under the RIPless theory at only the encoder
but RIP theory at the decoder, we expect the same property
in our approach. To quantitatively study this, we evaluate
the robustness of the proposed framework with respect to
additive white Gaussian noise (AWGN) and various packet
loss rates (PLRs). In the former case, we artificially add a
zero-mean normal distribution random sequence with variance
1 to the measurements while in the latter we randomly discard
certain number of measurements governed by PLR. Then we
perform reconstruction on the corrupted measurements. In real
applications, PLR can be up to30% [58] and we measure
the quality of the reconstruction in terms of APSNR at10%,
20% and 30% PLR, respectively. These tests were carried
out using the “Lena” image, but similar results were obtained
using other images. As observed from Table II, our scheme is
almost immune to AWGN when we compare the APSNR of
the ideal case and the one with AWGN. In addition, comparing
the APSNRs at different levels of PLR, we found that the
reduction rate of APSNR is linear to the increasing rate of
PLR, which implies that all measurements are of the same
importance [57].

TABLE II
APSNROF THE RECONSTRUCTIONS UNDERAWGN AND VARIOUS PLRS.

SR 0.1 0.3 0.5 0.7

Ideal BLP-CS 21.6 27.5 31.4 35.7
BLP-CS AWGN 21.8 27.4 31.3 34.9

BLP-CS10% PLR 21.7 26.8 30.5 34.1
BLP-CS20% PLR 20.9 26.2 29.5 32.7
BLP-CS30% PLR 19.9 25.5 28.5 31.3

VI. CONCLUSION

To realize the MTS usage of CS cryptosystem, some
approaches have already been proposed. Typical examples
include scrambling in different domains [20]–[22], [25] and
cascading the DRPE technique [26]–[28]. However, we have
shown that they fail to satisfy the security requirement. In
this concern, we suggest a BLP-CS model by making use of
the non-RIP measurement matrix construction. Our approach
differs from existing ones in two aspects: 1) the RIPless CS
theory is firstly applied for providing the security features of
a CS-based cipher; 2) the role of the sparsifying basis for the

secrecy of CS is revealed.
The security of the BLP-CS model is discussed from various

aspects, such as brute-force attack, ciphertext-only attack and
plaintext attacks. Special attention has been paid to the plain-
text attacks since it is widely accepted that basic CS model is
immune to brute-force attack and ciphertext-only attack [9],
[13]. Under plaintext attacks, we have demonstrated that the
number of candidate sensing matrices and sparsifying basis
matrices that match the information inferred by the attacker is
huge. Therefore, the searching of the true sensing matrix and
sparsifying basis matrix is impossible.

Finally, we apply the proposed model for the purpose of
secure compressive image sampling. Both theoretical analyses
and experimental results support our expectation, i.e., random
scrambling plays a critical role in relaxing the RIP requirement
of the measurement matrix and flavoring a PCS reconstruction
for 2D sparse signals. Other features of a basic CS system,
such as robust to packet loss and noise, are also observed.
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