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Abstract—The probability hypothesis density (PHD) filter
based on sequential Monte Carlo (SMC) approximation (also
known as SMC-PHD filter) has proven to be a promising
algorithm for multi-speaker tracking. However, it has a heavy
computational cost as surviving, spawned and born particles
need to be distributed in each frame to model the state of the
speakers and to estimate jointly the variable number of speakers
with their states. In particular, the computational cost is mostly
caused by the born particles as they need to be propagated
over the entire image in every frame to detect the new speaker
presence in the view of the visual tracker. In this paper, we
propose to use audio data to improve the visual SMC-PHD (V-
SMC-PHD) filter by using the direction of arrival (DOA) angles
of the audio sources to determine when to propagate the born
particles and re-allocate the surviving and spawned particles.
The tracking accuracy of the AV-SMC-PHD algorithm is further
improved by using a modified mean-shift algorithm to search
and climb density gradients iteratively to find the peak of the
probability distribution, and the extra computational complexity
introduced by mean-shift is controlled with a sparse sampling
technique. These improved algorithms, named as AVMS-SMC-
PHD and sparse-AVMS-SMC-PHD respectively, are compared
systematically with AV-SMC-PHD and V-SMC-PHD based on
the AV16.3, AMI and CLEAR datasets.

Index Terms—Audio-visual tracking, PHD filter, SMC imple-
mentation, multi-speaker tracking, mean-shift, sparse particles.

I. INTRODUCTION

PEAKER tracking in enclosed spaces has received much

interest in the fields of computer vision and signal pro-
cessing, driven by applications such as video conferencing [1],
speaker discrimination [2], acoustic beamforming [3], audio-
visual speech recognition [4], video indexing and retrieval [5],
human-computer interaction [6], and surveillance [7]. How-
ever, speaker tracking in real life scenarios involves several
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challenges such as estimation of the variable number of speak-
ers and their states, and dealing with various conditions such
as occlusion, limited view of cameras, illumination change and
room reverberations.

One approach to overcome these challenges is to use
multi-modal information, as it provides additional observations
about the state of each speaker compared to single-modal
tracking. The multi-modal information used for tracking can
be collected by sensors such as audio, video, thermal vision,
laser range finders and RFID [8]. In speaker tracking, audio
and video sensors are widely applied compared to others, for
their easier installation, cheaper cost, and more data processing
tools. Hence, our tracking system is also based on audio and
visual data.

Video tracking is generally reliable and accurate when the
targets are in the camera field of view [9], but is limited
when the targets are occluded by other speakers, when they
disappear from the camera field of view, or the appearance
of the targets or illumination has changed [10], [11], [12],
[13], [14], [15]. On the other hand, audio tracking [16] is not
restricted by these limitations. However, it is prone to non-
negligible tracking errors as audio data is intermittent over
time and may be corrupted by background noise and room
reverberations. Nevertheless, the audio and visual modalities
contain complementary information that can be used to im-
prove the tracking performance in the case that either modality
is unavailable or both are corrupted [2], [6], [17], [18], which
is our focus here.

Several approaches have been proposed to use the multi-
modal information which can be categorized into two classes:
namely, deterministic (data-driven) and stochastic (model-
driven) [19], [20], [21]. Deterministic approaches are often
considered as an optimization problem based on a cost func-
tion. A representative method in this category is the mean-shift
[22], [23], [24] where the cost function is defined in terms
of colour similarity measured by the Bhattacharyya distance.
The stochastic approaches use a state-space approach based
on the Bayesian framework [25], [26]. Representative methods
include the Kalman filter (KF) [27], extended KF (EKF), and
particle filter (PF) [28]. In comparison to the KF and EKF
approaches, the PF approach is more robust for non-linear
and non-Gaussian models as it easily approaches the Bayesian
optimal estimate with a sufficiently large number of particles
[8]. It has been widely employed for speaker tracking [25],
[29], [30].

The generic PF applied to multi-speaker AV tracking is



often under the assumption that the number of speakers is
known and invariant. In practice, however, the speakers to
be captured by the AV sensors may appear or disappear in a
random manner. As a result, the number of speakers that can be
observed from the AV measurements may vary with time. To
address this issue, the theory of random finite sets (RFSs) has
been introduced for tracking unknown and variable number of
speakers which allows multi-speaker filtering by propagation
of the multi-speaker posterior [31], [32]. The computational
complexity of RFS, however, grows exponentially with the
number of speakers. To overcome this problem, the PHD
filtering approach [32] was proposed as the first order approxi-
mation of the RFS, whose complexity scales linearly with the
number of speakers. It has been found to be promising for
multi-speaker tracking [31], [32]. Different from the Bayesian
(Kalman or PF) approach, the PHD filter does not require the
a priori knowledge of the number of targets, which is actually
estimated during the tracking process.

The SMC implementation [33] is introduced to obtain
practical solutions of the PHD filter. The SMC-PHD filter uses
particles to model the surviving, spawned and born state of
the speaker. In the standard implementation of the SMC-PHD
based visual tracking [33], the born particles are propagated
in every frame to detect the speaker presence in the view,
which is computationally expensive. To address this limitation,
we propose to use the DOA information obtained from audio
for the propagation of the particles. More specifically, the
propagation of the born particles is decided based on the DOA
information and the particles are re-located around the line
drawn upon the DOA. A similar approach has been used in
[34], [35] and [36] under the PF framework for a fixed number
of speakers. Here, the SMC-PHD filter is used, and to our
knowledge, audio information has not been previously used
with visual information in a SMC-PHD filter as we do here.

The estimation accuracy of the SMC-PHD filter, however,
is compromised due to the use of the first-order approximation
derived from RFS. In this paper, we propose a new method by
employing the mean-shift to improve the particle distribution
within the SMC-PHD filter. The mean-shift is run on the
particle set to pull the centre of the particle distribution towards
the target centre. This leads to improvement in estimation
accuracy as observed in our experiments shown in Section
VI-C. Although mean-shift has been previously used with
particle filtering in [19], [21], [37], [38], [39], in various
frameworks, none of these were explicitly designed for a
variable number of targets since the structure of both methods
was devised for single target tracking scenarios.

The mean-shift approach is computationally efficient, but
it may converge to saddle points in the case of multi-modal
distribution [40], and may fail to track small and fast moving
targets and is unable to recover a track after partial or total
occlusions [37], [38], [41]. These problems can be easily
handled by the SMC-PHD filter due to its ability to recover
from lost tracks [38], and the use of multiple particles which
can help mean-shift to detect the target even if some of
the particles fall in local maxima or saddle points. Another
problem with the mean-shift is its limitation in adapting to
the size or scale of the target. However, this problem can be

solved with the SMC-PHD filter since the scale is one of the
states of the target.

The mean-shift process is used to move the particle towards
the target location leading to error reduction, but repeating this
process for all the particles induces extra computational cost.
To overcome this problem, we propose a technique based on
“sparse sampling” leading to a new concept “sparse particle”.
The traditional way of using sparsity in tracking is to represent
the target appearance or features with sparsity [18], [42], [43].
Unlike the traditional way, sparse particles are obtained with
sparse sampling strategy, which, to our knowledge, has not
been done before.

This paper is an extended version of our previous study de-
scribed in [44]. The main modification lies in the formulation
and justification of the improved tracking scheme, the mean-
shift and sparse sampling integration, and more experiments.
The major contributions of this paper can be summarized as
follows:

e Audio is used for particle propagation of the SMC-
PHD filter and to improve the tracking performance and
robustness of the visual tracker for a variable number of
speakers.

¢ A new method is developed by using mean-shift to
improve particle distribution in the particle propagation
step of the SMC-PHD filter.

o A novel sparse sampling algorithm is proposed to gener-
ate sparse particles for which the mean-shift iteration is
operated in order to reduce the computational cost.

The rest of this paper is organized as follows: the next
section introduces the PHD filter for visual multi-speaker
tracking. Section III describes our proposed audio-visual
SMC-PHD (AV-SMC-PHD) filtering algorithm. In Section IV
and V, the mean-shift and sparse sampling are integrated in
the proposed AV-SMC-PHD filtering algorithm for further im-
provements. Section VI shows experimental results performed
on the AV'16.3, AMI and CLEAR datasets and compares the
performance of the algorithms. Closing remarks are given in
Section VII.

II. MULTI-SPEAKER TRACKING WITH THE PHD FILTER

This section describes our problem formulation for multi-
speaker visual tracking based on the PHD filter.

Let us represent the state of a speaker by a vector x =
(21 @1 a2 @ s]T in a single speaker tracking system
where x1 and xo are, respectively, the horizontal and vertical
positions of the rectangle centred around the face that we wish
to track, 1 and Z' are, respectively, the horizontal and vertical
velocity, and s is the scale of the rectangle centred around
(1, x2). For the evolution of the time dependent speaker state,
the constant velocity model is employed [36], [45] given as,

xp =Fxp_1 +qg, (D

where q, is the zero-mean Gaussian noise with covariance Q,
ar ~ N(0,Q) for speaker at time frame k = 1,..., K and F
is the linear motion model.



In our work, the multi-speaker states and measurements are
characterized by using the RFS theory [32], given by

X = {X1,k5 -, X2, k] 2
Z, = {Zl,ka---aZMk,k}> 3

where Zj |X%| is the number of speakers, with | - |
representing the cardinality of the set. Z; consists of Mj
observations which may be corrupted by noise due to clutter.
Uncertainty in a single speaker Bayesian tracking is introduced
by modelling x;, and z; as random vectors. In multi-speaker
case, uncertainty is introduced by modelling &), and Zj as
RFSs [46]

Xy = S (Xp—1) U Bi(Xp—1) UTg, “)
Z, = @k(.)(k) U Cy, (5)

where ‘U’ denotes union, Si(Xj_1) denotes the RFS of
surviving speakers, By (Xx—_1) is the RFS of speakers spawned
from the previous set of speakers X1 and 'y is the RFS
of the new speakers that appear spontaneously at time k
[33]. O (X)) denotes the RFS of the measurements gener-
ated by the speakers X%, and Cjy is the RFS of clutter or
false alarms. Besides, the dynamics in the state evolution
X and the randomness in the observations are described
by the multi-speaker transition density fy—1(A%|Xx—1) and
likelihood g (2| Xk ), respectively. Then, the RFS formulation
can be employed in the optimal multi-speaker Bayesian filter
by propagating the posterior density using Bayes recursion.
Nevertheless, the RFS approach is computationally intractable
since multiple integrals are involved in the recursion of multi-
speaker posterior and the computational complexity increases
exponentially with the number of speakers. To alleviate the
computational complexity, the PHD filter is proposed which
propagates the first-order moment of the posterior instead of
the posterior itself [32] as described next.

A. The PHD Filter

The PHD filter is defined as the intensity vy, whose integral
gives the expected number of speakers. The PHD filter consists
of two iterative steps: prediction and update. The prediction
step of the PHD is shown as [32]

=&k (xx)
+/¢k|k—1 (Xk[xk—1) Ve—1jk—1 (X—1) dXp—1, (6)

Vk|k—1 (xk)

where £, (xx) is the intensity function of the new speaker birth
RFS Ty, and ¢ -1 (Xx|xx—1) is the analog of the single-
speaker state transition probability [32]

= sk (Xk—1) frp—1 (Xk[Xk-1)
+ Brjp—1 (Xklxk-1) , (N

where pg i (xr—1) denotes the survival probability for the
speakers still existing and fx—1 (Xx|Xp—1) denotes the
single-speaker state transition density. The intensity function
of RFS By (Xy_1) is denoted by [Byx—1 (Xk|xr_1) for the

Brjk—1 (Xn|Xx—1)

speaker spawned at time k& with previous state x;_;. The PHD
update is given as [32]

(1 —pp.k (Xk)] Vijr—1 (X&)
Pk (Xk) i (Zk|Xk) Vgjr—1 (Xk)
wr (2k) + [ po.k (Xk) gk (20]Xk) Vrjr—1 (%K)’

Vk|k (xk) =

p>

Z} EZ

®)

where pp i (xy) denotes detection probability and gy, (zx|xx)
denotes the single-speaker likelihood defining the probability
that z; is generated by a speaker state xj. The intensity of
clutter RFS Cy, is given as ky, (zr) = Pu(zy), where 1 is the
average number of Poisson clutter points per scan and u(zy)
is the probability distribution of each clutter point.

The PHD recursion involves multiple integrals in Equations
(6) and (8) that have no closed-form solutions in general.
To obtain a numerical solution, two implementation methods
can be used, i.e., the Gaussian mixture PHD (GM-PHD) [47]
and sequential Monte Carlo PHD (SMC-PHD) [33]. Different
from the GM-PHD filter where a linear and Gaussian model
is assumed, the SMC-PHD filter has the ability to handle non-
linear and non-Gaussian problems in multi-speaker tracking.
For this reason, we prefer the SMC-PHD algorithm, which is
summarized next.

B. The SMC-PHD Filter

At time step k — 1, the PHD wj,_q),_1(Xp_1) is approx-

imated by {wlgn)l,xfc")l} 11 of Nj_i particles and their

corresponding weights as

Ny_1

S o (i -x). O
n=1

where 4(.) is a Dirac delta function. Prediction of the PHD
Uk|k—1 (Xx) is obtained with particles X;, and their weights
- ( ) __(n) Nk—1+Jk
Wk|k—1> {wk:\k 10 Xk }

are first drawn from importance sampling gy, (i,(cn) |x,(€7i)1, Zk)

kal\kfl(xkfl) ~

. Here, Nj_; particles of Xy,

n=1

to propagate the particles from time step k—1, then Jj, particles
of X; from the new born importance function py (i,(cn)|2k>

are drawn to model the state of new speakers appearing in the
scene. The PHD prediction is given as,

N _1+Jk

<Y (a-5),

where Jj, new particles are generated in the birth process. By
replacing (9) into (6) and employing importance sampling, the
predicted weights ﬁ)ka_l are obtained as [33];

Vkl—1 (Xk) (10)

~(n)
Wik—1

Pre |k — 1( R (,,)1 (Tl

B Qk( (n)|x§cn)1’3 ) ) n = 1""?Nk—1
B fk( (m) B
Jkpk,( 3 >\Zk)’ n=Np_1+1,... . Np_1+ Js.
(11)



The update step of the PHD recursion is approximated by
updating the weight of the predicted particles when the like-
lihood g, (zk\i,(cn)> is obtained. By substituting vy, ,—1 (Xx)

into (8), the predicted weights are updated as

o =
_(n) po (%) ax (21%7) ] )
|:[1 —Ppp (Xk )} + szezk kg (z1)+Cr (z1) Wik—17
(12)
where
Nyp_1+Jg ) . ]
Cr (zx) = Z j25) (i,(cj)) Ik (zk\ig)) ﬁ),(j“)e_l. (13)
j=1

Here, J;, new particles are sampled for the born speakers
at each iteration and added to the old ones Ny = Np_1 + Ji
which increases the number of particles over time and makes
the PHD filter intractable. Besides, to concentrate the par-
ticles on the zones around the speakers, the low weight
particles need to be removed and particles with high weights
should be duplicated. To this end, a resampling step is per-
formed after the update step. IV particles are resampled from

~ Nyg_1+Jx
~(n —_ ~n
{w;(f )/:k|k,xé )} L
n=
Zpk = Sai ™ Ny s estimated by Ny, = 75k
where 7 is the constant number of particles per speaker. So,

the complexity of the SMC-PHD filter grows linearly with the
number of speakers. After the resampling step, new weights of

Ny,
the set {w,(cn), x,&")} are normalized to preserve the total
mass.

n=1
The SMC-PHD filter propagates the surviving, spawned and
born particles to model the new and existing speakers. Conven-
tionally, these particles are used every frame which increases
the computational complexity. To address this problem, we
introduce audio information, i.e. the DOA data, into the visual
SMC-PHF filter, as discussed next.

where ék| . 18 the total mass and

III. AUDIO-VISUAL TRACKER WITH SMC-PHD FILTER

The DOA data is introduced to the SMC-PHD filter based
on [34] and [36] where the efficiency of the particles is
improved under a particle filter framework by re-allocating
all the particles around the DOA line which is drawn from
the center of the microphone array to a point in the image
frame estimated by the projection of DOA to 2D image plane.
However, different from [34] and [36] in which the DOA is
used in the same way for all the particles, here the contribution
of the DOA information is varied depending on the type of
the particles. Similar to [34] and [36], we also use the sam-
spare-mean (SSM) method [48] for the DOA estimation which
is further enhanced by a third-order Auto-Regressive (AR)
model. We should note that there are other audio features and
algorithms for extracting these features that could be used in
our proposed system, however, exploring other audio detection
methods is beyond the scope of this work.

To address the aforementioned complexity issue, we pro-
pose to generate the born particles only when the detection of
a new speaker occurs via audio. In other words, we assume

Fig. 1: Distribution of 50 particles for the visual case in (a)
and the audio-visual case in (b).

that the DOA information is available to control particle
distribution. As a result, the born particles can be uniformly
distributed around the DOA line as illustrated in Fig. 1(b),
rather than over the whole image as in Fig. 1(a). In Fig. 1(a),
the born particles are distributed to detect the speaker on the
restricted region of the frame as this region covers both sides
of the scene that new speaker may enter. The DOA is also used
for the surviving and spawned particles to concentrate them
around the DOA line. The missing DOA data is completed
by interpolation in the case of a short silence. However, the
DOA data will be lost when the speaker stops talking for a long
time. Then, our proposed algorithm continues tracking without
the DOA information. With re-allocation of the particles
around the DOA line, speaker detection and tracking is likely
improved since the DOA indicates the approximate direction
of the sound emanating from the speaker.

The surviving and spawned particles are defined as Xy
for time k since the DOA information is used for surviving
and spawned particles in the same way. In addition, the born
particles are denoted as Xy, ;. The surviving particles from the
previous iteration and the particles spawned from the surviving
particles are distributed by a dynamic model given in (1).
Details on the generation of the surviving, spawned and born
particles can be found from [33] and [46].

If the DOA is available in current frame, the DOA line
is drawn [34] and the perpendicular Euclidean distances

di = d,(cl) dfﬁN #=1)| of the particles to the DOA line
are computed. If there are multiple DOA lines, the one closest
to the particles is chosen, as long as the distance to the DOA
line is smaller than a pre-determined threshold to prevent the
particles from converging to the DOA line which belongs to
other speakers or is created due to noise or clutter. Then, the

movement distances of the particles fik are calculated as [36]:
l[dkllx

where ||.||; is the ¢; norm and © is the element-wise product.
dy; is used to relocate the X, j, particles around the DOA line:

Qo

k © dg, (14)

Kok = Xo 1 @ hydy, (15)

where @ is the element-;vise addition and h; =
[cos(0r) O sin() O 0] which is used to update

only the position (z;,x2) of the particle state vector



[#1 @1 a2 @ s]T in order to provide the perpendicular
movement to the DOA line.

Then, new speaker case is checked using the DOA infor-
mation. If the number of DOA lines is larger than the number
of estimated speakers in k — 1, it may imply the presence
of a new speaker in the scene. To detect the new speaker,
Ji, born particles Xy, ;, are generated and distributed uniformly
around the new DOA line. The prediction step is employed to
calculate the weights of particles wy, ;1 after all the particles
are combined under Xj. Then, the update step is performed
to calculate w; after the estimation of colour likelihood.
Assuming the noise on the colour likelihood function to be
Gaussian, the likelihood function of each measured colour
histogram can be written as [49]:

g(m)(zk|Xk) o< N (zx;0,07) =
o{ }

2
202

1
(16)
OV 2T
where o2 is the variance of noise for the colour likelihood,
and D("™)(x;) are the colour similarities calculated as the
Bhattacharyya distance between the reference models and the
candidate speaker, i.e.,

U
D(m)(xk) =,l1- Z A/ qu(xk)rqgm),
u=1

where g, (xy) is the colour histogram for the state x;, extracted
from the rectangle area centred around the location (xg, yx)
on the frame by which the speaker candidate is defined, and
{r&l), r,(f), e r&M> } with u being the index of the histogram
bins, are the colour models of the speakers.

The number of estimated speakers is computed using the
total mass which is the sum of the weights of the particles.
After the resampling step is performed, the positions of the
speakers are estimated using the K-means clustering algorithm.
Lastly, the identity of the speakers is detected by measuring
the similarity between the colour histogram of the estimated
speakers and that of the reference speakers. The pseudo code
of the proposed AV-SMC-PHD filtering algorithm [44] is
depicted in Algorithm 1.

A7)

IV. MEAN-SHIFT BASED AV-SMC-PHD FILTERING

As mentioned earlier, the tracking performance of the PHD
filter is compromised due to the first-order approximation of
the RFS. To address this limitation, we propose a new and
improved version of the AV-SMC-PHD algorithm based on
the well-known mean-shift technique. The idea is to shift the
particles to a local maximum of the distribution function so
that they are closer to the speaker position, compared to their
original positions. This is achieved by searching and climbing
density gradients iteratively to find the peak of the probability
distribution. This algorithm, which we name as AVMS-SMC-
PHD, offers significant improvement over AV-SMC-PHD in
terms of tracking accuracy. Despite its popularity, to our
knowledge, mean-shift has never been used in the way as
proposed here.

Initialize: 7, o2, U, T,F, \r,u, PMs PDs 03, Ug, ps,
k, K, Ny, %o

while £ < K do

For n =1,..., Ny_1 sample Xj ~ ¢ (-|x,(c7i)1,2k),
where %), € R5*Nk-1

Propagate surviving and spawned particles:

Xs, = FXp + qi

Get the corresponding DOA angle 6,

if DOA exists then
/I For surviving and spawned particles

T
dgvk_n}

Calculate movement distances d, using Equation

14

Concentrate X, ; around the DOA line :

is,k = is,k 53] hkak

if new speaker then
/I For born particles
For n = Ni_1 +1,..., Ny_1 + J, sample
X5 ~ Pk (-] Zk) uniformly around the DOA
line

end

Calculate distances dj = d;cl)

end

Combine all the particles:

X = Xs,6 UXp

Prediction: For n =1, ..., N_1 + Ji calculate
1[)](;‘271 using Equation (11)

Estimate colour likelihood using Equation (16)
Update: For n = 1, ..., Ny_1 + Jj calculate w,ﬁ")
using Equation (12)

Calculate the total mass Z, = S0+ (™)

: ) o Ve
Resampling: Resample {wk [k Xy, } to
Ny n=1
get {@,S")/Ek‘k,x,gn)} - Where Nk = WEklk
" N,
Multiply the weights by =, to get {ﬁ),i"),x;”)} ’
n=1
Cluster the particles and get the positions of the
speakers
k=k+1
end

Algorithm 1: Proposed AV-SMC-PHD filtering algorithm.

The mean-shift approach aims to find the target in the
next image frame that is most similar to the initialised target
(reference model) in the current frame by iteratively search-
ing the next frame with a non-parametric kernel [22]. Such
similarity is measured as the Bhattacharyya distance between
the histogram of the target model and that of the candidate
target in the next frame [23]. The mean-shift approach is
originally designed for single target tracking [23]. For multi-
target tracking, however, this approach needs to be adapted,
which we propose to modify as follows.

A. Multiple-Speaker Mean-Shift

During tracking, the target is detected based on the com-
parison of the similarity between the pdf of the candidate



target and the pdf of the reference model, measured by the
Bhattacharyya distance,

dy) =+v1-pla(y),rl, (18)

where r = {r,}y=1,. .U (25:1 r, = 1) is the U-bin color
histogram of the reference image of the target, q(y) =
{qu(y)tu=1,...,u (25:1 ¢u = 1) is the color histogram of
the image region centered at the point y, and p[q(y),r] is
the Bhattacharyya coefficient, given by

= Z V qu(Y)Tus

where p takes values between 0 and 1, with a greater value
representing a higher similarity in their pdfs.

Using Taylor expansion, the Bhattacharyya coefficient in
(19) can be approximated as follows

Ty
Z y0 Ty + 5 ZQu y0)7

where yg is the locatlon of the target in the previous frame.
Using a kernel-based histogram representation for ¢, (y)
[23], equation (20) can be further written as
2)

U
—x;
qu(yo ru—|-fZWR (HYh
21

1
pry)~35 >
u=1
where (', is a normalization constant, K is the kernel function
(giving higher weights to the pixels at the center of the target
region), and W; are the weights given by,

, | ———6[b(x;) — ul,
— qu y0

where b(x;) is a function which assigns one of the histogram
bins to a given colour at location x;. By employing the mean-
shift procedure [22], we can find the mode of the density in the
neighbourhood of x;. In this procedure, the kernel is applied
recursively from the current location y to the next, i.e. yi,
which is related to yq as follows,

i xiWig (11 %57 11)
i Wag(1225 1)
where g(z) = —K'(x), and K'(z) is the derivative of K(x)
assuming that K'(z) exists for all x € [0,00), except for a
finite set of points.

Several kernels could be used such as normal, uniform

and Epanechnikov. As recommended in [23], we choose the
Epanechnikov kernel here which is defined as:

p(y)=rplaly),r] (19)

(20)

(22)

y1= (23)

k0= {07 e @Y
In this case, its derivative g(z) a constant,
o) = K=y e, @
Hence, (23) reduces to
. 2 ity Xz'Wz'g(H%ll) _ Z?;l xiWi 26)
ity Wag(I¥e7 1) it Wi

B. Particle Distribution with Mean-Shift

The above mean-shift algorithm can then be used to dis-
tribute the particles in AV-SMC-PHD filter, as follows. First,
the iteration is initialized before it is run over the nth par-
ticle 522") at the time frame k. In this step, the horizontal
and vertical positions within x( ") are assigned to yo =
(1), %™ (3)] since % = [a:l i xo @ S}T. The
candidate speaker model, qu(yo), evaluated at the centre yy,
is compared with all the models from the reference template.
The closest reference model r = {ru}uzl,___,U is then selected
and used to move the particle towards the speaker in the
following steps of the mean-shift iteration. The Bhattacharyya
coefficient p [q (yo) , r] is calculated before running the mean-
shift iteration for the particle 5'(,(6”). The mean-shift iteration is
performed in a loop controlled by two parameters, namely,
iteration flag ContIter and iteration number Numlter.

The iteration of the mean-shift process continues if the
pre-defined condidtions for the two parameters are satisfied.
Otherwise, the loop will be broken and the same process will
be repeated for the next particle with Numlter set to 0 and
Contlter set true. In the first step of the loop, the weights
are derived according to (22). Then, the next location y; is
calculated via (26). In practice, it may not be the correct direc-
tion to move the particle towards y;. To avoid this issue, the
Bhattacharyya coefficient of y1, p [q (y1), r], is calculated and
compared with p[q (yo),r]. If p[a(y1),r] < pla(yo), ], it
means that y; is not a good estimate and the loop will be
broken. If p[q (y1),r] > p[d(yo), ], the amount of shifting
needs to be checked. If ||y; — yol| > ¢, where ( is a threshold
value, y; is set to yg and then used for the next iteration
provided that NumlIter < MaxzlIter. If ||y1 — yoll < ¢, the
iteration will be broken again. This process is repeated for all
the particles.

We refer to the above process as MS, which is performed
after the audio contribution is considered, and all the born,
spawn and survival particles are combined as Xj. This enables
the MIS process to be applied to all types of the particles even
without the DOA information. The pseudo code of the MS is
given in Algorithm 2.

Initial particles X,

Incoming
measurements for the

particles: q,,(¥o)

Estimated
Bhattacharyya

coefficients: p[q(y,), 7]

Mean-shift iteration:
Each particle is shifted
to a local peak.

_—— L LN

The particles X, after
the mean-shift process.

Fig. 2: The mean-shift process for the particles.

The algorithm is also illustrated in Fig. 2. Here, suppose



Given: Xy, Ni_1, Jx, MaxIter, U,
forn=1,..Ny_1 + Ji do

Assign position coordinates of the particle to

yo = %" (1), %" (3)]

Find the closest reference model r,, for X} by
comparing the candidate speaker model ¢, (yo) and
the reference models.

Evaluate: p [q (0),1] = Yoy v/qu(¥o)7u

Set iteration number: Numlter = 0;

Set iteration flag: Contlter = true;

while Contlter == True or Numlter < MaxlIter do
Derive the weights according to Equation (22)
Find the next location y; by Equation (26)
Compute: p[q (y1),1] = S u_1 v/qu(¥1)ru

/I Continue mean-shift iteration as long as the
Bhattacharyya coefficient goes up. Otherwise,
stop iteration

it pla(y1).r] > pla(yo).r] then

/I'If position change exceeds the threshold
value ¢, then continue mean-shift iteration.
Otherwise, stop iteration

if |ly1 —yol > ¢ then

Yo = Y1
Contlter = true;
else
| Contlter = false;
end
else
Y1 =Yo

Contlter = false;
end

Numlter = Numlter + 1;

end
&M (1), %7 (3)] = yis

Algorithm 2: MS function for the mean-shift iteration.

10 particles 5(,(@”), n = 1,...,10, are given, which have
different Bhattacharyya coefficients p[q (yo),r|. With these
coefficients, the mean-shift iteration is performed to move the
particles to the local maxima of the measurement function.
As a result, the particles X;, that have higher values of the
Bhattacharyya coefficients tend to be closer to the speaker
position.

In the end, the shifted particles provide good local char-
acterization of the likelihood which allows the multi-mode
distribution to be maintained with the use of a fewer number
of particles [50]. After the MS, the step of weight prediction
is performed, followed by the remaining steps as in the AV-
SMC-PHD filter.

V. SPARSE SAMPLING FOR AVMS-SMC-PHD FILTERING

The use of mean shift in AV-SMC-PHD leads to a reduction
in tracking error (to be demonstrated in Section VI). However,
the computational cost is increased due to the application of
the mean shift to all the particles [41]. To reduce the complex-
ity, we introduce a sampling technique to select a subset of
most relevant particles before applying the mean-shift, leading

to a filtering algorithm of improved computational efficiency
and similar accuracy, termed as sparse-AVMS-SMC-PHD.

More specifically, one dimensional bins, B with 7 subinter-
vals are created on the interval [0, 1]. Each subinterval, denoted
by B, has a range of [{1 — (i — 1)/7}, {1 — i/7}]. The
number of bins in B, and hence the choice of 7, will affect
the sparse sampling results. Experimental studies suggest that,
as a practical choice [51], 7 can be set to a constant number
of particles per speaker, 7.

Fig. 3 gives a demonstration of the proposed sampling
algorithm. Suppose a set of 10 particles is given in Fig. 3(a),
and B is created for this set, as illustrated in Fig. 3(b). We can
consider 1 as 10, and as a result, 7 can also be set to 10. Hence,
each bin is allocated a subinterval with a length of 1/10 = 0.1,
and these subintervals are sorted in a descending order, as
shown on the left side of Fig. 3(b). The top subinterval has
a range from 0.9 to 1 while the bottom subinterval is ranged
from 0 to 0.1.

At the beginning, each bin is set to B;—; ., = 0 as it
is empty. For each particle, the Bhattacharyya coefficient p
is then calculated using (19), which has a value between
[0,1] with 1 being the best similarity matching between the
reference and candidate histograms, and 0 the worst. After p
is obtained, its corresponding range B, is found and updated
from O to 1. Then, the number of particles, 1;, in B; is
increased by one. In the end, p is estimated for all the particles
and the allocation of these particles in B is shown in Fig.
3(c), where the particles are sorted in terms of the values of
p- Such representation resembles sparse categorization of the
particles, hence the proposed method is referred to as “sparse
sampling”. Here, the total number of true bins b is estimated
viab = 22:1 B;, which, in this case, gives a value of 6 since
only 6 subintervals are updated from O to 1, as shown in Fig.
3(c).

0 0 0 0
0° 0 1 o0 1 o0 1 °
08 0 1 ° 1 ° 1 [}
07" 0 0 0 0
0.6---
0 1 (X ) 1 (X 1 °
057" o 0 0 0
04 0 1 eoeo 0 0
03--- p
Particle Set 0.2--- 0 0 0
° : ° 0'1 0 ! ° 0 °
oo® -
° : ° 0. 0 1 [} 0 0
(@) (b) (©) (d) (e)

Fig. 3: A set of 10 particles is given in (a). Initial B is
illustrated in (b), and the distribution of the particles on B
according to Bhattacharyya coefficients is shown in (c). The
updated B after the estimation of the number of particles with
KLD-Sampling is given in (d). Sparse particle selection is
shown in (e).

The number of bins b can be used to estimate the number
of particles, .47, as follows [52]

3
b—1 2 2
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where ¢ is the upper error bound given by the KL-divergence,
b is the number of bins, and z;_s is the upper 1 — § quantile
of the standard normal distribution N (0, 1).

In this example, .4 is estimated as 5, which means that only
5 particles need to be chosen from the right side of Fig. 3(c).
This selection starts from the top subintervals of B as the par-
ticles are already sorted according to p in a descending order.
In Fig. 3(d), B is updated by removing all the particles except
those in the first ¢ top subintervals for which Zf.:l Ny =N,
Therefore, here t = 5 since only the first 5 subintervals contain
A =5 particles. These five particles can be employed as the
“sparse particles”. However, we take one step further in the
selection of the sparse particles. It is observed that the mean-
shift process to be performed afterwards tends to move the
particles within the same subinterval to the same local maxima.
As a result, it is unnecessary to have more than one particle
from the same interval. Therefore, one particle from each of
the intervals that have non-zero number of particles is chosen
and added to the sparse particles Xy, as illustrated in Fig. 3(e).
It can be seen from the above example that Equation (27) plays
a key role in the estimation of the number of particles, .4/,
for generating a smaller subset from the source particles.

The sparse sampling process is denoted as function SS. The
pseudo code of SS is presented in Algorithm 3.

Given: ik, Nkfl, Jk;, T, € 21§
Create B with 7 subintervals.
for j =1,...Ny_1 + Jj, do
Calculate p; using Equation (19)
Find i where p; € [{1— (i —1)/7}, {1 —i/7}]
Set Bz =1
Increase the particle counter for B;, 9, =D, + 1
end
Estimate the total bin number. b= >""_| B,
Calculate .4 using Equation (27)
Choose the sparse particles X; by taking one particle
from the subintervals B;_1.;, where ¢ is the upper bound
for Z§=1 N, =N
Algorithm 3: SS function for sparse sampling.

The SS function is integrated into the AVMS-SMC-PHD
filter as follows. First, all the particles are combined as X, after
incorporating the DOA contribution. Then the SS is applied
to obtain the sparse particles Xy,

before applying the MS operation. Since X, has less particles
than Xj, the number of particles used in the mean-shift
iteration is reduced with the sparse sampling method, which
leads to a significant reduction in the computational cost.

VI. EXPERIMENTAL RESULTS

This section presents experimental evaluations of the pro-
posed algorithms as compared with baseline algorithms. We
start with a description of the experimental setup, datasets and
performance metrics, before giving the analysis and compari-
son of the results.

A. Setup and Performance Metric

Several publicly available audio-visual datasets could be
used for the evaluation of the proposed algorithms, such as
“AV'16.3” [53], “CLEAR” [54], “AMI” [55], and “SPEVI”
[56]. However, there are several requirements in our evalu-
ations that narrow down the choice of the suitable datasets.
First, the dataset should consist of real-world scenarios with
both audio and video sequences.

Second, the calibration information of the cameras should
be available for the projection of DOA from the physical space
to the image plane. Third, the audio detection and localization
algorithm employed here is compatible only with circular
microphone arrays.

Finally, apart from these physical features, the dataset
should contain challenging scenarios such as occlusion and
rapid movements of the speakers, and audio-visual sequences
with mostly talking speakers. Here, having mostly talking
speakers enables the DOA information to be detected and
used for generating the born particles. Among these datasets,
the AV'16.3 offers the best fit to the requirements. Therefore,
sequences from AV'16.3 are mostly used for quantitative
evaluation of the baseline and proposed algorithms. To show
the flexibility of the proposed algorithms, sequences from the
AMI and CLEAR datasets are also used in our tests, as shown
in Section VI-D.

The AV'16.3 consists of sequences where the speakers
are moving and speaking at the same time whilst being
recorded by three calibrated video cameras and two circular
eight-element microphone arrays. The audio and video were
recorded at 16 kHz and 25 Hz, respectively, and synchronized
before being used in our system. The size of each image
frame is 288x360 pixels. The speakers wear a coloured ball
for annotation purpose, which however is never used in our
tracking algorithms. All the algorithms are tested for two and
three speaker cases with all three different camera angles
of four sequences: Sequences 24, 25, 30 and 45, which are
the most challenging sequences in term of movements of the
speakers and the number of occlusions.

To measure the tracking performance, the Optimal Subpat-
tern Assignment for Tracks (OSPA-T) metric [57] is employed
which is widely used for the evaluation of multi-speaker
tracking systems. The OSPA-T is an extension of the OSPA
metric [58] for tracking management evaluation. The OSPA
metric, which uses a penalty to transfer the cardinality error
into the state error, is able to evaluate the performance in both
source number estimation and speaker position estimation,

eospa (X, Xi) =

, 1 5004 - 2
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where it is assumed that X, = {X1,ks Rz, ) is an esti-
mation of the ground truth state set X, = {x14,....,X=z, i}
and ITz - is the set of maps 7 : 1,...,=, — 1,...,=%. Here

the state cardinality estimation = may not be the same as the



ground truth Zj. The OSPA error given in Equation (29) is for
= < Zp. If Zp < B, then eOSPA(Xka Xk) = €OSPA(Xk;Xk)-
The function d(°)(-) is defined as min(c,d(-)) where c is the
cut-off value which determines the relative weighting of the
penalties assigned to cardinality and localization errors. In
addition, a describes the metric order which determines the
sensitivity to outliers.

In addition to the OSPA-T metric, we used the Wasserstein
distance [59] to enable the comparison of the proposed algo-
rithms with another baseline algorithm by Pham et al. [15],
since the results reported in this baseline algorithm are based
on the Wasserstein distance. These results are given in Section
VI-C.

In our evaluations, we used twelve multi-speaker sequences
and the average results are shown in Table II at the end of
this section. As it is not feasible to plot the results of all these
sequences, only the results of two sequences are illustrated
by the plots. The first one is Sequence 24 camera #1 where
two moving speakers are walking back and forth, crossing the
field of view twice and occluding each other. The second is
Sequence 45 camera #3 where three moving speakers occlude
each other many times. In these two sequences, the speakers
are speaking continuously and the number of speakers varies
between 0 to 3. Here, the experiments are run on Intel core
17 2.2 GHz processor with 8 GB memory under Windows 7
operating system. Each experiment is repeated 10 times and
the average results are presented with plots and tables.

B. V-SMC-PHD Versus AV-SMC-PHD on AV16.3

First, we compare between the V-SMC-PHD and AV-SMC-
PHD filters. The parameters for the SMC-PHD are set as:
pp = 0.98, ps = 0.99, A = 0.26 and 0. = 0.1. The uniform
density u is (360 x 280)~! and the number of particles per
speaker is 17 = 50. In this case, the cut-off parameter ¢ = 65,
the OSPA-T metric order parameter a = 2. These parameters
are set empirically based on extensive experimental studies in
[51], where the impact of these parameters on the tracking
performance is also studied and is omitted here for space
limitations.

To show the computational efficiency of these two filtering
algorithms, we ran experiments on Sequence 24 camera #1 and
Sequence 45 camera #3. The number of particles per speaker
changes from 25 to 500. The experiments are repeated 10
times and Fig. 4 shows the average time costs.

It can be observed that the computational cost of V-SMC-
PHD is higher than that of AV-SMC-PHD and they both
increase with the number of particles. The time required for
processing Sequence 45 is higher than for Sequence 24 since
the maximum number of speakers to be tracked is three in
Sequence 45 while it is two in Sequence 24. Using audio
information introduces some computational cost, however, as
shown in Fig. 4, this cost is negligible as compared with
that for propagating the particles. In fact, AV-SMC-PHD is
computationally more efficient than V-SMC-PHD as the born
particles are propagated only when necessary.

The following experiments aim to investigate the estimation
accuracy of the algorithms. Some frames from Sequence 24
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w221 AV-SMC-PHD Seq45-3p
400/ **V-SMC-PHD Seq24-2p
AV-SMC-PHD Seq24-2p
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g
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Fig. 4: Computational cost of the V-SMC-PHD and the pro-
posed AV-SMC-PHD filters measured on Sequence 24 camera
#1 and Sequence 45 camera #3.

camera #1 are shown in Fig. 5. The first row shows the results
of V-SMC-PHD, while the second row for AV-SMC-PHD.

In the first two columns, both speakers are detected by
our proposed AV-SMC-PHD filter while only one speaker is
detected by the V-SMC-PHD filter. After occlusion, in the
third and fourth columns, our proposed AV-SMC-PHD filter
tracks the speakers more accurately. In the fifth column, the
DOA information is available only for one speaker while in
the last column, there is no DOA information. Nevertheless,
our proposed AV-SMC-PHD filter is still able to track both
speakers while the V-SMC-PHD filter fails to track one of
them. This can be explained by the fact that the survival
particles are always dense until the DOA information is lost
and more particles survive for the next frame in the AV-
SMC-PHD filter. Even when the DOA information no longer
exists after some points, the AV-SMC-PHD filter still has
an advantage over the V-SMC-PHD filter on the number of
surviving particles. Fig. 6 shows the estimation of the number
of speakers. Here, we performed down-sampling to the plots
for better visualization. The number of active speakers varies
from 2 to 0, and as can be observed, our proposed AV-SMC-
PHD filter gives better performance than the V-SMC-PHD
filter.
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Fig. 6: Comparison of the V-SMC-PHD and the proposed AV-
SMC-PHD filters in estimation of the number of speakers for
Sequence 24 camera #1.

The same experiments are performed on Sequence 45 cam-
era #3 and some chosen frames are given in Fig. 7. Here,
occlusion happens between the three speakers many times and
the AV-SMC-PHD filter is able to detect and follow all the
speakers even after the occlusions. The number of speakers
estimated for Sequence 45 camera #3 is given in Fig. 8.



Fig. 5: Sequence 24 camera #1: Two speakers with occlusions. The first row shows the results of the V-SMC-PHD filter and

the second row for our proposed AV-SMC-PHD filter.

Fig. 7: Sequence 45 camera #3: Three speakers with occlusions. The first and second row show the tracking results of the
V-SMC-PHD and the proposed AV-SMC-PHD filter, respectively.

Similarly, we can observe the improved performance of the
AV-SMC-PHD filter over the V-SMC-PHD filter.

|—True % V-SMCPHD O AV-SMC-PHD]

Number of speakers

T L 1 1 L L 1 1
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Fig. 8: Comparison between V-SMC-PHD and AV-SMC-PHD
for estimating the number of speakers in Sequence 45 camera
#3.

Fig. 9(a) and Fig. 9(b) show the OSPA-T errors for Se-
quence 24 camera #1 and Sequence 45 camera #3, respec-
tively, averaged over 10 experiments. In Fig. 9(a), the average
OSPA-T error is 27.12 for V-SMC-PHD and 17.71 for AV-
SMC-PHD. This means that AV-SMC-PHD offers 34.69%
improvements over V-SMC-PHD for Sequence 24 camera #1.
The average OSPA-T errors for Sequence 45 camera #3 in
Fig. 9(b) are 39.09 and 28.43 for V-SMC-PHD and AV-SMC-
PHD, respectively. In this case, AV-SMC-PHD offers a 27.27%
improvement over V-SMC-PHD.

C. AVMS-SMC-PHD and sparse-AVMS-SMC-PHD on AV16.3

To make a fair comparison, we use the same parameters as
those in the previous section for the evaluation of the AVMS-
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Fig. 9: Performance comparison of the V-SMC-PHD and the
proposed AV-SMC-PHD filters in terms of the OSPA-T error.
The data points on the V-SMC-PHD curve were down sampled
for better visualisation.

SMC-PHD filter. The mean-shift method has two specific
parameters, i.e. the threshold for shifting distance ¢ and the
maximum number of iterations, which are set to 0.5 and
6, respectively. These parameters are set empirically based
on extensive experimental studies in [51], similar to the
experiments presented in the previous section.

The proposed AVMS-SMC-PHD algorithm was tested on
Sequence 24 camera #1 and Sequence 45 camera #3. Because
of the space constraints, plots for the AVMS-SMC-PHD could
not be presented separately. Numerically, the AVMS-SMC-
PHD algorithm gives an average error of 13.93 for Sequence



24 camera #1, resulting a 21.33% performance improvement
over AV-SMC-PHD and a 48.64% improvement over V-SMC-
PHD. For Sequence 45 camera #3, the average error by the
AVMS-SMC-PHD algorithm is 22.43, showing an improve-
ment over V-SMC-PHD and AV-SMC-PHD by 42.61% and
21.10%, respectively.

The proposed sparse-AVMS-SMC-PHD algorithm was
tested with the same sequences and parameters as those used
in the AVMS-SMC-PHD algorithm. In addition, the design pa-
rameters of Equation (27) are set to € = 0.25 and 215 = 0.99
based on empirical tests. A key parameter in sparse-AVMS-
SMC-PHD is the dimension of the bins 7 which may cause
either performance failure, or an increase in the computation
cost, depending on its size. To get a practical guidance for the
selection of 7, pilot simulations were conducted on Sequence
24 camera #1 and Sequence 45 camera #3. We found that it
seems to be reasonable to set 7 as 1. More details about these
simulations can be found in [51].

As discussed earlier, the motivation for using sparse sam-
pling is to reduce the computational cost of the AVMS-SMC-
PHD filter. To this end, we measure the computational cost
of the V-SMC-PHD, AV-SMC-PHD, AVMS-SMC-PHD and
sparse-AVMS-SMC-PHD filters when applied to Sequence 24
camera #1, as illustrated in Fig. 10.
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Fig. 10: Computational cost comparison between the V-SMC-
PHD, AV-SMC-PHD, AVMS-SMC-PHD and sparse-AVMS-
SMC-PHD filters.

The integration of mean-shift to the AV-SMC-PHD causes
a dramatic increase in computational cost. However, using
sparse particles with the mean-shift iteration reduces the
computational cost significantly by approximately 10 times, as
the sparse sampling process generates a small subset from the
source particles. To see the estimation accuracy, the proposed
sparse-AVMS-SMC-PHD algorithm is further compared with
the previous algorithms, the results on Sequence 24 camera
#1 and Sequence 45 camera #3 are plotted all together in Fig.
11, which depicts the mean absolute error at each time step.

From this figure, it can be observed that sparse-AVMS-
SMC-PHD and AVMS-SMC-PHD filters perform better than
the AV-SMC-PHD and V-SMC-PHD filters, and the AVMS-
SMC-PHD filter is slightly better than the sparse-AVMS-
SMC-PHD filter. All the three algorithms perform better on
Sequence 24 than on Sequence 45. This result is not surprising
as the three-speaker sequence is more complex in terms of
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Fig. 11: Comparison of the V-SMC-PHD and the proposed
algorithms AV-SMC-PHD, AVMS-SMC-PHD and sparse-
AVMS-SMC-PHD using mean absolute OSPA-T error. The
data points on the V-SMC-PHD curve were down sampled for
better visualisation.
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the movement of the speakers and the number of occlusions,
which result in an increase in the estimation error.

A bar plot is also given in Fig. 12 to show the average
results of the four algorithms over all the frames. According
to these plots, the AVMS-SMC-PHD filter performs only
3.94% and 5.74% better than the sparse-AVMS-SMC-PHD
filter for Sequence 24 camera #1 and Sequence 45 camera #3,
respectively.
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Fig. 12: Performance comparison of the V-SMC-PHD with the
proposed algorithms AV-SMC-PHD, AVMS-SMC-PHD and
sparse-AVMS-SMC-PHD with bar plots.

These trackers are also run over the remaining sequences
and the results are given in Table I. The average error for V-
SMC-PHD and AV-SMC-PHD is 32.01 and 22.75 respectively,
which shows that with the contribution of audio, 28.93%
reduction in tracking error has been achieved. This clearly
demonstrates that adding the audio information to the visual
tracker leads to improvement in performance. In addition,
Table I shows that the AVMS-SMC-PHD filter improves the
estimation accuracy by 24.02% and 46.00% over the AV-
SMC-PHD and V-SMC-PHD algorithms, respectively. Taking
the average of all the experiments, sparse-AVMS-SMC-PHD
outperforms AV-SMC-PHD and V-SMC-PHD by 18.96% and
42.41%, respectively. Its performance is slightly reduced by
6.65% as compared with AVMS-SMC-PHD. However, it is a
reasonable sacrifice, given a ten-fold reduction in the compu-
tational cost as shown in Fig. 10. To further understand the
cost reduction offered by the sparse-AVMS-SMC-PHD, we
calculated the total number of particles used in each frame of
the whole sequence for both AVMS-SMC-PHD and sparse-



TABLE 1. EXPERIMENTAL RESULTS FOR [18], V-SMC-
PHD, AV-SMC-PHD, AVMS-SMC-PHD AND SPARSE-
AVMS-SMC-PHD

Tracking sparse
algorithm v v AVMS AVMS

(18] SMC-PHD | SMC-PHD | SMC-PHD SMC-PHD
caml| 2228 27.12 17.71 13.93 14.50
seq24|cam2| 17.60 2591 19.83 14.97 15.35
cam3| 28.18 24.32 18.94 14.12 15.72
caml| 21.49 25.84 19.13 15.72 17.17
seq25 [cam2| 19.17 25.66 18.47 13.93 15.39
cam3| 29.35 29.99 21.61 17.07 17.62
caml| 3598 35.60 25.22 16.65 19.27
seq30 |cam2| 28.40 24.97 19.37 14.86 16.16
cam3| 34.60 37.64 25.31 19.29 19.67
caml NA 48.68 29.46 22.95 23.40
seq45 | cam?2 NA 39.24 29.47 21.47 23.16
cam3 NA 39.09 28.43 22.43 23.80
Average 26.34 32.01 22.75 17.28 18.43

AVMS-SMC-PHD algorithms. In AVMS-SMC-PHD, the total
number of particles for all the speakers is 61853, while in
sparse-AVMS-SMC-PHD it is 6301. With the proposed sparse
sampling, the number of particles has been reduced to almost
10% which, in other words, leads to a ten-fold improvement
in computational efficiency.

In addition, we used another baseline algorithm [18] for
comparison. The results available in [18] cover only Sequences
24, 25 and 30. With the average of 26.34 achieved on these
sequences, the algorithm in [18] outperforms the V-SMC-
PHD filter. However, the proposed algorithms show better
performance than [18].

In order to show how significant the difference is between
the results of the tested algorithms in Table I, the ANOVA
based F'-test [60] is applied and the significance test results
are given in Table II. The results of Sequence 45 are missing
in [18], therefore the corresponding column could not be used
in significance test. For all the significance tests, we found
the same degree of freedom (1, 22) and so, the corresponding
Fpip value for (1,22) is 4.30 from the F'-distribution table
given in [60]. The p-value (or probability value) is the proba-
bility of a more extreme result than what we actually achieved
when the null hypothesis is true. The F'-value is defined as
the ratio of the variance of the group means to the mean of
the within group variances. The F'-test was carried out at a
5% significance level. According to this test, the results are
considered as statistically significant if F' > F,.;; and p-value
is less than 0.05 (for a 5% significance level). From the test
results, we can observe that the results of Table I are indeed
statistically significant.

Our tracking results are also compared with those of Pham
et al. [15] where the Wasserstein distance [59] was used
for evaluating the tracking results of Sequence 24 cameras
#1 and #2. Hence, the results of [18] and ours are also

TABLE II: SIGNIFICANCE TEST

v AV AVMS |sparse-AVMS
SMC-PHD | SMC-PHD |SMC-PHD| SMC-PHD
v NA 12.51 35.59 30.23 F
SMC-PHD NA 1.9E-3 5.28E-6 1.59E-5  |p-value
AV 12.51 NA 11.12 6.92 F
SMC-PHD| 1.9E-3 NA 3E-3 1.53E-2  |p-value

TABLE III: COMPARISON OF TRACKING RESULTS IN TERMS
OF MEAN WASSERSTEIN DISTANCE (IN PIXEL)

Tracking | Tracking sparse
\% AV AVMS
seq24 |algorithm |algorithm AVMS
SMC-PHD |SMC-PHD|SMC-PHD
[18] [15] SMC-PHD

caml 9.02 7.20 16.96 7.94 6.67 7.45
cam2 6.4 4.80 19.17 7.59 5.24 5.73
Average| 7.71 6.00 18.06 7.76 5.96 6.59

evaluated in terms of the Wasserstein distance and given in
Table III. Among the six methods, the proposed AVMS-SMC-
PHD outperforms the others.

D. Evaluations on the AMI and CLEAR Datasets

In order to show the performance of the proposed algorithms
on other datasets than AV16.3, we selected sequences from
another two multiple-subject datasets, namely, the AMI dataset
[55] and the CLEAR dataset [54].

In our proposed algorithm, it is assumed that the born
particles are generated and propagated only when a new
speaker is detected in terms of the DOA information derived
from audio. The main purpose of this assumption is to reduce
the computational cost induced by propagating new born par-
ticles in each time frame. Different from the AV16.3 dataset,
however, the speakers in both AMI and CLEAR datasets are
talking one by one. For the visual tracker it is convenient to
detect all the speakers as the born particles are propagated in
each time frame, while in audio-visual tracking, it happens
only if the speaker talks.

Therefore, to evaluate the tracking algorithms on these two
datasets, we allow the proposed audio-visual tracker to run
on the sequence from the beginning until the image frame
where each of the speakers talks at least once, and the tracking
errors were measured from this particular frame onwards.
Another issue about these two datasets is that the calibration
information of the cameras is not available, which prevents
us from projecting the DOA information from 3D to 2D (i.e.
image plane). To allow fair comparison, we have used noisy
DOA information which was obtained by adding noise to the
results from the annotation of the video frames.

As an example, we include the results for Sequence
IS1001a, and Sequence UKA_20060726. Some frames of the
tracking results are shown in Figs. 13 and 14 for V-SMC-PHD
and AV-SMC-PHD. The average errors for V-SMC-PHD, AV-
SMC-PHD, AVMS-SMC-PHD, and sparse-AVMS-SMC-PHD
are summarised in Table IV.



TABLE IV: THE AVERAGE TRACKING ERRORS (IN PIXEL) OF
THE ALGORITHMS ON THE CHOSEN SEQUENCES FROM THE
AMI AND CLEAR DATASETS

Methods sparse
\Y AV AVMS
- AVMS
SMC-PHD|SMC-PHD [SMC-PHD
Sequences SMC-PHD
IS1001a 25.32 21.51 18.91 20.37
UKA_20060726| 28.33 25.94 23.14 24.82

As the speakers are talking one by one, performance
difference between visual and audio-visual trackers is less
significant. In this case, the audio-visual tracker acts similarly
to a visual tracker for the silent speakers, while it is more
effective for the talking speakers.

Fig. 13: Sequence I1S1001a from AMI. The first and second
row show the results of the V-SMC-PHD and the proposed
AV-SMC-PHD filter, respectively.

Fig. 14: Sequence UKA_20060726 from CLEAR. The first
and second row show the results of the V-SMC-PHD and the
proposed AV-SMC-PHD filter, respectively.

VII. CONCLUSION

In this study, we have presented several contributions for
multi-speaker tracking. First, we have introduced a SMC-
PHD approach for tracking a variable number of speakers in
a smart room environment using audio-visual measurements.
The efficient distribution of the born particles based on the
DOA information reduces both the computational complexity
and the estimation error. The mean-shift method is introduced
to further improve the estimation accuracy of the AV-SMC-
PHD filter by driving the particles to their neighbouring local

13

peaks. We have also proposed the use of sparse sampling, to
allow the mean-shift to run on a subset of the particles, thus
significantly reducing the extra computational cost induced by
the mean-shift with only a very small sacrifice in estimation
accuracy. The proposed algorithms have been tested on the
AV'16.3 dataset for two and three-speaker scenarios, where
the number of speakers varies over time. In addition, these
algorithms have been tested with sequences from AMI and
CLEAR datasets for four and five-speaker scenarios. Experi-
mental results demonstrated that the proposed techniques can
reliably estimate both the number of speakers and the positions
of the speakers with significant improvement. The proposed
tracking system could be further improved by formulating the
sparse sampling process with a sparse coding framework, and
extended to include other audio information or microphone
array types.
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