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Abstract—The exponential growth of popularity of multime-
dia has led needs for user-centric adaptive applications that
manage multimedia content more effectively. Implicit analysis,
which examines users’ perceptual experience of multimedia by
monitoring physiological or behavioral cues, has potential to
satisfy such demands. Particularly, physiological signals catego-
rized into cerebral physiological signals (electroencephalography,
functional magnetic resonance imaging, and functional near-
infrared spectroscopy) and peripheral physiological signals (heart
rate, respiration, skin temperature, etc.) have recently received at-
tention along with notable development of wearable physiological
sensors. In this paper, we review existing studies on physiological
signal analysis exploring perceptual experience of multimedia.
Furthermore, we discuss current trends and challenges.

Index Terms—physiological signal, perceptual experience, im-
plicit analysis, multimedia

I. INTRODUCTION

W ITH the advances in the multimedia technology, the

popularity of multimedia applications has been expo-

nentially growing. As humans act as end-users of multimedia

content, the ultimate goal of such applications is to satisfy the

users by delivering appropriate content at the right moment

in a proper way. Therefore, it is crucial to understand how

users perceive multimedia content in order to provide user-

centric services effectively. In a video streaming service, for

example, it is necessary to understand the mechanism of visual

quality perception in order to find the optimal operating mode

that maximizes quality of experience (QoE) of delivered video

content and, at the same time, minimizes the network resource

usage [1]. As another example, monitoring the user’s emo-

tional state can be used for adaptive music recommendation

to suggest music clips that match the current emotional state

or help the user overcome negative emotion [2].
The perceptual experience of multimedia has diverse factors,

including QoE, emotion, aesthetic satisfaction, preference,

fatigue, attention, etc. In general, ways to recognize users’ per-

ceptual experience of multimedia can be broadly categorized

as explicit and implicit approaches. The explicit approach,

which has been traditionally adopted in numerous studies,

employs human subjects, presents multimedia stimuli to them,

and asks them to fill in a questionnaire. In some cases, detailed

guidelines for conducting rigorous explicit evaluation tests

with human subjects have been developed, e.g., standardized

ITU recommendations for QoE assessment [3]–[5].
In contrast, the implicit approach does not require users’

actions for answering questions or rating stimuli, but pas-

sively observes natural responses to given multimedia stimuli.

Various channels convey cues of users’ natural responses

during multimedia consumption, from facial expression, gaze,

and gesture, to physiological responses. In particular, implicit

measurement using physiological signals, which this paper

concentrates on1, is of great interest due to the increasing pop-

ularity of wearable devices equipped with various physiologi-

cal sensors. Physiological signals can be divided into two cat-

egories: brain activities and peripheral physiological activities.

Cerebral signals measured by electroencephalography (EEG),

magnetoencephalography (MEG), functional magnetic reso-

nance imaging (fMRI), functional near-infrared spectroscopy

(fNIRS), etc. carry comprehensive information about brain

activities reflecting even the high-level cognitive process. On

the other hand, peripheral physiological signals, i.e., galvanic

skin response (GSR), skin temperature, respiration, heart rate,

etc., are induced by the activities of the peripheral nervous

system.

Although the explicit approach provides the most accurate

and reliable results, the implicit approach has also received

a significant amount of attention recently due to several

advantages. First, while the explicit approach is mainly for

off-line analysis, the implicit approach can be used for real-

time monitoring of users’ responses after training using ground

truth data obtained from explicit methods. Second, the explicit

approach may be prone to bias occurring in the process that

users recall, conceptualize, and verbalize their experience,

which is alleviated in the implicit approach.

There are a number of applications that can benefit from

implicit analysis of perceptual multimedia experience, some

of which are illustrated below (Fig. 1):

• QoE-aware content delivery: QoE of the multimedia con-

tent being delivered is monitored and used to adaptively

adjust compression and network parameters to keep the

perceptual quality of the delivered content acceptable and

economize network and computing resources [8].

• Personalized content recommendation: By collecting im-

plicitly monitored preference data over a period, the taste

of the user is identified, based on which new content

matching the taste is recommended [9].

• Content filtering: If a particular video clip has been

recognized as containing inappropriate content (e.g., vi-

olent, horror, or pornographic) by analyzing some users’

physiological responses to the clip, a content filtering

1Overviews of implicit measurement techniques using behavioral cues can
be found in [6], [7].
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Fig. 1. Applications of physiological signal analysis of multimedia experience.

engine prevents it from being shown to other particular

viewers (e.g., children or minors).

• Implicit tagging: Users’ responses to particular content

can be used to automatically generate metadata such as

tags (e.g., emotional tags, quality tags, etc.). It is well

known that a large portion of multimedia data available

online does not have appropriate metadata, which makes

efficient content search and retrieval difficult. Thus, auto-

matic metadata generation can be a powerful alternative

to manual tagging [10], [11].

• Implicit control for disabled people: As the brain-

computer interface (BCI) technology is beneficial for

disabled people, techniques of implicit analysis of multi-

media experience will be particularly useful for providing

multimedia services to disabled users, e.g., image search

and retrieval [12].

• Virtual reality (VR) and video games: Real-time monitor-

ing of physiological responses enables a hand-free control

of characters in VR and video games [13] and detection

of particular user states such as fatigue [14], difficulty

[15], and immersion [16]. Furthermore, treatments of

mental disorders (autism, schizophrenia, attention deficit

hyperactivity disorder, etc.) or age-related deficits through

VR and video games can be implemented by using the

physiological feedback or BCI technology [17], [18].

• Neuroscientific research: Understanding the relationship

between physiological responses and multimedia stimuli

is also interesting in the neuroscientific research. Relevant

topics include identification of physiological channels

appropriate for observing multimedia experience, under-

standing content features invoking particular physiologi-

cal responses, etc.

Fig. 2 shows a general system architecture for implicit

analysis of perceptual experience of multimedia based on

physiological signals. First, signals are acquired by sensors,

for which pre-processing is applied to remove unwanted

artifacts (e.g., blink artifact [19], muscle noise [20], etc.).

Then, representative features are extracted and used as inputs

of a model that has been trained using machine learning

techniques. The output of the model may be either class

labels (e.g., positive/negative emotion, satisfied/unsatisfied,

excellent/good/fair/poor/bad quality, etc.) or continuous values

(e.g., valence or arousal values for emotion, quality ratings,

etc.), depending on the problem dealt with.

The model part in Fig. 2 typically follows the general

approach of machine learning, i.e., generic models such as

neural networks or support vector machines (SVMs) can be

used without significant modification. More critical issues in

implicit analysis of multimedia experience are how to choose

appropriate physiological signals, extract relevant features, and

analyze the relationship between signal patterns and particular

perceptual responses, which are focused in this paper.

In contrast to the previous reviews that consider only

single perceptual factors (emotion [21], fatigue [22], and QoE

[23]), we deal with several perceptual factors to provide a

comprehensive view of the perception under the consideration

that perceptual factors are often closely related with each other.

The remainder of the paper is organized as follows. Chan-

nels of the physiological signal measurement are briefly sum-

marized in Section II. Then, Section III reviews recent studies

of implicit perceptual experience of multimedia content with

respect to the perceptual factors. Current trends and challenges

are discussed in Section IV. Finally, concluding remarks are

given in Section V.

II. PHYSIOLOGICAL SIGNALS FOR IMPLICIT ANALYSIS

In this section, we introduce various channels used to

measure physiological signals and their representative features

that can be used for implicit analysis of multimedia experience.

Table I compares the characteristics of the physiological

channels in terms of relevance to perceptual factors, temporal

resolution, spatial resolution, and portability.
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Fig. 2. General system of perceptual experience analysis using physiological signals.

TABLE I
COMPARISON OF PHYSIOLOGICAL SIGNAL CHANNELS

Channel Description
Temporal
resolution

Spatial
resolution

Portability Factor

EEG Measuring electrical activities on the scalp © × � Emotion [24]–[38], QoE [39]–[50],
fatigue [51]

MEG
Measuring magnetic fields induced by neuronal cur-
rents

© � × Emotion [52]

fMRI
Measuring cerebral blood flow by using the blood-
oxygen-level dependent contrast

× © ×
Emotion [53], [54], QoE [55], [56],

aesthetics [57]–[59],
fatigue [56], [60]

fNIRS
Measuring cerebral blood flow optically by using
near-infrared light

� © � QoE [61]

GSR
Measuring electric resistance that is decreased by
secretion of the sweat

× - © Emotion [27], [36]–[38], [62]–[64],
QoE [48], aesthetics [65]

ECG,
Plethysmo-

graph

Monitoring heart rate that is increased when the
sympathetic nerve is activated

× - © Emotion [36]–[38], [52], [62]–[64],
QoE [47], [48], [50], fatigue [66]

Respiration
Being slowed down in relaxation and irregular with
negative emotions

× - © Emotion [28], [36]–[38], [62]–[64],
QoE [47], [48], [50]

Skin
temperature

Being increased when the sympathetic nerve is acti-
vated

× - © Emotion [36], [38], [64], [67], QoE
[48]

EOG
Measuring ocular movement to obtain eye blinking
signals

© - � Emotion [38], [52], [67]

EMG
Measuring muscular movement to detect facial ex-
pression or mental stress

© - � Emotion [38], [52], [62], [64], [67]

©: Good, �: Fair, ×: Poor, -: Not applicable

A. EEG

EEG monitors electrical activities induced by ionic flows

within neurons through electrodes connected to the scalp,

which enables to measure the brain activity with high temporal

resolution. The international 10-20 system (Fig. 3) is typically

employed to determine the locations of the electrodes. EEG

has a long history in cerebral signal measurement; the first

human study of EEG was conducted in 1924 [68]. EEG

has excellent temporal resolution but relatively poor spatial

resolution due to the volume conductance effect [69].

EEG signals can be represented by various types of features,

such as event-related potentials, powers, and connectivity.

1) Event-related potential (ERP): An ERP indicates the

change in the time series of an EEG signal as the direct result

of a certain sensory, motor, or cognitive event. The event

induces changes of phases and amplitudes of EEG signals,

which typically occurs in a few hundred milliseconds before

and after the event. Commonly, changes that occur within 100

ms after an event are influenced by the sensory inputs, whereas

later changes reflect cognitive processes [70]. One of the most

well-known ERP features is P300 [71], which is a positive

peak appearing approximately 300 ms after an event. It was

discovered in 1965 [72] and has been popularly employed for

several neuroscientific researches [73], [74], particularly for

selective attention [75] and information processing [76].

2) Power-based features: Another well-known type of fea-

tures of EEG is the signal power of each electrode channel,

which can measure the level of activeness of the neurons at a

scalp region. In comparison to ERPs that mainly regard instant

responses to certain events, power-based features account for

responses aggregated over a time period. Usually, powers in

different frequency bands, such as alpha (8-13 Hz), beta (14-

30 Hz), gamma (31-50 Hz), delta (1-3 Hz), and theta (4-7

Hz), are separately extracted from EEG signals. Generally,

high amplitude and low frequency signals are observed in

calm states, and low amplitude and high frequency signals
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Fig. 3. International 10-20 system describing the locations of EEG electrodes.
Each channel is identified by a letter-number combination. The letter indicates
the region of the brain (i.e., F: frontal; Fp: frontal pole; C: central; P: parietal;
O: occipital; T: temporal; AF: anterior-frontal). An odd or even number means
the left or right side of the brain, and the midline is marked by letter z.

are observed in alert states [77]. Depending on the research

purpose, the ranges of these frequency bands may differ or be

divided into narrower subbands.

3) Connectivity-based features: While the aforementioned

ERP and power-based features treat different regions of the

brain separately, connectivity analysis concentrates on reveal-

ing how different brain regions are related. Brain connectivity

is explained in three ways: structural connectivity, functional

connectivity, and effective connectivity [78]. Structural con-

nectivity concerns how different brain regions are anatomically

connected. Functional connectivity measures (undirected) sta-

tistical dependence between separate brain regions. Finally,

effective connectivity describes (directed) causal relationships

between brain regions. What is called connectivity in the im-

plicit analysis typically refers the functional and effective con-

nectivity. Brain networks are described by vertices connected

by edges. Usually, the vertices represent brain regions, and the

edges represent connections or, when it is weighted, strength

of connections. The strength of connections can be measured

by various connectivity features such as correlation, phase

synchronization, mutual information, and Granger causality

[78]. Additionally, measures describing network characteris-

tics can be derived from the connectivity features [79]. For

example, the degree refers to the number of edges connected

to an individual node, and its average is used as a measure of

network density. The global efficiency, which is a measure of

the level of integration in brain networks, is computed as an

average of inversed shortest path lengths. Connectivity-based

features have been only recently introduced to implicit analysis

of multimedia experience, particularly for emotion [32], [33].

B. MEG

MEG records the magnetic fields induced by electrical

activities in the brain, which is also the source of the EEG

measurement. MEG has a relatively long history; the first

human study of MEG was performed in 1968 [80]. Although

MEG and EEG measure the same cerebral activities, they have

different characteristics. First, MEG costs higher and requires

more space-consuming equipment than EEG. Furthermore,

MEG has finer spatial resolution than EEG, but less sensitive

to the electrical activities in the brain than EEG.

Measured MEG signals can be represented by various types

of features including those described previously in Section

II-A. Moreover, a mean value of the MEG signal over a certain

time period can be utilized as an effective indicator of the

activation of a brain region because of its fine spatial resolution

[81].

C. fMRI

fMRI identifies deoxy-hemoglobin in cerebral blood flow

whose changes are associated with brain activities. The prin-

ciple of fMRI was invented in 1990 [82], and the first human

study was conducted in 1992 [83]. The fMRI method is

extremely expensive and space-consuming. In addition, fMRI

requires subjects to lie down in a magnet bore, which is

usually more unusual and uncomfortable than EEG and fNIRS.

This environmental restriction of fMRI also sets limits in

multimedia consumption. As conventional displays cannot be

used in the magnet bore, visual content needs to be projected

by external devices usually having poor spatial resolution and

color saturation or displayed on special devices that require

additional cost. Also, noise of the fMRI scanner restricts the

consumption of auditory content. Furthermore, fMRI cannot

be performed on subjects who have metallic implants in their

bodies. However, it has an advantage that it can produce

brain images with outstanding spatial resolution. This allows

to analyze the resulting images as activation of specific brain

regions and, furthermore, to make connectivity-based analysis

particularly effective.

D. fNIRS

fNIRS is a relatively new technique for brain activity

analysis. The first fNIRS-based analysis of human subjects was

conducted in 1993 [84]. fNIRS identifies the hemoglobin status

in blood flow as in fMRI, but uses near-infrared light instead,

which allows only surficial measurement of neural activities.

Similarly to fMRI, fNIRS has higher spatial resolution and

lower temporal resolution than EEG. In addition, fNIRS costs

less than fMRI and more robust to movement artifacts than

EEG. Due to these advantages, fNIRS recently receives atten-

tion as a promising solution for cerebral signal measurement.

Similarly to fMRI, results of fNIRS can be interpreted in terms

of the activation of specific brain regions, and connectivity-

based features can be also extracted.

E. Peripheral physiological signals

Peripheral physiological signals reflect the state of the

central and peripheral nervous systems such as arousal of

the sympathetic nervous system. GSR, also called skin con-

ductance, is one of the most popular channels for peripheral

physiological signal monitoring. It typically measures the state

of the sympathetic nervous system. That is, when sympathetic

nerves are activated, sweat on the skin increases, which leads

to an increase of skin conductance [85]. Heart rate, which is

measured by plethysmography or electrocardiogram (ECG),
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is also a cue of the state of the sympathetic nervous system

[86]. Respiration is generally slowed down in relaxation and

becomes deep with negative emotions [87]. Skin temperature

increases with the activation of the sympathetic nervous sys-

tem. EOG and EMG measure ocular and muscular activities,

respectively, by monitoring electrical changes that stem from

movements. Typically, EOG is utilized to obtain the movement

information of eyes, and EMG is adopted for detection of

facial expression, head movement, and tension of muscle.
Signal statistics such as average, standard deviation, average

of the first derivative, and standard deviation of the first

derivative are usually employed as features of GSR, heart rate,

and skin temperature. Temporal variability of heart rate and

its energy (or the ratio between energies of low frequency and

high frequency bands) can be also extracted as features. In the

cases of EOG and EMG, their statistics are popularly used as

features.

F. Integration of brain and peripheral physiological signals
When the brain and peripheral physiological signals are

compared in terms of classification or prediction performance

of perceptual experience, the former usually outperforms the

latter [50] [67]. Cerebral features tend to be more informative

than features extracted from the peripheral signals in that the

former contains whole information regarding the process of

multimedia perception while only final outputs of the process

(i.e., sympathetic responses) are observed in the latter. How-

ever, cerebral features are more likely to contain information

irrelevant to the target factor than peripheral features such

as the status of other part of body [88]. When they are

measured simultaneously, they provide different views of the

same perceptual experience, and thus synergic advantages can

be expected via their integration.
In general, there are two approaches of multimodal inte-

gration for classification: feature fusion (or early integration)

and decision fusion (or late integration). In the feature fusion

approach, features of different modalities are combined into

a composite feature vector under the assumption of perfect

temporal synchronization, and then processed by a single

classification system. In the decision fusion approach, classi-

fication is conducted for each modality independently and the

outputs of the classifiers are combined to produce a final result.

It has advantages over feature fusion in that it is relatively

easy to use a weighting scheme to adjust relative amounts

of contribution of the modalities and, moreover, asynchronous

characteristics between the modalities can be considered easily

[89].
Compromises of the two approaches are also possible. For

instance, a concept of weak synchronization, called phase-

amplitude coupling, was introduced to integrate cerebral and

peripheral features (i.e., EEG and GSR) in [27]. Phase-

amplitude coupling is a measure of the interaction between

two signals having different frequencies, i.e., modulation of

the amplitude of the higher frequency signal by the phase

of the lower frequency signal. In [28], another approach to

consider weak synchronization was proposed by measuring

non-symmetric interdependence between frontal EEG and

respiration.

III. ANALYSIS OF PERCEPTUAL MULTIMEDIA EXPERIENCE

In this section, we review existing studies on implicit analy-

sis of perceptual multimedia experience based on physiological

signals. They are categorized according to the perceptual

factors that are of interest in constructing practical multimedia

services and applications: aesthetics, emotion, fatigue, QoE,

and preference. In particular, representative recent studies are

summarized in Table II.

A. Emotion

Traditionally, numerous studies have explored various as-

pects of emotion, such as its nature [91]–[93], characteristics

[94], expressions [95], [96], and influence on physical and

mental health [97], [98]. Emotion appears relatively evident

among other perceptual factors; body changes are often ac-

companied by emotion, for instance, smile, tear, sweating,

heart pumping, shaking, flush, and so on. Furthermore, emo-

tion influences individual and social behaviors [99]. A user’s

emotion is influenced primarily by semantic content of multi-

media, however, high levels of quality and aesthetics may also

facilitate induction of emotion. In real applications, it is crucial

not only to detect emotion elicited by multimedia content but

also to induce desired emotion to users.

There are many studies that tried to explain the relation

between emotion and physiological signals. James and Lange

[100] argued that emotions are feelings induced by physi-

ological conditions. For instance, it is not that people cry

because they feel sad, but rather people feel sad because

they cry. However, some studies contradicted this theory,

which is mainly supported by the fact that different emotions

may induce similar reactions (e.g., fear and anger) [101]. In

[102], the similarity of physiological responses induced by

different emotions was explained by the influence of different

situational context. According to this theory, an event is

perceived as a stimulus that triggers a general autonomic

arousal at first. Then, the physiological response is interpreted

and labeled with a particular type of emotion through the

contextual cognition of the event.

In fact, the difficulty of physiological analysis of emotion

stems from the fact that physiological signals and emotion do

not have one-to-one relationship but many-to-many relation-

ship. That is, even though subjects feels the same emotion,

their physiological reactions can vary according to the con-

textual environment, personality, and cultural background.

It is known that the amygdala, which is an almond-shaped

structure located deep in the frontal portion of the temporal

lobe, is closely related to emotional processes. Anatomical

studies have shown that the amygdala is connected to various

brain regions such as sensory systems, cognitive neocortical

circuits, and the hypothalamus, and thus plays an important

role in experience and expression of emotion [77]. In [53],

negative emotions such as fear and sadness were induced by

electrical stimulations of the right amygdala, and both positive

and negative emotions were induced by electrical stimulations

of the left amygdala. Relationship between the amygdala and

emotions induced by music was explored using fMRI in [54].

In this study, it was found that dissonant music activates
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TABLE II
REPRESENTATIVE STUDIES OF PHYSIOLOGICAL SIGNAL ANALYSIS

Factor Ref. Media Channel Scheme Results

[54] Music fMRI
Comparison between pleasant

(consonant) music and unpleasant
(dissonant) music

Activations of amygdala, hippocampus,
parahippocampal gyrus, and temporal poles

[29] Music EEG
Classification between joy, anger,

sadness, and pleasure
Average accuracy of 85% for subject-
dependent classification

Emotion [32] Video EEG
Classification of positive vs. negative

valence

Synchronizations in the frontal and occipital
sites with positive valence and synchroniza-
tions in the frontal lobe with negative valence

[62] Music Peripheral signals
Classification of high vs. low arousal

and positive vs. negative valence

Average accuracies of 95% and 70% for
subject-dependent and subject-independent
classification

[38]
Music
video

EEG & peripheral
signals

Classification of high vs. low arousal,
high vs. low valence, and like/dislike

F1 scores of 0.616, 0.647, and 0.618 for
arousal, valence, and liking via decision fusion

[46] 3D video EEG Correlation between QoE and EEG
Activation of the beta band in the right parietal
lobe for high 3D QoE

[54]
Audiovisual

stimuli
fMRI

Comparison between mismatched and
well-matched pairs

Correlation between well-matched stimuli and
activations of the inferior frontal gyrus, ante-
rior superior insula, ventral striatum, etc.

QoE [61]
Synthesized

speech
fNIRS

Comparison between high and low
quality synthesized speech

Increased brain activity in the orbitofrontal
cortex for high quality synthesized speech

[48]
HDR
video

EEG & peripheral
signals

Classification of high vs. low dynamic
range, good vs. poor contrast quality,

and good vs. poor overall quality

Average accuracies of 80%, 80%, and 91%
for subject-dependent classification and 55%,
57%, and 57% for subject-independent classi-
fication via decision fusion

Aesthetics

[57] Image fMRI
Comparison between gallery and

computer contextual situations

Correlation between gallery context and ac-
tivities of the medial orbitofrontal cortex and
prefrontal cortex

[90] Image EEG
Comparison between more beautiful

and less beautiful stimuli
Less beautiful stimuli elicit P200 components
with higher amplitudes

Fatigue

[56] 3D video fMRI
Comparison between 2D and 3D TV

watching conditions
Significant difference of brain activities be-
tween 2D and 3D

[66] 3D video Heart rate
Comparison between 2D and 3D TV

watching conditions
Significantly increased heart rate and unstable
autonomic state

the amygdala and other regions including the hippocampus,

parahippocampal gyrus, and temporal poles, which have strong

functional and structural connection with the amygdala and are

implicated in negative emotional processing.

EEG has been actively utilized to investigate emotional

states induced by multimedia content. Studies on ERP changes

reflecting affective responses to images were reviewed in

[24], which can be summarized as follows. ERP changes due

to affective stimuli are more prominently observed in their

amplitudes rather than latencies. ERPs from around 100 ms to

several seconds after the events are modulated by affective

stimuli, which reflects that emotion influences to several

processing stages. In particular, the influence of valence tends

to appear earlier than that of arousal. However, ERP changes

by arousal have been observed more consistently than those

by valence in several studies. In [25], it was attempted to

exploit ERP changes due to viewing emotional images and

obtained an accuracy of 81% for four-class classification (i.e.,

four quadrants of the valence-arousal plane).

The emotional responses to multimedia content have been

frequently investigated using spectral power of EEG signals.

Spectral power can be used directly as features or after

conversion to other measures such as asymmetry index and

differential entropy. In [26], relative power of the alpha,

beta, gamma, delta, and theta frequency bands, defined by

the spectral power of the frequency band divided by total

spectral power of all frequency bands, was employed to build

a system that recognizes emotions induced by videos (joy,

neutral, anger, sad, and surprise). The asymmetry index, which

refers to the level of asymmetry of neural activities in the

left and right hemispheres of the brain, is regarded as an

effective representation of emotion. In [29], for instance, spec-

tral power changes and asymmetry indices of the alpha, beta,

gamma, delta, and theta bands were employed for emotion

classification (joy, anger, sadness, and pleasure) during music

listening. A classification accuracy of 82% was obtained for

a subject-dependent classification scheme, and it was shown

that the features extracted from electrodes near the frontal

and parietal lobes, which are known to be related to memory

and sensory information processing, were particularly effective

for classification. The differential entropy is an extension of

Shannon entropy for a continuous random variable and used

as a measure of the complexity. In [31], differential entropy

was calculated from the spectral power distribution of each

frequency band and used for classification of negative, neutral,

and positive emotions induced by videos. As a result, an

average classification accuracy of 87% was obtained, which

is higher than that with power spectral features.

Connectivity features of EEG have been also employed for

emotion analysis. In [32], the phase synchronization between

EEG channels was examined under emotions of positive and

negative valence (i.e., happiness and sadness) induced by

videos. An overall increase of the phase synchronization was

observed during emotional stimulation. In particular, happiness

was associated with synchronization in a wide area of frontal

and occipital sites, while sadness influenced only the frontal

lobe. In [33], three connectivity measures, i.e., correlation,

coherence, and phase synchronization between EEG channels
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were used for classification of three emotional states (positive,

neutral, and negative) induced by emotion-eliciting film clips.

Average accuracies of 54%, 61%, and 68% were obtained for

the three types of features, respectively, which validated the

effectiveness of the connectivity features for distinguishing

emotional states.

Fusion of connectivity-based features and spectral power

features was also explored. In [34], features that concern

properties of the brain network consisting of EEG channels,

such as global and local efficiency, small-worldness, etc.

obtained from the magnitude squared coherence between EEG

channels, were employed for classification of affective states

(arousal, valence, dominance, and liking). The connectivity

features outperformed spectral power and asymmetry index

features in terms of the classification accuracy by 5-6%, and

their combination additionally increased the classification per-

formance. Similar results were obtained in [35] by employing

mutual information of cross-frequency coupling patterns as

connectivity features.

The information included in peripheral physiological signals

is also valuable for affective analysis because emotion induces

more intense physiological responses in comparison to other

perceptual factors. Therefore, emotional responses to multime-

dia stimuli are relatively easy to capture via peripheral signals.

For example, in [38], average accuracies using peripheral

signal features for classification of high vs. low valence and

liking vs. disliking were higher than those using EEG features.

Therefore, various peripheral physiological channels have

been utilized for emotion detection. In [62], emotional re-

sponses to music (high vs. low arousal and positive vs.

negative valence) were examined via GSR, ECG, EMG, and

respiration. The EMG electrodes were placed at the upper

trapezius muscle to measure the stress level. Statistical features

of skin conductance, EMG, and subband spectrums of ECG,

heart rate variability (HRV), spectral entropy and spectra of

HRV, respiratory rate, subband spectrum of respiration signals,

and breathing rate variability (BRV) were extracted. As a

result, average classification accuracies of 95% and 70% were

obtained from subject-dependent and subject-independent clas-

sification schemes, respectively. It was revealed that skin con-

ductance and tension of the upper trapezius muscle increase

according to the increase of the level of arousal. In addition, it

was found that the features extracted from ECG and respiration

were effective for classification of the valence level. Similar

approaches were attempted for analysis of affective responses

to video clips in [63] and [64]. The former investigated the

perception of fear and sadness induced by using ECG, GSR,

and respiration, and the latter tried to regress arousal and

valence by using EMG, GSR, skin temperature, respiration,

and plethysmograph.

Fusion of cerebral and peripheral physiological signals also

has been attempted. Any advantage of the feature fusion

scheme was not observed in [36] and [37], which investigated

emotional states induced by images by combining EEG and

peripheral physiological signals. The former employed power

of EEG subbands and statistical features of heart rate, GSR,

blood pressure, respiration, and temperature as classification

features, and the latter employed statistical features of GSR,

temperature, blood pressure, respiration, and raw EEG signals.

In [38] and [52], decision fusion approaches were applied

for combining cerebral signals (EEG and MEG, respectively)

and peripheral physiological signals (GSR, heart rate, respi-

ration, and skin temperature, etc.). The results demonstrated

modest improvement of classification performance by fusion

over single modalities. Although automatic determination of

fusion weights remained unresolved, the synergy of the two

modalities was validated.

It is difficult to compare the above-mentioned studies and

analyze the superiority or inferiority of different methods, be-

cause they employed different scenarios and experimental pro-

tocols, such as emotional dimension, type of media, database,

dataset partition for training and testing, and performance mea-

sure. Fortunately, a recent public database containing physio-

logical affective response data for music videos, called DEAP

(Database for Emotion Analysis using Physiological signals)

[38], has been employed by several studies, some of which can

be compared. Table III summarizes the studies that used the

EEG data in the DEAP database based on similar experimental

strategies in terms of emotional dimensions (arousal, valence,

and liking), task (binary classification), classification scheme

(subject-dependent scenario, leave-one-out cross-validation),

and performance measures (accuracy and F1-score). It can

be observed that connectivity-based features (in [34], [105])

tend to show better performance than the others. However,

the highest accuracy reported remains only 76% for valence

classification [105], which is not a satisfactory level yet, and

thus efforts for further improvement will be desirable.

B. QoE

QoE is defined as “the overall acceptability of an application

or service, as perceived subjectively by the end-user” [106]

or “the degree of delight or annoyance of the user of an

application or service” [107]. It is closely related to but more

user-centric than the traditional quality of service (QoS) that

is rather device-, infrastructure-, and signal-centric, such as

signal-to-noise ratio (SNR), delay, packet loss rate, etc. QoE

of multimedia content is not only influenced by QoS but also

related to characteristics of the human sensory systems such

as Weber’s law, nonuniform auditory and visual sensitivity

functions, and just noticeable difference (JND) [108]. Further-

more, contextual information of users, e.g., expectations and

environments of users, also has a decisive effect on QoE [109].

Subjective tests as explicit analysis have been popularly

used for measuring QoE, where a number of subjects are hired

and asked to rate the quality of presented stimuli. Standardized

recommendations provide guidelines regarding test environ-

ments, stimulus presentation protocol, outlier detection, rating

scales, procedures of subjective data analysis, etc. (e.g., [3]–

[5]).

There are a number of studies that investigated QoE of mul-

timedia content using physiological signals. Below, we review

them by distinguishing those examining instant QoE changes,

overall QoE, and QoE of emerging types of multimedia.

1) Instant QoE changes: Instantaneous cerebral responses,

such as ERPs and EEG power changes, have been used in
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TABLE III
COMPARISON OF EXISTING STUDIES THAT IMPLEMENTED EEG-BASED AFFECTIVE IMPLICIT ANALYSIS USING THE DEAP DATABASE [38] BY USING

SIMILAR EXPERIMENTAL PROTOCOLS (I.E., SUBJECT-DEPENDENT BINARY CLASSIFICATION AND LEAVE-ONE-OUT CROSS-VALIDATION)

Ref.∗ Features Feature selection Classifier
Performance∗∗

Arousal Valence Liking

[38] Spectral power, asymmetry index Fisher’s linear discriminant
Gaussian naive
Bayes classifier

ACC: 0.62
F1: 0.58

ACC: 0.58
F1: 0.56

ACC: 0.55
F1: 0.50

[103]
Dual-tree complex wavelet packet
transform time-frequency features

Combination of singular vector
decomposition, QR factorization

with column pivoting, and F-ratio
SVM

ACC: 0.67
F1: 0.57

ACC: 0.65
F1: 0.55

ACC: 0.71
F1: 0.51

[104]
Gaussian mixture model-based

dimensionality reduction of spectral
power features

- SVM ACC: 0.67 ACC: 0.71 ACC: 0.70

[35]
Mutual information between

inter-hemispheric spectro-temporal
patterns

Minimum redundancy maximum
relevance algorithm

SVM
ACC: 0.61
F1: 0.61

ACC: 0.61
F1: 0.62

ACC: 0.60
F1: 0.61

[105]
Pearson correlation coefficient, phase

coherence, mutual information
Fisher’s linear discriminant SVM ACC: 0.74 ACC: 0.76 -

[34]
Global efficiency, local efficiency,

small-worldness coefficient
Minimum redundancy maximum

relevance algorithm
Relevance

vector machine
ACC: 0.68
F1: 0.68

ACC: 0.65
F1: 0.65

ACC: 0.67
F1: 0.65

∗ [34], [35] used only 75% of data for leave-one-out cross-validation and the rest for feature selection.
∗∗ACC: classification accuracy; F1: F1-score

several studies to evaluate the perceptual influence of quality

changes and artifact appearances. In [39], it was observed that

the P300 response was delayed with weak quality degradation

of speech signals, and the amplitude of P300 increased with

stronger quality degradation of the signals. It was also reported

that the amplitude of P300 was correlated with the magnitude

of the video quality change [40]. In [41], power-based EEG

features were used for video QoE analysis. Five different

types of artifacts in videos, i.e., popping on person, popping,

blurring on person, blurring, and ghosting on person, were

recognized by EEG signals. Power increases were observed

over the electrodes corresponding to the primary visual cortex

(PO4, PO3, Oz, O1, and O2 in the international 10-20 system)

for all types of artifacts. In addition, an accuracy of 85%

was obtained for detection of the presence of artifacts using

SVM classifiers. As for images, the study in [42] revealed

that the existence of JPEG compression artifacts changes the

ERP signals of the occipital area (O1, Oz, and O2 electrodes

in the international 10-20 system). These studies demonstrate

that abrupt quality changes in images, audio, and videos can

be successfully detected by observing brain activities.

2) Overall QoE: Assessing overall QoE of multimedia

content using cerebral physiological signals has been also

investigated. Two approaches have been used in literature. One

is to monitor the immediate response at the onset of a stimulus,

and the other is to observe time-aggregated responses through

the entire duration of stimulus presentation.

Studies taking the former approach showed that the ampli-

tude of P300 is correlated with the reverberation time of speech

[43] and the distortion level of videos [44], and inversely

correlated with quality of synthesized speech [45]. It was

consistently observed in these studies that lower quality or

larger quality degradation of audios and videos induced more

neural activities, which indicates that more distorted stimuli

require more strenuous cognitive processing activities.

The following studies conducted analysis of time-

aggregated responses. The cross-modal perception of audiovi-

sual stimuli was investigated in [55] by using fMRI. The audio

and visual stimuli were shown alone and in pairs of matched

and mismatched conditions to subjects. It was observed that

the left parahippocampal gyrus, left hippocampus of the medial

temporal lobes, and lingual gyrus of the occipital cortex,

which are known to be related to the memory and visual

processing, were activated during the cross-modal condition

compared to the unimodal condition. In addition, the mismatch

effect of the audiovisual stimuli appeared in the prefrontal

cortex, which is a storage of short-term memory and processes

sensory inputs. Quality of synthesized speech signals was also

investigated using fNIRS in [61]. The orbitofrontal cortex

was more activated by high and medium quality signals in

comparison to low quality signals.

Overall, it seems that brain regions activated or deactivated

by stimuli differ depending on perceived quality, where the

type of multimedia (i.e., speech, video, etc.) may also have an

impact.

3) QoE of emerging multimedia: Furthermore, physiologi-

cal signals have been used for analysis of perceptual experi-

ence of emerging multimedia technologies such as 3D, high

dynamic range (HDR) imaging and 4K ultra high definition

television (UHDTV). While the aforementioned studies fo-

cused on detecting QoE degradation of multimedia content,

researches on QoE of emerging multimedia concentrate more

on investigating perceptual consequences due to the effects

intended by the technologies, such as immersiveness and sense

of reality. Since these effects are induced after a user consumes

given content for a certain duration, studies concerning them

usually employ the aforementioned long-term signal analysis

approach.

In [46], implicit monitoring of QoE of 2D and 3D videos

was explored. The power spectral density of six frequency

bands, namely, alpha, beta low (13-16 Hz), beta middle (17-20

Hz), beta high (21-29 Hz), gamma, and theta, was calculated,

and its correlation with subjective ratings was investigated.

As a result, it was shown that the frontal asymmetry patterns

in the alpha band is related to the perceived quality. In [47],

QoE of 4K UHD audiovisual content was evaluated in terms
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of the immersiveness level of the content. EEG and peripheral

physiological signals (ECG and respiration) of subjects were

recorded. From EEG, linear Granger causality features de-

scribing brain connectivity were calculated. HRV, respiratory

rate, and frequency power of the respiration signal were

extracted from the peripheral signals. When the two modalities

were integrated via feature fusion for SVM-based three-class

classification (high vs. middle vs. low immersiveness), low

and high immersiveness levels were classified with accuracies

of 61% and 94%, respectively. In [48], EEG and peripheral

physiological signals (GSR, respiration, heart rate, and skin

temperature) were employed to implicitly measure QoE of

tone-mapped HDR videos in comparison to conventional low

dynamic range videos. The frequency power of EEG was

calculated from the theta, alpha, beta, and gamma frequency

bands, and statistical features were obtained from the periph-

eral signals. From the results of the subject-dependent and

subject-independent classification, it was shown that the power

of the gamma frequency band, which is known to be related to

sensory stimuli, was highly correlated with the perception of

tone-mapped HDR videos. Surprisingly, classification accura-

cies obtained with peripheral features were higher than those

with EEG features. Furthermore, decision fusion of the two

modalities resulted in improved classification accuracies in the

subject-dependent classification scheme. In [49], connectivity-

based features were examined for the same task, where they

enhanced classification performance significantly, particularly

for subject-independent classification. In [50], EEG, ECG, and

respiration were measured while subjects were watching 3D

video stimuli and used for classification of the sensation of

reality (high vs. low). Theta, alpha, beta, and gamma band

frequency powers were extracted from EEG, and statistical

features were calculated from the peripheral physiological

signals. Additionally, a measure of signal complexity, called

normalized length density index, was extracted from both

types of signal. On average, a Matthews correlation coefficient

(MCC) value of 0.16 was obtained using the peripheral phys-

iological signals (ECG and respiration), which is only slightly

higher than a chance level (i.e., zero), whereas the MCC value

obtained using EEG was as high as 0.65.

C. Aesthetics

Aesthetics is concerned with appreciation of beauty, includ-

ing various connotations such as attractiveness or appealing.

While it can be also defined for audio stimuli, aesthetics is

typically considered for visual stimuli such as images and

videos.

Immanuel Kant contended that the judgment of beauty is

a judgment of taste based on a feeling of pleasure [110].

The pleasure in beauty is not a matter of being ‘agreeable’

or ‘morally good’; it is desire-free (disinterested). Kant also

argued that the judgment of beauty is both universal and

subjective. Surely, the judgment of beauty is subjective as the

judgment is based on personal taste. In addition, it is a process

that can be sympathized and communicated.

Therefore, the perception of beauty is determined by the

taste of visual factors (color, contrast, angle, orthogonality,

symmetry, harmony, and so on) or their combinations. In

photography, a few rules to enhance aesthetics of photographs

have been empirically verified. For example, purer red, green,

and blue appeal to viewers in nature photographs, and the rule

of thirds, which states that a main object at the one third and

two third lines catches viewers’ eyes more than that at the

exact center, is commonly accepted by photographers [111].

In [57], perception of aesthetics of images was investigated

in the viewpoint of contextual situations. Abstract paintings

were shown in two different contexts (gallery and computer)

and subjects rated aesthetic scores, while the subjects’ brain

activities were measured via fMRI. As expected, images in

the gallery context were rated significantly higher than those

in the computer context. The ratings under the gallery context

showed strong correlation with the activities of the medial

orbitofrontal cortex and medial prefrontal cortex, while the

ratings under the computer context showed no significant

correlation with the brain signals. That is, aesthetic judgments

of visual stimuli are related to the orbitofrontal cortex and

prefrontal cortex, which are involved in the sensory integration

and decision making process. Consistent results about the

aesthetic perception of images were also obtained in [58] and

[59] by using MEG and fMRI, respectively.

Generally speaking, it is difficult to recognize the aesthetic

perceptual response by using peripheral physiological signals.

Therefore, studies in that direction are rarely found. A recent

study tried to identify aesthetic highlights by using GSR and

obtained an average detection accuracy of 64%, but the de-

tected aesthetic highlights may not correspond to scenes with

high aesthetic quality but rather peaks of overall perceptual

responses [65].

D. Fatigue

Sometimes, multimedia consumption causes fatigue of

users, which is apparently an undesirable effect. There are

several causes of fatigue, such as too long a watching or hear-

ing duration, a dim light condition in watching visual content,

too short a distance between the screen and the eyes, too small

a screen, etc. In particular, 3D fatigue, which is caused by 3D

visual content, has been becoming a critical issue along with

popularization of 3D multimedia [112]. Binocular parallax,

which indicates difference of perceived images between the

left and right eyes, gives a sense of depth to the human

visual system. While different parts of stereoscopic images

and videos have different amounts of binocular parallax, the

accommodative distance (the distance to the point that the eyes

must be focused) remains fixed as the distance to the display,

unlike natural viewing where the varying binocular disparity is

compensated by the eyes’ vergence [22]. This conflict between

vergence and accommodation is considered as a main cause

of 3D visual fatigue.

The 3D visual fatigue was investigated via cerebral phys-

iological signals in [51], [60], [56]. In [51], EEG responses

in the beta frequency band significantly increased in the 3D

environment, which received a significantly higher score in

terms of visual fatigue in comparison to the case of 2D. It was

observed via fMRI in [60] that the activation of the frontal eye
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field showed significant correlation with the amount of visual

fatigue induced by the binocular disparties varied from 0° to

3°. In [56], watching 3DTV for a long duration (one hour) in-

duced significant changes of fMRI measurements in the frontal

eye field (Broadmann area 8), the visual cortices (Broadmann

areas 17, 18, and 19), and other regions (Broadmann areas 32

and 40).

ECG was used for visual fatigue analysis in [66]. The

heart rate increased significantly, and an increased HRV was

observed during watching 3D videos. However, peripheral

physiological signals are rarely employed for analysis of

fatigue induced by multimedia consumption.

IV. TRENDS AND CHALLENGES

A. Physiological signal sensors

In practice, the measuring of physiological signals requires

significant efforts. For example, placing EEG electrodes on the

scalp is not only time-consuming but also causes discomfort

due to the interconnection via highly conductive gels to avoid

artifacts induced by hair and enhance accuracies; in addition,

the electrodes need to remain connected through wires to

an external system composed of power supply, converters,

control units, and so on. With the ever-increasing attention

to wearable devices, however, more convenient and user-

friendly devices have been released on the market. Commercial

portable devices for EEG monitoring are now available, such

as Emotiv [113], OpenBCI [114], NeuroSky [115], Mitsar

portable EEG system [116], Avatar EEG [117], and Melomind

[118]. In addition, devices that pursue enhanced potableness

and convenience are under research and development (e.g.,

Ear-EEG) [119]. These allow portability of the devices, elimi-

nate necessity of using conductive gels, and/or enable wireless

data transmission. A few studies have tried to adopt such

devices for the analysis of multimedia perceptual experience

[120], [121].

Furthermore, smart bands and watches equipped with phys-

iological signal sensors, such as Microsoft Band [122], Jaw-

bone UP series [123], and Basis Peak [124], have been

developed recently. These band type devices enable convenient

real-time measurement of physiological signals in real life

(typically, heart rate, GSR, and skin temperature).

In order to improve comfort and convenience, these devices

tend to sacrifice performance in terms of spatial and temporal

resolution, accuracy, robustness, etc. Therefore, it would be

necessary to conduct benchmarking to validate the reliability

of the portable consumer devices in comparison to the tra-

ditional ones used for lab-based measurement. Technological

advances of wearable devices and rigorous validation of such

devices would allow researchers to conduct studies of implicit

multimedia experience analysis towards real-world applica-

tions easily. As an example, a recent study compared the per-

formance of an open source EEG measurement platform called

OpenBCI with a medical grade device priced around 25 times

more expensive than OpenBCI [125]. The results indicated that

while the performance of the medical grade equipment was

slightly better in classification of a P300 speller and workload

tasks, OpenBCI also showed comparable performance, and

there were high temporal and spatial correlations between the

signals acquired by the two systems.

B. Deep learning approach

The deep learning approach, which has received significant

attention recently as a powerful tool for learning of feature

representation from data, has become a new trend of the

machine learning-based physiological signal processing.

The performance of the deep learning approach on un-

supervised feature extraction from raw physiological signals

was verified in a few studies. In [126], it was shown that

features learned from convolutional neural networks (CNNs)

outperformed manually extracted features for affect classifi-

cation of game players using GSR and blood volume pulse.

In [127], a system based on deep belief networks (DBNs)

was designed to recognize the levels of arousal, valence, and

liking based on EOG and EMG, which was shown to be

comparable to a Gaussian naive Bayes classifier with state-of-

the-art expert-designed features. Nevertheless, further studies

will be needed to examine potential of deep learning for per-

formance improvement of analysis of perceptual multimedia

experience and to investigate effective feature representation

of physiological signals discovered via deep learning.

Another advantage of the deep learning approach is that it

can easily handle multimodal data. (e.g., multimodal feature

extraction using denoising auto-encoders [128], crossmodal

learning and generalization using sparse restricted Boltzman

machines [129]) In the future, similar techniques would be

possible for fusion of cerebral and peripheral physiological

signals, and furthermore, crossmodal learning among physio-

logical signals and multimedia content.

C. Preference analysis

Preference, which means liking or disliking of particular

multimedia content, has been explained through the relation-

ship with stimulus complexity in many studies [130]–[134].

The relationship between preference and stimulus complexity

is commonly considered as an inverted U-curve, that is,

neither too simple nor too complex stimuli are preferred. A

recent study [134] revealed that there are different individual

preference functions, and the inverted U-curve relationship

appears as a combination of them.

The individual inclination of preference becomes critical

when we consider the content of multimedia. For example,

a person who likes animals may prefer a dog picture hav-

ing poor quality to a building picture having good quality.

Furthermore, individual experience, knowledge, and current

needs and goals also have a significant influence to preference.

Therefore, although the aforementioned aesthetics, emotion,

fatigue, and QoE are all involved in determining preference,

main factors that significantly influence to the decision of

preference vary with the subject and situational context. That

is, it is not straightforward to handle preference as a sin-

gle perceptual factor to be analyzed. However, preference

is often the final outcome of the perceptual processing of

human subjects. In this sense, implicit analysis of preference

is valuable for adaptive/personalized multimedia services. A
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preliminary study using NIRS demonstrated the potential of

the implicit approach for detecting subjective preference [135].

Further studies will be desirable based on precise definition of

preference and careful consideration of interrelated perceptual

factors.

D. Individual difference

The individual variance of perception is an obstacle to

construct a generalized system for recognizing the perceptual

status for multiple users. Even for the same stimulus, people

perceive and respond differently depending on past experience

and knowledge. It was demonstrated in [136] that subject-

wise difference in fMRI data for the same stimuli is so

large that even user identification is possible. As a result, the

performance of recognizing perceptual experience in a subject-

independent scheme is mostly poorer than that in a subject-

dependent scheme, as reported in several studies (e.g., [62],

[67], [137]). Although it is impossible to completely overcome

such subjectivity, it will be desirable in the future to investigate

ways of discovering physiological features common across

different individuals.

E. Environmental dependence

Even when the same multimedia stimulus is given to the

same person, perception of the stimulus varies depending on

the person’s environment, e.g., mobile vs. desktop conditions,

home vs. workplace, and alone vs. in crowds. For instance,

in [138], it was shown that environmental noises significantly

influenced to NIRS and peripheral physiological signals for

music imagery tasks. However, environmental dependence

has not been explored yet in the implicit approach, although

explicit analysis has been conducted in several studies to reveal

the influence of the environment (e.g., mobile phone vs. PDA

vs. laptop for QoE [139], at home vs. on a vehicle vs. at school

vs. at public space for QoE [140]). Investigating environmental

dependence is becoming important as wearable physiological

sensors enable measurement of users’ perceptual experience

under diverse situations.

F. Open databases

In many research fields, it is crucial to have publicly avail-

able databases that enable benchmarking for fair comparison

of different techniques and promote further related studies. The

same applies to the research of implicit monitoring of phys-

iological signal for perceptual multimedia analysis. However,

there are only a few open databases that contain physiological

signals and corresponding ground truth subjective labels in the

context of multimedia experience, which are summarized in

Table IV. Not only the number of available databases is small,

but also most of them are for emotion analysis among various

perceptual factors. Therefore, further efforts of the research

community to create open databases targeting various factors

of multimedia experience will be of great importance.

V. CONCLUSION

We have reviewed approaches to monitoring perceptual

experience of multimedia based on brain activities and pe-

ripheral physiological responses. The state-of-the-art studies

were categorized, summarized, and compared with respect

to the perceptual factor involved in multimedia experience

and physiological modality, i.e., cerebral physiological sig-

nals and peripheral physiological signals. It was shown that

cerebral signals are usually much informative in compari-

son to peripheral signals. However, this does not mean that

the information obtained from peripheral signals is useless,

particularly for analysis of emotional responses. Therefore,

the fusion of cerebral and peripheral physiological signals

is desirable, though the benefit of the fusion is not clearly

evident yet. Furthermore, current trends and future challenges

were discussed. When considering ever-increasing popularity

of multimedia applications involving exponentially increasing

volumes of multimedia data, we believe that implicit mon-

itoring of multimedia experience will be of great value for

adaptive multimedia services.
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