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Abstract—A person’s well-being status is reflected by their face
through a combination of facial expressions and physical signs.
The SEMEOTICONS project translates the semeiotic code of the
human face into measurements and computational descriptors
that are automatically extracted from images, videos and 3D
scans of the face. SEMEOTICONS developed a multisensory
platform in the form of a smart mirror to identify signs related to
cardio-metabolic risk. The aim was to enable users to self-monitor
their well-being status over time and guide them to improve
their lifestyle. Significant scientific and technological challenges
have been addressed to build the multisensory mirror, from
touchless data acquisition, to real-time processing and integration
of multimodal data.

Index Terms—Cardio-metabolic risk, unobtrusive well-being
monitoring, multimodal data integration, 3D face detection and
tracking, 3D morphometric analysis, psychosomatic status recog-
nition, multispectral imaging, breath analysis.

I. INTRODUCTION

THE principal communication channel among humans is

the face; it is a mirror of physical conditions, mood and

emotions. As such, the face is the basis of medical semeiotics,

revealing the well-being status of an individual through facial

expressions and a combination of physical signs (e.g., subcu-

taneous fat, skin color). This paper describes how the EU FP7

project SEMEOTICONS (http://www.semeoticons.eu/) moves

medical semeiotics to the digital realm, translating the semei-

otic code of the face into measurements and computational

descriptors obtained from images, videos and 3D scans of

the human face. The developed Wize Mirror, an intelligent

multisensory device, can detect and monitor facial signs over

time correlating them with cardio-metabolic risk and providing

personalized guidance to users on how to improve their habits.

Cardiac-related conditions are the leading cause of mortal-

ity worldwide, therefore, a device that can monitor cardio-

metabolic risk is an important tool to maintain a healthy

lifestyle.
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Other smart mirrors have been proposed for different pur-

poses, such as virtual clothes fitting [1], make-up rendering [2]

and biofeedback [3]. The latter paper described a multimodal

system using an interactive mirror and biomedical sensors

(camera, hand-held ECG, blood pressure and skin temperature

sensors and pressure pad). The main difference between [3]

and the device developed in this work is that the Wize

Mirror integrates a user-friendly interface (Fig. 1) with breath

composition analysis and contactless imaging of facial features

for advanced multimodal physiological analysis. The different

sensors collect heterogeneous data, including (multispectral)

images, videos, 3D scans and gas concentration signals, from

the user in front of the mirror. Dedicated algorithms process

the data, and extract colorimetric, morphometric, biometric

and compositional descriptors of facial signs. According to

the semeiotic model of the face for cardio-metabolic risk [4],

the descriptors include:

• 3D morphological face descriptors related to asymmetry,

swelling, overweight and obesity computed from a 3D

reconstruction of the face (Section IV).

• Facial descriptors revealing emotional status including

stress, anxiety and fatigue, captured via 2D expression

analysis on video sequences (Section V).

• Physiological parameters such as respiratory rate, heart

rate and heart rate variability, all estimated from videos

by detecting subtle color changes and cyclic movement

during the observation time (Section VI).

• Descriptors associated with cholesterol, metabolic end

products found in diabetes and endothelial dysfunction,

evaluated using a novel multispectral imaging system

assessing skin tissue, including microcirculation (Sec-

tion VII).

• Exhaled gas composition, measured using a novel gas-

sensing device, which gives quantitative feedback about

noxious habits such as smoking and alcohol intake (Sec-

tion VIII).

All these descriptors are integrated to define a virtual

individual model and an individual wellness index. This index

enables a user to self-monitor and self-assess their well-being

status over time. The Wize Mirror also offers personalized

user guidance towards the achievement and maintenance of a
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Fig. 1. The Wize Mirror prototype; on the left the multisensory rack, with
from top to bottom: 5 multispectral imaging cameras (MSI), and a 90 fps
color video camera (CV) and depth sensor (DS).

positive lifestyle.

Designing and building the Wize Mirror required solving

significant scientific and technological challenges, from touch-

less data acquisition to real-time processing of multimodal data

to obtain reliable measurements correlated with clinical risk

factors. Section II introduces the sensing modalities used by

the Wize Mirror. It also briefly describes how the implemented

processing workflow integrates all these multimodal data with

the calculated cardio-metabolic risk descriptors and the mul-

timedia interface enabling ubiquitous and unobtrusive user

interactions. The taxonomies, describing the data processing

flow and the data sources, are introduced to guide the reader

through the intricacy of the system detailed in the subsequent

sections. Section III describes the processing multimedia back-

bone of the system, that is used by the different Wize Mirror

sensors for user detection, recognition, positioning, labelling

and 3D measurement. The details of each multimodal pro-

cessing subsystem are presented in Sections IV-VIII. Finally,

the definition of the virtual individual model integrating all

calculated risk descriptors is presented in Section IX and the

conclusions are described in Section X.

II. MULTIMODAL DATA INTEGRATION

Different data fusion and multi-sensor integration tasks are

performed on the Wize Mirror, including blending of 3D and

2D inputs, merging multispectral images and building the

virtual individual well-being model.

This section briefly describes the sensing modalities used

in the mirror and how they correspond to different semei-

otic model descriptors. The sensors’ interaction structure and

overall dataflow are also presented to aid the description of

the system integration strategy. The details of each sensing

modality and the corresponding data analysis method are

described in the subsequent sections. The multiple sensors and

computed descriptors are given in Table I. Additionally, the

table lists the sections of the paper where the details of the

corresponding data analysis are given.

A multi-sensor integration is performed using 3D data

(obtained from the depth sensor) to simplify the face detection

and labelling process on the 2D data from the other cameras.

This makes the system more robust and efficient. A common

TABLE I
THE WIZE MIRROR SENSORS AND THE SEMEIOTIC MODEL DESCRIPTORS

CALCULATED BASED ON THE CORRESPONDING SENSING MODALITY.

Sensor Descriptor Section

Depth Sensor (DS) 3D Face Morphology (3DFM) IV

Color Video (CV) Facial Descriptors (FaDe) V

Color Video (CV) Physiological Parameters (PhPa) VI

Multispectral Imaging Cameras (MSI) Multispectral Measurements (MuMe) VII

Wize Sniffer (WS) Exhaled Gas Compositions (ExGC) VIII

stage for the analysis is face detection, tracking and facial

landmark estimation (see Fig. 3). Face detection and tracking

is only performed once using the data from the depth sensor

rather than on each data stream. This approach is more robust

to varying illumination. In this method, the user is detected

first in 3D space, and a model face mask is matched to the

depth sensor data to estimate the position and orientation

of the user’s face. Subsequently, the positions of predefined

facial landmarks are calculated (see Section III). Then, the 3D

face coordinates are projected into the 2D frames of different

cameras using the intrinsic and extrinsic parameters of the

cameras. These parameters are obtained when the mirror is

assembled using camera and stereo calibration techniques ([5]

and [6]). Using the proposed workflow, the face detection and

2D facial landmark estimation stage is reduced to a single

process using the depth data and six projections of the matched

3D face mask into the corresponding 2D image space (see

Fig. 2). The projection is performed by multiplying each 3D

vertex, given in homogeneous coordinates, of the matched

face mask by a camera projection matrix M = A [R|T ] built

from 3x4 extrinsic parameter matrix (encoding mask rotation

R and translation T ) and 3x3 matrix A describing the intrinsic

camera parameters:
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where u/w and v/w represent the 2D coordinates in the image

reference systems; x, y and z are the 3D point coordinates

from the depth sensor reference system; R is a 3x3 rotation

matrix encoding the rotation about three axes; T is a vector

containing the translation from the origin and:
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where f is the focal length; α is the skew parameter; and

(u0, v0) are the coordinates of the principal point.

The computational descriptors of face signs (given in Sec-

tion I) are integrated into the virtual individual model to build

a representation of the users status, which is consistent with

cardio-metabolic risk (see Fig. 3). Data fusion techniques

are used to synthesize the wellness index, a non-diagnostic
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Fig. 2. Face detection and tracking performed on depth data and projected into
multiple 2D images from different cameras. The depth sensor is highlighted
in orange (DS), color video camera is highlighted in green (CV) and the
five multispectral imaging cameras are shown in blue (MSI). Small colored
boxes on top (M1 to M6) represent different camera projection matrices
calculated using camera calibration. They are applied to the detected face
point coordinates given in the depth sensor reference system to convert them
into each camera’s reference system.

estimation for self-assessment and self-monitoring of cardio-

metabolic risk. Conceptually, the values obtained from the

analysis can be seen as the components of a state vector

moving in a multidimensional well-being state space. Sub-

sequently, the model is mapped into three separate wellness

subspaces related to physical wellness, emotional wellness and

lifestyle habit wellness (see Section IX for details).

To facilitate validation of the Wize Mirror subsystems and as

part of the mirror development a dedicated SEMEOTICONS’

Reference Dataset (SRD) was built. The SRD includes all

the modalities described in this paper as well as the results

of reference clinical tests capturing 46 different physiologi-

cal parameters. Additionally, 12 behavioral and psychometric

parameters were obtained using clinically validated question-

naires. The reference dataset was collected in two acquisition

campaigns conducted in May 2014 (SRD’14) and May 2015

(SRD’15) at the National Research Council of Italy in Pisa.

SRD’14 consists of 23 subjects, including 16 males and 7

females, aged between 25 and 61 years. The mean age is 45

years and the standard deviation (SD) is 11 years. SRD’15

consists of 26 subjects, including 14 subjects (11 males and 3

females) from SRD’14, aged between 32 and 62 years, with a

mean age of 48 years (SD 10 years). The remaining 12 subjects

(8 males and 4 females) in SRD’15, aged between 29 and 61

years (mean age of 46 years and SD of 9 years), were only

recruited for the second campaign. SRD’15 was collected dur-

ing system development, with the methods validation based on

SRD’14, leading to sensors upgrades and changes in the data

processing methods. Other publically available datasets were

used to further support the Wize Mirror subsystems validation.

Information about the datasets used for the validation of each

method is given in the corresponding section.

III. 2D/3D MEASUREMENT FACILITATION

The vast majority of measurements performed by the Wize

Mirror are based on data acquired from multiple imaging

devices. To facilitate unobtrusive data acquisition and syn-

chronization of the different Wize Mirror sensors, there is

Fig. 3. Multimedia data workflow: from sensors, preprocessing and analysis
to virtual individual model calculation.

a need for user face detection, 3D head pose tracking and

subsequent face image segmentation (Section III-A). More-

over, to detect and monitor facial changes due to weight,

swelling, local growth and facial asymmetry and to perform

other bio-morphometric analyses over time, the Wize Mirror

is able to perform 3D face reconstruction (Section III-B).

Additionally, a 3D face labelling stage is needed to provide

different subsequent tasks with the approximate positions of

important facial landmarks (Section III-C). A bespoke face

recognition system is also implemented to facilitate user access

control. A detailed description of the face recognition module

can be found in [7].

A. Face detection and tracking

Face detection and tracking are performed using depth data

from a range sensor as the only input. The proposed face

detection and 3D head pose estimation are based on the

approach described in [8], the tracking method presented in

[9], and a personalized 3D labelled mask explained in Sections

III-B and III-C. First, a random forest framework is used to

classify depth image patches between two classes (head and

no head) and to perform regression in the continuous spaces

of the head position and orientation. Then the detection noise

is reduced using a Kalman filter method [9]. Finally, the 3D

mask is registered to the input range data using an iterative

closest point algorithm [10] with the previously estimated pose

used for initialization. Mask registration improves the spatial

accuracy of the pose estimation and provides the approximate
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Fig. 4. Results of the face tracking procedure on a sample of video frames.
The 3D labelled mask is projected into 2D images after head pose estimation.

locations of different facial landmarks, such as the eyes, nose,

mouth and chin (see the results in Fig. 4). As all the cameras in

the system were previously calibrated with respect to the range

sensor (as indicated in Section II), the registered 3D mask

can be projected into images captured by any of the cameras

installed on the Wize Mirror, enabling face segmentation

and landmark location in different video streams. This step

avoids the redundancy of performing face detection in each

video. The computations are reduced because face detection

is performed on the depth data stream only, subsequently

transforming the vertices of the annotated 3D face mask using

rigid transformations and the projective camera model.

B. 3D face segmentation and reconstruction

As a preprocessing step, a face segmentation method was

proposed as the first stage of the reconstruction method. The

face segmentation is based on the face pose estimation. With

the calculated pose, a 3D model is transformed to match the

input depth data. The matched model defines the scan regions

which are subsequently used for the 3D face reconstruction.

The implemented reconstruction approach is based on the

Kinect fusion method [11]. Originally, the reconstruction

method was designed to reconstruct static scenes of rigid

objects by moving a range sensor and capturing different

points of view of the scene. The reconstruction requirements

for the Wize Mirror are different, as the sensor is in a fixed

position and the subject is moving. In the proposed algorithm

the relative motion of the head is reversed with respect to the

sensor to estimate the point of view. This is achieved by using

only the output from the face segmentation. More details about

the segmentation and reconstruction method can be found in

[12].

For the face morphological analysis explained in Section

IV the mesh to be processed has to be a manifold, with

no holes and no duplicated points or triangles. Although the

reconstructed meshes obtained with the mentioned methods

are visually good, they, sometimes, do not fully meet all the

requirements for a correct morphological analysis (Section IV)

of the 3D reconstruction. Therefore, the re-meshing method

[13] was applied to the resulting 3D point clouds. Samples of

the 3D reconstruction are shown in Fig. 5.

C. 3D face labelling

Among the previous works on landmark localization re-

ported in the literature, one interesting example is the method

described in [14], which uses a point distribution model

and performs face detection as the first stage. The model

Fig. 5. Results of 3D the face reconstruction and face labelling for two
subjects.

presented in [14] did not include landmarks on the mouth

or chin. The labelling process for the Wize Mirror produces

the approximate positions of the center of the eyes, tip of the

nose and centers of the mouth and chin on the reconstructed

face. This labelling is an important requirement for morpho-

logical analysis, multispectral measurements and analysis of

the psychosomatic status as the relevant processing is based

on the facial regions defined by these landmarks. The proposed

labelling method uses a 3D-deformable annotated model. This

model is registered to the reconstructed face as described in

[15], which explains how to build the model. The 3D faces

are represented by a low-dimensional shape space vector of the

statistical shape model, which is calculated through a model-

based surface registration process. After the deformable fitting,

the labels are near the real landmarks. Then, the closest point

to the label from the mesh is selected for each label. The

method was tested on SRD’15, and all the reconstructions were

correctly labelled using the proposed method. Examples of the

results are shown in Fig. 5.

IV. 3D FACE ANTHROPOMETRIC QUANTIFICATION

Anthropometry is the study of body and face morphology.

Anthropometric measurements are usually performed manu-

ally by trained personnel; therefore, they are often affected

by inter- and intra-observer variability. Leslie G. Farkas, a

pioneer of modern craniofacial morphology, gathered a set of

facial measurements across different ethnic groups, including

distances, angles and areas enclosed by anatomical landmarks.

Farkas also studied the relations of some syndromes with these

measures [16]. Most face morphometry methods are based

on 2D images rather than 3D data and require the accurate

location of facial landmarks.

One of the challenges of SEMEOTICONS is the automatic

computation of geometric descriptors of 3D facial data, ac-

quired via a low-cost scanner, to monitor and quantify an in-

dividual’s temporal facial shape changes in relation to cardio-

metabolic risk and body fat accumulation. There is a relatively

large number of techniques reported in the literature based on

a sparse set of 2D facial landmarks (often obtained by manual

annotation); [17] proposes a method for the prediction of nor-

mal and overweight females based on body mass index (BMI).

This method uses 2D features (Euclidean distances, angles,

and face areas) computed on selected soft-tissue landmarks.

The study was extended in [18] by investigating the relation

between visceral obesity and facial characteristics to determine

the best predictor of normal waist and visceral obesity. Recent
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Fig. 6. A visualization of the curves used to define the face measurements
implemented in the Wize Mirror. From left to right: MorphoE, MorphoANN,
MorphoAB.

technological advances of the depth sensors for 3D acquisition

and modeling fostered the employment of digital descriptors

from shape analysis to study the morphometric properties on

3D models [19]. Promising results on how to quantify the

facial shape variation related to weight gain/loss, are reported

in [20], where complex shape descriptors, from the geometric

theory of persistent homology, were computed on a subset

(23 points) of the Farkas landmarks, and tested on a synthetic

dataset of 3D faces.

A. Digital measurements

The Wize Mirror is intended to be used by people for the

self-assessment of their well-being. Overweight and obesity

are among the most relevant factors of cardio-metabolic risk.

The requirements of the shape measures are: (i) not requiring

the detection of a large number of landmarks (difficult, espe-

cially for poorly geometrically characterized landmarks); (ii)

being well-defined, easy to implement, and computationally

efficient; (iii) being independent of rotation, translation, and

scale; (iv) being robust to noise and pose estimation errors.

The digital measurements implemented are:

• MorphoE: the length of the maximal curve among those

given by the intersection between the face mesh and a

family of concentric Euclidean spheres, centered in the

nose tip (Fig. 6);

• MorphoG: the geodesic analogue of MorphoE;

• MorphoANN: the area of an annuli at the border of the

face mask (likely affected by an increase in subcutaneous

fat);

• MorphoAB: the length of a geodesic path in the neck

region joining two specific points, under the ears.

MorphoE, MorphoG, and MorphoANN require the detection

of only three landmarks (eyes and nose tip), which are

automatically located on 3D face meshes (Section III-C). The

distance between eyes is used to normalize the measures with

respect to the user. MorphoAB requires the location of an

additional landmark (chin).

B. 3D face measures and physical parameters

Experiments on the reference dataset SRD’15 established

the relation between the described digital measurements and

a set of physical parameters related to cardio-metabolic risk.

The subjects had their face reconstructed using both the low-

cost depth sensor integrated in the Wize Mirror (see Section

III-B) and a commercial portable structured light scanner

(Artec Eva [21]).

The agreement between the reconstructed 3D faces captured

by the two scanning platforms was assessed through the intra-

class correlation coefficient (ICC) [22]: the ICC values indicate

strong agreement for MorphoE, MorphoG and MorphoANN

(respectively, .913, .894, and .775), and moderate agreement

for MorphoAB (.678).

A set of physical parameters was collected for each subject,

according to the literature ([23], [24]): weight, BMI, waist

circumference (WC), hip circumference (HC), neck circum-

ference (NC), and fat mass (FM). The proposed digital mea-

surements were computed on facial meshes obtained from both

the depth sensor, as described in SectionIII-B, and the Artec

scanner. The Pearson’s correlation coefficients between the

digital measurements and the physical parameters are reported

in Table II for the Artec scans and in Table III for the depth

sensor scans. The correlation patterns are similar, indicating

that the quality of the depth data does not significantly affect

the geometric descriptors.

In both cases, all facial features are highly correlated with

weight, BMI and NC (up to r = 0.795), and all correlations

are highly significant. The correlation with WC and HC is

slightly lower but still significant. The correlation for FM is

not significant (p-value> 0.1), which may be related to the

size and composition of the sample.

TABLE II
PEARSON’S CORRELATION COEFFICIENTS AND p VALUES BETWEEN THE

PHYSICAL PARAMETERS AND FACIAL FEATURES COMPUTED ON FACE

MESHES ACQUIRED USING THE ARTEC SCANNER.

MorphoE MorphoG MorphoANN MorphoAB

Weight r .795 .784 .687 .668
p .000 .000 .000 .000

BMI r .716 .714 .602 .526
p .000 .000 .002 .010

WC r .559 .553 .425 .519
p .006 .006 .043 .011

HC r .564 .547 .462 .460
p .006 .008 .030 .031

NC r .792 .752 .674 .621
p .000 .000 .000 .002

FM r .151 .155 .040 .023
p .491 .481 .855 .917

V. EMOTIONAL STATUS

The Wize Mirror includes methods to analyze facial cues

and physiological measures that are related to anxiety, stress

(Section V-A) and fatigue (Section V-B).

A. Stress and anxiety detection

Stress and anxiety are states of emotional strain that can

significantly affect a person’s quality of life. According to the

literature, there are distinct facial cues that are representative

of stress/anxiety that appear in the facial areas of the eyes

and mouth, and in the motion pattern of the head [25]. For

contactless detection of these cues, a high-resolution camera
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TABLE III
PEARSON’S CORRELATION COEFFICIENTS AND p VALUES BETWEEN THE

PHYSICAL PARAMETERS AND FACIAL FEATURES COMPUTED ON FACE

MESHES OBTAINED FROM THE MIRROR 3D SCANNER.

MorphoE MorphoG MorphoANN MorphoAB

Weight r .733 .719 .669 .675
p .000 .000 .001 .001

BMI r .711 .716 .651 .671
p .000 .000 .001 .001

WC r .614 .619 .547 .579
p .002 .002 .008 .005

HC r .569 .568 .518 .557
p .007 .007 .016 .009

NC r .788 .781 .778 .648
p .000 .000 .000 .001

FM r .272 .316 .211 .349
p .221 .152 .347 .112

is embedded in the Wize Mirror. Advanced video processing

algorithms are used to extract and quantify the appropriate

facial information to asses a subject’s psychophysical status in

a reliable and effective manner. The algorithms used for face

detection, tracking and region of interest (ROI) segmentation

are described in Section III.

The head motion algorithm can detect and quantify the

movement of a person’s head based on a 2D video file. An

ROI, defined as the region of the face between the eyes

and mouth, is determined, and the landmarks on the four

edges of the ROI are tracked. This ROI was selected as it

is characterized by the absence of eyes and mouth movements

due to facial expressions; thus, the resulting measurement

is only related to head motion. The Kanade Lucas Tomasi

(KLT) tracker [26] is applied to track the landmark points, thus

creating a time series of the temporal evolution of positions.

These time series describe the magnitudes of head motion

and velocity, as well as their projections in the horizontal and

vertical directions.

Eye-related features are also estimated by the Wize Mirror

to detect stressful emotional states [27]. These features, apart

from stress, can be modulated by environmental conditions

such as temperature and illumination conditions. Active ap-

pearance models (AAM) [28] are used to specify landmarks

in the eye perimeters that are tracked throughout the video

recording. Their distances and relative distribution create a

time series that provides eye activity information, including

measures of the eye aperture and the rate of blinking, which

are known to be correlated with a stressed emotional status

[25][27].

Mouth activity is also analyzed in terms of dense optical

flow [29] to obtain a description of the motion patterns of

the lips. Optical flow is applied only on the Q channel of the

YIQ colorspace of the mouth ROI, in which the lips appear

brighter than the surrounding tissue [30]. The maximum

motion magnitude over the entire video is taken as the source

for subsequent feature extraction, including features from the

time and the frequency domains [31]. An illustrative example

of the analysis framework and the resulting signals is shown

in Fig. 7.

Fig. 7. Left panel: Facial ROI (blue: face, green: mouth) and landmarks (red:
eye-related landmarks, yellow: head motion/speed landmarks) determination
used for stress and anxiety detection. Right panel: Time series of eye aperture
(top left), mouth motion (bottom left), head motion (top right), and head speed
(bottom right).

These methodologies and feature estimating algorithms

were tested on SRD’14 and a subset of 24 subjects from

SRD’15. Each subject performed 12 tasks (3 neutral, 8

stress/anxiety and 1 relaxed states), providing a good initial

dataset to evaluate stress/anxiety. Different stressors were used

during both acquisition campaigns to investigate various types

of stress and anxiety. These features were subsequently used

to develop the virtual individual model and to define the

personalized wellness index.

B. Fatigue detection

The Wize Mirror computes a fatigue score that depends on

the frequency and duration of yawns, weighted with respect to

the time-point of video capture. The yawn detection algorithm

is based on real-time tracking of 68 facial landmarks [32].

Yawns are detected by matching landmark-based geometric

features of each video frame with templates representing

yawning and neutral expressions. Let E be a stored expression

that is represented by a set of templates E = (T1, ..., TM ).
Then, let C be the current expression. The similarity score

between the expressions C and E is the sum of similarity

scores between C and the set of templates of E:

s(C,E) =

M
∑

i=1

s(C, Ti)

where

s(C, Ti) = exp(−
‖v(C)− v(Ti)‖

2

2

σ
)

v is a feature vector encoding landmark positions, ‖·‖
2

represents the L2 norm, and σ is a constant controlling

the smoothness of the score distribution. In the experiments

reported σ = 10 was used. Two vector representations of

expressions were implemented:

• A feature vector including the coordinates of all 68

landmarks defined in the Multi-PIE dataset [33]).

• A feature vector encoding information extracted from the

mouth region, including: bounding box ratio and distance

of the mouth landmarks from the mouth centroid.

The probability that an expression C represents a yawn is

p(C, Y ) =
s(C, Y )

s(C, Y ) + s(C,N)
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Fig. 8. Yawn probability in a video sequence. The method is robust to
occlusion.

where Y and N are the stored templates of yawning and

neutral expressions, respectively. Only subsequent frames with

p(C, Y ) > 0.5 for a duration > 1 second are considered a

positive detection of yawning. The system uses a mean prob-

ability computed on the basis of two vector representations.

Fig. 8 shows the probability of an expression representing a

yawn for each frame of a video sequence: peaks are correctly

located in correspondence to each yawn. The detection is made

frame by frame, and the set of subsequent frames belonging

to the same yawn are grouped into one event. Each event is

characterized by its start and duration (number of frames).

The algorithm was tested on two datasets:

1. A set of 10 videos approximately 30 s long acquired in a

controlled environment, with a resolution of 1920 x 1080,

at 50 fps. The whole set contains 20 events (yawns). In

this set, 19 events were correctly detected.

2. A set of 10 videos from the YAWDD dataset [34] contain-

ing 28 events. The videos show tired subjects, simulating

driving a car, occasionally yawning. The videos were

captured in an uncontrolled environment with natural

illumination and challenging subject positions; each video

is approximately 1 minute long and was acquired at 30

fps, with resolution 640 x 480. In this set, 21 events out

of 28 were correctly detected, 7 events were not detected,

and 3 events were incorrectly classified as yawns.

VI. PHYSIOLOGICAL STATUS

A computational pipeline was constructed to detect and

estimate facial semeiotic signs of the user’s physiology. The

main objective was the development, implementation and

optimization of the necessary methods and algorithms to easily

and accurately extract heart rate (HR) and respiration rate

parameters, as well as to perform heart rate variability (HRV)

analysis from color video recordings of the face.

A. Measurement approach

The proposed procedure exploits the photoplethysmography

(PPG) principle [35], a noninvasive optical technique for

measuring blood flow. The foundation of this approach is

based on the fact that as the heart pumps blood, the volume of

blood in the arteries and capillaries varies by a small amount

in synchronization with the cardiac cycle. This variation in

blood volume in the arteries and capillaries underneath the

skin induce subtle skin color changes. The method explores

the use of video recordings of the human face, PPG and

ambient or diffused white light to detect the subtle color

changes caused by variations in reflected light due to a

change in blood volume in the facial region during the cardiac

cycle. The initial goal of the color camera-based physiological

sign monitoring approach is to estimate the PPG waveform,

which is proportional to these changes in skin color, since

physiological parameters, such as HR, HRV and breathing rate

(BR), can be derived from the acquired PPG waveform. The

implemented computational pipeline is presented in [36].

B. Experimental validation

The computational pipeline was tested on the SEMEOTI-

CONS Reference Dataset and the electrocardiogram (ECG)

recorded simultaneously with the videos. The results presented

in Table IV demonstrate that a highly accurate estimation of

the HR from the processing of facial videos is possible. The

reported results, applying the computational and analytical

pipeline, indicate accuracies on the order of 95-99% com-

pared to the ground truth measurement computed from the

ECG signal. The analysis was performed on videos acquired

under two recording conditions: a motionless scenario where

participants were recorded while mimicking a neutral/resting

state and a scenario where participants performed a mental

task, in particular the Stroop test [37], which is a scenario

that includes natural motion. The method was also tested

with participants with deeply pigmented skin both included in

the dataset and removed from the dataset. Overall, increased

error was observed between trial 8 (4.85% or 5.01%), in

which a higher level of motion was observed and trial 3

(1.56% or 1.96%), where the subjects demonstrated the least

motion. Moreover, the results indicate that the accuracy of

the estimation is significantly influenced, in both recording

scenarios, by the inclusion of darker-skinned subjects.

TABLE IV
THE % ERROR PRODUCED FROM HR MEASUREMENT USING THE

SEMEOTICONS REFERENCE DATASET.

Recording
scenario

Participants No of
record-
ings

Reference % error

Mimicking
neutral state

Exclude dark skinned 16 ECG 1.56

Mimicking
neutral state

Include dark skinned 18 ECG 1.96

Stroop test Exclude dark skinned 22 ECG 4.85
Stroop test Include dark skinned 23 ECG 5.01

Total number of recordings 79 Average 3.35

In addition, an evaluation of the HR, respiratory rate and

HRV was performed on a subset of 5 participants in SRD’14

for which five minutes of continuous video recordings were

collected. The analysis of HRV was performed using a short

recording time (5 minutes) since it is unrealistic to have the

subject positioned in front of the mirror for more than a
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Fig. 9. Motion artifacts on the ECG and video signals due to participant
movement (published with permission of the subject).

few minutes. The results confirmed the previously reported

outcomes for HR measurements. The HRV analysis was

unsatisfactory, with considerable divergence from the values

obtained from the ECG analysis (cf. Table V).

TABLE V
HRV RESULTS (THREE INDICATIVE CASES) FROM 5-MINUTE VIDEO

RECORDINGS.

Heart Rate Variability frequency components estimation
LF ampli-
tude

HF ampli-
tude

LF power HF power LF
frequency

HF
frequency
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1 1010 2765 488 705 77 208 56 73 0.08 0.08 0.20 0.24
2 6288 22463 2475 5060 536 2037 391 853 0.11 0.08 0.22 0.31
3 6440 4243 1164 395 437 240 209 61 0.04 0.04 0.22 0.34

These outcomes indicated that although the HR results

achieved from the proposed method were satisfactory, imply-

ing that the preprocessing phase of the HRV analysis was prop-

erly implemented, the constructed signal was not sufficiently

representative of the BVP signal or the subsequent processing

was not as accurate as required. Finally, measurement of

respiration rate was derived from the HF-Frequency band

of HRV from both signals (ECG and video) and therefore

depended on the accuracy of the HRV estimation.

Visual inspection of the video signals revealed that they

were not of sufficient quality for the required signal duration

(i.e., five minutes) for accurate HRV analysis. Signal segments

were seriously contaminated by noise/artifacts (Fig. 9). Thus,

the unreliability of the HRV estimate can be explained in

part, by the bad quality and unreliability of the particular

recordings, both ECG and video. However, this analysis pro-

vided evidence for the feasibility of the proposed method.

The reliability should be further tested on datasets designed

specifically for HRV analysis, providing ECG and video

recordings acquired in parallel for 5 minutes and compatible

with basic HRV acquisition requirements.

Fig. 10. Concentration of AGE in facial skin (grayscale is a pixel-by-pixel
ratio of 475 nm image/ 360 nm image). Colored pixels within the face mask
are selected to estimate the AGE concentration.

VII. MULTISPECTRAL MEASUREMENTS

A multispectral imaging (MSI) system for facial skin anal-

ysis has been proposed and evaluated. The MSI system is

based on five compact monochrome Flea3 3.2 MP USB 3.0

CMOS cameras (Point Grey) with band-pass filters at selected

wavelengths and two computer-controlled LED light sources

(white and ultraviolet (UV) light). A heater fan for remote skin

heating has also been integrated in the system. The cameras

are placed in a three by two pattern adjacent to each other.

The camera filters (Edmund Optics) are bandpass filters with

center wavelengths and (FWHM) of 360 (45), 475 (50), 560

(10), 580 (10), 650 (50).

Advanced glycation end products (AGE) are linked to

inflammation and atherosclerosis and play a role in both the

microvascular and macrovascular complications of diabetes.

In this project a noninvasive, contactless novel technique

is proposed to quantify AGE deposits in skin tissue. The

technique collects MSI images during UV exposure from a

365 nm LED (Smart Vision Lights). The method is presented

in detail elsewhere [38]. In summary, the AGE level was

assessed as the ratio of the fluorescence intensity (475 nm

camera) to the illumination intensity (360 nm camera). The

image acquisition and processing involved: 1) modulated light

sources for ambient light suppression; 2) a ROI mask; 3)

avoiding areas with specular reflections (Fig. 10); and 4) a

simple calibration procedure. The method was evaluated on

data from SRD’15. The results from 16 subjects with skin

types ranging from fair to deeply pigmented showed that

AGE measured using MSI in forearm skin was significantly

correlated with the AGE reference method on forearm skin

[39] [38]. These results support the use of the technique for

contactless measurement of the AGE content in either facial

or forearm skin tissue over time.

Lipids accumulate in the skin of persons with increased risk

of cardiovascular disease. Xanthelasma is an accumulation of

lipids in the periorbital skin. It appears as a soft, yellow lipid

skin inclusion. This condition is clearly visible to the naked

eye, and can thus in principle be quantified using the MSI sys-

tem. The skin cholesterol concentration is therefore considered

an interesting parameter in the assessment of overall cardio-

metabolic risk [40] [41]. The MSI system estimates cholesterol

by calculating the cholesterol skin fraction. Detection of

cholesterol in the visible spectral range is challenging because
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Fig. 11. Cholesterol characterization of subject with high blood cholesterol.
Original image (left), small cholesterol deposits enhanced image (mid), and
xanthelasma enhanced image (right).

cholesterol does not have a specific spectral signature in this

wavelength range. However, it may be detected as a conse-

quence of increased scattering due to the high refractive index

in lipids, increased specular reflection and replacement of other

skin constituents with cholesterol. The last feature leads to a

lower observed blood volume and pigment absorption in lipid-

rich areas. The main spectral feature targeted in this project

is the scattering change observed due to the high refractive

index found in lipids. The proposed method uses a single

wavelength (560 nm or 580 nm). The measurement of skin

cholesterol is implemented as a cholesterol droplet fraction

measure (Fig. 11, mid panel). In this method an area of skin

beneath the eye is selected for analysis, and the fraction of

pixels covered with spots showing increased skin reflection

(white spots) is calculated. The presented algorithm, applied to

the data from the same subjects used for the AGE assessment,

easily identifies xanthelasma lesions (Fig. 11, right panel).

Endothelial dysfunction is a mechanism that can lead to

coronary artery disease. The endothelium balances vasodila-

tion and vasoconstriction during varying blood flow needs.

Endothelial dysfunction can result from and/or contribute to

several disease processes such as hypertension, hypercholes-

terolemia, and diabetes. In this project, endothelial function

is measured using MSI based on the response of facial skin

microcirculation to partial facial skin heating to 39 ◦C using

a controlled heated air flow. Reference recordings of forearm

skin during local heating with a fiber optic probe system indi-

cated that the response should be evaluated continuously over

the axon reflex period, 1-6 min after the start of heating. The

maximum response during this period was used to calculate

an index of endothelial function. This index was based on two

parameters calculated from the MSI images in the 475-650 nm

range: hemoglobin oxygenation (SO2) and the fraction of red

blood cells in the skin (fRBC ; Fig. 12).

The facial skin heating technique, developed using a

computer-controlled heated air flow and an IR thermometer

to measure facial skin temperature, worked well. This system

was tested during the acquisition of SRD’15. Normally the

temperature at the end of the 10-min period was within 1 ◦C
of the target temperature (range 37.5− 40 ◦C). In only a few

cases a higher skin temperature was reached for a short period

of time, probably due to head movement.

Artifacts were identified due to co-registration difficulties in

the MSI setup. This mainly affected the SO2 images, while

the fRBC displayed less sensitivity. One way to minimize the

effect of miss-alignment is to take a spatial average over a

Fig. 12. The fraction of red blood cells in facial skin tissue (fRBC ; color
map indicates a relative scale). The fRBC is calculated in the selected ROI
at baseline (left panel) and 9-10 min after local heating (right panel). A
computer-controlled fan focused heated air on the left cheek.

fairly large ROI for each MSI image before calculating the

SO2 and fRBC estimates. For data from SRD’15, all ROI

averaged estimates displayed consistent and expected results

when exposed to heat.

VIII. ANALYSIS OF BREATH COMPOSITION

Many studies attempted to find a correlation between breath

volatile organic compounds (VOCs) and particular diseases

[42], [43], as breath analysis enables monitoring the metabolic

processes that occur in the human body in a noninvasive way.

This technique is promising and complex; the analysis of the

breath gases must take into account a variety of factors: from

the subject’s posture [44] to the flow rate [45], conditions

of the environmental air [46], and the subject’s lung volume

[47]. For this reason, the majority of studies in this field

use sensitive and accurate instrumentation to analyze breath

molecules, such as gas chromatography - mass spectrome-

try [48]. However, such instrumentation is expensive, time-

consuming and not easy-to-use.

In the framework of SEMEOTICONS, the challenge was to

analyze the user’s breath composition by means of a portable,

cheap, and easy-to-use device to detect breath gases and

analyze them in real-time: the Wize Sniffer [49].

The Wize Sniffer can detect molecules present in the breath

that are related to the most noxious habits for cardio-metabolic

risk: sensors for carbon monoxide can monitor smoking habits

and sensors for ethanol and hydrogen can help the user

to maintain their diet under control and avoid an abuse of

alcoholic drinks. In addition, variation in the output of oxygen

and carbon dioxide gas sensors provides a measure of how

much oxygen is retained in the body, and how much carbon

dioxide is produced as a by-product of cellular metabolism.

The Wize Sniffer is composed of three modules: one for

breath sample acquisition, one for breath molecule detection,

and one for data analysis. The acquisition device includes a

gas sampling box (600 ml tidal volume [50] and composed

of ABS and Delrin) with six gas sensors (manufactured by

Figaro Engineering) and widely employed open source con-

troller board (Arduino Mega2560). Since the sensors’ output

is affected by the water vapor present in the exhaled gas, an

HME filter is placed at the beginning of a corrugated tube to

reduce the humidity from 90% to 60-70%. The humidity and

temperature percentage are also monitored within the sampling
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Fig. 13. The Wize Sniffer final configuration. The user blows into the
corrugated tube while attempting to keep the expiratory flow rate constant.
The flowmeter can be used to calculate the exhaled breath volume. A flushing
pump purges the chamber to recover the sensor’s steady state between two
consecutive measures. The Wize Sniffer was designed to be integrated into
the Wize Mirror or to be used as a stand-alone device.

box. Two additional gas sensors with shorter response times

work in flowing regime by means of a sampling pump, which

operates at 120 ml/s. The sensor outputs are read by the

Arduino Mega2560 and sent to the Wize Mirror’s main board

via an USB connection.

Fig. 13 shows the final configuration and the use of the

Wize Sniffer.

The concentration of each of the breath molecules detected

by the Wize Sniffer was calculated using a non-linear equation

model. The analysis of the gas sensors confirmed their non-

linear behavior and their non-selectivity [51], thus impeding

the exact discrimination of several substances. Therefore, a

more classic approach based on principal component analysis

and the K-nearest neighbour classification was adopted. This

method uses the sensors’ raw data to indicate which “class”

the user belongs to, according to their habits (“no risk”, “mod-

erate smoker”, “heavy smoker”, “moderate drinker”, “heavy

drinker”, etc), thus integrating and completing the data derived

from the lifestyle questionnaires (see Section IX).

A measurement protocol was drafted for tests on SRD’15

subjects with different ages, habits, lifestyles and body types.

A “mixed respiratory” procedure was selected from available

breath sampling procedures [46], [52]. This procedure was

selected because the focus was on both endogenous (derived

from alveolar exchanges) and exogenous (derived from food

and beverages) breath molecules. In addition, since the com-

position of each breath may vary considerably, to average the

breath-by-breath fluctuations in composition, a sampling of

multiple (three) breaths was performed.

The KNN classifier correctly classified 20/26 subjects on

the basis of their noxious habits. Unfortunately, the classifier

was unable to recognize smoking subjects. This may be due

to the high detection threshold of the carbon monoxide sensor.

This will be solved by replacing the Figaro gas sensor with

another sensor with a lower LOD (MQ7 sensor, for example).

While alcohol consumption of up to 1-2 alcohol units/day

is not considered noxious (in healthy subjects), smoking is

considered very bad for cardio-metabolic risk in all cases.

Fig. 14. VIM maps self-monitoring data, represented as vector s(t), to vector
w(t) belonging to a 3D well-being space.

IX. SEMANTIC DATA INTEGRATION AND USER GUIDANCE

The final aim of the Wize Mirror is to monitor individual

well-being with respect to cardio-metabolic risk and to foster

a healthy lifestyle. According to medical semeiotics of CM

risk, the set of computational descriptors previously outlined is

expected to convey properly meaningful pieces of information

[4]. For completeness, the entire set of descriptors produced by

the mirror and the related risk factors are summarized in Table

VI. Unfortunately, the direct use of a large heterogeneous set

of descriptors is unsuitable for evaluating a user’s status with

respect to medical knowledge and, even more importantly, to

facilitate interaction with the user. This is why the integration

process produced by the virtual individual model (VIM) was

introduced.

As illustrated in Fig. 14 and detailed in Section IX-A, the

VIM maps the data produced by the mirror, which can be

considered as point s in a high-dimensional space Σ, to point

w in semantically structured space Ω, called the well-being

space. This semantic structure provides the physiological,

psychological and behavioral interpretation of the measured

parameters. This process partitions the Σ space into three

subspaces, ΣP , ΣE and ΣL named the physical, emotional,

and lifestyle-related subspaces, respectively. ΣP comprises the

parameters related to the physical condition of an individual

(e.g., blood oxygenation, skin cholesterol, face morphology).

ΣE includes the features (e.g., descriptors of facial expres-

sions, and neurovegetative imbalance) directly related to the

emotional status of the subject. Finally, ΣL is spanned by

descriptors on an individual’s dietary habits, physical activity,

alcohol consumption, and nicotine intake.

According to this partitioning, the well-being space has

three axes that describe physical wellness, emotional wellness,

and lifestyle-related wellness. To provide the user a concise

description of her/his overall condition, the state of the VIM

is used to compute a wellness index (WI), which is an

appropriately scaled indicator of a user’s wellness. It provides

the basis for communicating with the user and driving the

guidance system.

A. Virtual Individual Model and Wellness Index

The data collected by the Wize Mirror includes the computa-

tional descriptors obtained by mirror sensors and data obtained

by user interaction. In Table VI descriptors from the sensors
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TABLE VI
THE WIZE MIRROR CARDIO-METABOLIC RISK DESCRIPTORS ALONG WITH

THE CORRESPONDING MEASURED PARAMETERS AND LINKED RISK

FACTORS. SEE TABLE I TO LINK THE DESCRIPTORS WITH THE SENSORS

THAT OBTAIN THE CORRESPONDING DATA.

Descriptor Measured Parameter Risk Factor

3DFM Face geometry
Overweight

Obesity

FaDe

Head movement
Eyebrow movement
Lip movement Stress,
Yawns Anxiety
Eyelid movement Fatigue
Gaze distribution
Blushing
Reddening
Pallor

PhPa
HR Neurovegetative
HRV imbalance
RR

MuMe

Blood volume/oxygenation Endothelial
Skin perfusion and thermal vasodilation dysfunction

Skin cholesterol accumulation Dyslipidemia

Skin AGE concentration
Glucose

metabolism

ExGC

Exhaled gas:
CO Smoking
H Alcohol intake
Ethanol

are listed along with the related data source and the prevalent

connected risk factor. In addition, when initializing the mirror,

the user is requested to provide a few pieces of data, including:

age, weight, height, and waist circumference. The user is also

asked to fill out short questionnaires describing their perceived

health status and stress conditions (the SF-12 mental and

physical components [53] and the Perceived Stress Scale [54]).

Finally, questionnaires pertaining to lifestyle habits are also

administered to describe dietary habits (DASH [55]), physical

activity (IPAQ [56]), alcohol consumption (AUDIT-C [57]),

and smoking habits (Fagerström [58]). The latter question-

naires are included in the guidance system (see subsection

IX-B for more details).

According to medical knowledge, both computed and user-

provided data can be mapped onto a specific axis of Σ space as

summarized in Table VII. It follows that VIM implementation

is referred back to estimating three mappings,

P : ΣP 7→ ΩP

E : ΣE 7→ ΩE

L : ΣL 7→ ΩL

between the predefined subspaces (ΣP ,ΣE , and ΣL) of Σ
and the three axes (ΩP ,ΩE , and ΩL) of Ω. In this view,

estimation of the components of the VIM status is based on the

hybrid fusion process depicted in Fig. 15 for the physical axis

(analogous schemas were adopted for the other components).

The major aim is to correlate VIM status with a medical

standard. This led to the adoption of simple but general fusion

schema based on the assumption that each component of the

VIM status causes changes in the risk factors (see Table VI).

For example, the physical component was hypothesized to

cause changes in endothelial dysfunction, dyslipidemia, glu-

cose metabolism abnormalities, overweight/obesity and neu-

rovegetative imbalance. These changes, in turn, cause changes

in the input. Each of these causal relationships is modelled by

a linear equation with the cause(s) as independent variable(s).

Structural equation models (SEMs) were used to implement

the association phase [59]. SEMs are widely used in psy-

chometry and behavioral sciences. This choice was motivated

by the moderate complexity of a linear SEM, which despite

a possible negative influence on the estimation accuracy, is

advantageous with respect to overfitting issues. More complex

(non-linear) models will be investigated in future develop-

ments of the system. Evolution of the data-fusion schema is

planned with respect to several aspects, including the use of

more general non-linear causal relationships and the adoption

of more advanced methods such as those emerging for crowd-

sourcing and multi-socials integration [60]. These are expected

to efficiently cope with partial data inconsistencies, including

missing data. Although data incongruence was not observed

in the experiments, it can be expected when the mirror is

deployed in a general environment.

The complete SRD was used to estimate the model coeffi-

cients. This dataset includes data from volunteers that are not

affected by a known disease. For each subject it contains:

• a complete medical objective examination based on stan-

dard clinical testing for CM risk, including four well-

established risk scores: Heart SCORE [61], Fatty-Liver

index [62], HOMA index [63], FINDRISC index [64];

• nutritional assessment obtained by validated question-

naires and indirect calorimetry;

• psychological evaluation based on validated question-

naires;

• a set of images, pictures, and signals acquired with a suite

of sensors operating in experimental conditions close to

the Wize Mirror setup that can estimate facial descriptors

of CM risk.

This database contains the input data from sensors in the Wize

Mirror, user-provided data, and clinical and psychological

reference evaluation data, and its usage made it possible to

fit the VIM using the SEM maximum-likelihood estimator.

TABLE VII
CARDIO-METABOLIC RISK FACTOR AND WELL-BEING AXIS.

Risk factor Well-being axis
Endothelial dysfunction

Physical

Dyslipidemia
Glucose metabolism abnormalities

Overweight/Obesity
Neurovegetative unbalance
Anemia/Plethora/Jaundice

Stress
EmotionalFatigue

Anxiety
Smoking

Lifestyle
Alcohol intake
Dietary habits

Physical exercise

The temporal evolution of the VIM status w is expected to

provide a concise but complete description of the components

of a user’s health status. To make it suitable for interaction with

general users, w is converted into WI using the equation:

WI = apwp + alwe + aewl
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Fig. 15. The schema of data fusion used to estimate the mapping P to produce
the physical component of the VIM status.

Similar to the SEM method mentioned above, the coefficients

ap, ae, and al were estimated from the reference dataset

by assuming that wp, we, and wl depend linearly on WI .

apwp, aewe, and alwl can be interpreted as physical wellness,

emotional wellness, and lifestyle wellness, respectively. The

proposed WI is innovative. In contrast to other indices (e.g.,

WHO-5) based on subjective user evaluation, the proposed

WI combines objective measurements (gathered from sensors)

with the subjective evaluation of perceived health status per-

formed by the individual. This feature is expected to signifi-

cantly impact self-monitoring strategies and the effectiveness

of user guidance.

To gain an understanding of the relative importance of the

two kinds of data (sensed and user-provided) we observe that

the estimated values of the three weights are ap = 1.23,

ae = 0.50, and al = 0.73. By normalizing their sum to unity,

the relative impacts on the total WI of the physical, emotional

and lifestyle components are 50%, 20%, 30% respectively.

User-provided data are used to set the initial status of the

VIM and to compute wl that, with the exception of smoke

and alcohol consumption which can be measured by the Wize

sniffer, can not be captured by the sensors in the mirror.

Sensors are therefore responsible for approximately 70% of

the WI computation.

Fig. 16 shows a graphical representation of the WI compo-

nents as they appear in the Wize Mirror prototype.

B. Personalized guidance

The Wize Mirror provides customized and personalized

suggestions and messages, in accordance with the estimated

WI and its change over time, the user profile in terms of

attitudes, habits and preferences, and contextual information

about the users life circumstances. The guidance has four

major lifestyle targets:

• diet,

• physical activity,

• smoking,

• alcohol intake.

Target selection is automatically triggered by the WI. The

guidance control includes a set of modulators used for tuning

the intensity and the frequency of coaching messages. The

Fig. 16. Graphical representation of the wellness index as it appears in the
Wize Mirror prototype. The global wellness (64) is presented along with the
physical (68), emotional (72) and lifestyle (53) components.

following questionnaires are administered at the beginning of

self-monitoring activity:

- WHO-5 Well-being Index [65] a short questionnaire

providing a reliable measure of emotional traits (positive

mood, vitality and general interests).

- General Self-Efficacy Scale (GSE) [66] assessment of the

perceived self-efficacy and understanding of an individ-

ual’s motivation to change.

The guidance uses a battery of standardized questionnaires

(some previously mentioned) to provide suggestions to pro-

mote lifestyle improvement. In particular the Wize Mirror

incorporates:

- IPAQ-SF questionnaire [56], [67]: four questions request-

ing that an individual recall aspects of his/her physical

activity over the previous 7 days;

- A revised Alcohol Use Disorders Identification Test Con-

sumption (AUDIT-C) [57]: three questions about alcohol

consumption;

- Fagerström Test for Nicotine Dependence [58]: a stan-

dard instrument for assessing the intensity of physical

addiction to nicotine;

- DASH assessment [55]: a standard instrument for assess-

ing diet;

- Insomnia Severity Index (ISI) [68]: a brief screening

measurement of insomnia.

Depending on the score of each behavior a specific suggestion

is provided. The messages are tailored to the user’s traits

to improve the user’s communication and engagement. The

presentation, visualization and linguistic style of suggestions

are tuned in accordance with user’s characteristics. To this end

a proactive decision support system is under development.

X. CONCLUSIONS

This paper described the work performed in the Euro-

pean project SEMEOTICONS to develop the prototype of a

multisensory platform that detects and monitors facial signs

correlated with cardio-metabolic risk, and gives personalized
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guidance for lifestyle changes. SEMEOTICONS brings med-

ical semeiotic analysis to everyday life, from the office of

medical doctors to the home, the gym and the pharmacy. The

empowerment of individuals, in terms of their ability to self-

monitor their status and improve their lifestyle, is expected to

have a great impact on the reduction of disease burden and

health expenditure.

Different technological challenges have been addressed in

this work, including contactless analysis of facial signs, multi-

modal data integration and development of a virtual individual

model. To achieve all the goals, it was necessary to study,

implement and test interdisciplinary techniques such as face

detection, tracking and reconstruction, morphometric analysis,

expression analysis, heart rate estimation, multispectral mea-

surements, cholesterol and AGE estimation. In many cases

new approaches were proposed.

The clinical validation of the Wize Mirror is ongoing. The

system is being used in a study at three clinical centers

involving 60 subjects. This validation study focuses on the

reproducibility of measurements provided by the Wize Mirror

and the correlation of estimated wellness with respect to

cardio-metabolic risk charts (Heart SCORE, Fatty-Liver index,

HOMA index, FINDRISC index) which are the groundtruth

for the wellness index validation [4].
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[67] L. Criniére, C. Lhommet, A. Caille, B. Giraudeau, P. Lecomte, C. Couet,

J. Oppert, and D. Jacobi, “Reproducibility and validity of the french
version of the long international physical activity questionnaire in
patients with type 2 diabetes,” J Phys Act Health, vol. 8, pp. 858–65,
2011.

[68] C. Bastien, A. Vallires, and C. Morin, “Validation of the insomnia
severity index as an outcome measure for insomnia research,” Sleep

Med, vol. 2, pp. 297–307, 2001.


