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Abstract—Local features have been widely used in computer 
vision tasks, e.g., human action recognition, but it tends to be an 
extremely challenging task to deal with large-scale local features of 
high dimensionality with redundant information. In this paper, we 
propose a novel fully supervised local descriptor learning algorithm 
called discriminative embedding method based on the image-to- 
class distance (I2CDDE) to learn compact but highly discriminative 
local feature descriptors for more accurate and efficient action 
recognition. By leveraging the advantages of the I2C distance, 
the proposed I2CDDE incorporates class labels to enable fully 
supervised learning of local feature descriptors, which achieves 
highly discriminative but compact local descriptors. The objective 
of our I2CDDE is to minimize the I2C distances from samples to 
their corresponding classes while maximizing the I2C distances 
to the other classes in the low-dimensional space. To further 
improve the performance, we propose incorporating a manifold 
regularization based on the graph Laplacian into the objective 
function, which can enhance the smoothness of the embedding by 
extracting the local intrinsic geometrical structure. The proposed 
I2CDDE for the first time achieves fully supervised learning of 
local feature descriptors. It significantly improves the performance 
of I2C-based methods by increasing the discriminative ability of 
local features while greatly reducing the computational burden 
by dimensionality reduction to handle large-scale data. We apply 
the proposed I2CDDE algorithm to human action recognition on 
four widely used benchmark datasets. The results have shown 
that I2CDDE can significantly improve I2C-based classifiers and 
achieves state-of-the-art performance. 

Index Terms—Action recognition, dimensionality reduction, 
image-to-class distance, large scale local features, manifold 
regularization, naive Bayes nearest neighbor. 

 

I. INTRODUCTION 

ECENTLY, local features [1] have shown great effective- 

ness and achieved state-of-the-art performance for human 
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action recognition [2]. However, visual recognition based on 

local feature descriptors is still a challenging task due to the 

large intra-class variance and the existence of noise and re- 

dundant information in local features. Moreover, compared to 

global representation of actions [3], [4], it tends to be computa- 

tionally very expensive due to the large scale of local features 

which are usually of high-dimensional. In computer vision tasks, 

SIFT [5], [6], HOG3D [7] and HoG/HoF [8] are successfully 

used and have shown their effectiveness in image classification 

and human action recognition [9], [10], while their discrimina- 

tive abilities fundamentally underpin the performance for visual 

recognition. In the last decade, the bag-of-words (BoW) model 

[11] have been extensively used to encode local features as a 

global representation. It has been shown in [12] that the BoW 

model is a special case of match kernels which actually measure 

the similarity between two images by directly comparing local 

features from them. The fact is that even images/actions that be- 

long to the same class would contain quite a large proportion of 

dissimilar local features, which enlarges the intra-class variance 

and makes it not optimal to directly compare local features for 

classification. 

In order to avoid the quantization errors in the BoW model, 

recently, a non-parametric approach named naive Bayes nearest 

neighbor (NBNN) [13] was proposed for image classification. 

The core idea of the NBNN classifier is the image-to-class (I2C) 

distance which shows great effectiveness in handling local fea- 

tures. Although it is conceptually simple, the NBNN classifier 

has achieved state-of-the-art performance even comparable with 

other sophisticated learning algorithms. The success of NBNN 

is accredited to the employment of the I2C distance, which has 

been proven to be the optimal distance to use in image classifi- 

cation [13]. The I2C distance can effectively cope with the large 

intra-class variance of local features and theoretically avoids the 

quantization errors in on the BoW model. The NBNN has been 

extended in [14]–[16] achieve local NBNN and NBNN kernels, 

which have substantially improved the performance of NBBN 

and achieve great success in image classification. NBNN has re- 

cently been combined with deep convolutional neural networks 

show great effectiveness for scene classification [17], [18]. 

The discriminative ability and compactness of local feature 

descriptors will directly affect the performance of those I2C- 

based methods for recognition tasks in terms of accuracy and 

efficiency. For instance, local features of less discrimination 

with noise and redundant information would severely degen- 

erate the performance of I2C for classification. Moreover, the 

I2C-based methods would be computationally expensive or even 
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Fig. 1. Toy illustration of local patches from different image categories. The 
local patches “eyes” from images in different categories can be similar and are 
close to each other in the feature distribution, while the local patches such as 
“eyes”, “noses”, and “ears” are distinctive to each other even though they could 
be detected from the same image categories. 

 

 

prohibitive due to the large scale of local features, especially 

when the local features are high-dimensional, e.g., spatio- 

temporal local feature descriptors in the video domain for action 

recognition. It is therefore highly desired and imperative to find 

a low-dimensional but discriminative space to represent the lo- 

cal features, especially for action recognition [19], in which 

the local feature descriptors typically amount to tens of thou- 

sands and are very high-dimensional. Even more challenges 

stem from the huge ambiguity of local features. As shown in 

Fig. 1, some local features in different classes could be visually 

similar due to the large inter-class ambiguities, which makes  

it difficult to directly apply existing supervised dimensionality 

reduction methods, e.g., linear discriminative analysis (LDA). 

When applied to local features, LDA attempts to minimize the 

within class variance of different local features and maximize 

the between-class variance of different local features together. 

In this paper, we propose a novel fully supervised di- 

mensionality reduction algorithm called Image-to-Class Dis- 

tances based Discriminative Embedding (I2CDDE) to embed 

high-dimensional local features into a discriminative low- 

dimensional space. By taking advantages of the I2C distance to 

incorporate class labels, the I2CDDE for the first time achieves 

fully supervised learning of local feature descriptors. The objec- 

tive of I2CDDE is, in the low-dimensional space, to minimize 

the I2C distances of images to classes they belong to while max- 

imizing the I2C distances to the classes they do not belong to. 

To further improve the performance, we propose incorporating 

a manifold regularization based on the graph Laplacian [20], 

[21] into the objective function, which can enhance the smooth- 

ness of the embeddings by modeling the local geometrical 

structure and therefore ensure more robust solutions for better 

performance. 

The use of the I2C distance benefits in two aspects. On the 

one hand, local features from one image are treated as a whole 

and class labels can be directly used for supervised learning. 

This increases the discriminative capacity of local features. On 

the other hand, it provides an intuitive and effective venue to 

couple local feature reduction with class labels of images for 

classification, which can improve the performance for visual 

recognition. In the low-dimensional space, local features from 

each image are aligned according to the I2C distances and the 

I2C distance to its own class is minimized and the I2C distances 

to other classes are maximized. The newly incorporated man- 

ifold regularization term helps extract the intrinsic structure in 

the lower dimensional space, which can significantly improve 

the performance of our I2CDDE algorithm [22], [23]. 

The proposed I2CDDE algorithm can dramatically improve 

the performance of methods using local features for classifica- 

tion in terms of both computational efficiency and recognition 

accuracy. To show the effectiveness of I2CDDE in dealing with 

high-dimensional local descriptors, We validate the proposed 

method for action recognition because the local feature descrip- 

tors for actions are always rather lengthy with several hundred 

even thousand dimensions, e.g., HOG3D [7]. 

The preliminary idea of this work has been presented in [24]. 

In this work, we have made new contributions in terms of both 

theoretical novelty and experimental evaluation. We 1) incorpo- 

rate the graph based manifold regularization into the objective 

function, which largely improves the performance; 2) provide 

a more comprehensive study on the proposed algorithm with 

more experimental evaluation; and 3) investigate the connection 

to existing important algorithms based on both image-to-class 

distances and local descriptor learning showing the advantages 

of our algorithm. 

The major contributions of this work can be summarized in 

the following three aspects. 

1) We propose a novel fully supervised learning algorithm 

for discriminative local feature descriptor learning, which 

can not only improve the discriminative ability of local 

features but also reduce the computational cost; 

2) We propose incorporating a manifold regularization to 

extract intrinsic geometrical structure of local features, 

which ensures smooth and robust solutions to improve 

the performance; 

3) Our algorithm largely speeds up I2C based methods to 

scale well with a large number of local features and there- 

fore enables its use in real-world applications 

The remainder of this paper is organized as follows. We re- 

view and discuss the related work in Section II. The details of 

the proposed method are described in Section III and its con- 

nection to existing methods is given in Section IV. We show 

experimental results in Section V and conclude in Section VI. 

 
II. RELATED WORK 

Local feature learning has been widely used for visual recog- 

nition tasks. The compactness and discriminative ability of local 

features play a crucial role in visual recognition and directly af- 

fects the performance and computational efficiency. However, 



 

 

it is still lack of fully supervised learning algorithms for lo- 

cal feature descriptors in that most of exiting algorithms for 

local feature learning only concern the similarity/dissimilarity 

without taking into account the class labels for supervised learn- 

ing. Supervised descriptor learning has recently generated great 

popularity in both machine learning [25] and computer vision 

[26]. 

The I2C distance has recently been proposed in the naive 

Bayes nearest neighbor (NBNN) classifier showing great advan- 

tages [13] over the BoW model for image classification. NBNN 

is a non-parametric algorithm for image classification based 

on local features. With the naive Bayes assumption, NBNN is 

dramatically simple and enjoys many attractive advantages in 

contrast to parametric learning algorithms. It requires no train- 

ing stage and can naturally deal with a huge number of classes. 

Due to the use of the I2C distance calculated on original local 

features, NBNN does not suffer from descriptor quantization 

errors in the BoW model. The core of NBNN is the approxima- 

tion of the log-likelihood of a local feature by the distance to its 

nearest neighbor, which brings about the image-to-class (I2C) 

distance. Taking advantage of the I2C distance, several variants 

of NBNN have been proposed in the past few years to improve 

the generalization ability of NBNN. 

In the NBNN classifier, local features are assumed to be 

i.i.d. given its class label and the probability density is esti- 

mated by the non-parametric Parzen kernel function and can 

be further approximated by the nearest neighbor under the as- 

sumption that the normalization factor in the kernel function is 

class-independent. However, this assumption is too strict and 

restricts its generalization on multiple features. Towards an op- 

timal NBNN by relaxing the assumption, Behmo et al. [27] 

addressed this problem by learning parameters specific to each 

class via hinge-loss minimization. The optimal NBNN demon- 

strates good generalization on combining multiple feature 

channels. 

By incorporating I2C distance measurement into distance 

metric learning, Wang et al. [28] adopted the idea of large margin 

from SVM and proposed a method named I2C distance metric 

learning (I2CDML) to learn a distance metric specific to each 

class. They formulated a convex optimization problem with the 

constraint that the I2C distance of each training sample to the 

class it belongs to should be less than those to other classes  

by a large margin. However, as a conventional distance metric 

learning algorithm, I2CDML suffers from a major drawback 

that the number of parameters to be learned grows quadratically 

with the dimensionality of the data, which tends to be intractable 

with high-dimensional data. 

By combining the ideas of kernels and I2C distances, the 

NBNN kernel was introduced by Tuytelaars et al. [14] which 

shows that the NBNN kernel is complementary to the bag- of-

features kernel. By preserving the core idea of the NBNN 

algorithm, for each image, the I2C distances to all classes are 

computed. Instead of directly classifying the image as the class 

with the minimum I2C distance, they concatenated all the I2C 

distances as a vector, which can be regarded as a high-level 

image representation. A linear support vector machine (SVM) 

is employed for image classification. The success of the NBNN 

kernel is largely attributed to the discriminative representation of 

an image by the I2C distances to its own class but also to classes 

it does not belong to. This representation gains more discrimi- 

native information in contrast to directly using the absolute I2C 

distance measurement. 

By introducing locality into NBNN, McCann and Lowe [15] 

developed an improved version of NBNN, named local naive 

Bayes nearest neighbor (LNBNN), which increases the classifi- 

cation accuracy and scales better with a larger number of classes. 

The motivation of local NBNN comes from the observation that 

only the classes represented in the local neighbourhood of a 

descriptor contribute significantly and reliably to their posterior 

probability estimation. Specifically, instead of finding the near- 

est neighbor in each of the classes, local NBNN finds in the 

local neighborhood k nearest neighbors which may only come 

from some of the classes. The ”localized” idea is shared by the 

BoW model [29] and sparse coding [30]. 

Recently, Rematas et al. [31] introduce a pooled NBNN ker- 

nel to improve the performance of the NBNN kernel. They show 

that NBNN can be regarded as performing max pooling (find- 

ing the nearest neighbor) over the receptive field in the feature 

space associated with each class, which leads to the I2C dis- 

tance. Based on this understanding, they generalized the max 

pooling in NBNN to propose the image-to-subclass and image- 

to-word distances, which improves both the image-to-image and 

image-to-class baselines. 

With regard to local feature descriptor learning, prior work 

in [32]–[34] made attempts to learn discriminative local de- 

scriptors. Ke et al. [32] proposed the PCA-SIFT which is the 

first attempt to address the dimensionality reduction for local 

features. PCA was applied to project the gradient image vec- 

tor of a patch to obtain a more compact feature vector, which 

is significantly shorter than the standard SIFT descriptor. Dis- 

criminative local feature reduction has been explored in [34] and 

[33], both of which use the same covariance matrices of pairwise 

matched distances and pairwise unmatched feature distances to 

find the linear projection. It is demonstrated in [33] that the 

projection directions are the same in their methods, although 

the approaches used are different. In addition, both need a huge 

amount of ground truth with matched/unmatched pairs of local 

feature descriptors for training, which is not applicable in a re- 

alistic setting, especially in the spatio-temporal video domain 

for action recognition. 

Local feature learning can also be obtained by dimension- 

ality reduction. The widely used principal component analysis 

(PCA) can be adopted for image classification and action recog- 

nition [32], [35]. Unfortunately, PCA is an unsupervised feature 

reduction method without taking into consideration the class 

label information, which results in less discriminative features 

for classification. Manifold learning methods such as locally 

linear embedding (LLE) [36], ISOMAP [37], Hessian eigen- 

maps (HLLE) [38] and Laplacian eigenmap (LE) [22] suffer 

from a crucial limitation that the embedding does not general- 

ize well from training to test data, namely, the out-of-sample 

problem. Locality preserving projections (LPP) [39] and neigh- 

borhood preserving embedding (NPE) [40] are linear versions of 

LP and LLE, respectively, which were developed to handle the 
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out-of-sample problem. A common limitation of the above re- 

duction algorithms is that the discriminative ability is limited 

due to the fact that class label information is not used. As a 

consequence, the obtained local descriptors lose the connection 

to the ultimate goal of classification. 

Very recently, Simonyan et al. [41] proposed learning local 

feature descriptors using convex optimization. In fact, class la- 

bels of images are not used in the learning process, which makes 

the projections lose connection with classification and are there- 

fore suboptimal. Similar to [33], [34], this method also needs a 

huge amount of matched/unmatched pairs of local feature de- 

scriptors for training with adopting the class labels, which is not 

applicable in a realistic setting, especially in the video domain 

for human action action. 

In general, most of existing local feature learning algorithms 

are developed on the similarity/dissimilarity of local features, 

which not only lacks discriminative ability for recognition tasks, 

but also limits their use in more challenging tasks due to the need 

of matched/unmatched local feature pairs. To address the above 

issues, we propose a novel fully supervised learning algorithm 

to learn more discriminative but compact local descriptors by 

leveraging the image-to-class distance to incorporate class labels 

for supervised local descriptor learning. 

III. I2C DISTANCE-BASED DISCRIMINATIVE EMBEDDING 

The proposed I2CDDE algorithm adopts the image-to-class 

(I2C) distance and for the first time achieves fully supervised 

learning of local feature descriptors. The I2C distance provides 

a direct way to connect local feature descriptors with the class 

labels, which can be used for supervised descriptor learning. 

where L is the number of local features from class C and K( ) 

is the Parzen kernel function. Typically, a Gaussian kernel can 

be adopted as 

1 
K(x − xC ) = exp(− 

2  2 
||x − x || ) (4) 

where h is the width of the kernel K. 

Due to the fact the descriptor distribution is long-tailed, the 

summation in (3) can be accurately estimation be using only the 

r largest terms corresponding to the r nearest neighbors of x, 

which results in 

r 
j 
NN  

j =1  

 

where xj is the j-th nearest neighbor of x. 

It is shown in [13] that it can achieve accurate approximation 

by using the single nearest neighbor, namely, r = 1. By further 

assuming that the kernel bandwidths h in the Parzen function 

are the equal for all the classes, the likelihood can be simplified 

using the nearest neighbor, and we can now define the image-to- 

class (I2C) distance which is the summation of all the distances 

from the local features of an image to their corresponding nearest 

neighbors in each class as 

c  = ||x − NNc(x)||2 (6) 

x∈X 

where NNc is the nearest neighbor of x in class c. This results 

in the NBNN classifier which takes the form 

c̄  = arg min Dc . (7) 
X 

We first revisit the I2C distance based on which we describe our 
c
 

discriminative embedding algorithm. 

 
A. Image-to-Class Distance 

By avoiding the quantization errors in the BoW models, the 

image-to-class (I2C) distance was first introduced in the naive 

Bayes nearest neighbor (NBNN) classifier which has shown 

great effectiveness in image classification tasks. 

Given an image Q, under the assumption that the class prior 

p(C) is uniform, the maximum-a-posteriori (MAP) classifier 

can be simplified as the maximum likelihood (ML) classifier 

Ĉ = arg max p(C|Q) = arg max p(Q|C). (1) 

The NBNN classifier is essentially a lazy learning algorithm 

[42], which just stores the training sample for testing without 

any training process. We can observe from the derivation of 

the NBNN classifier, the main computational buren for testing 

comes from the exhaustive nearest neighbor search, which is 

time-consuming, especially when local features are huge and 

in high-dimensional space. While this is common in action 

recognition when dense trajectory is used for extracting spatio- 

temporal interest points (STIPs), and the dimension is always 

high and up to thousands. 

Due to the lack of learning stage in NBNN, the performance 

is highly dependent on the effectiveness of the raw local feature 

 

Since the image is represented by a set of local feature descrip- 

tors x 1 , .. .,  x i, .. .,  xN which are assumed to be i.i.d. given 

the class C, we therefore have 

N 

p(Q C) = p(x1,..., xN C) = p(xi C) (2) 

i= i 

where p(xi C) can be approximated using the non-parametric 

Parzen density estimation, namely 

p̂(x|C) =  
1  Σ 

K(x − xC ) (3) 
 

cal feature descriptors, we propose to fully supervised learning 

of local feature descriptors based on the I2C distance, which 

can significantly improve the performance while reducing the 

computational cost. 

 
B. Discriminative Embedding 

The I2C distance bridges local feature descriptors and the 

class labels, which can be used to achieve fully supervised 

learning of local features. In order to enhance the discriminant 

abilities of local features, we propose supervised local descrip- 

tor learning by incorporating the class labels into the learning 
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Recall that given an image Xi, its I2C distance to class c is 

computed according to (6) as 

mi 
c c 2 
Xi ij 

j =1  

class (negative class) that image Xi does not belong to. Note 

that, given a dataset, the number of negative classes Ni is the 

same for all images in the dataset. 

We can now seek the embedding W ∗ to maximize the ratio in 
(13). The above equation can be rewritten in terms of covariance 

where xc is the nearest neighbor in class c. More specifically, 
matrices as 

we would like to seek a linear projection W ∈ RD×d to embed W ∗ = arg max 
Tr(W ∗CN W )

 
  

(14) 

the local features into a lower-dimensional space Rd, where the 

local feature descriptor is more compact but discriminative for 

classification. 

Proposition: Define an auxiliary matrix ΔXic as 
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In practical implementation, due to the fact that local fea- 

tures can be extracted from backgrounds and shared by similar 

actions of different categories, the I2C distance using the near- 

est neighbor (NN) would not be always reliable. To make the 

I2C distance more robust and insensitive to noisy features, we 

further improve the algorithm by incorporating locality (using 

r nearest neighbors) in the objective function, which could, to 

some extent, preserve the local structure of features in the re- 
ij 

j =1  

mi 

ij 
duced space [43]. With the neighborhood relaxation, the Dc 

i 

in (8) is replaced by 

= (xij − xc )∗WW ∗(xij − xc ) m i  
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ij ij 
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where xij,k is the k-th nearest neighbor of xij in the c-th class 

and k is the number of nearest neighbors. The objective function 
in (14) needs also to be updated accordingly. 

= Tr(W ∗ 
Σ

(xij − xc )(xij − xc )∗W ). (11) 

 

Substituting ΔXic into (10), we have the I2C distance 

ˆ c   = Tr(W ∗ΔXicΔXi
∗
c W ). (12) 

□ 
In contrast to the methods in [33], [34] which only concern 

similarity/dissimilarity of local features without taking into the 

class label information, our objective in the embedded space is 

to minimize the I2C distances from images to the classes they 

belong to while simultaneously maximizing the I2C distances 

to the classes they do not belong to. As a consequence, the 

discriminative abilities of local feature descriptors are directly 

related to the class labels of images from which local features 

are extracted. 

Specifically, the objective function takes the following form: 

C. Manifold Regularization 

To further improve the performance of the proposed al- 

gorithm, we consider incorporating a manifold regularization 

[23], [44] based on the graph Laplacian to model the local 

geometrical structure of data points. It has been shown that 

learning performance can be significantly enhanced if the geo- 

metrical structure is exploited and the local invariance is consid- 

ered. Many well-known manifold learning algorithms, such as 

LLE, ISOMAP, and LE, use the so-called locally invariant idea 

[45], i.e., the nearby points are likely to have similar embed- 

dings, to detect the underlying manifold structure. This will 

make the solutions more robust to noisy and outlier features and 

therefore achieve better performance. 

A natural and intuitive assumption is that if two data points 
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where ΔXiP is the auxiliary matrix associated with the class 

(positive class) that image Xi belongs to and ΔXin is with the 

 
various kinds of algorithms, including dimensionality reduction 

algorithms [22], [39] and semi-supervised learning algorithms 

[44], [46]. It has also been shown in spectral graph theory [47] 

sumption [22], plays a fundamental role in the development of 
sumption [22], plays a fundamental role in the development of (13) i in 
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and manifold learning theory [22] that the local geometric struc- 

ture can be effectively modeled through a nearest neighbor graph 

on a scatter of data points [20]. 

To this end, we first construct a weighted graph tt = (V, E) 
[39], where V and E respectively represent L vertices and edges 

between vertices. We denote A RN ×N as the symmetric sim- 
ilarity matrix with non-negative elements corresponding to the 

edge weight of the graph tt, where each element Aij is com- 

puted by a heat kernel with parameter σ as 

E. Computational Complexity 

The proposed I2CDDE algorithm can significantly reduce the 

complexity of algorithms based local features. A key deficit in 

I2C-based methods is the heavy computational burden resulting 

from the nearest neighbor search, which is extremely expensive 

especially when local features are high-dimensional. I2CDDE 

can greatly decrease the computational cost and at the same time 

even enhance the discriminative ability of local features. 
At the test stage, the computational complexity in the original 

 

Aij = exp 
−"xi − xj"2

 
  

2σ2 

 
(18) 

space is (NMD2), where N is the number of local features 

from a test sample, M  is the total number of local features    

in the training set and D is the dimensionality of local fea- 

where i, j = 1 , . . . ,N . We set the diagonal elements of A to be 

zeros, i.e., Aii = 0. 

In the low-dimensional space, we would like to minimize the 

following term: 

"W ∗xi − W ∗xj"2 Aij. (19) 
i,j 

 

Since the similarity matrix A characterizes the manifold struc- 

ture of the local feature space, in the lower-dimensional space, 

tures in the original space. After the embedding, the computa- 

tional complexity is reduced to    (NMd2), where d (d     D) 

is the dimensionality of local features in the embedded space. 

Taking the local descriptor in action recognition for instance, 

we use the HOG3D descriptor. The dimensionality in the orig- 

inal space is 1000 while in the embedded space it is only tens 

of dimensions. The computational complexity in the reduced 

space is d2/D2 = 102 /10002 = 1/10000 of that in the original 

space. 

{W ∗xi}L preserve the intrinsic local geometrical structure of 

data distribution. An intuitive consequence of minimizing the 

regularization term is that, in the low-dimensional space, data 

points close to each other in the original space are forced to be 

close while those far away from each other in the original space 

tend to be far apart. 

 
D. Manifold Regularized Discriminative Embedding 

The manifold regularization term in (19) can be rewritten in 

terms of the graph Laplacian as 

Tr(W ∗XLX∗W ) (20) 

where  L = D A is the graph Laplacian and D is a diag- 

onal matrix whose entries are column/row sums of A, i.e., 

D = 
Σ

j Ai,j . If we define 

CM = XLX∗ (21) 

where X = [x1,..., xi,..., xL] is a matrix of the local feature 

descriptors from the training set, we have 

Tr(W ∗CMW ). (22) 

In order not to forego the convenience of solving the problem 

in (14), we incorporate the manifold regularization term into 

the denominator of (14) to build our final objective function as 

follows: 

IV. RELATIONS TO EXISTING METHODS 

The proposed I2CDDE algorithm is the first fully supervised 

dimensionality reduction of local features by explicitly incorpo- 

rating the class labels in the feature learning process. We provide 

a description to connect the proposed I2CDDE with existing im- 

portant methods, which shows the advantages of I2CDDE as a 

first fully supervised local descriptor learning algorithm. 

 

A. Difference From LDP 

Our I2CDDE is closely connected to, while essentially differ- 

ent from linear discriminant projection (LDP) [33], [34], as both 

address the dimensionality reduction of local features. In LDP, 

the objective function is to maximize the ratio of the variance 

of differently labeled points (unmatched points) to that of same- 

labeled points (matched points). The matched and unmatched 

features vary with different applications. For instance, in im- 

age/object classification, matched features could be the points 

on the objects that are visually similar [33]. Our I2CDDE is 

fundamentally different from LDP in multiple asepects. 

1) LDP deals with the relationship between local features in- 

stead of images, which does not secure the discriminative 

ability of local features for classification due to the loss 

of link to class labels. 

2) I2CDDE treats local features from each image/sequence 

as a whole and copes with the relationship between im- 

W ∗ = arg max 
W 

Tr(W ∗CN W ) 

Tr(W ∗(CP + βCM)W ) 
(23) 

ages/videos and classes. By differentiating the I2C dis- 

tances to the same class and to different classes, I2CDDE 

makes the local features globally discriminative on an 

where β (0, ) is a free parameter which can be experimen- 

tally obtained by cross validation. 

The objective function in (23) is a trace ratio optimization 

problem which can be efficiently solved [48]. 

image/video level and can naturally benefit classification. 

3) LDP requires extra ground truth of matched and unmatch 

local features, which are hard to obtain for spatio-temporal 

local features in action recognition. I2CDDE directly used 
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D = 
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Fig. 2. Performance of NBNN (green), local NBNN (blue), and the NBNN 

kernel (red) with different dimensions on the four datasets. Lines with Q and 
denote the performance before and after dimensionality reduction by I2CDDE. 
(a) KTH, (b) UCF YouTube, (c) HMDB51, and (d) UCF 101. 

 
image class labels and is therefore more applicable for 

local feature reduction. 

4) I2CDDE takes into consideration the intrinsic structure 

of local features by imposing a manifold regularization, 

which provides more smooth and robust solutions. 

 
B. Difference From I2CDML 

In the image-to-class distance metric learning (I2CDML) al- 

gorithm [28], the squared Euclidean distance in (8) is replaced 

with the parametric Mahalanobis distance which is to be learned. 

The I2C distance becomes 

mi 
c c c 
Xi ij ij 

j =1  

where Mc is the distance metric learned in [28]. 

As shown in [49], the Mahalanobis distance metric learn- 

ing can be considered as learning a linear transformation of 

the data and measuring the squared Euclidean distance in the 

transformed space after applying the linear transformation. This 

can be shown by factorizing the distance matrix Mc in (24) as: 

Mc = tttt∗, where tt is the linear transformation to be learned. 
The I2C distance in (24) becomes 

mi 

Dc = (xij − xc )∗tttt∗(xij − xc ). (25) 
 

 
 

 
 

Fig. 3. Performance of I2CDDE with/without manifold regularization on the 
KTH (the top row), UCF YouTube (the second row), HMDB51 (the third row), 

and UCF 101 (bottom) datasets. Q and denote I2CDDE with and without 
manifold regularization, respectively. (a) NBNN, (b) LBNBB, (c) NBNNK, (d) 
NBNN, (e) LBNBB, (f) NBNNK, (g) NBNN, (h) LBNBB, (i) NBNNK, (j) 
NBNN, (k) LBNBB, and (l) NBNNK. 

 
 

We can see that (25) is equivalent to (10) in terms of linear 

transformations. The main differences between I2CDDE and 

I2CDML are summarized as follows. 

1) I2CDML adopts the large margin framework from an 

SVM in the objective function which is solved by the gra- 

dient descent algorithm, while I2CDDE can be efficiently 

solved via a well-studied trace ratio optimization. 

2) I2CDML learns multiple distance metrics for all the 

classes leading to a high computational cost in the high- 

dimensional space, especially with a huge amount of 

classes, while I2CDDE learns a unified linear projection, 

which alleviates the computational burden without com- 

promising the discriminative ability. 

 
V. EXPERIMENTS AND RESULTS 

We have conducted extensive experiments on the commonly 

used benchmark KTH dataset [50], the challenging realistic 

 UCF YouTube [51], HMDB51 [52] and UCF 101 datasets 

j =1  



 

 j =1  



 

 

TABLE I 
COMPARISON OF I2CDDE WITH OTHER REDUCTION METHODS BY ACCURACY IN PERCENTAGE (%) 

 

 KTH   HMDB51   YouTube   UCF101  

 NBNN LNBNN NBNNK NBNN LNBNN NBNNK NBNN LNBNN NBNNK NBNN LNBNN NBNNK 
I2CDDE 93.6 94.1 92.5 39.7 41.7 30.7 68.8 74.7 63.1 86.3 88.9 88.3 

PCA 91.7 91.8 89.8 35.6 35.7 25.8 58.6 58.7 53.6 71.4 81.3 79.3 
LDA 82.9 83.3 18.3 31.6 31.4 13.1 54.3 56.5 23.9 63.2 64.5 61.2 
LFDA 86.6 86.8 67.4 29.6 28.5 10.2 63.1 71.7 23.9 66.5 85.9 74.6 
LPP 92.8 93.3 91.0 34.4 35.2 28.3 56.8 60.9 58.7 76.5 86.2 73.5 
NPE 91.9 92.6 91.0 34.8 34.9 27.9 55.6 60.9 57.4 74.4 86.7 71.0 

Baseline∗
 93.9 94.1 89.2 31.8 33.1 29.8 57.8 60.1 62.4 63.9 65.9 64.2 

∗The baseline results are obtained by HOG3D descriptors of 1000 dimensions without dimensionality reduction. 

 

[53]. We have compared with popular dimensionality reduc- 

tion methods including PCA, LDA, LFDA, LPP and NPE, and 

also showed the improvement of I2C-based methods includ- 

ing NBNN, local NBNN and the NBNN kernel. Since LDP is 

trained on matched and unmatched local features, which are not 

available for action datasets, we do not include it for comparison. 

 
A. Experimental Settings 

The proposed I2CDDE algorithm can work with any raw local 

feature descriptors to improve the performance, and to bench- 

mark with existing algorithms, we use the three-dimensional 

histogram of oriented gradients (HOG3D) [7] descriptor which 

is descriptive and relatively compact with 1000 dimensions is 

used to describe spatio-temporal interest points (STIPs). We 

use the computational efficient HOG3D descriptors to demon- 

strate the effectiveness of the proposed I2CDDE for compact 

feature descriptor learning rather than beating state-of-the-art 

algorithms. The I2CDDE can seamlessly work with recently 

advanced convolutional neural networks to achieve state-of-the- 

art performance [54]–[56]. We adopt Dollar’s periodic detector 

[35] to detect STIPs. This method can detect a high number  

of space-time interest points, was proven to be faster, simpler, 

more precise and gives better performance, even though only 

one scale is used [57]. Roughly, up to 150 STIPs have been 

detected for each video clip. Note that our I2CDDE algorithm 

can be applied to improve the performance of any local feature 

descriptors [58]. By using dense sampling or dense trajectory 

based local features, the overall performance can be further im- 

proved to achieve state-of-the-art performance [18]. 

 
B. Performance on Action Recognition 

The proposed I2CDDE shows great effectiveness in improv- 

ing I2C based methods for human action recognition on the four 

datasets. The proposed I2CDDE algorithm can greatly enhance 

the performance of NBNN, local NBNN and the NBNN kernel 

even with very low dimensionality on all the four datasets. The 

performance of I2CDDE for action recognition with different 

dimensions on the KTH, UCF YouTube, HMDB51 and UCF 

101 datasets are plotted in Fig. 2(a), 2(b), 2(c) and 2(d) respec- 

tively. On the KTH dataset, the increase on the NBNN kernel is 

more significant than NBNN and local NBNN, while on more 

challenging UCF YouTube, HMDB51 and UCF 101 datasets, 

the improvement over NBNN and local NBNN is much more 

remarkable than that over the NBNN kernel. Note that the su- 

perior performance of I2CDDE can be achieved with the local 

features of less than 60 dimensions, which manifests the ef- 

fectiveness of I2CDDE for dimensionality reduction of local 

features compared to the original HOG3D features of 1000 di- 

mensions. This demonstrates that the proposed I2CDDE can 

effectively extract the most discriminative features and achieves 

compact local feature descriptors 

The incorporated manifold regularization can largely boost 

the performance of I2CDDE. The comparison results with and 

without the manifold regularization on the four datasets are 

shown in Fig. 3. On the KTH dataset, the performance with man- 

ifold regularization outperforms the baseline I2CDDE with a 

large margin. On the realistic datasets including UCF YouTube, 

HMDB51 and UCF 101, the benefit of incorporating the mani- 

fold regularization term turns to be more significant, especially 

on HMDB51 and UCF 101. This is expected and reasonable be- 

cause the KTH is relatively easy with simple actions and clear 

backgrounds, while HMDB51 and UCF 101 contain rather com- 

plicated actions and clutters in background. The incorporated 

manifold regularization makes the solutions robust to noisy 

features. It is worth mentioning that even with simple hand- 

crafted HOG3D features, our I2CDDE can achieve competi- 

tive performance with the state-of-the-art algorithms. The larger 

improvement on the challenging realistic datasets demonstrates 

the great effectiveness of our I2CDDE for compact feature de- 

scriptor learning. 

To choose the best dimensions of the learned descriptors for a 

specific dataset, we use the cross validation, which is simple but 

effective although more sophisticated technologies can also be 

used. Roughly, on more challenging datasets, larger number of 

dimensions are usually required to achieve better performance 

due to the greater variability of realistic datasets. 

 
C. Comparison With Representative Reduction Methods 

The effectiveness of the proposed I2CDDE algorithm has 

been demonstrated by the advantages over other existing 

dimensionality reduction algorithms. We have conducted com- 

prehensive comparison with widely used dimensionality reduc- 

tion algorithms including PCA, LDA, LFDA, LPP and NPE. 

As shown in Table I, the proposed I2CDDE consistently out- 

performs the compared methods. PCA, LPP and NPE are un- 

supervised without using the label information and therefore 

tend to be less discriminative for classification. LDA and LFDA 

discriminatively learn the projections by labeling the local 



 

 

features with the label of the image that it belongs to, which, 

however, could mislead the classifier as discussed in intro- 

duction. We can see that for the NBNN kernel with the 

reduction of LDA and LFDA, they even fail to produce 

reasonable results for all the four datasets due to the huge infor- 

mation loss. The proposed I2CDDE incorporates the class la- 

bels into dimensionality reduction of local features by using I2C 

distance, providing an effective and intuitive venue to impose 

the discriminative information on local features, and therefore 

can improve the performance of classification. The proposed 

I2CDDE provides the first fully supervised learning to achieve 

compact yet highly discriminative local feature descriptors. 

 
VI. CONCLUSION 

In this paper, we have proposed a novel supervised learning 

algorithm called discriminative embedding based on image-to- 

class distances (I2CDDE) for large scale local feature descriptor 

learning. The proposed I2CDDE leverages the strengths of the 

I2C distance, which is for the first time introduced for local 

feature descriptor learning. Graph-based manifold learning has 

also been incorporated as a regularization, which further im- 

proves the performance of the learned local descriptors. The 

proposed I2CDDE for the first time achieves fully supervised 

learning of local feature descriptors. We apply I2CDDE to ac- 

tion recognition tasks which contain large scale spatio-temporal 

local feature descriptors of high dimensionality. The experi- 

mental results on four widely used benchmark datasets: KTH, 

UCF YouTube, HMDB51 and UCF 101 have demonstrated that 

I2CDDE can consistently improve the performance and sur- 

pass the widely used dimensionality reduction algorithms. More 

importantly, I2CDDE dramatically speeds up these methods, 

which enables I2C-based methods to be used for large-scale 

multimedia datasets. 
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