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Detecting Dominant Vanishing Points in Natural
Scenes with Application to Composition-Sensitive

Image Retrieval
Zihan Zhou, Farshid Farhat, and James Z. Wang

Abstract—Linear perspective is widely used in landscape
photography to create the impression of depth on a 2D photo.
Automated understanding of linear perspective in landscape
photography has several real-world applications, including aes-
thetics assessment, image retrieval, and on-site feedback for photo
composition, yet adequate automated understanding has been
elusive. We address this problem by detecting the dominant
vanishing point and the associated line structures in a photo.
However, natural landscape scenes pose great technical challenges
because often the inadequate number of strong edges converging
to the dominant vanishing point is inadequate. To overcome
this difficulty, we propose a novel vanishing point detection
method that exploits global structures in the scene via contour
detection. We show that our method significantly outperforms
state-of-the-art methods on a public ground truth landscape
image dataset that we have created. Based on the detection
results, we further demonstrate how our approach to linear
perspective understanding provides on-site guidance to amateur
photographers on their work through a novel viewpoint-specific
image retrieval system.

Index Terms—Vanishing Point; Photo Composition; Image
Retrieval.

I. INTRODUCTION

RECENTLY, with the widespread use of digital cameras
and other mobile imaging devices, the multimedia com-

munity has become increasingly interested in building intelli-
gent programs to automatically analyze the visual aesthetics
and composition of photos. Information about photo aesthetics
and composition [1] is shown to benefit many real-world appli-
cations. For example, it can be used to suggest improvements
to the aesthetics and composition of photographers’ work
through image re-targeting [2], [3], as well as provide on-
site feedback to the photographer at the point of photographic
creation [4], [5].

In this paper, we focus on an important principle in photo
composition, namely, the use of linear perspective. It corre-
sponds to a relatively complex spatial system that primarily
concerns the parallel lines in a scene. Indeed, parallel lines are
one of the most prevalent geometric structures in both man-
made and natural environments. Under the pinhole camera
model, parallel lines in 3D space project to converging lines in
the image plane. The common point of intersection, perhaps
at infinity, is called the vanishing point (VP) [6]. Because the

Z. Zhou and J. Z. Wang are with College of Information Sciences and Tech-
nology, The Pennsylvania State University, USA (e-mail: zzhou@ist.psu.edu;
jwang@ist.psu.edu.). F. Farhat is with the School of Electrical Engineering
and Computer Science, The Pennsylvania State University, USA (e-mail:
fuf111@cse.psu.edu).

Fig. 1. Natural scene images with dominant vanishing points. Images are
from the “landscape” category of the AVA dataset. Manually labeled ground
truth lines are marked in green.

VPs provide crucial information about the geometric structure
of the scene, automatic detection of VPs have long been an
active research problem in image understanding.

Existing VP detection methods mainly focus on man-made
environments, which typically consist of a large number of
edges or line segments aligned to one or more dominant
directions. Numerous methods have been proposed to cluster
line segments into groups, each representing a VP in the
scene [7], [8], [9], [10], [11]. These methods have successfully
found real-world applications such as self-calibration, 3D
reconstruction of urban scenes, and stereo matching.

However, little attention has been paid to natural landscape
scenes – a significant genre in both professional and consumer
photography. Known as an effective tool in recognizing the
viewer as a specific unique individual in a distinct place with
a point of view [12], linear perspective has been widely used
in natural landscape photography. To bridge this gap between
man-made environments and natural landscapes, we conduct
a systematical study on the use of linear perspective in such
scenes through the detection of the dominant vanishing point
in the image. Specifically, we regard a VP in the image the
dominant VP if it (i) associates with the major geometric
structures (e.g., roads, bridges) of the scene, and (ii) conveys
a strong impression of 3D space or depth to the viewers.
As illustrated in Figure 1, the dominant VP provides us with
important cues about the scene geometry as well as the overall
composition of the image.

In natural scene images, a VP is detectable when there are
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as few as two parallel lines in space. While human eyes have
little difficulty identifying the VPs in these images, automatic
detection of VPs poses a great challenge to computer sys-
tems for two main reasons. First, the visible edges can be
weak and not detectable via local photometric cues. Existing
line segment detection methods typically assume the gradient
magnitude of an edge pixel to be above a certain threshold
(e.g., Canny edge detector [13]) or the number of pixels with
aligned gradient orientations to be above a certain threshold
(e.g., LSD [14]). However, determining the threshold can be
difficult due to the weak edges and image noise. Second, the
number of edges converging to the VP may be small compared
to irrelevant edges in the same scene. As a result, even if a
computer system can detect the converging edges, clustering
them into one group can be demanding due to the large number
of outliers.

To overcome these problems, we propose the use of image
contours to detect edges in natural images. Compared to
local edge detectors, image contours encode valuable global
information about the scene, and thus they are more effective
in recognizing weak edges while reducing the number of false
detections due to textures. By combining the contour-based
edge detection with J-Linkage [15], a popular multi-model de-
tection algorithm, our method significantly outperforms state-
of-the-art methods on detecting the dominant VP in natural
scene images.

As an application of our VP detection method, we demon-
strate how the detected VPs can be used to improve the
usefulness of existing content-based image retrieval systems in
providing on-site feedback to amateur photographers. Specif-
ically, given a photo taken by the user, we study the prob-
lem of finding photos about similar scenes and with similar
viewpoints in a large collection of photos. As these photos
demonstrate, the use of various photographic techniques, in a
situation similar to the one that the user is currently engaged
in, could potentially provide effective guidance to the user on
his or her own work. Further, in this task, we are also the first
to answer an important yet largely unexplored question in the
literature: How to determine whether there exists a dominant
VP in a photo? To this end, we design a new measure of
strength for a given candidate VP, and systematically examine
its effectiveness on our dataset.

In summary, the main contributions are as follows:

• We propose the research problem of detecting VPs in
natural landscape scenes and a new method for dominant
VP detection. By combining a contour-based edge detec-
tor with J-Linkage, our method significantly outperforms
state-of-the-art methods for natural scenes.

• We develop a new strength measure for VPs and demon-
strate its effectiveness in identifying images with a dom-
inant VP.

• We demonstrate the application of our method for assist-
ing amateur photographers at the point of photographic
creation via viewpoint-specific image retrieval.

• To facilitate future research, we have created and made
available two manually labeled datasets for dominant VPs
in 2,275 real-world natural scene images.

II. RELATED WORK

A. Vanishing Point Detection

Vanishing point detection has long been an active research
topic in computer vision with many real-world applications
such as camera calibration [16], [17], pose estimation [18],
[19], [20], height measurement [21], object detection [22], and
3D reconstruction [23], [24]. Since the VPs can be represented
by normalized 2D homogeneous coordinates on a Gaussian
sphere, early works on VP detection use a Hough transform
of the line segments on the Gaussian sphere [25], [26], [27],
[28] or a cube map [29]. However, researchers have criticized
these methods as being unreliable in the presence of noise and
outliers and as having the potential to lead to spurious detec-
tions [30]. To reduce spurious responses, Rother [31] enforces
the orthogonality of multiple VPs via an exhaustive search,
but this process is computationally expensive and requires a
criterion to distinguish finite from infinite vanishing points.
Alternatively, the Helmholtz principle has been employed to
reduce the number of false alarms and reach a high precision
level [32].

In [18], Antone and Teller propose an Expectation-
Maximization (EM) scheme for VP detection, which is later
extended to handle uncalibrated cameras [19], [33]. The EM
method iteratively estimates the probability that a line segment
belongs to each parallel line groups or an outlier group (E-
step) and refines the VPs according to the line segment
groups (M-step). The approach, however, requires a good
initialization of the vanishing points, which is often obtained
by Hough transform or clustering of edges based on their
orientations [34].

More recent VP detection algorithms use RANSAC-like
algorithms to generate VP hypotheses by computing the in-
tersections of line segments and then select the most probable
ones using image-based consistency metrics [7], [8]. In [10],
Xu et al. studied various consistency measures between the
VPs and line segments and developed a new method that
minimizes the uncertainty of the estimated VPs. Lezama et
al. [11] proposed to find the VPs via point alignments based
on the a contrario methodology. Instead of using edges,
Vedaldi and Zisserman proposed to detect VPs by aligning
self-similar structures [35]. Zhai et al. [36] used global image
context extracted from a deep convolutional network to guide
the search for VPs. As we discussed before, these methods
are designed for man-made environments. Identifying and
clustering edges for VP detection in natural scene images
remain a challenging problem.

In addition, there is an increasing interest in exploiting
special scene structures for VP detection lately. For example,
many methods assume the “Manhattan World” model [37],
[20], indicating that three orthogonal parallel-line clusters are
present [38], [39], [9], [40]. When the assumption holds, it
is shown to improve the VP detection results. Unfortunately,
such an assumption is invalid for typical natural scenes.
Other related efforts detect VPs in specific scenes such as
unstructured roads [41], [42], [43], but how these methods
can be extended to general natural scenes remains unclear.
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B. Photo Composition Modeling

Photo composition, which describes the placement or ar-
rangement of visual elements or objects within the frame, has
long been a subject of study in computational photography.
A line of work has addressed known photographic rules and
design principles, such as simplicity, depth of field, golden
ratio, rule of thirds, and visual balance. Based on these rules,
various image retargeting and recomposition tools have been
proposed to improve the image quality [2], [3], [44], [45]. We
refer readers to [46] for a comprehensive survey on this topic.
However, the use of linear perspective has largely been ignored
in the existing work. Compared to the aforementioned rules,
which mainly focus on the 2D rendering of visual elements,
linear perspective enables photographers to convey the sense
of 3D space to the viewers.

Recently, data-driven approaches to composition modeling
have gained increasing attention in the multimedia community.
These methods use community-contributed photos to automat-
ically learn composition models from the data. For example,
Yan et al. [47] propose a set of composition features and
learn a model for automatic removal of distracting content
and enhancement of the overall composition. In [48], a unified
photo enhancement framework is proposed based on the dis-
covery and modeling of aesthetic communities on Flickr. Be-
sides offline image enhancement, composition models learned
from exemplar photos can also been used to provide online
aesthetics guidance to the photographers, such as selecting
the best view [49], [5], recommending the locations and
poses of human subjects in a photograph [50], [51], [52], and
suggesting the appropriate camera parameters (e.g., aperture,
ISO, and exposure) [53]. Our work also takes advantage of
vast data available through photo sharing websites. Unlike
existing work that each focuses on certain specific aspects of
the photo, however, we take a completely different approach
to on-site feedback and aim to provide comprehensive photo-
graphic guidance through a novel composition-sensitive image
retrieval system.

C. Image Retrieval

The classic approaches to content-based image retrieval [54]
typically measure the visual similarity based on low-level
features (e.g., color, texture, and shape). Recently, thanks to
the availability of large-scale image datasets and computing
resources, complicated models have been trained to capture
the high-level semantics about the scene [55], [56], [57], [58].
However, because many visual descriptors are generated by
local feature extraction processes, the overall spatial composi-
tion of the image (i.e., from which viewpoint the image is
taken) is usually neglected. To remedy this issue, [4] first
classifies images into pre-defined composition categories such
as “horizontal”, “vertical”, and “diagonal”. Similar to our
work, [59] also explores the VPs in the image for retrieval, but
it assumes known VP locations in all images, and thus cannot
be applied to a general image database where the majority of
the images do not contain a VP. Further, [59] does not consider
image semantics for retrieval, hence its usage can be limited
in practice.

Fig. 2. Example natural scene images that are not suitable for this work. The
first two images show diminishing perspective. The third image has two VPs.
The last image contains parallel curves, not parallel lines.

III. GROUND TRUTH DATASET

To create our ground truth datasets, we leverage both the
open AVA dataset [60] and the online photo-sharing website
Flickr. We have made our datasets publicly available.1 Below
we describe them in detail.

AVA landscape dataset. The original AVA dataset contains
over 250,000 images along with a variety of annotations. The
dataset provides semantic tags describing the semantics of the
images for over 60 categories, such as “natural”, “landscape”,
“macro”, and “urban”. For this work, we used the 21,982
images under the category “landscape”.

For each image, we need to determine whether it contains a
dominant VP and, if so, label its location. Note that our ground
truth data is quite different from those in existing datasets
such as York Urban Dataset (YUD) [20] and Eurasian Cities
Dataset (ECD) [8]. While these datasets are focused on urban
scenes and attempt to identify all VPs in each image, our
goal is to identify a single dominant VP associated with the
main structures in a wide variety of scenes. The ability to
identify the dominant VP in a scene is critical in our targeted
applications related to aesthetics and photo composition.

Like existing datasets, we label the dominant VP by manu-
ally specifying at least two parallel lines in the image, denoted
as l1 and l2 (see Figure 1). The dominant VP location is then
computed as v = l1 × l2. Because our goal is to identify
the dominant VPs only, we make a few assumptions during
the process. First, each VP must correspond to at least two
visible parallel lines in the image. This assumption eliminates
other types of perspective in photography such as diminishing
perspective, which is formed by placing identical or similar
objects at different distances. Second, for a VP to be the
dominant VP in an image, it must correspond to some major
structures of the scene and clearly carries more visual weight
than other candidates, if any. We do not consider images with
two or more VPs carrying similar visual importance, which
are typically seen in urban scenes. Similarly, we also exclude
images where it is impossible to determine a single dominant
direction due to parallel curves (Figure 2). Finally, observing
that only those VPs which lie within or near the image frame
convey a strong sense of perspective to the viewers, we resize
each image so that the length of its longer side is 500 pixels,
keeping only the dominant VPs that lie within a 1, 000×1, 000
frame, with the image placed at the center. We used the size
500 pixels as a trade-off between keeping details and providing
fast runtime for large-scale applications.

We collected a total of 1,316 images with annotations of
ground truth parallel lines.

1https://faculty.ist.psu.edu/zzhou/projects/vpdetection
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Flickr dataset. To test the generality of our VP detection
method, we have also downloaded images from Flickr by
querying the keyword “vanishing point”. These images cover
a wide variety of scenes from nature, rural, and travel to street
and cityscape. Following the same procedure above, for each
image, we determine whether it contains a dominant VP and, if
so, label its location. We only keep the images with a dominant
VP. This step results in a dataset consisting of 959 annotated
images.

IV. CONTOUR-BASED VANISHING POINT DETECTION FOR
NATURAL SCENES

Given a set of edges E = {E1, . . . , EN}, a VP detection
method aims to classify the edges into several classes, one
for each VP in the scene, plus an “outlier” class. Similar
to [7], we employ the J-Linkage algorithm [15] for multiple
model estimation and classification. The most important new
idea of our method lies in the use of contours to generate the
input edges. As we will see in this section, our contour-based
method can effectively identify weak edges in natural scene
images and reduce the number of outliers at the same time,
leading to significantly higher VP detection accuracy.

A. Edge Detection via Contours

Because we rely on edges to identify the dominant VP
in an image, an ideal edge detection method should have
the following properties: (i) it should detect all edges that
converge to the true VPs, (ii) the detected edges should be as
complete as possible, and (iii) it should minimize the number
of irrelevant or cluttered edges. Unfortunately, local edge-
detection methods do not meet these criteria. A successful
method must go beyond local measurements and utilize global
visual information.

Our key insight is that in order to determine if an edge is
present at a certain location, it is necessary to examine the
relevant regions associated with it. This assertion is motivated
by observing that humans label the edges by first identifying
the physical objects in an image. In addition, based on the level
of details they choose, different people may make different
decisions on whether to label a particular edge.

Accordingly, for edge detection, we employ the widely-
used contour detection method [61], which proposed a unified
framework for contour detection and image segmentation us-
ing an agglomerative region clustering scheme. In the follow-
ing, we first discuss the main difference between the contours
and edges detected by local methods before showing how to
obtain straight edges from the contours.

Globalization in contour detection. Comparing to the local
methods, the contours detected by [61] enjoy two levels of
globalization.

First, as a global formulation, spectral clustering has been
widely used in image segmentation to suppress noise and
boost weak edges. Generally, let W be an affinity matrix
whose entries encode the (local) similarity between pixels, this
method solves for the generalized eigenvectors of the linear
system: (D − W )v = λDv, where the diagonal matrix D

is defined as Dii =
∑

j Wij . Let {v0,v1, . . . ,vK} be the
eigenvectors corresponding the K + 1 smallest eigenvalues
0 = λ0 ≤ λ1 ≤ · · · ≤ λK . Using all the eigenvectors except
v0, one can then represent each image pixel with a vector
in RK . As shown in [61], the distances between these new
vectors provide a denoised version of the original affinities,
making them much easier to cluster.

Second, a graph-based hierarchical clustering algorithm is
used in [61] to construct an ultrametric contour map (UCM)
of the image (see Figure 3(b)). The UCM defines a duality
between closed, non-self-intersecting weighted contours and a
hierarchy of regions, where different levels of the hierarchy
correspond to different levels of detail in the image. Thus,
each weighted contour in UCM represents the dissimilarity of
two, possibly large, regions in the image, rather than the local
contrast of small patches.

From contours to edges. Let C = {C1, C2, . . .} denote the set
of all weighted contours. To recover straight edges from the
contour map, we apply a scale-invariant contour subdivision
procedure. Specifically, for any contour Cj , let c1j and c2j
be the two endpoints of Cj , we first find the point on Cj

which has the maximum distance to the straight line segment
connecting its endpoints:

p∗ = arg max
p∈Cj

dist(p, c1jc
2
j ) . (1)

We then subdivide Cj at p∗ if the maximum distance is greater
than a fixed fraction α of the contour length:

dist(p∗, c1jc
2
j ) > α · |Cj | . (2)

By recursively applying the above procedure to all the
contours, we obtain a set of approximately straight edges
E = {E1, . . . , EN}. We only keep edges that are longer than
certain threshold lmin, because short edges are very sensitive
to image noises (Figure 3(c)).

Quantitative evaluation. We compare the performance of our
contour-based edge detection to two popular edge detectors:
the Canny detector [13] and the Line Segment Detector
(LSD) [14]. For this experiment, we have randomly chosen
100 images from our AVA landscape dataset and manually
labeled all the edges that converge to the dominant VP in
each image. With the ground truth edges, all methods are then
evaluated quantitatively by means of the recall and precision
as described in [62]. Here, recall is the fraction of true edge
pixels that are detected, whereas precision is the fraction of
edge pixel detections that are indeed true positives (i.e., those
consistent with the dominant VP). Note that in the context of
edge detection, the particular measures of recall and precision
allow for some small tolerance in the localization of the edges
(see [62] for details).

In Figure 4, we report the recall and precision of all methods
as a function of the minimum edge length lmin. Since most
VP detection methods rely on clustering the detected edges,
an ideal edge detector should maximize the number of edges
consistent with the ground truth dominant VP and and mini-
mize the number of irrelevant edges. Thus, higher recall and
precision indicate better performance. As shown in Figure 4,
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(a) (b) (c)
Fig. 3. Contour-based edge detection. (a) Original image. (b) The ultrametric contour map (UCM). (c) Filtered edges.
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Fig. 4. Quantitative evaluation of edge detection methods.

compared to LSD, our method achieves comparable recall
but with much higher precision. Meanwhile, while Canny
has similar precision as our method, its recall is substantially
lower. This result is expected as Canny operates on pixels with
high gradient values, but such pixels are often absent in natural
scenes (i.e., low recall). While LSD is able to overcome this
difficulty and achieve higher recall by computing the statistics
in surrounding rectangular regions instead, the ambiguity in
the region size often leads to repeated detections (i.e., low
precision). Thus, our contour-based method is an overall better
choice for the vanishing point detection task.

In Figure 5, we further show some example edge detection
results. As shown, our contour-based method can better detect
weak yet important edges in terms of both the quantity and
the completeness. For example, our method is able to detect
the complete edges of the road in Figure 5(b), while the local
methods only detected parts of them. Also, only our method
successfully detected the edges of the road in Figure 5(c).

Another important distinction between our contour-based
method and the local methods concerns the textured areas in
the image. Local methods tend to confuse image texture with
true edges, resulting in a large number of detections in these
areas (e.g., the sky region and the road in 5(d) and (e), respec-
tively). Such false positives often lead to incorrect clustering
results in the subsequent VP detection stage. Meanwhile, our
method treats the textured area as a whole, thereby greatly
reducing the number of false positives.

B. J-Linkage

In this section, we give an overview of the J-Linkage
algorithm [15]. Similar to RANSAC, J-Linkage first randomly
chooses M minimal sample sets and computes a putative
model for each of them. For VP detection, the j-th minimal

set consists of two randomly chosen edges: (Ej1 , Ej2). To
this end, we first fit a line li to each edge Ej ∈ E using least
squares. Then, we can generate the hypothesis vj using the
corresponding fitted lines: vj = lj1 × lj2 .

Next, J-Linkage constructs a N ×M preference matrix P ,
where the (i, j)-th entry is defined as:

pij =

{
1 if D(Ei,vj) ≤ φ
0 otherwise . (3)

Here, D(Ei,vj) is a measure of consistency between edge
Ei and VP hypothesis vj , and φ is a threshold. Note that
i-th row indicates the set of hypotheses edge Ei has given
consensus to, and is called the preference set (PS) of Ei. J-
Linkage then uses a bottom-up scheme to iteratively group
edges that have similar PS. Here, the PS of a cluster is defined
as the intersection of the preference sets of its members. In
each iteration, the two clusters with the smallest distance are
merged, where the Jaccard distance is used to measure the
similarity between any two clusters A and B:

dJ(A,B) =
|A
⋃
B| − |A

⋂
B|

|A
⋃
B|

. (4)

The operation is repeated until the distance between any two
clusters is 1.

Consistency measure. We intuitively define the consistency
measure D(Ei,vj) as the root mean square (RMS) distance
from all points on Ei to a line l̂, such that l̂ passes through
vj and minimizes the distance:

DRMS(Ei,vj) = min
l:l×vj=0

 1

N

∑
p∈Ei

dist(p, l)2

 1
2

, (5)

where N is the number of points on Ei, and dist(p, l) is the
perpendicular distance from a point p to a line l, i.e., the length
of the line segment which joins p to l and is perpendicular to
l.

C. Experiments

In this section, we present a comprehensive performance
study of our contour-based VP detection method and compare
it to the state-of-the-art methods. We use both the AVA
landscape dataset and the Flickr dataset described in Sec-
tion III. Similar to previous work (e.g., [7], [9]), we evaluate
the performance of a VP detection method based on the
consistency of the ground truth edges with the estimated VPs.
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(a) (b) (c) (d) (e)

Fig. 5. Example detections of different edge detection methods. The four rows show the original images, and the edges detected by Canny detector, LSD,
and our contour-based method, respectively. Yellow edges indicate the edges consistent with the ground truth dominant VP.

Specifically, let {EG
k }Kk=1 be the set of ground truth edges,

the consistency error of a detection v̂ is:

err(v̂) =
1

K

∑
k

DRMS(E
G
k , v̂) . (6)

For all experiments, we compute the average consistency error
over five independent trials.

1) Dominant Vanishing Point Detection Results: Figure 6
reports the cumulative histograms of vanishing point consis-
tency error w.r.t. the ground truth edges for various methods.
Below we analyze the results in detail.
Comparison of edge detection methods. We first compare
our method to Canny detector [13] and LSD [14] in terms
of the accuracy of the detected VPs. For our contour-based
method, the parameters are: α = 0.05, lmin = 40, and
φ = 3. For Canny detector and LSD, we tune the parameters
lmin and φ so that the highest accuracy is obtained. In this
experiment, we simply keep the VP with the largest support set
as the detection result. Our contour-based method significantly
outperforms the other edge detection methods.
Comparison with the state-of-the-art. We also compare
our method to state-of-the-art VP detection methods. As we
discussed before, most existing methods focus on urban scenes
and make strong assumptions about the scene structures, such
as a Manhattan world model [38], [39], [9], [40]. Such strong
assumptions render these methods inapplicable to natural
landscape scenes.

While other methods do not explicitly assume a specific
model, they still benefit from the scene structures to various

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Consistency error (pixel)

 

 

JLinkage + Contour (Proposed)
JLinkage + Canny
JLinkage + LSD
Tretiak et al.
Lezama et al.
Zhai et al. (zenith + horizontal)

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

Consistency error (pixel)

 

 

JLinkage + Contour (Proposed)
JLinkage + Canny
JLinkage + LSD
Tretiak et al.
Lezama et al.
Zhai et al. (zenith + horizon)

(a) AVA Landscape (b) Flickr
Fig. 6. Dominant vanishing point detection results. We show the cumulative
histograms of vanishing point consistency error w.r.t. the ground truth edges
(Eq. (6)) for all candidate methods.

extents. In Figure 6, we compare our method to three recent
methods, namely Tretiak et al. [8], Lezama et al. [11], and
Zhai et al. [36]. For each method, we use the source code
downloaded from its author’s website. Note that [11] uses the
Number of False Alarms (NFA) to measure the importance
of the VPs. For fair comparison, we keep the VP with the
highest NFA. Further, [36] takes a two-step approach which
first detects one zenith VP and then detects the horizontal
VPs. As it is unclear from [36] how to compare the strength
of zenith VP with the horizontal VPs, we choose to favor [36]
in our experiment setting by considering both the zenith VP
and the top-ranked horizontal VP in the evaluation and keeping
the VP which achieves the smallest consistency error w.r.t. the
ground truth edges.
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Fig. 7. Accuracy of our method w.r.t. parameters. First row: AVA landscape dataset. Second row: Flickr dataset.

Figure 6 shows that the three methods do not perform well
on the natural landscape images. The problem is that [8]
assumes multiple horizontal VP detections for horizon and
zenith estimation, whereas [36] attempts to detect both zenith
and horizontal VPs. However, there may not be more than one
VP in natural scenes. Similarly, [11] relies on the multiple
horizontal VP detections to filter redundant and spurious VPs.

2) Parameter Sensitivity: Next, we study the performance
of our contour-based VP detection method w.r.t. the parameters
α, the minimum edge length lmin, and the distance threshold
φ in Eq. (3). We conduct experiments with one of these
parameters varying while the others are fixed. The default
parameter setting is α = 0.05, lmin = 40, and φ = 3.
Performance w.r.t. α. Recall from Section IV-A that α
controls the degree to which a contour segment may deviate
from a straight line before it is divided into two sub-segments.
Figure 7(a) shows that the best performance is achieved with
α = 0.05.
Performance w.r.t. minimum edge length lmin. Figure 7(b)
shows the performance of our method as a function of lmin.
Rather surprisingly, we find that the accuracy is quite sensitive
to lmin. This finding probably reflects the relatively small
number of edges consistent with the dominant VP available
in natural scenes. Therefore, if lmin is too small, these edges
may be dominated by irrelevant edges in the scene; if lmin is
too large, there may not be enough inliers to robustly estimate
the VP location.
Performance w.r.t. threshold φ. Figure 7(c) shows the ac-
curacy of our method w.r.t. the threshold φ in Eq. (3). As
shown, our method is relatively insensitive to the threshold,
and achieves the best performance when φ = 3.

Finally, we note that the experiment results are very con-
sistent across the two different datasets. This finding suggests

that the choice of the parameters is insensitive to the datasets
and can be well extrapolated to general images.

V. SELECTION OF THE DOMINANT VANISHING POINT

In real-world applications concerning natural scene photos,
it is often necessary to select the images in which a dominant
VP is present since many images do not have a VP. Further,
if multiple VPs are detected, we need to determine which one
carries the most importance in terms of the photo composition.
Therefore, given a set of candidates {vj}nj=1 generated by a
VP detection method, our goal is to find a function f which
well estimates the strength of a VP candidate. Then, we can
define the dominant VP of an image as the one whose strength
is (i) the highest among all candidates, and (ii) higher than
certain threshold T :

v∗ = arg max
f(vj)≥T

f(vj) . (7)

In practice, given a detected VP vj and the edges Ej ⊆ E
associated with the cluster obtained by a clustering method
(e.g., J-Linkage), a simple implementation of f would be the
number of edges: f(vj) = |Ej |. Note that it treats all edges in
Ej equally. However, we have found this approach problematic
for natural images because it does not consider the implied
depth of each edge in the 3D space.

A. The Strength Measure

Intuitively, an edge conveys a strong sense of depth to the
viewers if (i) it is long, and (ii) it is close to the VP (Figure 1).
This observation motivates us to examine the implied depth of
each individual point on an edge, instead of treating the edge
as a whole.
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Geometrically, as shown in Figure 8, let E be a line segment
consistent with vanishing point v = (vx, vy, 1)

T in the image.2

We further let D be the direction in 3D space (i.e., a point at
infinity) that corresponds to v: v = PD, where P ∈ R3×4 is
the camera projection matrix.

v=PD 

a=PA 

E q=PQ 

Image plane 

Fig. 8. Illustration of our edge strength measure.

For any pixel on the line segment q = (qx, qy, 1)
T ∈ E, we

denote Q as the corresponding point in the 3D space. Then,
we can represent Q as a point on a 3D line with direction D:
Q = A+λD, where A is some reference point chosen on this
line, and λ can be regarded as the (relative) distance between
A and Q. Consequently, we have

q = PQ = P (A+ λD) = a+ λv , (8)

where a = (ax, ay, 1)
T is the image of A. Thus, let lq and

la denote the distance on the image from q and a to v,
respectively, we have

λ = la/lq − 1 . (9)

Note that if we choose A as the intersecting point of the 3D
line corresponding to E and the image plane, λ represents the
(relative) distance from any point Q on this line to the image
plane along direction D. In practice, although la is typically
unknown and varies for each edge E, we can still infer from
Eq. (9) that λ is a linear function of 1/lq . This motivates us
to define the weight of a pixel q ∈ E as (lq + τ)−1, where τ
is a constant chosen to make it robust to noises and outliers.

Thus, our new measure of strength for vj is defined as

f(vj) =
∑
E∈Ej

∑
q∈E

1

lq + τ
. (10)

Clearly, edges that are longer and closer to the VP have more
weights according to our new measure.

B. Experiments

Dominant vanishing point selection. We first demonstrate
the effectiveness of the proposed strength measure in selecting
the dominant VP from the candidates obtained by our VP
detection algorithm. In Figure 9, we compare the following
three measures in terms of the consistency error of the selected
dominant VP:

Edge Num: The number of edges associated with each VP.

2In this section, all 2D and 3D points are represented in homogeneous
coordinates.

Edge Sum: The sum of the edge lengths associated with
each VP.

Proposed: Our strength measure Eq. (10).

As shown, by considering the length of an edge and its
proximity to the VP, our proposed measure achieves the best
performance in selecting the dominant VP in the image.
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Fig. 9. Experiment results on dominant vanishing point selection.

Dominant vanishing point verification. Next, we evaluate
the effectiveness of the proposed measure in determining the
existence of a dominant VP in the image. For this experiment,
we use all the 1,316 images with labeled dominant VPs as
positive samples and randomly select 1,500 images without a
VP from the “landscape” category of AVA dataset as negative
samples. In Figure 10, we plot the ROC curves of the three
different measures. As a baseline, we also include the result
of the Number of False Alarms (NFA) score proposed in [11],
which measures the likelihood that a specific configuration
(i.e., a VP) arises from a random image. One can clearly see
that our proposed measure achieves the best performance.
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Fig. 10. Experiment results on dominant vanishing point verification.

In Figure 11(a) and (b), we further plot the percentage
of images and the average consistency error as functions of
our strength measure, respectively. In particular, Figure 11(b)
shows that the consistency error decreases substantially when
the strength score is higher than 150. This outcome suggests
that our strength measure is a good indicator of the reliability
of a VP detection result.
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Fig. 11. The impact of VP strength on the accuracy of dominant VP detection.
We show (a) the percentage of images and (b) the average consistency error
as a function of our strength measure Eq. (10).

VI. PHOTO COMPOSITION APPLICATION

In this section, we demonstrate an interesting application
of our dominant VP detection method in automatic under-
standing of photo composition. Nowadays, Cloud-based photo
sharing services such as flickr.com, photo.net, and
dpchallenge.com have played an increasingly important
role in helping the amateurs improve their photography skills.
Considering the scenario where a photographer is about to the
take a photo of a natural scene, he or she may wonder what
photos peers or professional photographers would take in a
similar situation. Therefore, given a shot taken by the user,
we propose to find exemplar photos about similar scenes with
similar points of view in a large collection of photos. These
photos demonstrate the use of various photographic techniques
in real world scenarios, hence could potentially be used as
feedback to the user on his or her own work.

A. Viewpoint-Specific Image Retrieval

Given two images Ii and Ij , our similarity measure is a
sum of two components:

D(Ii, Ij) = Ds(Ii, Ij) +Dp(Ii, Ij), (11)

where Ds and Dp measures the similarity of two images in
terms of the scene semantics and the use of linear perspective,
respectively. Below we describe each term in detail.

Semantic similarity Ds: Recently, it has been shown that
generic descriptors extracted from the convolutional neural
networks (CNNs) are powerful in capturing the image seman-
tics (e.g., scene types, objects) and have been successfully
applied to obtain state-of-the-art image retrieval results [58].
In our experiment, we adopt the publicly available CNN model
trained by [63] on the ImageNet ILSVRC challenge dataset3

to compute the semantic similarity. Specifically, we represent
each image using the `2-normalized output of the second fully
connected layer (full7 of [63]), and adopt the cosine distance
to measure the feature similarity.

Perspective similarity Dp: To model the perspective effect in
the image, we consider two main factors: (i) the location of
the dominant VP and (ii) the position of the associated image
elements. For the latter, we focus on the edges consistent with
the dominant VP obtained via our contour-based VP detection

3http://www.vlfeat.org/matconvnet/pretrained/

Fig. 12. Illustration of the construction of a three-level spatial pyramid. Given
the set of edges Ei consistent with the dominant VP, we subdivide the image at
three different level of resolutions. For each resolution, we count the number
of edge points that fall into each bin to build the histograms Hl

i , l = 0, 1, 2.

algorithm. Let vi and vj be the locations of the dominant VPs
in images Ii and Ij , respectively. We use Ei (or Ej) to denote
the sets of edges consistent with vi (or vj). Our perspective
similarity measure is defined as:

Dp(Ii, Ij) = γ1 max

(
1− ‖vi − vj‖

len
, 0

)
+ γ2K(Ei, Ej) ,

(12)
where ‖vi−vj‖ is the Euclidean distance between vi and vj ,
len is the length of the longer side of the image. We resize
all the images to len = 500.

Further, since each edge can be regarded as a set of 2D
points on the image, K(Ei, Ej) should measure the similarity
of two point sets. Here, we use the popular spatial pyramid
matching [64] for its simplicity and efficiency. Generally
speaking, this matching scheme is based on a series of in-
creasingly coarser grids on the image. At any fixed resolution,
two points are said to match if they fall into the same grid cell.
The final matching score is a weighted sum of the number of
matches that occur at each level of resolution, where matches
found at finer resolutions have higher weights than do matches
found at coarser resolutions.

For our problem, we first construct a series of grids at
resolutions 0, 1, . . . , L, as illustrated in Figure 12. Note that
the grid at level l has 2l cells along each dimension, so the
total number of cells is 22l. At level l, let H l

i(k) and H l
j(k)

denote the number of points from Ei and Ej that fall into the
k-th cell, respectively. The number of matches at level l is
then given by the histogram intersection function:

I(H l
i , H

l
j) =

∑
k

min
(
H l

i(k), H
l
j(k)

)
. (13)

Below we write I(H l
i , H

l
j) as Il for short.

Since the number of matches found at level l also includes
all the matches found at the level l + 1, the number of new
matches at level l is given by Il − Il+1, ∀l = 0, . . . , l − 1.
To reward matches found at finer levels, we assign weight
2−(L−l) to the matches at level l. Note that the weight is
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inversely proportional to the cell width at that level. Finally,
the pyramid matching score is defined as:

KL(Ei, Ej) = IL +

L−1∑
l=0

1

2L−l
(Il − Il+1) (14)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
Il . (15)

Here, we use superscript “L” to indicate its dependency on the
parameter L. We empirically set the parameters for viewpoint-
specific image retrieval for all experiments to: γ1 = γ2 =
0.5, L = 6.

B. Case Studies

In our experiments, we use the entire “landscape” category
of the AVA dataset to study the effectiveness of our new sim-
ilarity measure. We first run our contour-based VP detection
algorithm to detect the dominant VP in the 21,982 images in
that category. We only keep those VPs with strength scores
higher than 150 for this study because, as mentioned earlier
(Section V-B), detections with low strength scores are often
unreliable. If no dominant VP is detected in an image, we
simply set the perspective similarity Dp(Ii, Ij) = 0.

Figure 13 shows the top-ranked images for various query
images in the AVA dataset. It is clear that our method is able
to retrieve images with similar content and similar viewpoints
as the query image. More importantly, the retrieved images
exhibit a wide variety in terms of the photographic techniques
used, including color, lighting, photographic elements, design
principles, etc. Thus, by examining the exemplar images
retrieved by our system, amateur photographers may conve-
niently learn useful techniques to improve the quality of their
work. Below we examine a few cases:
1st row, red boxes: This pair of photos highlight the impor-
tance of lighting in photography. Instead of taking the picture
with an overcast sky, it is better to take the shot close to sunset
with a clear sky, as the interplay of sunlight and shadows could
make the photo more attractive. Also, it can be desirable to
leave more water in the scene to better reflect such interplay.
6th row, blue boxes: These three photos illustrate the different
choices of framing and photo composition. While the query
image uses a diagonal composition, alternative ways to shoot
the bridge scene include using a vertical frame or lowering
the camera to include the river.
9th row, green boxes: This case shows an example where
photographers sometimes choose unconventional aspect ratios
(e.g., a wide view) to make the photo more interesting.
11th row, yellow boxes: Compared to the query image, the
retrieved image contains more vivid colors (the grass) and
texture (the cloud).

The last two rows of Figure 13 show the typically fail-
ure cases of our method, in which we also plot the edges
corresponding to the detected VP in the query image. In the
first example, our VP detection method fails to detect the true
dominant VP in the image. For the second example, while the
detection is successful, our retrieval system is unable to find

images with similar viewpoints. In real-world applications,
however, we expect the size of the image database to be much
larger than our experimental database (with ∼20K images),
and the algorithm should be able to retrieve valid results.

C. Comparison to the State-of-the-Art
We compare our method to two popular retrieval systems,

which are based on the HOG features [65], [66] and the CNN
features, respectively. While many image retrieval methods
exist in the literature, we choose these two because (i) the CNN
features have been recently shown to achieve state-of-the-art
performance on semantic image retrieval and (ii) similar to
our method, the HOG features are known to be sensitive to
image edges, thus providing a good baseline for comparison.

For HOG, We represent each image with a rigid grid-like
HOG feature xi [65], [66]. As suggested in [57], we limit
its dimensionality to roughly 5K by resizing the images to
150 × 100 or 100 × 150 and using a cell size of 8 pixels.
The feature vectors are normalized by subtracting the mean:
xi = xi−mean(xi). We use the cosine distance as the simi-
larity measure. For CNN, we directly use Ds(Ij , Ij) discussed
in Section VI-A as the final matching score. Obviously, our
method reduces to CNN if we set γ1 = γ2 = 0 in Eq. (12).

Figure 14 shows the best matches retrieved by all systems
for various query images. Both CNN and our method are able
to retrieve semantically relevant images. However, the images
retrieved by CNN vary significantly in terms of the view-
point. In contrast, out method retrieves images with similar
viewpoints. While HOG is somewhat sensitive to the edge
orientations (see the first and fourth examples in Figure 14),
our method more effectively captures the viewpoints and
perspective effects.
Quantitative human subject evaluation. We further perform
a quantitative evaluation on the performance of our retrieval
method. Unlike traditional image retrieval benchmarks, cur-
rently there is no dataset with ground truth composition (i.e.,
viewpoint) labels available. In view of this barrier, we instead
conducted a user study which asked participants to manually
compare the performance of our method with that of CNN
based on their ability to retrieve images that have similar
semantics and similar viewpoints. Note that we have excluded
HOG from this study because (i) it performs substantially
worse than our method and CNN, and (ii) we are particularly
interested in the effectiveness of the new perspective similarity
measure Dp.

In this study, a collection of 200 query images (with VP
strength scores higher than 150) are randomly selected from
our new dataset of 1,316 images that each containing a
dominant VP (Section III). At our user study website, each
participant is assigned with a subset of 30 randomly selected
query images. For each query, we show the top-8 images
retrieved by both systems and ask the participant to rank the
performance of the two systems. To avoid any biases, no
information about the two systems was provided during the
study. Further, we randomly shuffled the order in which the
results of the two systems are shown on each page.

We recruited 10 participants to this study, mostly graduate
students with some basic photography knowledge. Overall,
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Fig. 13. Example viewpoint-specific image retrieval results. Each row shows a query image (first image from the left) and the top-ranked images retrieved
by our method. Last two rows show some failure cases.
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Fig. 14. Comparison to state-of-the-art retrieval methods. For a query image, we show the top four or five images retrieved by different methods, where each
row corresponds to one method. First row: Our method. Second row: CNN. Third row: HOG.

participants ranked our system better 76.7% of the time,
whereas CNN received higher rankings only 23.3% of the
time. This outcome suggests our system significantly out-
performs the state-of-the-art for the viewpoint-specific image
retrieval task.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we study an intriguing problem of detecting
the dominant VP in natural landscape images. We develop a
new VP detection method, which combines a contour-based
edge detector with J-Linkage, and show that it outperforms
state-of-the-art methods on a new ground truth dataset. The
detected VPs and the associated image elements provides
valuable information about the photo composition. As an
application of our method, we develop a novel viewpoint-
specific image retrieval system which can potentially provide
useful on-site feedback to photographers.

A. Performance on Architecture Photos

While the primary focus of this paper is on natural scenes,
we applied the proposed methods to images of structured man-
made environments, e.g., architecture photos. For a dominant
VP in an architecture photo, a large number of strong edges
often converge to it. How does the performance of our domi-
nant VP detection and selection methods compare to the state-
of-the-art in such scenarios? Given that there are often more
than one VP in architecture photos, would our image retrieval
method perform as successfully under such complexity?

AVA architecture dataset. To study the performance of
our methods on architecture photos, we again resort to the
AVA dataset and use the 12,026 images under the category
“architecture”. Following the same annotation procedure as
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Fig. 15. Experiments on architecture photos. (a) Dominant VP detection. (b)
Dominant VP selection.

described in Section III, for each image, we determine whether
it contains a dominant VP and, if so, label its location.
For consistency, we still restrict ourselves to the detection
of a single dominant VP and do not consider images with
two or more VPs carrying similar visual importance. As a
result, we collected a total of 2,401 images with ground-truth
annotations.
Dominant VP detection and selection experiment. Using the
same experiment protocol and parameter settings as described
in Section IV-C, we compare our contour-based VP detection
method to the state-of-the-art. As one can see in Figure 15(a),
our method achieves competitive performance on the architec-
ture photos. Recall that our experiment setting actually favors
Zhai et al. [36] in that we consider both the zenith VP and
top-ranked horizontal VP detected by [36] in the evaluation.
We also note that, in comparison to Figure 6, the gaps in
performance among the three edge detection methods appear
to be smaller on architecture photos. This finding actually
highlights the importance of exploring global structures in
natural scenes in which strong edges are often absent.
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Fig. 16. Comparison to state-of-the-art retrieval methods on architecture photos. For a query image, we show the top four or five images retrieved by different
methods, where each row corresponds to one method. First row: Our method. Second row: CNN. Third row: HOG.

We have also explored the effectiveness of the strength
measure proposed in Section V on architecture photos. As
shown in Figure 15(b), our proposed measure and Edge Sum
achieve very similar performance in selecting the dominant
VP, and both outperform Edge Num. The result suggests
that while considering edge length increases the accuracy, the
impact of the distance from edge to the VP appears to be
insignificant. This observation may be because, when there is
a large number of edges, the length of the converging edges
dominates the VP selection.

Viewpoint-specific image retrieval experiment. For this ex-
periment, we use the entire “architecture” category of the AVA
dataset. Using the same experiment protocol and parameter
settings as in Section VI, we compare our method to HOG
and CNN. Figure 16 shows the retrieval results for various
query images in the AVA dataset.

To quantitatively evaluate the performance, we use the
website developed in Section VI-C to conduct a user study
on the retrieval results for architecture photos. We have again
recruited 10 participants, mostly graduate students with some
basic photography knowledge. Overall, our system is ranked
better 70.0% of the time (compared to 76.7% for landscape
images). We attribute the decrease in performance to the
presence of multiple vanishing points in some architecture
photos. As these VPs may carry similar visual weights, our
method is limited to choosing one from all the candidates,
which results in some ambiguity in the retrieval results. We
show such a case in Figure 17 (first row), where our algorithm
is able to detect the vertical VP in the images, but the
horizontal orientation of the buildings remains ambiguous.
Another type of failure cases results from issues with scene
semantics, as shown in Figure 17 (second row). In this case,
the CNN descriptor fails to capture the building in the query

Fig. 17. Some failure cases of our method on architecture photos. Each row
shows a query image (first image from the left) and the top-ranked images
retrieved by our method.

image, making the retrieved images less informative.

In summary, the experiment results on architecture photos
demonstrate that the techniques we introduce in this paper
are applicable to other scene types, and importantly, they are
particularly suitable and effective for natural scenes.

B. Detecting Multiple Vanishing Points in Natural Scenes

So far we have restricted our attention to the dominant VP
in the image. As another interesting extension, we examine
how our method performs on natural landscape images when
the number of VPs in each image is not fixed. We use the
entire AVA landscape dataset and label all the VPs in each
image. Note that a VP is labeled as long as there are two
lines in the scene converging to it, and we no longer require
the VPs to lie within or near the image frame. In this way, we
have obtained 1,928 images with one or more VPs.

For fair comparison, in this experiment we keep the top-
3 detections of each method, since three is the maximum
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Fig. 18. Experiment results on detecting multiple VPs in natural landscape
images.

number of VPs we have found in any image in the AVA
landscape dataset. Note that for [36] we consider both the
zenith VP and the top-3 horizontal VPs in the evaluation. For
each ground truth VP in an image, we find the closest detection
and compute the consistency error as given in Eq. (6). As one
can see in Figure 18, the proposed method again outperforms
all other methods. This result suggests that our method is not
limited to the dominant VP, but that it can be employed as a
general tool for VP detection in natural scenes.

C. Limitations

One limitation of our current system is that it is not designed
to handle images in which the linear perspective is absent. For
example, to convey a sense of depth, other techniques such
as diminishing objects and atmospheric perspective have also
been used. Instead of relying solely on the linear perspec-
tive, experienced photographers often employ multiple design
principles such as balance, contrast, unity, and illumination.
In the future, we plan to explore these factors for extensive
understanding of photo composition.
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