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Abstract

Interactive multi-view video streaming (IMVS) services permit to remotely immerse within a 3D scene. This
is possible by transmitting a set of reference camera views (anchor views), which are used by the clients to freely
navigate in the scene and possibly synthesize additional viewpoints of interest. From a networking perspective,
the big challenge in IMVS systems is to deliver to each client the best set of anchor views that maximizes
the navigation quality, minimizes the view-switching delay and yet satisfies the network constraints. Integrating
adaptive streaming solutions in free-viewpoint systems offers a promising solution to deploy IMVS in large and
heterogeneous scenarios, as long as the multi-view video representations on the server are properly selected. We
therefore propose to optimize the multi-view data at the server by minimizing the overall resource requirements,
yet offering a good navigation quality to the different users. We propose a video representation set optimization
for multiview adaptive streaming systems and we show that it is NP-hard. We therefore introduce the concept
of multi-view navigation segment that permits to cast the video representation set selection as an integer linear
programming problem with a bounded computational complexity. We then show that the proposed solution reduces
the computational complexity while preserving optimality in most of the 3D scenes. We then provide simulation
results for different classes of users and show the gain offered by an optimal multi-view video representation
selection compared to recommended representation sets (e.g., Netflix and Apple ones) or to a baseline representation
selection algorithm where the encoding parameters are decided a priori for all the views.

I. INTRODUCTION

Recent advances in video technology have opened new research venues toward novel interactive multi-
view services, such as 360-degree videos (e.g., 360 YouTube videos and Google Cardboard [1]), virtual
reality (e.g., Oculus Rift [2], Immerge Lytro camera [3]), and interactive scene navigation (e.g., free
viewpoint interactive TV from BBC [4]). Interactive multi-view video streaming (IMVS) systems, for
example, endow clients with the ability to choose and display any virtual viewpoint of a 3D scene that
has been originally captured by images from a sparse camera arrangement. This is possible due to the
free-viewpoint technology, where a virtual viewpoint can be synthesized at decoder via depth-image-
based rendering (DIBR) [5] using texture and depth maps of reference views, namely anchor views. The
quality of the synthesized viewpoints generally increases with both the quality of the anchor views and the
similarity between the anchor views and the synthesized viewpoint. The quality of the synthesis is thus
improved when many high-quality camera views are available, which is however expensive in terms of
storage and bandwidth usage. In real-world environments with limited network resources and heterogenous
clients, free viewpoint video streaming results in a non-trivial trade-off between network resources and 3D
navigation quality. In such a context, the integration of adaptive streaming technologies, such as dynamic
adaptive streaming over HTTP (DASH), within free-viewpoint systems appears as a promising solution
to deploy IMVS in large and heterogeneous scenarios.

A multi-view adaptive streaming system is depicted in Fig. 1, where several camera views of different
video catalogs are stored at the main server of a content provider. In particular, each camera view consists
of a series of texture and depth images. The texture images are pre-encoded in different representations
(i.e., different encoding rates and resolutions) while one version only is pre-encoded for the depth images,
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Figure 1. MV adaptive streaming scenario.

due to both their relatively low coding cost and high importance for synthesis1. Each representation is
then decomposed into temporal chunks (usually 2s long) and then stored at the server. When a client
requests a specific multi-view video, it receives a Media Presentation Description (MPD) file from the
server, which contains information about the available representations for each anchor view. Given this
information, the client requests the best set of representations for the current chunk based on both its
level of interactivity and the available bandwidth. The best set of representations is defined as the one
that permits to effectively reconstruct a navigation window at the client, namely a range of consecutive
virtual views that can potentially be displayed by the client during the duration of the video chunk. The
requested representations are finally transmitted to the client by the server through a content delivery
network (CDN).

Within this framework of multi-view adaptive streaming systems, initial research steps have been made
with the study of the adaptation logic at the client side to support interactive navigation [6]–[11]. However,
the proper selection of the multi-view video representations at the server has been mostly overlooked so
far. Recent results by Netflix [12] and Toni et al. [13] have however shown the importance of properly
adapting the representations bitrates in the case of classical video content, in order to achieve gains in
terms of storage and network costs as well as in terms of video quality at the client side. In this paper,
we answer to this need and study the optimal selection of the multi-view representations that are stored at
the server, in such a way that a good navigation quality is offered to the clients when the overall storage
and bandwidth resources are limited. In particular, we argue that, when the storage capacity at the main
server is constrained, the adaptation of the multi-view representation set to the navigation characteristics
in addition to the video content properties improves the expected quality experienced by the users during
their navigation through the 3D scene.

In this paper, we present a new framework where we consider different types of multi-view video
categories, with different video characteristics both in terms of compression and view synthesis properties.
We then categorize clients into classes, based on their level of interactivity, their video category of interest
as well as their average downloading bandwidth. We then formulate an optimization problem to select the
best encoding parameters of the camera views in order to create multi-view representation sets that permit
to maximize the expected satisfaction of the population of interactive users. The satisfaction function
characterizes the navigation quality and depends on both the compression artifacts (driven by the video
source rate) and virtual synthesis artifacts (driven by disparity between anchor and virtual views). Our
optimization problem is then reformulated as a novel integer linear programming (ILP) problem with the
introduction of the notion of multi-view navigation segment that becomes a new optimization variable.
Unlike a mere extension of previous representation set optimization [13] to MV settings, the proposed
ILP problem is tractable in terms of complexity while preserving optimality in most of the common
MV scenarios. We finally evaluate the benefits of our optimal multi-view representation set selection in

1In this work, we assume undistorted or high-quality depth maps. However, our model can be easily extended to the case of multiple
coding rate also for the depth maps.
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different adaptive streaming scenarios. We show that our optimal set of multi-view representation achieves
substantial gain in terms of storage cost and user satisfaction with respect to recommendation sets. This
means that the proposed optimization framework reaches an appropriate balance between user satisfaction
and system costs in terms of storage and bandwidth. This reflects into higher satisfaction of the users
with a minimization of both network and storage resources, which is essential from both a provider and
a client perspective.

In summary, our main contributions are the following:
• we consider an interactive system with no view switching delay that provides a navigation window

to the users rather than a single view of interest;
• we define a satisfaction function for interactive users that captures the quality experienced by users

during their interactive streaming;
• we formulate a tractable ILP problem based on the novel concept of multi-view navigation segments;
• we provide extensive simulations results that quantify the achieved gains in optimizing the multi-view

video representation set in different adaptive streaming scenarios.
To the best of our knowledge, this is the first work that formulates a rigorous optimization problem
to design the representation set in adaptive multi-view video streaming. It outlines the importance of
adapting the optimal representation set to clients navigation model and content information in interactive
systems. Our optimization is moreover generic and can be integrated in any traditional adaptive streaming
infrastructure, like DASH or other recent HTTP adaptive streaming (HAS) systems. Finally, we note that
the proposed optimization is not necessarily meant to be used to make real-time adjustments in DASH
systems. It is rather a framework to derive optimal encoding solutions for non-live systems or to derive
theoretical benchmarks for content providers.

II. RELATED WORKS

In the literature, many works have been published on adaptive streaming on one side and on interactive
multi-view systems on the other side. In the following, we provide only the ones that are mostly related
to our work and we comment on the recent advances in DASH systems, with a deep focus on i) MV
systems, and ii) optimization of the representation set for classical videos in HAS systems.

Lately, a deep research has been carried out on MY systems with the goal of improving source coding,
streaming strategies, and view synthesis algorithms. The main open challenges on interactive multiview
systems are: how to efficiently encode distributed sources, how to efficiently synthesize views, and how
to efficiently deliver information to users in different applications. Coding efficiency in MV systems have
been studied in the case of no communication among cameras, (e.g., distributed video coding [14]), or
in the case of joint source coding, (e.g., HEVC for MV [15], graph-based coding and representation
[16], [17], or coding for interactive users [18], [19]). To improve the process of view synthesis, several
works have been focused mainly on improving the DIBR technique, [20]–[23]. Streaming strategies and
network optimization for multiview video, however, is still a relatively unexplored and new research topic.
Optimal streaming strategies or reousrce allocation have been proposed in the case of resource-constrained
networks [24]–[26], but not from a HAS systems perspecitve. A DASH-based stereo 3D video systems is
introduced in [6], while a DASH-based multi-modal 3D video streaming system is proposed in [7]. Within
the framework of free viewpoint systems, the works in [9], [10] design an architecture of DASH-based 3D
multi-view video streaming services using the HEVC 3D extension encoder to prepare the representations
at the DASH server. In [11], a complete architecture for a free viewpoint streaming system based on
adaptive HTTP streaming is presented, while a cloud-assisted DASH-based IMVS scheme is proposed in
[8], where view synthesis can be performed either at the server or at the client. At the client side, a single
viewpoint with adaptive bitrate is requested, while in our work we rather consider a navigation window
to enable low-delay view switching. The concept of navigation window has been considered also in [27],
where authors propose a complete architecture for HTTP adaptive streaming of free-viewpoint videos. In
particular, they design a two-step rate adaptation method that takes into consideration the users interaction
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with the scene (the navigation trajectory of the user is predicted) as well as the special characteristics
of multi-view-plus-depth videos and the quality of rendered virtual views. The above works, however,
consider interactive MV systems with pre-encoded representations according to classical recommendations,
with fixed coding parameters and do not investigate the impact of these sets in different DASH settings.
Our work is therefore complementary to the above ones since it studies adaptive streaming systems from
a provider’s perspective and optimizes the multi-view video representations at the server.

In the framework of HTTP adaptive streaming of mono-view videos, recent works have been carried out
on the optimal design of the representation set in DASH systems [12], [13], [28]–[31]. In [28], authors
show how the selection of representations sets may affect the behaviors of some adaptation logics in
live-streaming DASH systems, motivating the interest of optimizing the representations set. A formal
optimization of the representations set however is not provided in the paper. Such an optimization is
proposed in [29] for cloud-based live video streaming applications, in [30] for designing optimal caching
strategies over the CDN, and in [13] for designing the optimal representations sets to be stored at the main
server. In [13], the authors propose an ILP problem for adapting the optimal representation set to video
content characteristics and users population, showing the sub-optimality of the commonly recommended
representations (YouTube, Netflix and Apple) with respect to the resulting optimal set. Among those, the
work [13] shares similarities with our work in terms of the overall goal, however it cannot be directly
extended to free viewpoint adaptive streaming, since the viewpoint synthesis and the interactivity of the
clients need to be properly be taken into consideration in the optimization.

III. SYSTEM MODEL

We now describe the system model for the Video on Demand (VoD) adaptive streaming system both
from a server and client side perspective.

At the main server, several multi-view video sequences are stored and provided to interactive clients.
For each video content c ∈ C, we denote by Vc = {1, 2, . . . , Vc} the set of camera views acquiring the
scene over time. Each view is composed of both a texture image and a depth map. We assume that
texture images are actually encoded in different representations (i.e., different encoding rates and spatial
resolutions) while depth maps are stored only at good quality to avoid inconsistency in view synthesis. 2

Therefore a constant coding rate is added to the coding rate of the texture image, which represents the
overhead of the depth map. However, our problem is general enough and it can be easily extended to the
case of multiple coding rates for both texture images and depth maps, as shown at the end of the section.
Denoting by R and S the set of possible coding rates and spatial resolutions for each texture image, we
define by Lc the set of all possible representations that can be generated from the encoder. More formally,
Lc = {l : (v, r, s)|v ∈ Vc, r ∈ R, s ∈ S}, where the triple (v, r, s) identifies a representation of camera
view v encoded at rate r and resolution s. Storing all representations in Lc for all video sequences in
C might be too expensive. Therefore, only a subset of representations is actually encoded and stored in
practice. We denote by Tc ⊆ Lc the subset of representations stored at the main server for video content
c.

Each representation is segmented into temporal chunks and at the client side, each client sends a
periodic downloading request every T seconds, which is the duration of a temporal chunk3. We call
starting viewpoint the viewpoint u displayed at each downloading opportunity, with u ∈ [1, Vc] for user
displaying content c. Within the following T seconds, the user is free to navigate in the scene. Denoting
by ρ the maximum speed at which a user can navigate to neighboring virtual views, the user can display
a range of viewpoints defined as w(u) = [u− ρT, u+ ρT ] with u being the starting viewpoint, as shown
in Fig. 2. To ensure a free scene navigation with no switching-delay, the client chooses to download

2While coding parameters for texture and depth images can be jointly optimized, in practice i) depth maps are usually much more
efficiently compressed than texture images; ii) for a given content, the optimal ratio between texture and depth data remains roughly the
same for any total target bit-rate [32]. Therefore depth maps are usually neglected in MV coding optimizations [33].

3We assume to be at regime (not during the startup or rebuffering phases) when downloading opportunities are periodic, one downloading
request every chunk duration.
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Figure 2. Example of navigation windows at two consecutive downloading opportunities. (a) Scene at time t acquired by two camera views
(1 and 2). (b) Navigation path and navigation windows of a user at the downloading time t and t+T in the case of three virtual viewpoints
between consecutive camera views (virtual viewpoints are 1+ i/Q, with i = 1, 2, 3). The starting viewpoint at t is u = 1+2/Q leading to a
navigation window w(1+2/Q) = [1+1/Q, 1+3/Q]. At time t+T , the starting viewpoint is u = 1+1/Q with w(1+1/Q) = [1, 1+2/Q].

representations that permit to reconstruct all viewpoints in the navigation window w(u). Given a set
of dowloaded representations, any virtual viewpoint u can be synthesized using a pair of left and right
reference view images vL and vR in the downloaded set, with vL < u < vR, via a classical DIBR
techniques, e.g., [34]. We denote by v any camera view (thus any possible anchor view) while u represents
any viewpoint (either virtual viewpoint or camera view) that can be displayed during the navigation. We
also denote by Uc = {1, 1 + 1/Q, 1 + 2/Q, . . . , Vc} the set of all viewpoints that can be displayed for
video content c.

We then categorize users into classes, characterized by the type of rendering device, the download
bandwidth, the navigation characteristics, as well as the required video content. In particular, a user of
type i displays the video of interest ci ∈ C on a device with spatial resolution si and a network connection
with a maximum downloading rate Bi. Furthermore, we denote by qi(u) the probability for this user to
display the starting viewpoint u. This means that a user of type i will be interested in reconstructing
the navigation window w(u) centred in u with probability qi(u) and will therefore select the best set of
representations with spatial resolution si and an average downloading rate lower than Bi. Note that we
assume no switching in the spatial resolution of images at the decoder and we impose a hard network
constraint of Bi. Possible client strategies for selecting the best set of representations are [8], [10], [11].
Finally, we denote by ζi the portion of clients of type-i, with

∑
i∈I ζi = 1, where I is the set of all

possible types of clients.
We remake that our model can be easily extended to more complex systems. For example, one can have

several quality levels for the depth maps and a representation l defined as l : (v, rt, rd, s), with rt, rd being
the encoding rate for texture and depth images, respectively. Furthermore, the case of spatial resolution
switching at the decoder can be modeled by introducing the resolution switching artifacts in the distortion
model. Finally, our model has a very simple communication channel representation, which abstracts from
elements such as sending and receiving buffers. However, even if the presence of the buffer reflects with
higher fidelity the behavior of realistic DASH clients, it has mainly an impact on the client strategy rather
than on the coding strategy at the server side [13], which is the problem of interest of this paper.
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IV. OPTIMAL MV REPRESENTATION SET

We now describe the optimization of the representation set for a multi-view adaptive streaming. First,
we provide the problem formulation. Then, we introduce the concept of multi-view navigation segment
and finally we cast the representation optimization as an integer linear programming (ILP) problem with
a tractable complexity solution.

A. Problem Formulation

Given a set of videos C and a set of possible representations L =
⋃
c Lc for each chunk under

consideration, we seek the best subset of representations T ∗ ⊆ L that can be stored at the server such that
the average navigation quality offered to the users is maximized. We can write our MV representation set
optimization problem as follows

T ∗ : arg min
T

∑

i∈I




∑

u∈Uci

ζi qi(u)Dci(w(u), T , Bi)





s.t.
∑

l∈T

rl ≤ |C|C (1)

where |C|C is the global storage constraint (with C being the mean storage constraint per video)4, and
Dc(w, T , B) is the best distortion experienced by the client displaying video c with the navigation window
w5, given that the subset of representations T is available and that a maximum downloading rate of B is
imposed. More formally,

Dc (w, T , B) = min
O⊆T :∑
l∈O rl≤B

{∑

u∈w

d?u,c(O)

}

= min
O⊆Tc:∑
l∈O rl≤B




∑

u∈w

min
[lL,lR]∈O:
vL≤u,vR≥u

du,c(lL, lR)



 (2)

where O is the set of representations downloaded by the user, d?u,c(O) is the distortion of the viewpoint
u of video c synthesized by a pair of anchor views from the ones available in O, and du,c(lL, lR) is the
distortion of the viewpoint u of video c synthesized from the representations (lL, lR).

The optimization problem in (1) is computationally complex to solve. 6 It can be proved to be NP-hard
actually by considering a special case with only one client with infinite bandwidth. In this special case, the
representation selection problem reduces to a camera selection problem, which can be cast as the known
NP-hard set cover (SC) problem [35]. Solving the special case of the representation selection problem is
no easier than solving the SC problem, and therefore it is also NP-hard. The more general representation
selection problem in (1) is no easier than the special case, and therefore the problem in (1) is NP-hard.
Therefore, in the next subsection, we show how to cast (1) in a tractable optimization problem. With this
aim, we first introduce a new optimization variable.

4The storage constraint takes into account also size of the depth maps. However, for the sake of clarity, we omit this constraint in our
formulation.

5The navigation window w(u) depends on the starting viewpoint u. However, for the sake of clarity, in this section we omit the dependency
from u when not needed.

6Note that the above optimization problem is refined periodically with a frequency equivalent to the duration of K chunks. Obviously,
the lower the K, the more refined the representation set. But each optimization becomes more complex.
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Figure 3. MV navigation segment m : {lL, lR} = {(vL, rL, s), (vR, rR, s)}. All viewpoints in the range ]vL, vR[ are reconstructed by
representations (lL, lR).
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VL V’RV’LV’LVL

Figure 4. Example of two MV navigation segments m : {lL, lR} = {(vL, rL, s), (vR, rR, s)} and m′ : {l′L, l′R} = {(v′L, r′L, s), (v′R, r′R, s)}
violating the constraint C1 (a) and the constraint C2 (b).

B. MV Navigation Segment

We introduce a novel variable, namely the multi-view navigation segment m defined as a pair of
representations lR and lL as follows

m : {lL, lR} = {(vL, rL, s), (vR, rR, s)}

with the constraints that all viewpoints u ∈ [vL, vR[ are reconstructed by the representations (lL, lR), as
illustrated in Fig. 3. We evaluate the distortion of a MV navigation segment for a client interested in the
navigation window w of the video content c as follows

Dmc =
1

Nu

∑

u∈[vL,vR[:
u∈w

du,c(lL, lR) (3)

where Nu is the number of viewpoints in [vL, vR[.
We consider that the client downloads a set of MV navigation segments M instead of free set of

representations that cover the navigation window. We denote by RM the cost of downloading M, which
is the sum of the size of each representation in each MV navigation segment in M. For example, a
client that downloads three representations l1, l2, and l3 associated to the camera views v1, v2, and v3,
respectively (with v1 < v2 < v3), has its data represented by the segments m : {l1, l2} and m′ : {l2, l3},
and therefore M = {m,m′} and RM = rl1 + rl2 + rl3 . A set of MV navigation segments M can be
downloaded by a client if it meets the following constraints.

C1: re-use of camera views constraint: the right representation of one MV navigation segment shares
the same camera view with the following MV navigation segment, with the exception of lateral
segments. This means that neighbouring MV navigation segments share one anchor view but
possibly with different coding rates.

C2: full coverage constraint: given a set of MV segments downloaded by the client, all viewpoints
in the client navigation window w need to be covered by at least one MV navigation segment.
More formally, ∀u ∈ w, ∃m : {lL, lR} = {(vL, rL, s), (vR, rR, s)} ∈ M s.t. vL ≤ u < vR.

In summary, the constraint C1 imposes no overlap in the viewpoint domain among the MV navigation
segments downloaded by the user. While the constraint C2 forces the downloaded MV navigation segments
to be contiguous. In Fig. 4, we depict two MV navigation segments violating the constraints C1 and C2.
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C. MV Navigation Segment Based Optimization
We now propose an effective algorithm to solve the problem in (1) adopting the new concept of MV

navigation segment. Given a set of representations T available at the server, a client displaying a video
content c with a navigation window w downloads the best set of MV navigation segments M defined as
the one minimizing the distortion over w. More formally, the problem in (2) becomes

DMV
c (w, T , B) = min

M:lL,lR⊂T
RM≤B

∑

m∈M

Dmc(w) (4)

and the optimization problem in (1) therefore becomes

T ∗ : arg min
T

∑

i∈I

∑

u∈Uci

ζiqi(u)
{
DMV
ci

(w(u), T , Bi)
}

s.t.
∑

l∈T

rl ≤ |C|C (5)

The introduction of the MV navigation segments under the constraints C1 and C2 limits the selection of
possible anchor views for a given range of virtual views. This simplifies the minimization problem in (4),
which is considered in the overall optimization problem in (5). As a result, in the special case of only one
type of users with infinite bandwidth the representation selection problem can be solved in polynomial
time [35]. In a more general case, the problem can still solved in a tractable way, as shown in the following
subsection. Finally, we comment on the equivalence between (1) and (5) under the constraints C1 and
C2. The latter constraint rules out cases in which one or more viewpoint u cannot be reconstructed by
any anchor view in the downloaded MV navigation segments. No optimal set of representations leaves a
viewpoint in the navigation window with no anchor views , in the original problem in (1), as it would
lead to a zero satisfaction for the considered viewpoint. Therefore, both the problems (1) and (5) have
solutions that cover the full set of viewpoints. On the contrary, the constraint C1 excludes cases which
could still lead to an optimal subset T ∗. However, it can be shown that in most of MV scenes, imposing
the constraint C1 does not prevent to reach optimality [35]. In Appendix B, we provide further details on
the optimality conditions of the proposed algorithms.

D. ILP Optimization Algorithm
We now provide the ILP formulation that permits to solve the optimization problem in (5). We introduce

the following binary decision variables:

• αicsm =





1 if users of type i select the MV segment m
at resolution s for video c

0 otherwise

• βcsv =





1 if camera view v for video c and resolution s
is selected at least by one type of user

0 otherwise

• γicsv =





1 if camera view v for video c and resolution s
is selected by users of type i

0 otherwise
We also define the following auxiliary matrices:

• acsum =

{
1 if viewpoint u is covered by m
0 otherwise

• bcsvm =

{
1 if camera view v is a reference view in m
0 otherwise
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Integer Linear Programming 1

min
ααα,βββ,γγγ

∑

i∈I

∑

u∈Uci

∑

c∈C

∑

s∈S

∑

m:lr,lL∈L

ζiqi(u)αicsm fim (6a)

s.t. αicsmbcsvm ≤ γicsv ∀i ∈ I,∀c ∈ C, ∀s ∈ S,∀m ∈M,∀v ∈ Vc (6b)

γicsv ≤
∑

i

∑

l

bcsvmαicsm ∀i ∈ I,∀c ∈ C, ∀s ∈ S,∀m ∈M,∀v ∈ Vc (6c)

γicsv ≤ βcsv ∀i ∈ I, ∀c ∈ C,∀s ∈ S,∀v ∈ Vc (6d)

βcsv ≤
∑

i

∑

l

γicsv ∀i ∈ I, ∀c ∈ C,∀s ∈ S,∀v ∈ Vc (6e)

∑

m

acsumαicsm =

{
1 if c = ci, s = si
0 otherwise

∀u ∈ wi,∀i ∈ I,∀c ∈ C,∀s ∈ S (6f)

∑

v

γicsvrcsv ≤ Bi ∀i ∈ I,∀c ∈ C,∀s ∈ S (6g)

∑

v

βcsvrcsv ≤ |C|C ∀c ∈ C,∀s ∈ S (6h)

αmuic ∈ [0, 1] ∀m ∈M,∀u ∈ Uc,∀i ∈ I,∀c ∈ C (6i)
βcsv ∈ [0, 1] ∀c ∈ C, ∀s ∈ S,∀v ∈ Vc (6j)
γicsv ∈ [0, 1] ∀i ∈ I,∀c ∈ C, ∀s ∈ S,∀v ∈ Vc (6k)

Finally, we also consider the matrix with entries fim defined as the satisfaction of users of type i over
the segment of m, as described in Section V-A1.

With these variables, the optimization problem can be formulated as shown in (6). The objective function
(6a) maximizes the sum of the user satisfactions while navigating over the scene of interest. The constraints
(6b)-(6e) set up a consistent relation between the decision variables ααα,βββ, and γγγ. The constraint (6f) imposes
both the constraints C1 and C2. Then, the conditions (6g) and (6h) reflect the client’s bandwith constraint
and the overall storage constraint, respectively. The constraints (6i), (6j) and (6k) finally force the decision
variables to be binary ones.

The number of variables are of the order of O(|R|2V 2|I||C||S|), in the case where all videos have the
same number of camera views, i.e., Vc = V, ∀c. It is worth noting that we defined classes of users as well
as classes of video contents in our problem, bounding |I| and |C| to small values. Moreover, with a few
constraints that look reasonable in practice, such as imposing |rL − rR| = n∆, i.e., limiting the coding
rate mistmatch between left and right anchor view [36], we can narrow down even further the number
of variables to O(V 2|R|n|I||C||S|). Finally, since sparse camera arrangements are usually considered in
practice, the value of V is also bounded. Therefore, the proposed ILP problem in (6) is solved with a
tractable complexity.

V. SIMULATIONS

We now evaluate the performance of the proposed multi-view representations selection optimization.
We have used the generic solver IBM ILOG CPLEX [37] to solve different instances of the proposed ILP.
We have considered different system configurations in our study that are not meant to exhaustively cover
all possible cases, but rather to illustrate the optimal coding strategy in several realistic cases. We first
describe the specific settings that we use to simulate the illustrative and yet representative scenarios. Then,
we compare the optimal multi-view representation set with those computed with baseline algorithms and
illustrate the benefit of our solution.
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Video a b e
Shark 1 46.67 −95.40

Undo Dancer 0.98 364.45 868.08
Hall 0.98 83.57 67.35

Table I
FITTING PARAMETERS FOR (8).

Connection Wifi ADSL-fast FTTH
Bmin (Mbps) 0.4 0.7 1.5
Bmax (Mbps) 4 10 25

connection index (n) 1 2 3
Probability (pn) 0.4 0.3 0.3

Table II
CONNECTION TYPES.

A. Simulation Settings
1) Satisfaction Function: We first define the satisfaction function fim used in our ILP formulation as

the satisfaction of a user of type i when he downloads the segment m of the video content of interest ci.
This is defined as fim = 1−Dmci given by (3) with

du,c(lL, lR) = αDmin + (1− α)βDmax + [1− α− (1− α)β]DI (7)

where Dmin = min{DlL , DlR}, Dmax = max{DlL , DlR}, DI is the inpainted distortion, and DlL and DlR

are the distortion of the left and right anchor view in the segment m. We also define α = exp (−ξ|u− vmin|) ,
and β = exp (−ξ|u− vmax|) with vmin = vll if DlL ≤ DlR , vmin = vlR otherwise, and vmax = vll if
DlL > DlR , vmax = vlR otherwise. The model is inspired by [35] and the parameters ξ and DI , which
depend on the scene geometry, are computed by curve fitting.

Finally, we need to define Dl that is the distortion (due to coding artifacts) of the representation
l : (vl, rl, sl) that is encoded at rate rl. We model Dl as a Video Quality Metric (VQM) score [38], which
is a full-reference metric that has higher correlation with human perception than other MSE-based metrics,
as shown in [39]. We can evaluate this distortion as

Dl = D(rl) = a− b

rl + e
(8)

where a, b, and e are parameters that depend both on the content characteristics and the resolution of the
video. To evaluate the parameters in (7) and (8) for representative categories of potential video sequences in
adaptive streaming systems, we considered three multi-view video sequences at 1080p resolution, namely
“Hall” (“movie” type of video), “Shark” (“cartoon” type of video), and “Undo Dancer” (“sport-action”
type of video). The sequences are highly heterogenous in terms of coding and view synthesis efficiency,
and therefore they are representative of various video categories. In Appendix A, we provide further details
on the characteristics of the video categories.

Note that the above satisfaction model is simple and yet accurate in capturing the essential behaviors
of the coding and synthesis artifacts. More content- or scene-dependent models (e.g., the one in [27]) that
are usually more precise at the price of more parameters to set up, can however be used as alternative in
our problem formulation, which is generic with respect to the quality metric.

2) Clients Population: We now form users population in order to have a representative set of potential
clients in adaptive streaming services. In particular, we define how users types are characterized, and how
the distribution of these types of users is evaluated.

We consider three types of video content c that users can select with a uniform probability of 1/3, as in
the case of most popular type of videos. All videos have a camera set V = {0, 8, 16 . . . , 72} and a spatial



11

resolution of 1080p : (1920 × 1080), which is also the display resolution of the users. Furthermore, we
make the plausible assumption that the video content drives the focus of attention of the users from which
a navigation pattern can be evaluated. We therefore define the probability for a user displaying content c
to request a navigation window centered on view u, i.e., Qc(u), as a Normal random variable with mean
value µc being the mean value of the focus of attention and variance σ2

c , i.e., Qc(u) ∼ N (µc, σ
2
c ). Without

loss of generality, we assume the mean focus of attention to be the centre of the camera views for all
videos, i.e., µc = (vV − v1)/2, while we assign different variance values to different video sequences.7

Namely, σ2
c = {80, 250, 3000} for “Undo Dancer”, “Shark”, and “Hall”, respectively. For the “Undo

Dancer” sequence, which represents a sport movie, most of the users will follow the main subject of
interest (the dancer) and most of the navigation windows will overlap. A small value of σ2

c is therefore
considered. On the contrary, a larger value of σ2

c characterizes sequences where there are many focuses of
attention and the navigation windows of users can barely overlap. Finally, for a user of type i displaying
video content ci, qi(u), the probability of requesting a navigation windows centered in u is given by
qi(u) = Qci(u). In our simulations, for each type of users we generate four possible navigation windows,
extracted as realizations of the random process described above.

We then characterize the connection type that can be experienced by the users. We define three types
of connections, as provided in Table II that is derived from [13]. The minimum and maximum bandwidth
for downloading the representations of one chunk are set 2Bmin and 2Bmax, respectively. The probability
pn for a user to experience a given connection type n is further provided in the last raw of Table II. For
each video content, and for each connection type, we consider two types of users: 1) users with Bi set
to the 25th percentile of the available bandwidth for the considered connection, and 2) users with Bi set
to the 75th percentile of the available bandwidth for the considered connection. We assume a probability
1/2 for a user to experience one or the other downloading bandwidth. As a result, we have with our
representation 18 types of users that are representative of realistic scenarios. The video content ci and
the experienced bandwidth Bi identify the users of type i with probability ζi = (1/|C|)(1/2)pni

= pni
/6,

with ni being the connection of the type of user i.

3) Comparative Algorithms: We compare the representation sets selected by our algorithm to the
recommended sets of Apple, Netflix, and YouTube [12], [40], [41]. In particular, we consider the bitrate
recommended for the 1080p resolution, which means {11, 24, 39}Mbps for Apple, {4.3, 5.8}Mbps for
Netflix, and {4.072}Mbps for YouTube. To guarantee that at least one pair of anchor views can be
downloaded also for the users experiencing poor channel connections, we add a representation encoded
at 400 kbps to all three data sets. From these available encoding rates for all available camera views, we
optimize the subset of views that best satisfy the clients population.

To better evaluate the benefit of a complete adaptation of the representation set to content characteristics,
users’ connections as well users’ interactivity levels, we introduce a comparative algorithm that adapts
to only part of this information. More in details, we introduce this comparative algorithm as a possible
extension of the one proposed in [13] to MV setting. Basically, the representation set is optimized in such
a way that it adapts to the population and content information, but not necessarily to the interactivity
aspect. This methods first selects a subset of camera views to be stored at the server and then selects the
encoding bitrates for selected camera views, imposing the same coding rate for all camera views. For the
camera view selection, we assume a regular sampling of the views, with camera sampling values L = 8,
and 16. The selection of the bitrates is then optimized with our ILP optimization problem, but with the
additional constraint of imposing the same coding bitrates to the views. We label this optimization as
“PA” (partial adaptation) in the following.

7 In our model, what is important is to understand if users are focused on similar navigation windows (homogenous scenario) or very
different navigation windows (heterogenous scenario). It is therefore less important where the mean focus of attention is. It is rather much
more important the variance from that mean value. For this reason, we assume that all sequences have the same µc.
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Figure 5. Expected satisfaction per video vs. the storage capacity constraint for the “NW-homogenous” scenario. . Solid lines show the
performance of the optimal multi-view representation set proposed in this paper, while dashed lines show the performance of the PA method.
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Figure 6. Comparison between joint optimization of the representations of all videos (solid line) and independent optimization per video
(dashed line) for the “NW-homogenous” scenario.

B. Simulation Results

In the following, we first show how our optimal set of representations performs with respect to the
competitor algorithms, i.e., the PA algorithm as well as the recommendations by Apple, YouTube, and
Netflix. Then, we simulate realistic adaptive streaming clients and show the quality experienced over time
for different clients both in the case of the optimal and commonly recommended set of representations.

1) Optimal set of representations: In the first considered scenario (labeled “NW-homogenous” sce-
nario), we assume that all video content have a navigation window w = [16, 52] for all users, rather than
a probabilistic model based on Qc(u). This means that navigation windows are highly homogenous for
all users. This setting penalizes less the competitor algorithms that do not optimize the encoding rates as
well as the camera views with respect to the interactivity of the users. In Fig. 5, we provide the expected
satisfaction of the clients with respect to C, the mean storage capacity per video. Simulation results are
provided for our optimal set of multi-view representations (solid lines) as well as for the representation
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set derived from the PA algorithm (dashed lines) with a camera sampling values L = 8, 16 in Fig. 5(a)
and Fig. 5(b), respectively. Note that 8 is the minimum camera spacing considered also in our camera
arrangement. Therefore, in Fig. 5(a), the main difference between the proposed optimization algorithm
and the PO one is that the bitrate is selected a priori for all camera views in the latter. In Fig. 5(a), we can
notice the gain in the extra degree of freedom provided by our optimization. Note also that there is no a
strictly monotonic increasing behavior of the satisfaction function with the storage constraint C. Denoting
by T (C) and T (C ′) the two optimal set for constraints C and C ′ > C, respectively, we do not necessarily
have that T (C) ⊂ T (C ′) in our integer optimization problem. The optimal set of representations can even
change substantially when the capacity constraint increases from C to C ′. The satisfaction function might
therefore have slightly oscillating behavior that corresponds to minor quality variations in practice.

When the camera sampling is L = 16, the performance of the PA algorithm drops substantially with
respect to our optimal set of representation, as shown in Fig. 5(b). Note that in the literature, a VQM
gain of 0.1 is considered to be a significant improvement, and the gain that we achieve is about 0.05 for
the “Shark” video sequence. Finally, we also provide the satisfaction level achieved by the representation
set recommended by Apple, YouTube, and Netflix. We notice that we achieve a better satisfaction level
with a much lower storage capacity cost. This not only leads to a gain in terms of storage cost but also in
terms of CDN capacity. In [13], it has been shown that a lower storage cost of the optimal set translates
into a reduced CDN cost, which is usually a bottleneck in nowadays adaptive streaming systems.

We now show in more details the gain obtained in jointly optimizing the multi-view representations
for several video types. We optimize jointly the representations of all three contents with a mean storage
capacity of 3C and we compared it with the case in which the representations of each video are optimized
independently from other video sequences with a storage constraint of C for each video. In both cases,
the representation set is optimized with our proposed algorithm. In Fig. 6, we show the performance
for both the joint and the independent optimization. We can observe that when all representations are
optimized jointly, there is a better usage of the storage capacity. This is due to the fact that an unequal
allocation of the storage capacity among videos is beneficial in the case of different video characteristics.
For example, videos with low complexity content can be encoded at low coding rates, in favor of more
complex sequences that might occupy a storage capacity larger than the average capacity C. Note also
that the joint optimization does not always outperform the independent one for all videos. For example,
the “Dancer” sequence has a lower quality in the joint optimization, but for a better quality of the other
two video sequences, resulting in a better expected satisfaction among all users.

To better understand the unequal allocation of the storage capacity among different videos and different
representations, we show how the representations achieved by our joint optimization for different video
categories and storage constraints in the homogenous scenario of Fig. 5. In Fig. 7, the cumulative sum of
the optimal representation rates is provided as a function of the camera view, for different videos. Each
point along the curves is an additional representation, whose view index is indicated in the x-axis and
the cumulative rate (summing also the rate of the previous representations) is indicated in the y-axis. In
a highly constrained scenario with a storage constraint per video of C = 1Mbps (see Fig. 7(a)), only the
lateral viewpoints 16 and 56 are stored for “Dancer” and “Hall” sequences, while multiple inner camera
views are stored for the “Shark” video sequence. This can be explained by the fact that the latter is
affected by the synthesis process and slightly by the coding process, as shown in Table III. Note that
C = 1Mbps is a highly challenging scenario, therefore only one coding rate is provided per camera view,
and in general it is a low coding rate8. Increasing the storage constraint to C = 5Mbps (see Fig. 7(b)),
more camera views are stored also for the other video sequences and the rate allocated per camera view
is similar among the three video sequences. This is however true only for this specific storage constraint.
Increasing C to 12Mbps (Fig. 7(c)), we notice that many camera views are stored at the server at multiple
coding rates also for the “Dancer” sequence (camera views 16, 24, and 32 for example are encoded at

8The adaptive streaming characteristic is preserved in realistic DASH systems since i) extra storage capacity is dedicated to different
spatial resolution sizes; ii) the value of C can be increased till most of the views have several representations.
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Figure 7. Selected optimal representation sets for different storage capacities for the “NW-homogenous” scenario with a navigation window
w = [16, 52] for all users.

two different coding rates). This sequence is the one suffering the least from view synthesis distortion,
therefore it is has many views only for large C constraints. At the same time, it highly suffers from
coding artifacts. For this reason, the bitrates for the camera views of “Dancer” are generally higher than
the representations of the other videos.

We now consider a different scenario in which users are more heterogenous in terms of navigation
paths but more homogenous in terms of experienced bandwidth. Namely, we set σ2

c = {10, 150, 3000} for
“Undo Dancer”, “Shark”, and “Hall”, respectively, as previously described in Section V-A2, and pn = 1
for Wi-Fi connection and zero for the remaining ones. This scenario, labeled “BW-homogenous”, allows
us to understand the effect of different interactivity levels on the optimal set of representations. In Fig. 8,
we provide the optimal representation set for the “BW-homogenous”. In the case of C = 1Mbps (see
Fig. 8(a)), only the sequence “Shark” has more than two camera views encoded in the optimal set, similarly
to what observed in the previous results. When the storage constraint C = 12Mbps (se Fig. 8(c)), all
sequences have more than two camera views encoded in the optimal set. “Undo Dancer” has fewer camera
views (6 in total) but at high encoding rate, while “Hall” has more camera views (11 in total) since a
wider navigation window is required for this sequence. At the same time, since “Hall” is not drastically
affected by coding artifact, the camera views are encoded at medium rate. Finally, it is worth noting that
very few camera are encoded at multiple rates. This is because in this specific scenario users are highly
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Figure 8. Selected optimal representation sets for different storage capacities for the “BW-homogenous” scenario.

homogenous in terms of available bandwidth.
These two very different simulated settings show the importance of optimally designing the represen-

tation set based on the video characteristics as well as the clients population. In particular, the above
results show that unequal allocation of the storage capacity among video types as well as camera views
is essential to strike for the right balance between storage cost and users satisfaction. This opens a large
number of perspectives in free-viewpoint adaptive streaming, namely i) it shows the importance to take
into account the users’ interactivity in the design of the representation set; ii) it provides a theoretical
framework that captures the complexity of today’s video delivery systems9.

2) Experienced quality at the client side: After we have illustrated satisfaction functions that capture
gains in terms of system design, we now provide results in terms of average quality experienced by realistic
clients navigating in a 3D scene. We still optimize the optimal representation set with our proposed
algorithm, but we evaluate the performance differently, i.e., by simulating actual individual users. In
particular, we consider U users, randomly assigned to one of the available classes. A user is associated
to type i with probability ζi. Recall that the type defines the video content of interest for the user, but
also the type of connection in terms of average downloading rate. For each user, we randomly generate
the actual downloading rate over time. The channel is generated assuming a Markovian channel as also
considered in [42], [43]. Finally, each user of type i is associated to a starting viewpoint u with probability
qi(u). From this starting request, for each user, we randomly generate an interactive session over time, i.e.,
we simulate the user navigating in the scene over time following the model in [24]. Given the requested

9Note that by adding constraints the the ILP problem more aspects of the delivery systems (e.g., constraints during the delivery) can be
included in our problem formulation.
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Figure 9. Mean satisfaction experienced by clients over time for a staircase bandwidth channel for the “NW-homogenous” scenario. The
representation set of the proposed method is the one of Fig.7(c). Satisfaction values averaged over time are provided in the legend.

viewpoint u, each client evaluates the navigation window w(u) that can be requested by the user during
the 2s of the temporal video chunk. The adaptation logic of the user defines the best set of cameras that
cover the navigation window of interest. This means that each user will request the camera views among
the representative set available at the server that minimize the distortion of the navigation window of
interest and yet satisfy the experienced downloading rate. The optimization is performed following the
dynamic programming algorithm in [35] and described in Appendix C. This adaptation logic is inspired
by [11] where a two-step algorithm is proposed: it first selects the camera views to download by predicting
possible navigation paths of the user; then the best representations for these views are evaluated. In our
case, we assume that the navigation window is selected first and then the best representations (in terms
of camera views and rate) are selected.

We now provide a first simulation for a scenario of U = 40 users are simulated over 30 time slots and
averaged over 100 loops to get statistically meaningful results. Fig. 9 depicts the average satisfaction per
user when different representation sets at the server side have been optimized for the case of 12Mbps
of storage capacity (per user). For this figure, we assume a staircase channel that is constant for 5
time slots and then increases. The experienced values over the 30 time slots are 2Mbps,4Mbps, and
6Mbps. We consider this specific channel behavior to better show the temporal evolution of the clients
satisfaction. In the figure legend, we also provide the mean satisfaction over time. It can be shown that
the set optimized with the proposed ILP formulation achieves the highest satisfaction. Looking at the PA
optimization method, we observe that, if the camera sampling is L = 8, the algorithm performs yet quite
well. However, compared to the recommended sets, the proposed solution achieves a substantial gain.

In Fig. 10, we show the satisfaction function for the “BW-homogenous” scenario and we provide the
per user satisfaction rather than the mean one. For the sake of clarity, we show the results only for the
YouTube recommend set, since it is the best among the three competitor solutions under considerations.
The results are provided for one representative user asking for “Undo Dancer” and “Hall” video sequences,
respectively. For both cases, the optimal set substantially outperforms the YouTube set. In particular, the
YouTube data set can be sustained by the network only in few temporal instants. When it is not sustainable,
a rapid loss of the satisfaction is experienced. When we compare the proposed optimal set and the PA
one, we observe that the proposed optimization allocates a less-optimal representation set to the “Hall”
video sequence, to gain in terms of performance for the “Undo Dancer” video. This is motivated by the
fact reducing the number of representations stored at the server for the “Hall” video sequence reduces
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Figure 10. Per user satisfaction over time for the “BW-homogenous” scenario.

slightly the quality experienced for this content, but at the same time it allows that more representations
are stored for the other sequences, substantially improving the quality of these contents.

This behavior can be better explained in the following plots. In Fig. 11, we provide the mean satisfaction
per users in the case of 30 users in total. The satisfaction is averaged over time and provided for
both the proposed and the baseline optimal sets. We considered both the “NW-homogenous” and “BW-
homogenous” scenarios. In both figures, users are ordered based on the requested videos. This means that
the first 10 asks for the “Undo Dancer” video, the last 10 asks for the “Hall” video, while the inner users
ask for “Shark” video. We also provide the mean satisfaction (average both over time and for all users)
in the figure legend. In both scenarios, the proposed optimal set outperforms the baseline one in terms
of overall mean satisfaction. However, looking at the quality at which each user displays the required
video, we observe that for some users the quality perceived by the baseline set is better. For example, in
the “NW-homogenous” scenario, the “Shark” video is better displayed when the baseline set is available.
This gain however is paid by the other users, who suffer when downloading the other two videos.
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Figure 11. Average (over time) satisfaction per user for a storage constraint C = 12Mbps.

In summary, we have shown that for simulated users in interactive multiview video content a better
quality is achieved when the optimal representation set is designed following the proposed optimization.
This leads to a better satisfaction achieved by the users, but also to a better usage of the storage space
available at the server side. This better usage can also be reflected in reduced CDN costs, which is a very
important aspect in nowadays adaptive streaming systems.

VI. CONCLUSIONS

To the best of our knowledge, this paper is the first study about optimal encoding parameters for
representation sets in free-viewpoint adaptive streaming. We have defined an optimization problem for
the selection of the representation set that maximizes the average satisfaction of interactive users while
minimizing their view-switching delay. We define a novel variable, namely the multi-view navigation
segment, and formulate an optimization problem that can be solved as a tractable ILP problem. We
characterize the satisfaction of interactive users as the quality experienced by the user during the navigation.
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This function is able to take into account both coding and view synthesis artifacts. We finally measure the
performance of representation sets based on content provider recommendations and show the suboptimality
of baseline algorithms that do not adapt the coding parameters to the video and users characteristics. We
therefore highlight the gap between existing recommendations and solutions that maximize the average
user satisfaction. In particular, we show that an unequal allocation of the storage capacity among different
video types as well as camera views is essential to strike for the right balance between storage cost and
users satisfaction in interactive multi-view video systems.
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APPENDIX A
VIDEO CONTENT CHARACTERISTICS

We now better describe the video characteristic of the scene that we consider in our simulations settings.
The sequences have been selected since they are highly heterogenous in terms of coding and view synthesis
efficiency, and therefore they are representative of video categories. All sequences have been encoded with
HEVC [44] with an encoding range of [600 kbps−120 Mbps] and a resolution of 1080p. Different coded
versions are then used as anchor views for several virtual views. We then evaluate the quality of the
reconstructed viewpoints as (1−VQM) score. In Table I, the parameters a, b, and e for (8) are provided
for each of the considered sequences and in Fig. 12, we provide the quality as a function of the encoding
bitrate for the considered video sequences, for both the experimental VQM and the quality derived from
(8) for a representative camera view. By curve fitting, we then evaluate the parameters γ and DI in (7).
We set the inpainting distortion to DI = 0.35, and we get ξ = {0.35, 0.52, 1.32} for “Undo Dancer”,
“Shark”, and “Hall”, respectively. It can be noticed that “Undo Dancer” is the simplest sequence for view
synthesis (i.e., it has a small ξ value) while “Hall” is the most difficult one (i.e., it has a large ξ value).
Fig. 4 depicts the achieved quality in view synthesis for both the experimental results and the theoretical
model in (7).

Finally, in Table III, we summarize how much each video sequence is affected by both the coding and the
synthesis process. For example, the “Shark” video has few artifacts due to the compression. However the
virtual synthesis is usually pretty challenging because of large dissimilarity among neighbouring camera
views.

http://is.gd/3GGOFp
http://www.its.bldrdoc.gov/n3/video/vqmsoftware.htm
https://goo.gl/Kx5ZgS
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Figure 12. Satisfaction function vs encoding rate for different sequences encoded with HEVC codec.
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Figure 13. Validation of the model for the virtual distortion for different video sequences and different quality of the anchor views. Dashed
lines show the simulation results, while solid lines show the curve fitting model. The legend shows the encoding rate of left and right anchor
views respectively, where an infinite rate means undistorted anchor view.
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Video Coding artifacts Synthesis artifacts
Shark low medium

Undo Dancer high low
Hall medium high

Table III
LEVEL OF ARTIFACTS DUE TO THE CODING AS WELL AS THE SYNTHESIS PROCESSES.
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APPENDIX B
SUBOPTIMALITY UNDER CONSTRAINTS C1 AND C2.

We comment on the equivalence between (1) and (5) under the C1 and the C2 constraints described
above. The C2 constraint does not preclude optimality in problem (5). No optimal set of representations
leaves a viewpoint in the navigation window with no anchor views in the original problem in (1). This
would lead to a zero satisfaction for the considered viewpoint. For the C1 constraint, we consider the
following illustrative example. Let assume that v1, v2, and v3 are camera views downloaded by the clients,
then the C1 precludes the scenarios in which viewpoints in [v1, v2] are synthesized by (v1, v2) while
viewpoints in [v2, v3[ are synthesized by (v1, v3). If a representation is downloaded, it is used both as
left or right reference view. If anchor views have the same distortion, this condition still preserves the
optimality of the problem (1). In the case of different distortions among the downloaded representations,
the C1 constraint still leads to optimality for most of the typical cases. The main intuition is that if one
camera view is selected only as right (or left) reference view, it is because there is a more far away
camera that is at a better distortion. However, as shown in [35], this can happen if the other camera view
is very close or if the considered camera view is at very poor quality. None in the two cases the camera
view would actually be selected as best one. Therefore, the considered scenario would not happen in the
optimal set.

APPENDIX C
USERS ADAPTATION LOGIC

We now provide some further information about the adaptation logic implemented at the client side.
We first notice that we consider users at regime (no startup or rebuffering phase); therefore each user
makes a downloading request every temporal chunk. The user displaying the starting viewpoint u at the
downloading time will download the best set of MV navigation segments M∗ to reconstruct at her best
the navigation window centered in u given the bandwidth constraints imposed by the network connection.
The best set to download M∗ is derived by the following optimization problem

M∗ : arg min
M:lL,lR⊂T

∑

m∈M

Dmc(w)

s.t. RM ≤ B (9)

The above optimization problem can be solved in polynomial time with the following dynamic pro-
gramming (DP) algorithm. We consider a user with a navigation window w = [vL, vR]. This NW can be
“cut” into segments given by the MV navigation segments dowloaded by the user. For example, in Fig. 14
downloading the MV navigation segment m : {lL, l1} divides the region [vL, vR] in two segments [vL, v1[
and [v1, vR]. If we then download another MV navigation segment mi : {l1, li} we subdivide even more
the region [v1, vR]. Therefore, the optimization problem in (9) can actually be solved by looking at the
best “cuts” (or at the best view selection) in the range [vL, vR] with a maximum budget of B. In [35], a
DP solving method for this types of view selection problems has been proposed. Here we adapt it to the
case in which both view and rate need to be optimized.

We first define a recursive function Φ(vL, rL, b) as the minimum aggregate synthesized view distortion
of views between [vL, vR[ given that representation lL : (vL, rL) is already downloaded and the remaining
bandwidth is b. The algorithm selects a new representation li that subdivides the range of viewpoints in
[vL, vi[ and [vi, vR]. Given the assumption of the MV navigation segment, i.e., given that any viewpoint
between two consecutive representations are synthesized by these representations, the region [vL, vi[ is
synthesized by (lL, li), leading to an aggregate distortion

∑vi−1/Q
u=vL

du,c(lL, li) for the viewpoints in [vL, vi[.
The remaining viewpoints in [vi, vR[ will be synthesized at the best distortion Φ(vi, ri, b− ri). This leads
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Figure 14. Visual illustration of the DP solving method.

to the following recursion

Φ(vL, rL, b) = min
li:(vi,ri) s.t. vi>VL





vi−1/Q∑

u=vL

du,c(lL, li) + Φ(vi, ri, b− ri)



 . (10)

The optimization problem in (9) can therefore be solved with the following minimization

min
(v,r) s.t. v≤vL

Φ(v, r, B − r) (11)

that can be solved by DP [35].
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