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Abstract—This paper focuses on the crowd-annotation of an
ancient Maya glyph dataset derived from the three ancient
codices that survived up to date. More precisely, non-expert an-
notators are asked to segment glyph-blocks into their constituent
glyph entities. As a means of supervision, available glyph variants
are provided to the annotators during the crowdsourcing task.
Compared to object recognition in natural images or handwriting
transcription tasks, designing an engaging task and dealing
with crowd behavior is challenging in our case. This challenge
originates from the inherent complexity of Maya writing and an
incomplete understanding of the signs and semantics in the exist-
ing catalogs. We elaborate on the evolution of the crowdsourcing
task design, and discuss the choices for providing supervision
during the task. We analyze the distributions of similarity and
task difficulty scores, and the segmentation performance of the
crowd. A unique dataset of over 9000 Maya glyphs from 291
categories individually segmented from the three codices was
created and will be made publicly available thanks to this
process. This dataset lends itself to automatic glyph classification
tasks. We provide baseline methods for glyph classification using
traditional shape descriptors and convolutional neural networks.

Index Terms—crowdsourcing, Maya glyph, classification

I. INTRODUCTION

Crowdsourcing is an active area in multimedia to generate
labels for images and videos [30], [4], [37], [42], [45].
Tagging images, marking object boundaries, and describing
scenes or actions are use-cases for image understanding tasks
that require large-scale, collaboratively-collected datasets, e.g.
Imagenet [43] and MS COCO [32]. Similarly, optical char-
acter recognition and historical document transcription have
advanced thanks to the availability of large-scale datasets like
MNIST [31], IAM [33], [16], and many individual transcrip-
tion projects [19].

In Digital Humanities, dataset generation is a fundamental
step for document analysis tasks. Dataset generation requires
digitization, transcription, and correction of uncertain situa-
tions and of human errors during transcription. Several projects
have involved non-expert crowd workers in the different phases
of this process, such as scanning documents, locating regions
of interest, adding digital entries, verifying or editing other
contributors’ responses, etc.

In this paper, to study automatic algorithms to analyze Maya
glyph shapes, we aim to build a Maya individual codical glyph
database from the remaining codex resources. In this context,
we describe the collaborative work of non-experts by locating
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Fig. 1: Illustration of the segmentation of individual glyphs
out of a glyph-block.

the regions corresponding to individual glyphs within glyph-
blocks (see Fig. 1). The task is defined as marking individual
glyph regions within glyph-blocks given the set of variations of
each glyph sign contained in these blocks, which are obtained
from existing Maya catalogs created by experts [47], [35].
This task design was possible as the textual annotations of the
glyphs and the scanned images of the codices were previously
produced by experts.

Crowd engagement is a challenge while curating large-scale
datasets. Many large-scale digitization/transcription projects
are voluntary, due to the lack of resources and vast amount of
documents. An alternative approach is to leverage crowdsourc-
ing platforms such as Amazon Mechanical Turk or Crowd-
flower. These two approaches differ in terms of motivation
and engagement of the annotators, the number of annotators
available and, in general, the amount of time needed to achieve
the annotation task. With paid crowdsourcing platforms, the
annotation period is generally shorter, as the crowd is gathered
by the platform, and the monetary motivation is the driving
force. Therefore, careful task design and annotator behavior
analysis are required.

From a task perspective, glyph segmentation (illustrated in
Fig. 1) is more challenging than labeling or segmenting natural
images due to the following factors:

e Unfamiliarity. The participating crowd might have never
seen an ancient writing system before, whereas humans inter-
act with and learn about their surroundings from an early age,
and have an intuition for object categories (even unseen ones)
based on the similarities to already known objects.

e Visual Complexity. The Maya language can be visually
complex compared to other ancient writings. For instance,
Egyptian hieroglyphs are usually in the form of well-separated
glyphs. In Maya writings, glyph boundaries are shared be-
tween neighbors, the signs can exhibit many deformations,
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and some inner details are not always visible.

e Uncertainty. There are uncertainties about the categories
of some signs due to severe damage, incomplete understanding
of the changing shape of signs across different eras and places,
and unclear semantic relationships of non-frequent signs.

The focus of this work is on producing individual glyph
shape data from the three original Maya Codices (Dresden,
Madrid, Paris) via online crowdsourcing. We present the
crowdsourcing task design, investigating the effects of several
features like the task definition, the use of different classic
catalogs (Thompson and Macri-Vail) as glyph pattern models,
and the relations between the number of annotators, the sample
complexity, and the reliability of the generated ground truth.

The main goal of generating this glyph dataset is to enable
robust shape representation learning for automatic recognition
tasks. Utilizing such an automatic classification or retrieval
tool with reasonable accuracy, experts could identify the
category of new glyph samples faster than manually going
through catalogs. Furthermore, such shape representations can
be used as a quantitative similarity measure. In this context,
we map glyph samples into lower dimensional spaces (2-D)
based on their shape representations. Such kind of mapping
tools could help experts during catalog construction. This kind
of tools might also facilitate discussions among scholars as
part of the categorization of non-frequent glyph samples.

The contributions of this paper are three-fold:

1) Glyph segmentation crowdsourcing: Novel task account-
ing for fine-grain mapping of catalog variants to codex sam-
ples, and multi-way assessment of outcomes.

2) Dataset curation and creation: Construction of a new,
segmented 9000 glyph dataset that will be made publicly
available. To our knowledge, this will be the largest public
database of individual Maya glyphs.

3) Glyph representation: Assessing traditional shape de-
scriptors and representations transferred from deep convolu-
tional networks in a glyph classification task. Different settings
in the classification task illustrate the challenges of the new
dataset. We also mapped glyphs into 2-D space based on their
shape representations.

From our experiments, we observed that in spite of the glyph
complexity, two non-expert annotations are enough in the
majority of the cases to produce a consensual segmentation:
For around 85% of the glyph cases, two contributors agree on
the marked glyph area (overlapping more than 80%). We also
observe that in the later stages of the task, as the contributors
get exposed to more glyph data, the segmentation results
improve. Additionally, the baseline classification experiments
show that the standard transfer learning approach from deep
convolutional networks is promising even in the case of few
examples per class (around 80% average accuracy in 150-class
case). The adopted transfer learning approach with VGG-16
network outperforms traditional shape descriptors by a large
margin (around 22% to 37% absolute improvement).

The rest of the paper is organized in eight sections. Sec-
tion II describes the Maya writing system. Section III discusses
the related work on crowdsourcing and its applications in mul-
timedia, computer vision, and digital humanities. Section IV
describes the datasets used in our experiments. Section V
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Fig. 2: Selected Maya glyph samples from several categories
that illustrate the within-class variety (first two rows) and
between-class similarity (last row). Glyph images are provided
by Carlos Pallan Gayol.

explains the design and evolution of our crowdsourcing task.
In Section VI, the details of the experimental procedure are
provided. In Section VII, the annotations are analyzed with
respect to key aspects of the crowdsourcing task. Section VIII
presents the baseline glyph classification results obtained on
the dataset resulting from the crowdsourcing task. Finally,
Section IX concludes the paper.

II. MAYA WRITING

The ancient Maya civilization (around 2000 BC to 1600
AD) left a great amount of cultural heritage materials, such as
stone monument inscriptions, folded codex pages, or ceramic
items. The common ground of all these materials are the
Mayan hieroglyphs, in short glyphs, written on them. A glyph
is a unit sign of the Maya writing. A glyphblock is composed
of several glyphs. A typical page of a codex is composed
of many glyphblocks structured as a grid, and some other
pictorial elements. A codex is composed of several such pages.
In this paper, we focus only on decomposing the text region,
and more precisely, in segmenting individual glyphs out of
glyph-blocks. Note that in the three codices that we study here,
there is a maximum of six glyphs in a single block. This point
enables to envision having this segmentation task performed
by non-experts with carefully-designed support.

The main challenge of our task lies in the nature of the
data. Some glyphs are damaged or have many variations due
to space limitations, artistic reasons, and the evolving nature
of language, i.e., differences with respect to the era and place
in which glyphs were produced. Fig. 2 shows the variations
of some glyphs in the top two rows.

Another challenge of our study is lack of data, since there
are only three genuine codices today. Table I shows the
available elements in each of these codices. Among these
codices, the shape variation of the glyph categories is relatively
low. However, since the codices are from the post-classical era
(950-1539 AD), the writing may show both simplification and
variation compared to the examples found on monuments from
earlier times. Since these monument examples are dominant in
the glyph catalogs [47], [34], [35], it is difficult to recognize
the codex glyphs by just training a model on the catalog
examples or monument glyphs. These points motivate us to
prepare a crowdsourced glyph segmentation task.
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III. RELATED WORK

Crowdsourcing has found many applications in multimedia,
computer vision, and digital humanities. Below, we list several
successful cases, before discussing the main challenges related
to the task design, and the resulting annotation reliability.

Crowdsourcing in Multimedia and Computer Vision. Several
widely-used benchmarks have been produced via crowdsourc-
ing for recognition, detection, segmentation, and attribute
annotation tasks. These large-scale datasets enable to train
more capable models in multimedia and vision[43], [32].

Crowdworkers motivated by monetary rewards (in crowd-
sourcing platforms) as well as volunteers have been able to
generate adequate quality of content for generic object, scene,
and action recognition. There has been further crowd content
generation studies in sketch recognition [14] and even in
specialized areas such as biomedical imaging [21], [22], [28]
and astronomy [17].

Task Design. Gottlieb et. al. discuss the key elements in
designing crowdtasks for satisfactory outcomes, even for rel-
atively difficult tasks [20]. They emphasize the importance of
clear instructions, feedback mechanisms, and verification by
qualified annotators.

The typical crowdsourcing tasks follow an annotation-
correction-verification scheme. However, it may be challeng-
ing to apply this scheme to segmentation tasks [6]. Especially,
in our case, the annotators may not be familiar with the
hieroglyphic signs, or their perception of the shapes may differ
substantially, as workers might not have been exposed to such
visual data. In order to guarantee satisfactory outcomes, the
verification step may require an expert.

Crowdsourcing in Digital Humanities. Digitization and tran-
scription of historical documents with the help of crowdwork-
ers is a widely-studied task in Digital Humanities. A well-
known application of this task is the “re-captcha” paradigm
that utilizes automated document analysis methods while keep-
ing human intelligence in the loop [51]. Several decades of the
New York Times’ archives have been digitized in this way. In
similar transcription tasks [10], [9], and in archaeological re-
search on a participatory web environment [5], crowdsourcing
enabled to bring valuable historical sources to the digital era
for better preservation of cultural heritage as well as for further
analysis.

In preliminary work [7], we investigated the perception of
glyph shape by non-experts, e.g. whether they saw closed
contours as a separate glyph, or how they combined visual
components, assessing it in a controlled setting. The crowd-
workers were asked to localize glyphs with bounding boxes
in 50 glyph-blocks collected from monuments. Two scenarios
were considered, either by providing the number of glyphs
within a block or not. Using Amazon Mechanical Turk as
platform, block-based and worker-based objective analyses
were performed to assess the difficulty of glyph-block content
and the performance of workers. The results suggested that a
crowdsourced approach could be feasible for glyph-blocks of
moderate degrees of complexity. In this paper, we significantly
go beyond our first attempt, by designing an entirely new task
that exploit catalog information, visual examples, and glyph
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Fig. 3: The top row shows a cropped glyph-block (B1 from
fifth page and second t’ol of the Dresden codex) and its
cleaned image. The bottom row shows the individual glyphs
in the block. These are produced by experts.

variants that guide non-experts to produce arbitrary shape
segmentations, and use it to segment over 9000 individual
glyphs.

Glyph and Shape Recognition. For Maya glyph recogni-
tion, several shape representations have built upon traditional
knowledge-driven descriptors [41], [26]. These representations
are based on bag-of-words (BoW) that output the frequency
histograms of local shape descriptors. As shown in a similar
study on Egyptian glyphs [18], HOOSC [41] was a competitive
candidate among other traditional shape descriptors.

On the other hand, for shape encoding with neural networks,
a single-layer sparse autoencoder, which encodes the same
local regions as HOOSC, was shown to be competitive for
10-class monumental glyph classification task [8]. However,
this shallow representation was not representative enough for
other tasks, i.e. the sketch classification task proposed in [14].
Due to the scarcity of the strokes in thin sketch drawings and
the high variety of the drawings, the BoW frequencies of the
simple edge encodings in the shallow sparse encoder were
harder to capture than thicker glyph strokes. Complementary to
this finding, the “Sketch-a-Net” [54] illustrated that a modified
version of the AlexNet (in multiple scales and multiple tempo-
ral channels) can achieve high performance on the 250-class
sketch dataset of [14]. This model has fewer feature maps, yet
larger first layer convolution kernels compared to the AlexNet
[29], which is designed for natural images.

In the context of Maya glyph-block retrieval, Roman-Rangel
showed that the middle-layer activations (convS) of VGG
[46] outperform both the last-layer activations (fc-7), and the
bag-of-words representation of a traditional shape descriptor
(HOOSC) [40]. This is a motivating point for learning the
representations for Maya glyphs, and taking advantage of
existing pretrained networks.

IV. DATASETS

The data in our work are the glyph-blocks from three Maya
Codices. To provide supervision to non-experts in our task, we
also use the glyph signs from the Thompson and Macri-Vail
catalogs. The details of these datasets are given below.
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TABLE I: The number of elements in the three codices (DRE:
Dresden, MAD: Madrid, PAR: Paris).

# glyphs with
# pages | # blocks | # glyphs | annotation and
source image
DRE 72 2924 6932 6439
MAD 100 3254 7429 6910
PAR 18 774 1620 1373
ALL 190 6952 15981 14722

A. Maya Codex Glyphs

Our sources are high-resolution digital images from the
three existing Codices (Dresden [1], Madrid [2], and Paris
[3]), cropped to smaller units (pages, t’ols, and glyph-blocks),
and annotated with metadata. Images and annotations were
all provided by project partners in epigraphy. The metadata
of each glyph-block contains the name of the codex, page
number, t’ol number, reading order, and relative location in the
t’ol (row and column order, i.e., Al, B2, etc.). The metadata of
each glyph in each glyph-block contains its reading order, its
sign code from various catalogs (Thompson [47], Macri-Vail
[35], Evrenov [15], and Zimmermann [56]), its phonetic value,
and its damage level. The latter ranges from O (undecipherable)
to 4 (high quality), and indicates how identifiable the glyph is
according to the expert.

Table I summarizes the number of elements available from
the three Codices. Some pages of the Codices are highly
damaged. Even though there are, respectively, 76, 112, and 22
pages in our database, we only list the number of pages that
have at least one recognizable glyph in Table I. Similarly, we
have the records of 7047 glyph-blocks in total, however only
6952 of them have at least one recognizable glyph. In total,
14722 glyphs have known catalog annotations with cropped
glyph-block images.

Note that the epigraphy experts have not provided the indi-
vidual glyph images for all these glyphs, as the segmentation
of Codices into individual glyphs is demanding in terms of
time and effort. The experts upscale and apply some prepro-
cessing (i.e. unsharpening, and binarization) to block images
with commercial tools, which requires manual handling of
each block. Furthermore, deciding annotations of glyphs for
several catalogs, assigning identifiability ranking, and pro-
viding spellings are quite time-consuming. As the experts’
focus is on decipherment, only a very small proportion of
individual glyph segmentations has been previously produced
by them [26]. At the large scale, the experts provided only the
cropped block images (as in Fig. 3a) without binarization. The
details of this raw glyph-block dataset are documented in [25].
Therefore, in order to obtain the individual glyph regions in the
blocks, we designed a segmentation-oriented crowdsourcing
task.

B. Catalog Signs

The documentation of the ancient Maya writing started
during the Spanish conquest of Yucatan in the XV I*" century.
The first incomplete alphabet [12], [49] was created by asking

two locals how to write Spanish characters in Maya language
[52]. In the 1960s, Evrenov’s [15] and Thompson’s [47]
sign catalogs became important sources, suggesting syllabic
readings rather than character correspondences of the signs.
For historical reasons, Thompson’s taxonomy (main and affix
syllabic signs) became more influential than Evrenov’s. With
the advancement of the understanding of the semantics of the
signs, more modern catalogs emerged [34], [35].

The Thompson catalog has three main categories: affix,
main, and portrait signs. Macri-Vail taxonomy has 13 main
categories [35]. Six of them (animals, birds, body parts, hands,
human faces, and supernatural faces) are grouped semanti-
cally. There is a main category for numericals signs that are
composed of dots and bars. The rest are grouped based on
visual elements (square signs divided based on symmetry, and
elongated signs divided based on the number of components.

Since Thompson’s catalog was highly adopted for a long
time and Macri-Vail’s catalog has a modern taxonomy with
a focus on Codices signs, we use these two resources. The
fundamental difference between them is the emphasis given
to visual appearance and to semantics. Thompson is known to
categorize the glyphs with respect to similarity based on hand-
prepared graphic cards. Macri-Vail consider co-occurrences of
the signs and modern knowledge of the semantics and usage
of some signs rather than visual cues only. This leads to a
higher visual within-class dissimilarity of Macri-Vail signs.
For instance, the variants in the AMB category are spread
over three Thompson categories (T534 main sign, T140 and
T178 affix signs.

The individual glyph variants that we used in our work were
obtained through manual segmentation of high-quality scanned
pages of these two catalogs by the partners in epigraphy. As
some of the numeric signs were missing in these catalogs, we
manually generated them by combination of dots and lines
from existing number signs.

Utilizing these variants in a crowdsourcing task has not been
previously attempted. Gathering crowd-generated assessments
of the similarity between glyph variants and codex glyph
samples is valuable in terms of eliminating one-man errors
and providing finer-grained class information.

V. CROWDSOURCING TASK

Automatic glyph recognition starts with obtaining seg-
mented, cleaned, and binarized glyph data. We investigated
whether the first part of this preprocessing task (glyph seg-
mentation) can be crowdsourced. In our work, non-experts
were asked to segment individual glyphs from the original
glyph-block sources. Our experimental design evolved over
three stages (preliminary, small, large). In the preliminary
stage, we segmented few glyphs (27 from randomly-chosen
10 blocks) with two different task designs. This stage helped
to define a final task design. The small stage consists of
segmenting glyphs that have ground truth (a subset of glyphs
from [26]). This stage helped to judge which catalog was
more helpful to non-experts in our task. At the large stage,
we conducted the segmentation task for over 10K glyphs.

In this section, we explain the process that led to the design
of the final task. First, we describe the requirements and
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present the platform used for experiments. We then discuss
the early experience on the task design. We finally describe
the final version of the task.

A. Requirements

Given the annotations in the glyph-blocks (provided by
epigraphy experts), and the example sign variants (taken
from the catalogs), we expect crowdworkers to segment each
individual sign in a block. As Maya glyphs can be found
in articulated forms, i.e. hand signs, cropping glyph regions
via bounding boxes may end up with inclusion of some parts
of the neighbor glyphs. Therefore, for better localization, we
designed the segmentation process to be done as free-polygons
rather than bounding boxes.

To guide the process, we show workers the different variants
of the sign to be segmented. As validation information, we
would like to know what sign variant the annotator chose as
template to segment each glyph, and how similar the chosen
variant and the marked region. This can be used to verify the
expert annotations and detect outliers, in case when none of
the provided sign variants match the block content. To account
for this, we propose a "None” option along with the existing
sign variants.

Another point to analyze is the perception of damage by
non-experts. Even though experts have provided a damage
score for each glyph, this score shows how decipherable the
glyph is, and so it is affected by the glyph co-occurrence and
semantics. Non-expert perception of damage depends solely
on visual appearance. This helps to obtain a damage score
that is not affected by prior expert knowledge. The score can
also be used as a hint to assess the task difficulty.

The difficulty of our task is not uniform across categories.
According to the visual similarity to the variants and the
damage of the glyph, the task can be ambiguous. To assess
this, we ask workers to provide a score for the task difficulty.

B. Platform

Terminology. We utilized the Crowdflower (CF) platform for
our experiments. In CF terminology, a job refers to the whole
annotation process. An annotation unit is called task. A page
is a set of unit tasks that a contributor needs to complete to get
paid. N; denotes the number of tasks in a page. The number of
judgments per task N; corresponds to the number of workers
that should annotate a single task. Workers in CF are called
contributors. There are three levels of contributors. The level
of a contributor is based on the expertise and performance in
previous tasks.

To set up a job, a job owner must first define the dataset to
be annotated. The job owner designs the task by specifying the
queries that the contributors are asked to complete. The queries
in the task can vary from simple text input to performing
image annotations. After the task design is finalized, the
job owner can curate test questions (TQ) to enable the quiz
mode in the job to ensure the quality of the results. Test
questions are prepared by the job owner by listing acceptable
answers for each query in the task. If the contributor gives an
answer out of the acceptable answers, the contributor fails the

test question. For the image annotation query, the job owner
provides a ground truth polygon over the image and sets a
minimum acceptable intersection-over-union (IU) threshold.
The TU measure between segment S and ground truth G is
defined as follows:

_1sng|
- SuG|

If a contributor marks a region whose overlap with the ground
truth region is below the IU threshold, the contributor fails
the test question and cannot take on more tasks in the job.
Contributors have to pass one page of the task in quiz mode
before being admitted to the work mode, in which they work
on the actual set of questions (AQ) and get paid. There is
also a test question on each page in work mode. This check
is effective to eliminate random answers.

The platform provides other quality control checks. Job
owners can set the minimum time to be spent on the task,
the minimum accuracy that a contributor needs to achieve,
and the maximum number of tasks that can be annotated by
a contributor. After creating the answers for the test questions
and fixing the job settings, the job owner launches the job,
and can monitor the progress of the crowd workers.
Channels. CF has its own subscribers, referred to as the
Crowdflower-elite (CF-elite) channel. Apart from that, workers
from other crowdsourcing platforms (also called channels)
can also link their accounts and work on available CF jobs.
This allows crowd diversity in the platform. These external
platforms can be large-scale, with global subscribers such as
ClixSense, or can be medium- or small-scale with a focused
crowd in particular countries. The choice of platforms is given
to the job owner.

v ey

C. Preliminary Stage: Design Experiences.

In the preliminary stage, we conducted four experiments
before deciding the final task design and settings. The different
settings are given in Table II, and discussed below.
Block-based design vs. glyph-based design. In the first two
experiments, the initial design (shown in Fig. 4) aimed to
collect all glyph segmentations of a glyph-block in the same
task (one glyph after another in separate drawing panels). This
initial design proved to be confusing. Some workers marked
all the glyph regions in the first drawing pane, instead of
drawing them separately. Another source of confusion was
the order of the glyphs. Learning from this, we simplified
the task as individual glyph drawing. As a result, the average
f-measure between the convex hull of a crowd-generated
segmentation and the ground truth improved by more than
10% (see Table II), when moving from multi glyph annotations
to the single glyph case. More specifically, the f-measure of
segment S and ground truth GG is defined based on precision
p and recall r as follows:

pxT
= 2% ,
/ p+r

|SNG] S NG|
= N r =
5] G|
Number of glyph variants. We limited the number of glyph
variants shown to the contributors to keep them focused on the

2
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TABLE II: Preliminary stage segmentation results using variants of Thompson catalog (T).

Catalog Block-based | # Judgments .# Tasks | Payment Min level of Allowed Average

Exp. Variants or per task N a page | per Page | ., htributors Channels f-measure
glyph-based (V) (V) $) (%)
1 T Block-based 10 10 0.15 Medium All 75.2
2 T Block-based 5 2 0.30 High All 79.5
3 T Glyph-based 5 2 0.10 High All except CF-elite 89.7
4 T Glyph-based 5 2 0.10 High CF-elite 92.0

segmentation task. At first, we experimented with a maximum
of three variants chosen a priori by visual clustering (12% of
the signs in the Thompson catalog had more than 3 variants).
After empirically verifying that increasing the number of
provided variants did not hinder worker performance overall,
and gave more visual cues about the possible variations, we
decided to provide a maximum of six variants (if available).

Design of feedback mechanisms. In the initial design, we
asked contributors about glyph damage level as well as wrong
or missing annotations. This part was often omitted by the
workers. From this experience, we decided to keep only the
most direct rating factors (damage and task difficulty). We
also included a text box for optional comments. Received
comments included remarks about rotations of the glyph
variants, uncertainty about the damage rating, and choice of
the variants. Based on these comments, we improved the
instructions.

Crowd expertise, number of tasks per page, and payment.
In the first experiment, we allowed contributors with medium-
and high-level of expertise and set the payment per page as
$0.15. We hypothesized that 10 tasks per page were too many
considering the payment. We observed that only medium-level
contributors took the job, and only 60.9% of the glyph segmen-
tations were saved, with an average f-measure of 75.2%. In
the second experiment, we decreased the number of tasks per
page to 2, set the payment per page to $0.30, and only allowed
expert contributors (level-3). This resulted in 79.9% saved
segmentations with average f-measure of 79.5%. Considering
that there are three glyphs in glyph-blocks in average, we
set the payment to $0.10 for the last two single glyph-based
experiments to maintain payment/time ratio. Together with the
simplified design and the introduction of test questions, this
payment and level of expertise brought the saved segmentation
ratio very close to 100% (97.3% for the third experiment and
100% for the fourth one) with an average f-measure of around
90%.

Number of judgments. In the first experiment, we started with
10 judgment per task (IN; = 10). Based on it, we decided
to collect fewer judgments of higher quality. Therefore, we
decreased N; to 5 in the next experiments, and improved the
level of expertise and payment settings as explained above.

Crowdflower-elite channel vs. other channels. We experi-
mented with workers from different channels (CF-elite channel
compared to other channels) in the last two experiments. With
the simplified individual glyph-based design, and with level-3
contributors, we did not experience a significant difference in
the segmentation scores from these separate channels (89.7%

There are 3glyphs in the glyph block below on the left.
On the right, we shows the variants that you may encounter as you do the job.
Please have aquick look and proceed.

Variants for Glyph 1

&) | BN

Variants for Glyph 2

Variants for Glyph 3

Locate Glyph 1

variant 1

variant 2

0 Drawn

g
i

Closest glyph variant:
variant 1
variant 2
None

Similarity:

Very Different

Very Similar

Overall, how easy was to find the glyphs?
1 2 3 4 5

Very Easy Very Hard

Mark any of the following statements if they apply to this image.
I saw more glyphs than the number the instructions told me
I saw less glyphs than the number the instructions told me
1 saw some glyphs as being inside each other
The glyph variants did not match what | saw in the image
The image is very damaged
Other

Locate Glyph 2

Locate Glyph 3
Fig. 4: Initial block-based task design, illustrating only the
first glyph in the block for brevity. Glyph variant images are
provided by Carlos Pallan Gayol.

vs. 92%, see Table II). As a consequence, we decided to use
all the channels in the following stages.

D. Final Task

1) Overview: Based on the outcome of the preliminary
stage, we designed the final task comprising two parts (Fig. 5).
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Fig. 5: Final task design. Glyph variant images are provided
by Carlos Palldn Gayol.

In the first one, based on the shown variants, contributors were
asked to segment (draw a tight free-hand polygon) a similar
region in the glyph-block. In the second part, contributors were
asked to indicate which variant they used as template to do
the segmentation, and to rate how similar the variant was to
the segmented region, how damaged the glyph region was,
and how easy it was to complete the task. These ratings are
designed on a scale between 1 and 5.

2) Training: We provided a detailed description of the
tasks, a how-to Youtube video, and positive/negative examples
of segmentation, example of damage levels, and explained that
segmentation quality would be checked.

3) Drawing: We used the image annotation instance tool in
Crowdflower for free polygon drawing over the glyph-block
images. This tool allows correction and multiple polygons,
which is useful for glyph repetition cases.

4) Evaluation: We selected the quiz mode for the jobs: we
provided tasks with known answers (ground truth polygons)
and a quality threshold on intersection-over-union (IU) mea-
sure (see Section V-B) to filter out spammers and increase
quality.

VI. EXPERIMENTAL PROTOCOL

Given the decisions made during the preliminary stage, we
first conducted the small-scale stage over the glyphs which
have ground truth, and then we run the large-scale stage. This
section explains the settings of these two stages.

TABLE III: Experimental settings for the small-scale stage
(S-1 and S-2) and the large-scale stage (L-1 and L-2).
# Judg. | # Tasks | Pay.
Cat. per per per 118}
Exp. Var. task page | page # pages th.
(V) (V) $)
S-1 T 5 2 0.10 338 0.7
S-2 | MV 5 2 0.10 344 0.7
L-1 | MV 2 4 0.16 1670 0.7
L2 | MV 2 4 0.16 1732 0.8

A. Small-scale stage

In this stage, we run two experiments whose parameters are
summarized in Table III. For the 823 individual glyphs (322
blocks) that have expert ground truth masks, we set up the
task with Thompson (T) and Macri-Vail (MV) references of
the glyphs. In other words, we display the glyph variants from
either the Thompson or the Macri-Vail catalogs.

In both cases, the number of judgments N; was set to
5. The minimum acceptable IU score was set to 0.7. The
minimum time to be spent on a page was set to 30 seconds.
The maximum number of judgments by a single contributor
was set to 12. As a result, a single contributor annotated 5
glyphs from the actual target set and also answered 7 test
questions.

B. Large-scale stage

In this stage, we define the job for all annotated glyphs
for which no expert segmentation is available. To reduce
the annotation cost and having confirmed that in general
most of the glyphs had a high segmentation consensus (see
small-scale stage analysis in Section VII-A), we decided to
collect only two judgments per glyph, and collect more only
if disagreement was detected. We decided to exclude the
following glyphs from the annotation:

e Too damaged glyphs according to the damage scores by
the expert and visual post-inspection of a team member,

e Repetition cases (multiple instances of the same glyph in
the block),

e Infix cases (two separate glyphs merged by modern
decipherment for semantic reasons).

As a result, we obtained 10126 glyphs to be annotated (out
of 14722 glyphs from the available segmented glyph-block
images).

For this stage, we only relied on the Macri-Vail catalog
which is a more modern resource in epigraphy.

We set the minimum IU threshold to 0.7 for the first
half of the glyphs (5000 glyphs) and 0.8 for the rest. This
threshold ensured that the contributors did a good job on the
test questions, and presumably on the actual questions, so
that high consensus on the collected segmentations for each
glyph can be obtained. We observed that we need contributors
with higher performance, as we depend on the segmentations
coming from only two contributors per glyph in this setting.
That is why we increased the minimum IU threshold for the
second half of the glyphs. The minimum time spent on the task



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 8, SEPTEMBER 2017

PR NN
S & 5 o
=
<

ercent:
=N
o o o
BN oW
o o o &

ag

w

]
percentage of glyphs

20 40 60 80 100
percentage of annotators
that chose the most-voted variant

(@) (b)

-

2 3 4 5 6
number of variants

70

~
o

-
260 -

550

f glyphs
w o
S 3

g
<

S 40

ge
S

© 30

£ I IH I
N [n] D IU
1 2 3 4 5

very different very similar
average similarity to the chosen variant

(©) (d

Fig. 6: Distributions of average ratings in the small-scale stage
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was set to 30 seconds. The maximum number of judgments
by a single contributor was set to 48.

C. Segmentation Evaluation Procedure

Evaluation was performed by comparing the ground truth
of the glyphs with the crowd segmentations for the small-
scale stage. This is detailed in Section VII-A. For the large-
scale stage, we compare the segmentations of the contributors
against each other. We also checked problematic cases in
which the f-measure agreement was less than 0.8 among
contributors as an internal task in Crowdflower platform.

VII. CROWDSOURCED ANNOTATION ANALYSIS

In this section, the crowd annotations for the small-scale
and large-scale stages are presented in terms of the analysis
of ratings and segmentations.

A. Small-Scale Stage

As described in Section VI-A, we conducted two exper-
iments in small-scale stage, with Thompson (T), and with
Macri-Vail (MV) references of the glyphs. We analyze the
annotations from these experiments w.r.t. four aspects: variant
selection, damage rating, segmentation analysis, and sensitivity
to the number of annotators.

1) Variant Selection: We compare the agreement for the
variant selection in the two experiments. First, note that the
MYV catalog contains the glyph variants from both codices and
monuments, whereas the variants in the Thompson catalog
come only from monuments. Typically, monumental glyphs
have more details and are visually more complex than codical
glyphs. In this sense, the variants from the Thompson catalog
are in general more different from the codices glyphs than the
MYV variants.

The final variant for each glyph was selected by majority
voting among the contributors’ responses. Fig. 6a shows the

©

Fig. 7: (a) Convex hull of the ground truth for the glyph
on the right (red line, blue filling), (b) gray-scale image
of the aggregated segmentations, and (c) final aggregated
segmentation.
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Fig. 8: (a) The f-measure distributions of overlap between
crowd segmentations and ground truth in actual question set
(AQ, blue) and test question set (TQ, orange) with the MV
variants in the small-scale stage. (b) The mean f-measure
agreements for the glyphs in large-scale stage.

percentage of contributors that selected the most-voted variant
for the experiments with the Thompson (blue) and Macri-
Vail (yellow) variants. We observe that all of the contributors
agreed on a variant for 67.2% of the glyphs when the MV
variants (yellow) were shown (61.2% for the T case).

Fig. 6b shows the histogram of the number of variants for
the annotated glyph categories. The median values are 2 and
4 for T (blue) and MV (yellow) variants, respectively. Thus,
even though there were in general more variants available, for
the MV cases full agreement was higher (Fig. 6a).

A related result is illustrated in Fig. 6¢c. Contributors gave
higher ratings of visual similarity to the MV variants rather
than T variants (2.98 vs. 2.46 mean similarity). Moreover, the
contributors found the task harder in the case of T variants
(Fig. 6d). These differences in similarity and difficulty ratings
were significant as measured with Kolmogorov-Smirnov non-
parametric hypothesis testing [36].

In summary, we observed that MV-variant tasks are rated
easier, and reach higher consensus rates than the T-variant
cases.

2) Damage Rating: The average damage ratings (scale 1 to
5) by the crowd and the damage rating assigned by the experts
are considerably different. For the experts, more than 90% of
the glyphs in this set were easily recognizable (5 in the range 1
to 5). However, the damage perception of the non-experts was
focused around the middle of the scale. For 64% of the glyphs,
the contributors selected “moderate-damage” (3 in the range
1 to 5) for both T and MV cases. This can be interpreted as
the raw block crops being visually noisy in most of the cases,
even though for the experts the glyphs are in good conditions
to be identified.
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Fig. 9: Sorted average f-measure of aggregated segmentations for the unique glyph categories in the small-scale stage. Green
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TABLE IV: Average f-measure values of aggregated segmen-
tations obtained with Thompson (T) and Macri-Vail (MV)
variants in small-scale stage for test questions (TQ) and actual
questions (AQ).

Catalog Set S vs. GT S-CH vs.
Variants (%) GT-CH (%)
T TQ 65.7 96.6
MV TQ 65.5 97.3
T AQ 59.1 87.5
MV AQ 59.9 88.6
T All 60.2 89.0
MV All 60.8 89.9

3) Segmentation Analysis: For each glyph, an aggregated
mask is generated from the crowd segmentation masks, such
that at least half of the contributors (i.e, at least 3) marked an
image point as belonging to the glyph region as illustrated in
Fig. 7.

The evaluation is performed by comparing (1) the aggre-
gated segment against the binary ground truth (S vs. GT);
and (2) the convex hull of the aggregated segment against the
convex hull of the ground truth (S-CH vs. GT-CH). Results are
shown in Table IV. We observed that most of the contributors
mark the glyph regions without going into fine contour details,
as it can be quite time-consuming. This is acceptable, as the
main interest is in the regions with the target glyph rather
than with very detailed contours. Therefore, we decided to
use convex hulls for further evaluation in Figs 8-9.

Table IV summarizes the comparative segmentation perfor-
mance with the help of the two catalogs. It is observed that the
MYV variants helped to bring out marginally better aggregate
segmentations. The table also reports the mean scores when
we consider the glyphs used as test questions (TQ) and actual
questions (AQ) as separate sets. The f-measure distributions
of TQ and AQ sets in the MV variants cases are plotted in
Fig. 8 (the T variants case is similar and thus not shown). We
observe that the majority of the glyphs are well segmented.
As we manually chose the test questions to be relatively easy
to annotate, we observe a higher mean f-measure for TQ
compared to AQ.

Fig. 9 illustrates the boxplots of the sorted average f-score
values of 122 non-numerical MV classes (left for S vs. GT,
and right for S-CH vs. GT-CH). While most of the classes are
well segmented, few of them have low average f-measure (5

classes have an average f-measure less than 40%). We observe
that these classes are visually more complex and composed of
several parts. When using the convex hull comparison, only
ten classes have an average f-score less than 70%.

4) Sensitivity to The Number of Annotators: We simulated
the performance for the case of fewer annotators. Fig. 10
shows the average f-measure values for the aggregated masks
with different number of segmentations (2-5). We aggregated a
maximum of 10 combinations of randomly selected segmenta-
tions, and took the mean f-score of these aggregated masks for
each glyph. Obtaining aggregated masks with 3 segmentations
(MV-3) rather than 5 (MV-5) resulted in a marginal decrease
in the average f-score (blue to pink bars).

Furthermore, we analyzed the intersection of two segmenta-
tions either for the randomly selected ones (MV-2 yellow bars)
or in the case of above 0.8 f-measure agreement (MV-2 green
bars). In the latter case, we obtained very similar average f-
score results to the ones with 3-segmentations. The standard
deviation of the f-measures obtained with randomly sampled
2-annotations are below 0.1 and are usually acceptable. These
observations motivated us to perform the large-scale stage with
two annotations per glyph and validate the segmentation when
the agreement was higher than 0.8.

5) Conclusion: 368 and 397 unique contributors partic-
ipated to the small-scale stage for the T-variant and MV-
variant cases, respectively. The corresponding average number
of glyph annotations per contributor were 7.3 and 8.9 (median
5 and 6, respectively). This evaluation shows that the defined
task is simple enough for a non-expert to produce satisfactory
results. Even though the contributors may get confused, overall
the performance was high enough to proceed with the large-
scale stage.

Svs. GT

S-CH vs. GT-CH

Fig. 10: Mean f-measure values of the aggregated masks
obtained using 5 (blue), 3 (pink), 2 (yellow) segmentations,
and 2 segmentations that have at least 0.8 f-measure agreement
(green) per glyph with MV variants.
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Fig. 11: Distributions of the ratings in the large-scale stage.

B. Large-Scale Stage

Here, we analyze the results obtained for the large-scale
stage. We obtained 21907 annotations containing 20982 saved
segmentations.

1) Glyph Variant Selection: Fig. 11a shows that the first
variant was chosen in 73.2% of the annotations. This is not
surprising as usually the two first variants in the Macri-Vail
catalog are instances directly taken from the codices, and
the others are drawings of more complex monumental glyphs
taken from the Macri-Looper catalog [34]. In 7.7% of the
annotations, the “none of the variants” option was chosen.

For 23.2% of the annotations, the contributors found that
the chosen variant looked different or very different than the
glyph they had segmented. On the other hand, only 10.5%
of the annotations are marked as “very similar.”” The reason
behind it may be the tendency of workers to be conservative
about the visual similarity scale, or indeed due to the visual
differences of the glyph regions and the variants.

2) Task Difficulty and Glyph Damage: For the damage
ratings, the general tendency of the contributors (41.9% of
the annotations) was to give an average score. However,
there are still cases marked as “damaged” or “very damaged”
(30.6%), even though we provided glyph cases that are in good
condition according to the experts. We believe that workers
give relative ratings in the full-scale according to the examples
they have previously seen.

In terms of task difficulty, only 16.9% of the annotations
have “hard” or “very hard’ ratings. This is positive feedback
from the crowd about the perception of the task complexity.

3) Segmentation Analysis: Fig. 8b shows the overall f-
measure agreement distribution for the large-scale set.
Verification. In this step, we inspected the segmentations to
spot problematic cases. For the cases with f-measure agree-
ment above 0.8, there was a small portion of glyphs (318 out
of 8229), in which both contributors marked another region
as the glyph area. In the cases with low agreement (1991
glyphs with f-measure below 0.8), we checked if the individual
segmentations were usable. In these ways, we exploited all the
possible useful segmentations.

2S2

5O

(©

Fig. 12: Confused segmentations from the large-scale stage
due to (a) similar glyphs in the block, and damaged instances,
(b-c) visually-confusing variants, (d) dissimilar glyphs. Red
and green colors indicate the markings of the first and the
second worker, respectively.

Minimum IU Threshold. As described in Section VI-B, for
the first half of the glyphs in the large-scale stage, the mini-
mum intersection-over-union measure between the annotator’s
segmentation and the ground truth of the test questions was set
to 0.7. This threshold was increased to 0.8 for the rest of the
glyphs. With this more strict threshold, we observed a 3.8%
increase in average median f-measure agreement (from 90.2%
to 94.0%) and a 5.7% increase in average mean f-measure
agreement (from 82.1% to 87.7%). Overall, the obtained
segmentations are of high quality.

Challenging Cases. The difficulty of our task is not uniform
across the glyph instances. Fig. 12 illustrates some of the
cases with high disagreement between segmentations. The
main reasons for disagreement are:

e Glyph complexity: Glyphs with a large convex area are
easier to segment than concave and discontinuous glyphs, i.e.
with many separate parts. In Fig. 12c, one contributor selected
a concave large glyph (green) somehow resembling the first
variant instead of the red target region.

e Confusion due to variants: Some variants are a subset or
superset of others (i.e., 252), as shown in Fig. 12b.

e Dissimilarity between the target region and the variants:
We identify three subcases.

o Target sample not covered by catalog variants. In
Fig. 12d, the target region is missed by all contributors, and
the neighboring glyphs were marked instead.

o Partial dissimilarity of the glyph. Some glyphs exhibit
partial elements different to the variants (Fig. 12b).

o Wrong class annotation. In the process of labeling a
glyph with the codes from several catalogs, manual mislabel-
ing is inevitable. We were able to identify few such cases.

e Mismatch of the damage rating between experts and non-
experts due to different use of context or visual completeness.
In Fig. 12a, none of the contributors marked the target region,
as the target region is either damaged or lacks partial details.

e Similarity to other glyphs in the block. In Fig. 12a, even
though the target glyph belongs to class AA1, not HE6, the
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TABLE V: The number of glyphs for the classification tasks.

Number of classes
10 30 50 100 150
Number min 211 83 50 20 5
of mean 255.7 | 176.16 | 132.66 | 81.19 | 57.74
samples median | 234.5 172.5 101 49.5 26.5
total 2557 5285 6633 8119 | 8661

outline of the neighboring glyph is quite similar to the target
region, and the visual difference is subtle.

4) Conclusion: 328 unique contributors participated to the
large-scale stage. The average number of glyph annotations
per contributor was 66.8 (median 33). This stage produced
satisfactory outcomes with two non-experts per sample and
minimal manual verification. Overall, we obtained valid seg-
ments for 9119 glyphs (together with the ones from the small-
scale stage) that are spread over 291 MV categories, with
the average f-measure agreement 0.914. Most of these valid
segments (8661 out of 9119) belong to the most frequent 150
classes in our dataset. We used these aggregated valid seg-
ments in the classification task described in the next section.

VIII. BASELINE CLASSIFICATION EXPERIMENTS

We now illustrate how our dataset can be used in glyph
classification using standard methods.

A. Data Preparation

Our goal is to define a baseline method that highlights
challenges and possible classification tasks for our dataset.
To assess the difficulty of our dataset, we experimented with
different number of classes (the most frequent ones). We
considered glyphs with at least one valid segmentation. We
have 11 classes with more than 200 such glyphs, whereas 52
classes have just one such glyph. Table V shows the number
of glyphs for each experimental setting (the maximum number
is 384). For each glyph, to obtain a square crop centered on
the aggregated binary mask, we applied the following steps.

e Dilation: We dilated the aggregated mask in case of
segmentation not covering all boundary pixels. We set the
dilation dynamically as 1/32 of the long edge size of the
bounding box.

e Color filling: We sampled 3 red-green-blue (RGB) col-
ors from background areas of the codices. Additionally, we
computed a dynamic RGB value from each block image as
0.65 * threshold using Otsu’s method [38]. In the need of
padding, we filled the areas with these RGB values. Note that
this step quadruples the number of samples per class.

e Padding: For convenience during convolution, we applied
padding around all the edges for 1/6 of the long edge size of
the dilated aggregated mask. Then, we padded the short edge
to make the final crop square-sized.

e Scaling: We scaled all processed square crops to 224 x 224
pixels.

After these preprocessing steps, we shuffled and divided
each set of glyphs to training (60%), validation (20%), and
test sets (20%) for five folds. We report the average accuracies
among the 5-folds.

Class

Representation» *probabilities

B convolution (1x1) B Dense (fully-connected)
B ReLU activation
([ Batch normalization [ Dropout
Fig. 13: The shallow CNN model for classification of the
representations.

[0 softmax activation

1) Sampling Strategy: We refer to sampling as selecting
a predetermined number of data samples. In this context,
we use the term of original sampling, when we employ all
the available samples as shown in the last row of Table V.
Furthermore, to handle the data imbalance issue among the
categories, we considered undersampling and oversampling
as alternative strategies. For undersampling, we randomly
picked the same number of samples per each class in each
experiment (based on the minimum numbers in Table V, 200,
80, 48, 20, and 5, respectively). For oversampling, we applied
random geometric data augmentation, comprising rotation
(within [—15,15] degrees), vertical and horizontal translation
(£0.1x image width), and zooming (scale within [0.8, 1.2]).
We oversampled the existing examples such that each class
had 1000 training, 300 validation, and 300 testing samples.
Therefore these oversampled sets were a mix of original data
and synthetic data.

B. Methodology

To assess the shape representations for glyph recognition
tasks, we evaluated (a) two traditional shape descriptors, i.e.
the bag-of-words representation of a local shape descriptor
(HOOSC) [41], and a multi-level HOG [11], and (b) the
knowledge transfer approach from different pretrained net-
works [13], [44]. We describe each of these methods below.

1) Traditional Shape Descriptors: For the bag-of-words on
the HOOSC descriptors, we followed the same pipeline as
proposed in [26] with an additional normalization factor at
the end. The steps are as follows.

HOOSC Descriptor Extraction. After binarizing the glyph
segments via global Otsu’s method [38] (threshold is deter-
mined on the corresponding glyph-block image), and applying
morphological operations (i.e. closing), we obtain the glyph
skeletons. Skeletons are used to select pivot points, and we
compute the HOOSC descriptor around each pivot point. To
define the local neighborhood while computing the HOOSC
descriptor, we used 2-rings and the whole glyph context. The
HOOSC descriptor around a pivot point counts the normalized
frequencies of the skeleton points in two radial circles (8 orien-
tations), and quantize them in 8 bins. This process produces
a 128-dimensional local descriptor around each pivot point.
We did not consider concatenating relative spatial location of
the pivots here. We randomly selected 400 pivots or more
(0.1 * Ngpetetonpoints) from each glyph skeleton if possible,
otherwise we used all the skeleton points as pivots.

After extracting the local HOOSC descriptors for each
glyph, we sampled 80% of the glyphs randomly. From this
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TABLE VI: Average classification accuracies on the original
sets with a linear SVM (S) and the shallow CNN (N) in Fig.13.

Original Sampling

=
Number of classes
@ -
10 30 50 100 150 i,g@;%

Moddl | S | N [ S [N | S [N | S [ N[ S [N @“@
HOOSC | 70.1 | 69.8 | 574 | 57.8 | 49.5 | 50.1 | 44.0 | 43.1 | 39.7 | 403

HOG 672 | 71.1 | 528 | 568 | 460 | 503 | 41.8 | 445 | 392 | 414 =
SaN.B | 816 | 857 | 705 | 767 | 635 | 716 | 582 | 660 | 56.1 | 634 c =2

SaN_RGB | 844 | 886 | 747 | 81.0 | 702 | 77.0 | 652 | 73.0 | 625 | 70.1 — p—

VGGI6 | 92.0 | 91.8 | 89.9 | 89.0 | 86.6 | 84.2 | 82.6 | 823 | 80.0 | 79.2 é@rf oS

R50 757 | 817 | 654 | 720 | 51.8 | 68.1 | 460 | 632 | 41.5 | 59.5 ’

set of glyphs, we sampled 10% of the HOOSC descriptors of
each glyph to build the dictionary by applying k-means with
4000 cluster centers.

After computing the dictionary with vocabulary size 4000,
we assign each HOOSC descriptor of each glyph to their
closest cluster center (or word in the dictionary) with L1
distance. Therefore, for each glyph, we obtain a codebook that
corresponds to the frequencies of closest words of its HOOSC
descriptors in the dictionary. The final representation HOOSC-
BoW has 4000 dimensions.

Multi-Level HOG Descriptor Extraction. We concate-
nated the histogram of orientation features at two-levels. We
computed the HOG with 13 x 13 and 24 x 24 pixels cell
sizes and 4 blocks in each cell with 9 orientations. Since
our images have 224 pixel image size, we ended up with
16 x 16 + 8 x 8 = 320 cells, and 320 x4 x* 9 = 11520 feature
dimension for each image.

Normalization. Due to the nature of the BoW computa-
tion, i.e. hard-assignment, the HOOSC-BoW representation
is distributed among the 4000 dimensions with a constraint
on the dimensions summing up to 1. A normalization of
this representation with a scaling factor is needed to obtain
a reasonable comparison with CNN activations. Therefore,
we first normalized the BoW vectors of each glyph with the
corresponding max value, i.e. making the max value of each
vector equal to 1, and then scaled the BoW vectors with a
constant scalar to match the maximum activation value of the
pretrained CNN features. A similar normalization is applied
to the HOG features.

Classification. The HOOSC-BoW and multi-level HOG
features are used as input to a shallow neural network (Fig. 13)
with two fully-connected (FC) layers. The first FC layer
has 1024 filters. We applied ReLU activation between two
FC layers as well as batch normalization [27], and dropout
[24] method with 0.5 rate. The final class probabilities are
determined by the softmax activation at the end. Additionally,
we assessed the representations with a standard linear support
vector machine (SVM) as well.

2) Pretrained CNN Features: CNNs pretrained on large-
scale datasets, i.e. ImageNet, are used as feature extractors
by feedforwarding the image of interest, and gathering the
activations at different layers of the network [13], [44], [53],
[48], [39], [55]. The penultimate activations before softmax
classifier have been reported as good baselines for transferring
knowledge in several vision tasks [13], [44]. Furthermore, the
middle-layer activations are more generic than the last-layer

Fig. 14: Partial visualization of the 2S2 glyphs via t-SNE
algoritm shows the separation of glyphs corresponding to two
different variants (see Fig.12b, blue cluster for the first, pink
cluster for the second variant).

ones, and may be more applicable to the data with different
nature (e.g. man-made vs. natural objects) [53].

With this motivation, we forward the glyph segments in
our dataset through a pretrained network, and collect the
activations at the end of the last convolutional block. We
consider these activations as our pretrained CNN features.
Considered Networks. We considered the VGG-16 network
[46] and ResNet-50 [23] pretrained on ImageNet dataset, and
the Sketch-a-Net [54] pretrained on 250-class binary sketch
images [14].

VGG-16 is a 16-layer CNN model, shown to be competitive
on the ImageNet dataset before the inception module and
residual connections were introduced. We passed our RGB
glyph images from the pretrained VGG-16, and extracted the
activations from the last (5'*) convolutional layer. Similarly,
for the ResNet50, we extracted the activations from the last
global average pooling layer (just before the FC layer and
softmax classifier).

Sketch-a-Net (SaN) is adapted from the AlexNet model [29]
for handling sparse sketch images. We retrained the single-
scale single-channel version of the SaN model: adding batch
normalization (BN) layer [27] after each convolutional and
dense layer. The modified SaN obtained competitive results on
a random split of the sketch dataset (72.2% accuracy). We used
this model to extract the activations of the binarized version of
our glyph images. Similarly, we retrained another SaN with the
fake-colored sketch images (filled with same RGB values that
are used to populate our glyph dataset). We passed our glyph

TABLE VII: Average accuracies on the original test sets for
pretrained features, when the shallow CNN networks were
trained on the undersampled vs. oversampled sets.

Number of classes
Model 10 30 50 100 | 150
Undersampling SaN_RGB | 87.9 | 76.6 | 67.6 | 54.6 | 29.1
(on training) VGGI6 913 | 848 [ 78.0 | 64.1 | 35.2
R50 794 1 63.8 | 514 [ 359 [ 165
Oversampling SaN_RGB | 95.6 | 93.0 | 91.5 | 90.0 | 71.4
(on training) VGG16 97.0 | 96.1 | 95.0 | 93.6 | 80.6
R50 9351902 | 88.2 [ 86.1 | 62.0
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images (either binary or RGB) through these networks, and
extracted the activations from the 6th convolutional block. To
assess these representations, the same classifiers were applied
as noted in Section VIII-BI.

C. Classification Results

Table VI shows the average accuracies among 5-fold ex-
periments with original sampling in different settings. As
the number of classes increases and the number of samples
per class decreases, the classification problem becomes more
challenging. With 200 glyphs per class in the 10-class exper-
iment, we obtained 91.8% average accuracy with the VGG-
16 pretrained features. For the 150-class case, we obtained
79.2% accuracy (random guess would be 0.66%). Table VI
confirms the competitiveness of the pretrained CNN features,
that are learned from large-scale datasets, compared to tradi-
tional shape descriptors. Among the pretrained net features,
the VGG-16 activations provide the best results. Furthermore,
Table VII points out that oversampling during training helps
all the models and improve over undersampling with a large
margin. These results both show the challenges and complexity
of our dataset and encourage further work in the future.

D. Visual Analysis with t-SNE

To further understand the characteristics of the curated
dataset, we mapped the segmented glyph samples to a 2-
D space in terms of visual similarity (obtained via meth-
ods mentioned above). This mapping is realized via the t-
distributed Stochastic Neighborhood Embedding (t-SNE) [50].
The visualization enables to see all the samples of the same
category that are scattered in a quantitative manner. This
visualization could help to assess the glyphs in the “gray areas”
(highly-discussed with scholars in terms of identification), as
the glyphs are mapped to a visual similarity context. This
visualization can also help experts in catalog design, as the
main variations of the sign categories are clustered together
thanks to this mapping.

Fig. 14 presents a visualization of the set of segmented
glyphs from the 2S2 class displayed via t-SNE algorithm
over the last convolutional layer activations from the Sketch-
a-Net pretrained on 250-class-sketch data. In this example, it
is interesting to notice the separation of the glyph instances
corresponding to the different variants.

IX. FINAL CONCLUSIONS

In this work, we achieved the segmentation of Maya glyphs
from three codices (Dresden, Madrid, and Paris) with the help
of crowdworkers. The main conclusions are as follows:

e Task design. As the data target does not come from
everyday objects, guiding non-experts is essential to obtain a
satisfactory outcome. From our experience with the task design
in the preliminary stage, we observed that a simpler and fo-
cused task design (to segment individual glyphs rather than all
glyphs in a block) and clear instructions were indispensable.

e Catalog choice. From the small-scale stage, we concluded
that the variants from the MV catalog matched a higher

percentage of the glyph instances compared to the variants
from the T catalog. This enabled non-experts to reach a higher
consensus on the “closest-looking” variant, and obtain higher
agreement (average f-measure). Furthermore, we observed that
workers found the task easier with MV variants. These results
were to some degree expected as monumental glyphs were the
main source of Thompson catalog variants.

e Non-expert behavior analysis. We pointed out the main
challenges that workers faced during the task, such as visual
within-class dissimilarities or between-class similarities, and
the effect of damage. These challenges affect the segmentation
outcome. However, they are inherent to the data.

e Maya codical glyph corpus. This work generated over
9K individual glyphs from the three Maya codices along
with the corresponding metadata, such as similarity rating of
the instances to the MV variants. The dataset will be made
publicly available.

o Baseline classification. We presented baseline results for
classification tasks on the new dataset. These results illustrate
that the new dataset is challenging, and that transfer learning
methods with deep neural networks are promising.
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