
DASH Adaptation Algorithm Based on Adaptive
Forgetting Factor Estimation

Miguel Aguayo , Luis Bellido , Carlos M. Lentisco , and Encarna Pastor

Abstract—The wide adoption of multimedia service-capable
mobile devices, the availability of better networks with higher
bandwidths, and the availability of platforms offering digital
content has led to an increasing popularity of multimedia streaming
services. However, multimedia streaming services can be subject
to different factors that affect the quality perceived by the
users, such as service interruptions or quality oscillations due
to changing network conditions, particularly in mobile networks.
Dynamic Adaptive Streaming over HTTP (DASH), leverages the
use of content-distribution networks and the capabilities of the
multimedia devices to allow multimedia players to dynamically
adapt the quality of the media streaming to the available bandwidth
and the device characteristics. While many elements of DASH are
standardized, the algorithms providing the dynamic adaptation
of the streaming are not. The adaptation is often based on the
estimation of the throughput or a buffer control mechanism. In
this paper, we present a new throughput estimation adaptation
algorithm based on a statistical method named Adaptive Forgetting
Factor (AFF). Using this method, the adaptation logic is able to
react appropriately to the different conditions of different types of
networks. A set of experiments with different traffic profiles show
that the proposed algorithm improves video quality performance
in both wired and wireless environments.

Index Terms—Adaptive streaming over HTTP, adaptive
forgetting factor, mobile communication, multimedia content
delivery, throughput estimation.

I. INTRODUCTION

T HE Internet traffic nowadays is mostly real-time enter­
tainment traffic (audio and video). A recent Internet usage

report [1] shows that real-time entertainment traffic consumes
65.35 percent of the Internet backbone aggregate traffic. Video
streaming traffic is expected to experiment a growth of 67 per­
cent in mobile and 29 percent in fixed networks [2] in the future.
The explosion of multimedia content has driven the industry
and research community to create protocols and architectures to
deliver video services to all users. The 3rd Generation Partner­
ship Project (3GPP) has defined the use of Dynamic Adaptive

Streaming over HTTP (DASH) [3] as the standard for multi­
media delivery in mobile networks, specifically in Long Term
Evolution (LTE) networks. In a previous work [4] we have pro­
posed solutions to improve the delivery of a DASH-encoded
multimedia content that is broadcast over LTE. In this paper, the
focus is on multimedia unicast services based on DASH.

One of the advantages of using HTTP is that standard HTTP
servers and content distribution techniques can be reused for
storing and delivering multimedia content. The DASH standard
defines how a multimedia content can be divided into small files
or "chunks", and how to store the description of chunks in a
metadata file named Media Presentation Description (MPD) so
a multimedia player can retrieve both metadata and the sequence
of chunks using HTTP to play the multimedia content.

Different representations make it possible that the same con­
tent can be retrieved with different qualities, depending on the
user terminal or on the available bandwidth. For each repre­
sentation the MPD file contains information about media type,
codec, video width and height, frame rate, average bitrate, and
so on. The actual media files, or media segments, are identified
by Uniform Resource Locators (URL).

A DASH player implements an adaptation algorithm mon­
itoring network conditions (bandwidth, delay, and so on) and
selecting the representation to be downloaded. The aim of the
adaptation algorithm is to ensure that the client selects a repre­
sentation with the most appropriate bitrate to obtain the highest
quality, while avoiding stalling events during the media play­
back. A guideline with remarks on possible client behavior is
provided as an annex in [5] but adaptation algorithms are not
standardized.

Substantial research exists in adaptive algorithms for DASH.
Many of the algorithms have been designed for specific scenar­
ios, e.g., mobile wireless networks, so to establish theparameters
to achieve the highest quality allowed by the available network
conditions. However, the same adaptation algorithm in a dif­
ferent scenario can overestimate or underestimate the available
network bandwidth. When an adaptation algorithm is estimat­
ing more bandwidth than the network is offering, video stalling
happens, because of buffer under-runs. On the other hand, if
an adaptation algorithm underestimates the network bandwidth,
the video player retrieves video qualities which are lower than
what the network conditions permit, hence affecting the quality
perceived by the user.

In this paper, we propose to use the Adaptive Forgetting
Factor (AFF) method to improve throughput estimation in
DASH adaptation algorithms. Our proposal is based on the

capability of AFF to quickly adapt to short-term fluctuations of
the bandwidth, especially in wireless networks. Using AFF as
a throughput estimation technique, a DASH multimedia player
will be able to achieve better quality in the video playback in
both wired and wireless scenarios.

The rest of the paper is organized as follows. Section II de­
scribes the state of the art on adaptation algorithms. Section III
presents the adaptation algorithm based on AFF. Section IV
describes the scenario used to test the proposed adaptation al­
gorithm. Section V presents the obtained results. Section VI
presents a fairness analysis of the AFF algorithm. Finally,
Section VII presents the conclusions and future work.

II. OVERVIEW ON ADAPTATION ALGORITHMS

A DASH client uses an adaptation algorithm to handle the se­
lection of the multimedia representation for each segment that
needs to be downloaded. This selection is based on the network
conditions, which are compared to a set of parameters on the
client (e.g., buffer level) to make the choices about the high­
est possible quality when requesting the next media segment.
This process of adaptation can be assisted by intermediate net­
work nodes which have information on how much bandwidth
is going to be allocated to the clients [6]-[8]. But, in general,
adaptation algorithms implement buffer control and throughput
estimation methods. Buffer control is designed so that the fluc­
tuations of the bandwidth, especially in wireless environments,
will not affect the playback of the video. Throughput estimation
is designed to maximize the quality in terms of bitrate selection
by estimating the available bandwidth. This paper focuses on
throughput estimation algorithms.

Throughput estimation algorithms focus on providing an ad­
equate estimation of the throughput that the client can obtain
from the network. Most of the adaptation algorithms start by
calculating the instant throughput [9], which is defined as the
size of the last downloaded segment divided by the time taken
to download it.

The problem with instant throughput is that it is not an appro­
priate throughput estimation method because measurements can
fluctuate from one segment to another. Using it as a throughput
estimator would have the effect of the multimedia player con­
tinuously adapting the bitrate to the instant throughput measure­
ments, which would affect the quality of the playback. Adap­
tation algorithms that use instant throughput measurements as
a throughput estimation method, combine it with other mecha­
nisms. For example, BOLA [10], adapts the video bitrate using
a buffer control method.

Some methods for estimating the throughput rely on the mea­
surements of lower layers [11], [12], (e.g., from the physical
layer). Those measurements are then compared to the instant
throughput to make an adaptation decision. However, through­
put measurements from the physical layer have the inconve­
nience of including all network services from the client.

Other throughput oriented algorithms calculate the average
throughput for the last N segments of video obtained by the
client [9]. However, this method has the disadvantage of not
detecting short-term fluctuations of the available bandwidth that

can occur, e.g., in wireless networks. If a short-term decrease
of available bandwidth is not detected, this would lead to buffer
starvation.

Lin et al. [13] proposed to use the mean, the standard de­
viation and the fluctuation of the throughput to estimate the
bandwidth. This method has the problem of heuristically estab­
lishing the fluctuation parameter with values of 0 to 0.025 for
wired networks and 0 to 0.1 for wireless networks.

An alternative throughput estimation method is to calculate
the harmonic mean of a certain number of past measurements.
The FESTIVE algorithm [14] uses the last twenty measurements
while the ELASTIC algorithm [15] uses the last five. The har­
monic mean method functions optimally when having steady
bandwidth measurements because it can discriminate some of
the outlier measurements. However, in wireless environments,
there are short-term bandwidth fluctuations that can cause this
method to overestimate or underestimate the available band­
width.

Zhou et al. [16] proposed the use of a rate adaptation algo­
rithm based on Markov decision processes that uses the mean
and a temporal variance as a mechanism for bitrate switching.
The problem of continuous bitrate switching is addressed by
establishing two buffer thresholds. Using an algorithm that is
also based on Markov decision processes, [17] proposes the use
of a reinforcement learning method with a reward function to
program new segment petitions.

The EWMA method is proposed in [18], [19]. EWMA be­
haves as a low-pass filter for the throughput measurements.
EWMA applies weighting factors so the weighting of each older
instant throughput measurement decreases exponentially. The
problem with this method is that the initial weight parameter
needs to be fixed to a different value depending on the type
of network. Usually weight values of 0 to 0.1 are proposed
for wired networks and 0.2 to 0.3 for wireless networks. This
can cause the method to not behave adequately (e.g., producing
stalling events) when the weight parameters are not set ade­
quately for different network scenarios.

Li et al. [20] proposed PANDA, an algorithm that uses
EWMA with an exponential weight of 0.2 as a throughput es­
timator, which would be adequate for wireless networks. The
algorithm also proposes the use of an Additive Increase Mul­
tiplicative Decrease (AIMD) bitrate selection algorithm and a
random scheduler algorithm to avoid playback synchronization
for simultaneous players.

Another example of an EWMA based throughput estimation
method adapted to a specific type of network can be found
in [21], which proposed the use of DASH in a dense wireless
network scenario, using proportional-integral-derivative (PID)
controllers and an EWMA throughput estimation in every wire­
less client to manage the quality selection and client scheduling.

Thang et al. [22] presented a method that combines the use of
EWMA and the Round Trip Time (RTT) estimation method of
TCP but presents the problem of setting a fixed weight parameter
depending on the type of network used. Jeong and Chung [23]
proposed to use EWMA, RTT and a Media Segment Duration
(MSD) measurement, but a fixed weight parameter depending
on the access network is needed, like [18], [19], [22]-[24].

Lai et al. [25] proposed the use of EWMA and two correcting
parameters that are used to calculate the weight used in EWMA,
and a safety margin of three times the standard deviation in the
EWMA formula.

A combination of EWMA and a dynamic fluctuation factor in
[26] tries to compensate for the error between the last throughput
measurement and the next. However, this method is based on
comparing the last throughput measurement to the previous one,
making the exponential parameter to adapt too slowly when
there are bandwidth fluctuations.

The AFF method proposed in this paper to address the prob­
lem of bandwidth fluctuations is explained in the following
section.

III. ADAPTIVE FORGETTING FACTOR FOR DASH

The AFF method was originally designed as a recursive least-
square adaptive filter to recover data from corrupted signals [27].
Similar methods can be found in various fields like medicine,
finance, computer networks monitoring or astronomy.

In this paper we propose the use of an AFF method originally
designed by Bodenham [28] as a throughput estimation method
for network security. This method is based on statistical process
control to analyze streams of data and detect changes using the
mean and the variance.

AFF shares with EWMA the idea of using a weight param­
eter that decreases the impact of older measurements exponen­
tially (functioning as a smoothing parameter) on the estimation
of the mean. But while EWMA uses a fixed weight factor,
AFF calculates the value dynamically. This allows AFF to react
quicker to short-term fluctuations of the bandwidth. The esti­
mated throughput in the AFF method is shown in (1). The AFF
mechanism is X , where X = (XQ, XI, ..., A.#) and A.¡ e (0,1).

m
N > 1 THR

lN,k

N,X W N,X

m N,X

N,k

XN-\m

A,¿v_iw

i V - 1 , A

N-l, A

THR, N > 1

1, N > 1

(1)

(2)

(3)

Equation (1) is the throughput estimation, (2) represents the
accumulated instant throughput measurements. (3) shows the
accumulated of the number of segments. Where m{) -^ = 0 ,
wQ -^ = 0 and X0 = 1 respectively.

As shown in (2) and (3), the key component of the AFF
method is how the weight factor is updated, namely A, JV —> X^^i.
To obtain XN, it is necessary to apply an online optimization to
minimize a cost function LN -^ .This is possible by applying a
first order optimization algorithm such as the one-step gradient
descent (4).

X N+l

'N+l, A

Xf >1-
9

3 ^ iV+l,A

THR N,í THR N+l

(4)

(5)

In (4) r] is the step size and ?j <C 1 so that the algorithm can
react faster when solving the optimization. The cost function,
shown in (5), compares the average throughput values to the

new measurement to assure that the estimated value is as close
as possible to the new measurement.

Utilizing the chain rule method in (5), the result is a derivative
of (1), that translates in derivatives of (2) and (3). To solve those
derivatives a differentiation from first principle (delta method)
is applied. This method aims to find the instant rate of change
of (2) and (3) with respect of X .

Equations (7) and (8) present the results of applying the first
principle or delta method to (2) and (3). For lemma proof or
explanations regarding the mathematical methods applied in
this research consult [29].

AN,l=k*-lAN-l,l+mN-l,l (fi)

QN,1 = k"-&N-l,t + WN-1,1 (?)

In (6) and (7) the initial measurements are defined as: A
0 and Í2,

1, A

0. Next we proceed to solve the derivative of (1)
which is shown in (8).

-THR
AN,lmN,-t i2N,lWN,t

3 X
N,X

{WN,t)
(8)

The equations formerly explained were implemented as shown
in Algorithm 1. The aim of the AFF method is to correctly select
the representation whose bitrate matches the bandwidth condi­
tions that the network offers to achieve the highest quality in
the video playback. This is achieved by estimating adaptively
the throughput of the video streaming, and when encountering
short-term fluctuations, placing greater weights on more re­
cent observations and thereby "forgetting" older measurements
faster.

The algorithm compares if the actual measurement is the
first, because in that case the calculation is done with different
initialization variables. Afterwards the algorithm calculates the
estimated throughput using the next instant throughput mea­
surement in the AFF equations.

The AFF algorithm is executed every time a new instant
throughput measurement is obtained, i.e., every time a video
segment is downloaded. Once the average throughput is esti­
mated, the algorithm selects a new video representation by per­
forming a sequential search on the video bitrates of the different
representations, from highest to lowest, to select the highest
bitrate that is below the average throughput.

Bodenham in [29], performing numerous simulations,
reached the conclusion that truncating the range of X to
X e (0.6, 1) can make the method react faster when encoun­

tering short-term fluctuations.
Bodenham also defined that the step size r¡ variable should

be between r¡ e (0.001, 0.1) so that the algorithm can return to
a steady behavior faster when detecting a fluctuation. In this
proposal a value of r¡ = 0.1 is used.

The next section presents the scenario in which the AFF
adaptive algorithm was evaluated.

Algorithm 1: AFF throughput estimation algorithm
Input: maxbitrateindex, bitratebw(i),

Segment Index = n, THR„
Output: switchbitrate(i)

Initialization : mo = w0 = 0; X0 = 0;
£2i = Ai =0;??=0.1;
if (SegmentIndex == l)then

nti = (A.o * mo) + THR\
w\ = (A.Q * wo) + 1
THR

6:
7:
8:
9:
10:
11:

12:

X1 = X0 - r] * 2 * (THRi - THR{)

else
A„ = (A.„_i * A„_i) + m
^2n = (A.„-l * Í 2 „ _ i) + WJ

mn = (A.„-i * m„_i) + r///?„
w„ = (A.„_i * w„_i)+ 1

*(
- ^ n - 1 "
A„*u>„-£2„*m

r¡*2*(THR„
n~)

THR„)

13
14
15
16
17
18
19

end if
for i = maxbitrateindex to 0 do

if (THR„ > bitratebw(i)) then
return switchbitrate(i)
end for

end if
end for

IV. IMPLEMENTATION SCENARIO

To test the proposal, a DASH player has been modified to add
AFF as the throughput estimation algorithm. The dash.js player
[30] has been selected. This player is a JavaScript implemen­
tation of a DASH player that can run in a web browser. The
original dash.js reference player implements a throughput algo­
rithm that consists of calculating the average of the throughput
obtained for the last three video segments. This algorithm will
be referred to as avg-last-3. The dash.js player also implements
a buffer control algorithm so that it can adapt differently when
certain established levels are reached. For instance, when the
buffer level drops to 8 seconds, lower bitrate segments are re­
quested independently of how much bandwidth the throughput
algorithm estimates.

Fig. 1 presents a block diagram of the adaptation logic im­
plemented in dash.js. There are four elements in the adaptation
algorithm. From those four elements, the complexity of the
adaptation logic resides mainly on the Buffer Module and the
Throughput Module, which are the modules implementing the
algorithms managing the selection of the next segment bitrate.

The Rules Entity defines all the necessary parameters and
levels such as the minimum buffer level or if the streaming is
live or pre-stored. The Throughput Module is where the instant
throughput is measured and where the avg-last-3 method to es­
timate throughput is implemented. This module has been mod­
ified to implement the AFF method and the EWMA method

Í Rules
Switching

Logic

Throughput
Module

Buffer
Module

Fig. 1. Block diagram of the adaptation logic of dash.js.

i VirtualBox

VNX

Client Player

Fig. 2. Experiment scenario.

so the three different throughput estimation methods can be
compared.

The Buffer Module implements a heuristic algorithm that
consists of monitoring the buffer level to force a bitrate change
when the buffer is under a minimum level. Finally, the Switching
Logic controls the request for new video segments choosing a
video representation bitrate that fits the conditions coming from
the Buffer Module and the Throughput Module.

Our experimental platform consists of a client-server model
which is interconnected by a network emulator, as shown in
Fig. 2. The scenario has been implemented using an open-source
virtualized platform [31].

This scenario is built over two layers of virtualization; the first
layer consists of an open-source tool named Virtual Networks
over linuX (VNX) [32]. This tool is based on Linux Containers
(LXC) and an XML file to create virtual network scenarios. The
XML file contains the information on the number of network
elements, the interconnections among them and commands to
perform specific tasks. The second layer of virtualization con­
sists of hosting the VNX scenario in a virtual machine running
Ubuntu inside VirtualBox [33]. This layer provides the porta­
bility for the scenario to run in any OS with the use of an Open
Virtual Appliance (OVA).

The server stores the Big Buck Bunny video [34] at a resolu­
tion of 720p. The video is encoded in H.264/Advanced Video
Coding (AVC) format with variable bitrate (VBR) using the
x264 tool [35] with four different bitrates (250, 500, 1000 and
2000 Kbps). MP4Box [36] is used to split each video file in
segments and generate the MPD file. Each video segment has a
duration of 2 seconds.

^r^iM.^r
20 40 60

Time (s)

0»)

80 100

•A/NA/AJW-V-Vs/S/'*. w » ^

50 100 150

Time (s)

(c)

Fig. 3. Bandwidth profiles used.

200

Instant Throughput
* AFF Throughput
V— avg-last-3 Throughput

• • • -X • - - EWMA Throughput
Lambda

1
0.8
0.6

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Fig. 4. Estimated throughput of the methods and lambda in bandwidth profile
Test 1.

TABLE I
STATISTICS OF THE BANDWIDTH PROFILES IN MBPS

Test Bandwidth Type Max. Min. Avg. S.D.

Test 1 High bandwidth, low fluctuation. 2.40 0.80 2.17 0.2765
Test 2 Low bandwidth, high fluctuation. 4.57 0.01 1.23 0.6374
Test 3 High bandwidth, high fluctuation. 5.73 0.01 2.31 1.3317
Test 4 High-low bandwidth, low fluctuation. 2.39 0.60 1.50 0.8063

The shaper behaves as a network emulator that modifies the
network conditions in three aspects: available bandwidth, net­
work delay and packet loss. The shaper is based on a shell script
that reads a Comma-separated Value (CSV) network profile file
defining the network conditions on different time periods. This
file is used to change the configuration of network interfaces
during the video streaming experiments, using the traffic con­
trol and the network emulation (NetEm) tools of Linux. More
specifically, the shaper uses the Hierarchy Token Bucket (HTB)
queuing discipline to classify the incoming TCP traffic and en­
force the bandwidth parameter read from the network profile
file.

The client has a caching proxy, that can be used to support
broadcast streaming services. In our scenario, as depicted in
Fig. 3, the player consists of a Chrome web client running
dash.js to access the video segments transparently using the
client proxy. The player is also responsible for collecting the
data which is used to analyze the behavior of the throughput
estimation algorithm; i.e., buffer length, video bitrate and instant
throughput.

The AFF throughput estimation method has been compared
to the dash.js avg-last-3 estimation method [30] and to our own
implementation of the EWMA method described in [18], [24].
For EWMA, the fixed weight parameter is set to 0.2, which is the

value for wireless network proposed by [18], since the profiles
are based on LTE traffic measurements.

The experiments are carried out using four different band­
width profiles, as shown in Fig. 4. The three first profiles use
real LTE network data obtained in a previous research [31].
The fourth profile was created to analyze the behavior of the
throughput estimation methods when the available bandwidth
changes abruptly.

The first bandwidth profile was selected to represent the be­
havior of a steady network such as a residential Internet con­
nection. The second profile aims to study the performance of
the throughput estimation methods for limited bandwidths that
present short-term fluctuations. The third profile is inspired by
test pattern one (TP1) in [26], depicting a user walking during
daytime in an urban environment. The fourth profile was created
to analyze the behavior of the different throughput estimation
methods when a sudden loss of bandwidth occurs, especially
to measure how a high change in the bandwidth affect the
algorithms that carry past measurements when estimating the
available throughput.

Table I shows the main statistics for each of the bandwidth
profiles used to test the performance of the AFF algorithm:
maximum, minimum, average, and standard deviation for the
bandwidth of each profile.

TABLE II
STATISTICS OF THE ALGORITHMS

Test

Test 1

Test 2

Test 3

Test 4

Method

AFF
avg-last-3
EWMA

AFF
avg-last-3
EWMA

AFF
avg-last-3
EWMA

AFF
avg-last-3
EWMA

Bitrate
Changes

7
41
21

34
35
14

8
15
25

26
33
30

Stalling
Events

0
0
2

0
1
0

0
0
0

0
2
0

Time (s)

1.28, 0.9

5.01

-

0.3, 2.23

Mean Bitrate
(Kbps)

1387.00
1002.10
822.12

492.00
471.83
563.00

1216.80
1174.00
775.00

730.00
880.00
814.00

V. PERFORMANCE EVALUATION

In this section we present the experimental results of eval­
uating the different throughput estimation methods avg-last-3,
EWMA and AFF for each of the bandwidth profiles.

The first subsection presents an analysis of the three different
throughput estimation methods using the first bandwidth pro­
file, and the behavior of X for the AFF method. The next four
subsections present the results for each bandwidth profile in
the form of a Cumulative Distribution Function (CDF) for the
video bitrate selection and the buffer level obtained for the three
throughput estimation methods. Finally, the last subsection dis­
cusses the Quality of Experience (QoE) indicators for each of
the scenarios that are summarized in Table II.

A. Comparison of Throughput Estimation Methods

Fig. 4 shows measurements of the instant throughput that
the DASH player calculates, the estimates that each method ob­
tains from the instant throughput measurements, and the lambda
value that the AFF method calculates adaptively. Since AFF and
EWMA share a similar weighting mechanism, they present a
similar behavior, and different from avg-last-3 that just calcu­
lates the mean value of the three past measurements.

Fig. 4 also shows how the lambda AFF factor evolves during
the playback of the video. When the instant throughput behaves
in a steady manner, X = 1, the highest value. But when there
is a short-term fluctuation of the throughput, lambda drops to
the lowest value of X = 0.6, which makes the AFF algorithm to
forget the latest measurements faster.

B. High Available Bandwidth With Low Short-Term
Fluctuations

This test was conducted to compare the three algorithms in a
steady environment with enough bandwidth to reach the highest
representation most of the time. This type of bandwidth profile
describes the typical bandwidth of a residential Internet connec­
tion and it is similar to test pattern two (TP2) in [26].

Fig. 5 presents the CDF of the bitrate selection for each of
the algorithms, showing that the AFF algorithm is more stable

1

0.9

0.8

0.7

0.6

Q 0.5

0.4

0.3

0.2

0.1

0

— ^™- avg-1
n • • • EWM

X

ist-3
A

~°1

"

*- -
!

* 1
i

U--+— —$

\

i
i

h .

• ; :

H»

1

0.9

0.8

0.7

0.6

Q 0.5

0.4

0.3

0.2

0.1

0

' f

1
1

• 1

:/
;/
n

/1

ü

\

/

¡

J r i

f .
i ,**

•* j

/ /

— AFF
- avg-last-3
•• EWMA

0 500 1000 1500
Bitrate (kbps)

(a)

10 20 30
Buffer Level (s)

(b)

Fig. 5. (a) CDF of bitrate and (b) CDF of buffer level in Test 1.

than the other algorithms since the best quality is chosen most
of the time.

Fig. 5 also presents the CDF of the buffer level. The AFF
algorithm maintains a buffer level above ten seconds, which
allows the AFF throughput estimation method to choose the
bitrates instead of the buffer control algorithm. It also shows
that the avg-last-3 and EWMA methods present more bitrate
changes.

C. Low Available Bandwidth With High Short-Term
Fluctuations

In the second test, a low bandwidth and high number of
short-term bandwidth fluctuations profile is used. This profile
affects video quality because of the sudden drops of available
bandwidth. It may also cause stalling during the playback be­
cause of the continuous fluctuation in bandwidth. This profile
was selected to evaluate the behavior of the different throughput
estimation methods in an environment where the bandwidth is
low.

Fig. 6 shows that in this case the EWMA method presents
better results than the AFF method and avg-last-3 method. Both
the AFF and the avg-last-3 methods select the lowest bitrate
quality most of the playback time. However, the dahs.js method
present a stalling event of five seconds that affects the quality of
the playback. The buffer level behaved in a similar manner with
the three methods, mostly under 10 seconds because of the low
bandwidth.

D. High Available Bandwidth With High Short-Term
Fluctuations

The high bandwidth and high short-term fluctuations of this
profile are expected to show whether the buffer can minimize
the impact of having severe drops from high bandwidth mea­
surements, as well as the behavior of the different throughput

1

0.9

0.8

0.7

0.6

go.5

0.4

0.3

0.2

0.1

0

— ? — T

t [l
¡

- 4

!

<

> - i

i

i
•

»-

*
— 0-

AT7T7

EWMA

1

0.9

0.8

0.7

0.6

go.5

0.4

0.3

0.2

0.1

0

i

/ ;

i •
tu

H

f:

. ™ ,

— — avg-last-3

500 1000
Bitrate (kbps)

(a)

1500 0 10 20
Buffer Level (s)

GO

30

Fig. 6. (a) CDF of bitrate and (b) CDF of buffer level in Test 2.

1

0.9

0.8

0.7

0.6

Q 0 . 5

0.4

0.3

0.2

0.1

0

» • • •

— 4^— avg-last-3
tt • • • EWMA

-

1

4

4

— <

4

> < >

<>

,—1 1 1—
0 500 1000 1500

Bitrate (kbps)

(a)

10 20 30
Buffer Level (s)

(b)

Fig. 7. (a) CDF of bitrate and (b) CDF of buffer level in Test 3.

estimation methods. This profile represents the bandwidth be­
havior of an LTE user who is walking in an urban environment,
and it is similar to TP1 in [26].

As shown in Fig. 7, since the bandwidth profile has many high
short-term fluctuations with high bandwidth, the AFF and the
avg-last-3 methods selects the highest bitrate most of the time.
However, the AFF method selects the highest bitrate quality ten
percent more than the avg-last-3 method. The EWMA method
shows a poor behavior, selecting the third bitrate quality most of
the time. The buffer level behaves differently for each method;
however, it is shown that the EWMA method presented the most
bitrate switches because the buffer level stays below ten seconds

1

0.9

0.8

0.7

0.6

a,
Q 0 . 5

0.4

0.3

02

0.1

0

i , H h

:
i

4 1

15".

f~"

— < » -

•

1
4

— <h-
• • • * • •

avg-last-3
EWMA

1

0.9

0.8

0.7

0.6

EL.

Q 0 . 5

0.4

0.3

0.2

0.1

0

(fi\
:/

C

II
If

ll

& c AFF
— — avg-last-3

500 1000 1500

Bitrate (kbps)

(a)

10 20 30
Buffer Level (s)

GO

Fig. 8. (a) CDF of bitrate and (b) CDF of buffer level in Test 4.

most of the time, which triggers the buffer level mechanism.
The results from the first and third tests show that the AFF
method is suited to perform proficiently in wired and wireless
environments.

E. Low and High Bandwidth Variations

This profile combines low bandwidth and high bandwidth
with low number of short-term fluctuations. This profile was
created to analyze the impact of older bandwidth estimations on
the accuracy of the throughput estimation methods when there
is an abrupt bandwidth change.

Fig. 8 shows that the AFF method selects the second and
third bitrate quality most of the time, and the smallest number
of quality changes. The avg-last-3 method reaches the highest
mean bitrate, but suffers from two stalling events of 0.3 seconds
and 2 seconds respectively, as Table II shows. The EWMA
method presents a better mean bitrate than the AFF method
but selects the lowest quality more often and presents more
bitrate quality switches. It also shows that the buffer level is
lower than ten seconds half of the time, which means that the
buffer control algorithm affects the throughput estimation by
constantly lowering the bitrate chosen for this bandwidth profile.

F. QoE Results

Table II shows, for each of the methods, a set of quality of
experience indicators: number of bitrate changes, number of
stalling events (due to buffer under-runs), the duration of each
stalling event in seconds and the mean bitrate in Kbps. In the
first test the AFF method presented a better-quality performance
since there were less bitrate changes and the mean bitrate was
higher than for the other methods. It also shows that the EWMA
method presented two stalling events that lasted 1.28 and 0.9 sec­
onds respectively, having a great impact on the QoE of the play-

Fig. 9. Fairness experiment scenario.

TABLE III
FAIRNESS ANALYSIS NETWORK PROFILE

Interval (s) Bandwidth (Mbps)

0-100 22
100-200 12
200-300 6
300-360 22

back. In the second bandwidth profile, the EWMA method pre­
sented a steadier behavior than the other two methods; however,
the mean bitrate of each method is not far from one another. It
also shows that the avg-last-3 method presented a stalling event
that lasted 5 seconds. For the third bandwidth profile, the results
show that the AFF method presents less bitrate changes and a
better mean bitrate. In the fourth test, the AFF method presents
less bitrate changes, however, the avg-last-3 method had the best
mean bitrate. The problem with the avg-last-3 method is that it
had two stalling events, one lasted three seconds and the other
one two seconds, making this method not suited to be used in
environments with significant drops in bandwidth.

VI. FAIRNESS ANALYSIS

In adaptive video streaming, fairness metrics are used to de­
termine if the adaptation algorithm is able to deliver a fair share
of the network bandwidth to different clients. In order to analyze
the fairness of the AFF algorithm we have created an experi­
mental scenario, as shown in Fig. 9, to measure the bandwidth
obtained by several simultaneous players sharing a bottleneck
link.

This scenario is similar to the scenario explained in Sec­
tion IV, but in this case the equipment is not virtualized. The
HTTP server, the multimedia content and the multimedia player
are described in Section IV. The shaper is now implemented
using a Raspberry Pi 3 with two network interfaces. The shaper
uses a network profile as specified in Table III. This profile was
created to measure the fairness of the AFF estimation algorithm
and the avg-last-3 algorithm, in order to detect how the algo­
rithm responds to changes in the bandwidth when competing
with other video players using the same algorithm.

The experiments consist often players initiating the multime­
dia playback randomly within the first 15 s of the experiment.
The results are obtained measuring the average bandwidth of
each client in the interval 50-350 s. These values are used to
calculate the Jain Fair index (JFI) [37] and the total average
throughput, as shown in Table IV.

TABLE IV
FAIRNESS ANALYSIS RESULTS

Test Algorithm JFI Avg. Thr. (Kbps)

Test 5 AFF .9969 1281.7
Testó avg-last-3 .9995 1188.5

The results show that both algorithms, with a JFI value close
to 1, present a fair use of the bandwidth. Thus, the AFF estima­
tion algorithm shows fairness results that are similar to already
existing algorithms, making the AFF algorithm suited to be
used as the throughput estimation mechanism in combination
with different adaptation algorithms. The results also show that
the AFF method manages to achieve a slightly higher average
throughput for the clients.

VII. CONCLUSION AND FUTURE WORK

Adaptive bitrate streaming solutions rely on throughput es­
timation algorithms that might need fine-tuning depending on
the characteristics of the network. In this paper, we propose
to use the Adaptive Forgetting Factor method for throughput
estimation in DASH adaptation algorithms. This method relies
on instant throughput measurements that are aggregated using
exponential weights adaptively, so it overcomes the problems
of short-term fluctuations in network throughput. By using this
method it is possible to improve the QoE obtained by a DASH
player over different types of networks, avoiding the fine-tuning
of parameters of other throughput estimation algorithms. Us­
ing different bandwidth profiles, the AFF proposal has been
tested and compared to alternative throughput estimation meth­
ods such as EWMA and average-last-3. The results show that
AFF might obtain slightly lower average bitrates than the alter­
native methods. However, it presents a better behavior in regard
to video stalling and number of bitrate switches, which are two
of the key parameters for QoE in adaptive streaming. Finally, the
results of the fairness experiments show that the AFF algorithm
is able to deliver a fair share of the network bandwidth to dif­
ferent clients. Therefore, we propose AFF as a valid throughput
estimation method that can work adequately for DASH players
over different types of networks.

A future step in our research is to work on DASH adaptation
algorithms that can exploit a better communication between
throughput estimation and buffer control methods, to provide
the best QoE with different network conditions.

REFERENCES

[1] Sandvine, Incorporated, "Sandvine global Internet phenomena report
Oct. 2016," [Online]. Available: https://www.sandvine.com/downloads/
general/global-internet-phenomena/2016/global-internet-phenomena-
report-latin-america-and-north-america.pdf, Accessed on: Nov. 2016.

[2] C. V. Forecast, "Cisco visual networking index: Global mobile data traffic
forecast update 2015-2020," Cisco Public Information, vol. 9, Feb. 2016.

[3] Transparent End-to-End Packet-Switched Streaming Service (PSS); Pro­
gressive Download and Dynamic Adaptive Streaming Over HTTP, Eur.
Telecommun. Standards Inst., Sophia Antipolis, France, 3GPP TS 26.247
V14.1.0, 2017.

https://www.sandvine.com/downloads/

[4] C. M. Lentisco, L. Bellido, and E. Pastor, "Reducing latency for multime­
dia broadcast services over mobile networks," IEEE Trans. Multimedia,
vol. 19, no. 1, pp. 173-182, Jan. 2017.

[5] Inf. technol. - Dynamic Adaptive Streaming Over HTTP (DASH) -Part 1:
Media Presentation Description and Segments Formats, ISO/IEC 23009-
1, 2014.

[6] C. M. Lentisco, L. Bellido, and E. Pastor, "Seamless mobile multime­
dia broadcasting using adaptive error recovery," Mobile Inform. Syst.,
vol. 2017, Feb. 2017, Art. no. 1847538.

[7] A. E. Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada,
"QoE-based traffic and resource management for adaptive HTTP video
delivery in LTE," IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6,
pp. 988-1001, Jun. 2015.

[8] N. Bouten, S. Latré, J. Famaey, W. V. Leekwijck, and F. D. Turck, "In-
network quality optimization for adaptive video streaming services," IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2281-2293, Dec. 2014.

[9] G. Tian and Y. Liu, "On adaptive HTTP streaming to mobile devices," in
Proc. 2013 20th Int. Packet Video Workshop, Dec. 2013, pp. 1-8.

[10] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, "BOLA: Near-optimal
bitrate adaptation for online videos," in Proc. IEEE INFOCOM 2016-
35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1-9.

[11] V. Ramamurthi and O. Oyman, "Link aware HTTP adaptive streaming for
enhanced quality of experience," in Proc. 2013 IEEE Global Commun.
Conf, Dec. 2013, pp. 1675-1680.

[12] V. Ramamurthi, O. Oyman, and J. Foerster, "Using link awareness for
HTTP adaptive streaming over changing wireless conditions," in Proc.
2015 Int. Conf. Comput., Netw. Commun., Feb. 2015, pp. 727-731.

[13] Q. Lin etal, "Bandwidth estimation of rate adaption algorithm in DASH,"
in Proc. 2014 IEEE Globecom Workshops, Dec. 2014, pp. 243-247.

[14] J. Jiang, V. Sekar, and H. Zhang, "Improving fairness, efficiency, and sta­
bility in HTTP-based adaptive video streaming with festive," IEEE/ACM
Trans. Netw., vol. 22, no. 1, pp. 326-340, Feb. 2014.

[15] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascólo, "ELAS­
TIC: A client-side controller for dynamic adaptive streaming over HTTP
(DASH)," in Proc. 2013 20th Int. Packet Video Workshop,, 2013, pp. 1-8.

[16] C. Zhou, C. W. Lin, and Z. Guo, "mDASH: A markov decision-based
rate adaptation approach for dynamic HTTP streaming," IEEE Trans.
Multimedia, vol. 18, no. 4, pp. 738-751, Apr. 2016.

[17] A. Bokani, M. Hassan, S. Kanhere, and X. Zhu, "Optimizing HTTP-
based adaptive streaming in vehicular environment using markov deci­
sion process," IEEE Trans. Multimedia, vol. 17, no. 12, pp. 2297-2309,
Dec. 2015.

[18] S. Akhshabi, A. C. Begen, and C. Dovrolis, "An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP," in Proc.
2nd Annu. ACM Conf. Multimedia Syst, Feb. 2011, pp. 157-168.

[19] T. C. Thang, Q. D. Ho, J. W. Kang, and A. T. Pham, "Adaptive streaming of
audiovisual content using MPEG DASH," IEEE Trans. Consum. Electron..
vol. 58, no. 1, pp. 78-85, Feb. 2012.

[20] Z. Li et al., "Probe and adapt: Rate adaptation for HTTP video streaming
at scale," IEEE J. Sel. Areas Commun., vol. 32, no. 4, pp. 719-733,
Apr. 2014.

[21] K. Miller, D. Bethanabhotla, G. Caire, and A. Wolisz, "A control-theoretic
approach to adaptive video streaming in dense wireless networks," IEEE
Trans. Multimedia, vol. 17, no. 8, pp. 1309-1322, Aug. 2015.

[22] H. T. Le, H. N. Nguyen, N. Pham Ngoc, A. T. Pham, and T. C. Thang, "A
novel adaptation method for HTTP streaming of VBR videos over mobile
networks," Mobile Inform. Syst, vol. 2016, Jun. 2016, Art. no. 2920850.

[23] U. Jeong and K. Chung, "Video quality adaptation to improve the quality
of experience in DASH environments," Int. J. Comput. Sci. Netw. Security,
vol. 14, no. 8, pp. 22-29, Aug. 2014.

[24] T. C. Thang et al., "Adaptive video streaming over HTTP with dynamic
resource estimation," /. Commun. Netw., vol. 15, no. 6, pp. 635-644,
Dec. 2013.

[25] C. F. Lai, H. Wang, H. C. Chao, and G. Nan, "A network and device
aware QoS approach for cloud-based mobile streaming," IEEE Trans.
Multimedia, vol. 15, no. 4, pp. 747-757, Jun. 2013.

[26] Y.-H. Kim, J. Shin, and J. Park, "Design and implementation of a network-
adaptive mechanism for HTTP video streaming," ETRI J., vol. 35, no. 1.
pp. 27-34, Feb. 2013.

[27] J. Cooper and K. Worden, "On-line physical parameter estimation with
adaptive forgetting factors," Mech. Syst. Signal Process., vol. 14, no. 5.
pp. 705-730, May 2000.

[28] D. A. Bodenham and N. M. Adams, "Continuous monitoring of a computer
network using multivariate adaptive estimation," in Proc. 2013 IEEE 13th
Int. Conf. Data Mining Workshops, Dec. 2013, pp. 311-318.

[29] D. A. Bodenham, "Adaptive estimation with change detection for stream­
ing data," Ph.D. dissertation, Imperial College London, London, U.K.,
2014.

[30] DASH Industry Forum, MPEG-DASH reference player dash.js. [Online].
Available: http://github.com/Dash-Industry-Forum/dash.js, Accessed on:
May 2017.

[31] C. M. Lentisco et al., "A virtualized platform for analyzing LTE broad­
cast services," in Proc. 2015 Eur. Conf. Netw. Commun., Jun. 2015,
pp. 512-516.

[32] D. Fernández et al., "Enhancing learning experience in computer network­
ing through a virtualization-based laboratory model," Int. J. Eng. Educ.
vol. 32, no. 6, pp. 2569-2584, Dec. 2016.

[33] Oracle. VirtualBox. [Online]. Available: https://www.virtualbox.org, Ac­
cessed on: May 2017.

[34] Blender Foundation. Big buck bunny movie. [Online]. Available:
https://peach.blender.org/, Accessed on: Dec. 2016.

[35] L. Merritt and R. Vanam. x264: A high performance H.264/AVC en­
coder, 2006. [Online]. Available: http://akuvian.org/src/x264/overview_
x264_v8_5.pdf

[36] J. L. Feuvre. Gpac multimedia open source project. [Online]. Available:
http://gpac.wp.mines-telecom.fr/mp4box, Accessed on: May. 2017.

[37] R. Jain, D. Chiu, and W. Hawe, "A quantitative measure of fairness and
discrimination for resource allocation in shared computer system," Digital
Equipment Corporation, Maynard, MA, USA, Tech. Rep. DEC-TR-301.
Sep. 1984.

Miguel Aguayo received the B.E. degree in telematic
engineering from the Universidad de Colima, Colima,
México, in 2002, and the M.S. degree in electronics
and telecommunications from the Ensenada Center
for Scientific Research and Higher Education, En­
senada, México, in 2004. He is currently a Ph.D.
candidate in the Department of Telematics Systems
Engineering, the Universidad Politécnica de Madrid,
Madrid, Spain. His research interests include multi­
media communications, internetworking, mobile net­
works, and quality of experience.

Luis Bellido received the M.S. and Ph.D. degrees in
telecommunications engineering from the Universi­
dad Politécnica de Madrid (UPM), Madrid, Spain, in
1994 and 2004, respectively. He is currently an As­
sociate Professor at UPM, specializing in the fields
of computer networking, Internet technologies, and
quality of service. His current research interests in­
clude mobile networks, multimedia applications, and
virtualization.

Carlos M. Lentisco received the telecommunica­
tions engineering degree from the Universidad Carlos
III de Madrid, Madrid, Spain, in 2013, and the M.S.
degree in networks and telematic services engineer­
ing from Universidad Politécnica de Madrid (UPM),
Madrid, Spain. He is currently a Ph.D. candidate in
Telematics Systems Engineering Department, UPM.
His research interests include multimedia streaming,
mobile networks, and virtualization.

Encarna Pastor received the M.S. and Ph.D. degrees
in computer science from the Universidad Politécnica
de Madrid (UPM), Madrid, Spain, in 1980 and 1988,
respectively. She is currently a Full Professor at UPM,
specializing in the fields of computer networking,
multimedia applications, and Internet technologies.
Her current research interests include content deliv­
ery networks, multimedia networking, and quality of
experience.

http://github.com/Dash-Industry-Forum/dash.js
https://www.virtualbox.org
https://peach.blender.org/
http://akuvian.org/src/x264/overview_
http://gpac.wp.mines-telecom.fr/mp4box

