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Abstract—The wide adoption of multimedia service-capable 
mobile devices, the availability of better networks with higher 
bandwidths, and the availability of platforms offering digital 
content has led to an increasing popularity of multimedia streaming 
services. However, multimedia streaming services can be subject 
to different factors that affect the quality perceived by the 
users, such as service interruptions or quality oscillations due 
to changing network conditions, particularly in mobile networks. 
Dynamic Adaptive Streaming over HTTP (DASH), leverages the 
use of content-distribution networks and the capabilities of the 
multimedia devices to allow multimedia players to dynamically 
adapt the quality of the media streaming to the available bandwidth 
and the device characteristics. While many elements of DASH are 
standardized, the algorithms providing the dynamic adaptation 
of the streaming are not. The adaptation is often based on the 
estimation of the throughput or a buffer control mechanism. In 
this paper, we present a new throughput estimation adaptation 
algorithm based on a statistical method named Adaptive Forgetting 
Factor (AFF). Using this method, the adaptation logic is able to 
react appropriately to the different conditions of different types of 
networks. A set of experiments with different traffic profiles show 
that the proposed algorithm improves video quality performance 
in both wired and wireless environments. 

Index Terms—Adaptive streaming over HTTP, adaptive 
forgetting factor, mobile communication, multimedia content 
delivery, throughput estimation. 

I. INTRODUCTION 

T HE Internet traffic nowadays is mostly real-time enter­
tainment traffic (audio and video). A recent Internet usage 

report [1] shows that real-time entertainment traffic consumes 
65.35 percent of the Internet backbone aggregate traffic. Video 
streaming traffic is expected to experiment a growth of 67 per­
cent in mobile and 29 percent in fixed networks [2] in the future. 
The explosion of multimedia content has driven the industry 
and research community to create protocols and architectures to 
deliver video services to all users. The 3rd Generation Partner­
ship Project (3GPP) has defined the use of Dynamic Adaptive 

Streaming over HTTP (DASH) [3] as the standard for multi­
media delivery in mobile networks, specifically in Long Term 
Evolution (LTE) networks. In a previous work [4] we have pro­
posed solutions to improve the delivery of a DASH-encoded 
multimedia content that is broadcast over LTE. In this paper, the 
focus is on multimedia unicast services based on DASH. 

One of the advantages of using HTTP is that standard HTTP 
servers and content distribution techniques can be reused for 
storing and delivering multimedia content. The DASH standard 
defines how a multimedia content can be divided into small files 
or "chunks", and how to store the description of chunks in a 
metadata file named Media Presentation Description (MPD) so 
a multimedia player can retrieve both metadata and the sequence 
of chunks using HTTP to play the multimedia content. 

Different representations make it possible that the same con­
tent can be retrieved with different qualities, depending on the 
user terminal or on the available bandwidth. For each repre­
sentation the MPD file contains information about media type, 
codec, video width and height, frame rate, average bitrate, and 
so on. The actual media files, or media segments, are identified 
by Uniform Resource Locators (URL). 

A DASH player implements an adaptation algorithm mon­
itoring network conditions (bandwidth, delay, and so on) and 
selecting the representation to be downloaded. The aim of the 
adaptation algorithm is to ensure that the client selects a repre­
sentation with the most appropriate bitrate to obtain the highest 
quality, while avoiding stalling events during the media play­
back. A guideline with remarks on possible client behavior is 
provided as an annex in [5] but adaptation algorithms are not 
standardized. 

Substantial research exists in adaptive algorithms for DASH. 
Many of the algorithms have been designed for specific scenar­
ios, e.g., mobile wireless networks, so to establish theparameters 
to achieve the highest quality allowed by the available network 
conditions. However, the same adaptation algorithm in a dif­
ferent scenario can overestimate or underestimate the available 
network bandwidth. When an adaptation algorithm is estimat­
ing more bandwidth than the network is offering, video stalling 
happens, because of buffer under-runs. On the other hand, if 
an adaptation algorithm underestimates the network bandwidth, 
the video player retrieves video qualities which are lower than 
what the network conditions permit, hence affecting the quality 
perceived by the user. 

In this paper, we propose to use the Adaptive Forgetting 
Factor (AFF) method to improve throughput estimation in 
DASH adaptation algorithms. Our proposal is based on the 



capability of AFF to quickly adapt to short-term fluctuations of 
the bandwidth, especially in wireless networks. Using AFF as 
a throughput estimation technique, a DASH multimedia player 
will be able to achieve better quality in the video playback in 
both wired and wireless scenarios. 

The rest of the paper is organized as follows. Section II de­
scribes the state of the art on adaptation algorithms. Section III 
presents the adaptation algorithm based on AFF. Section IV 
describes the scenario used to test the proposed adaptation al­
gorithm. Section V presents the obtained results. Section VI 
presents a fairness analysis of the AFF algorithm. Finally, 
Section VII presents the conclusions and future work. 

II. OVERVIEW ON ADAPTATION ALGORITHMS 

A DASH client uses an adaptation algorithm to handle the se­
lection of the multimedia representation for each segment that 
needs to be downloaded. This selection is based on the network 
conditions, which are compared to a set of parameters on the 
client (e.g., buffer level) to make the choices about the high­
est possible quality when requesting the next media segment. 
This process of adaptation can be assisted by intermediate net­
work nodes which have information on how much bandwidth 
is going to be allocated to the clients [6]-[8]. But, in general, 
adaptation algorithms implement buffer control and throughput 
estimation methods. Buffer control is designed so that the fluc­
tuations of the bandwidth, especially in wireless environments, 
will not affect the playback of the video. Throughput estimation 
is designed to maximize the quality in terms of bitrate selection 
by estimating the available bandwidth. This paper focuses on 
throughput estimation algorithms. 

Throughput estimation algorithms focus on providing an ad­
equate estimation of the throughput that the client can obtain 
from the network. Most of the adaptation algorithms start by 
calculating the instant throughput [9], which is defined as the 
size of the last downloaded segment divided by the time taken 
to download it. 

The problem with instant throughput is that it is not an appro­
priate throughput estimation method because measurements can 
fluctuate from one segment to another. Using it as a throughput 
estimator would have the effect of the multimedia player con­
tinuously adapting the bitrate to the instant throughput measure­
ments, which would affect the quality of the playback. Adap­
tation algorithms that use instant throughput measurements as 
a throughput estimation method, combine it with other mecha­
nisms. For example, BOLA [10], adapts the video bitrate using 
a buffer control method. 

Some methods for estimating the throughput rely on the mea­
surements of lower layers [11], [12], (e.g., from the physical 
layer). Those measurements are then compared to the instant 
throughput to make an adaptation decision. However, through­
put measurements from the physical layer have the inconve­
nience of including all network services from the client. 

Other throughput oriented algorithms calculate the average 
throughput for the last N segments of video obtained by the 
client [9]. However, this method has the disadvantage of not 
detecting short-term fluctuations of the available bandwidth that 

can occur, e.g., in wireless networks. If a short-term decrease 
of available bandwidth is not detected, this would lead to buffer 
starvation. 

Lin et al. [13] proposed to use the mean, the standard de­
viation and the fluctuation of the throughput to estimate the 
bandwidth. This method has the problem of heuristically estab­
lishing the fluctuation parameter with values of 0 to 0.025 for 
wired networks and 0 to 0.1 for wireless networks. 

An alternative throughput estimation method is to calculate 
the harmonic mean of a certain number of past measurements. 
The FESTIVE algorithm [14] uses the last twenty measurements 
while the ELASTIC algorithm [15] uses the last five. The har­
monic mean method functions optimally when having steady 
bandwidth measurements because it can discriminate some of 
the outlier measurements. However, in wireless environments, 
there are short-term bandwidth fluctuations that can cause this 
method to overestimate or underestimate the available band­
width. 

Zhou et al. [16] proposed the use of a rate adaptation algo­
rithm based on Markov decision processes that uses the mean 
and a temporal variance as a mechanism for bitrate switching. 
The problem of continuous bitrate switching is addressed by 
establishing two buffer thresholds. Using an algorithm that is 
also based on Markov decision processes, [17] proposes the use 
of a reinforcement learning method with a reward function to 
program new segment petitions. 

The EWMA method is proposed in [18], [19]. EWMA be­
haves as a low-pass filter for the throughput measurements. 
EWMA applies weighting factors so the weighting of each older 
instant throughput measurement decreases exponentially. The 
problem with this method is that the initial weight parameter 
needs to be fixed to a different value depending on the type 
of network. Usually weight values of 0 to 0.1 are proposed 
for wired networks and 0.2 to 0.3 for wireless networks. This 
can cause the method to not behave adequately (e.g., producing 
stalling events) when the weight parameters are not set ade­
quately for different network scenarios. 

Li et al. [20] proposed PANDA, an algorithm that uses 
EWMA with an exponential weight of 0.2 as a throughput es­
timator, which would be adequate for wireless networks. The 
algorithm also proposes the use of an Additive Increase Mul­
tiplicative Decrease (AIMD) bitrate selection algorithm and a 
random scheduler algorithm to avoid playback synchronization 
for simultaneous players. 

Another example of an EWMA based throughput estimation 
method adapted to a specific type of network can be found 
in [21], which proposed the use of DASH in a dense wireless 
network scenario, using proportional-integral-derivative (PID) 
controllers and an EWMA throughput estimation in every wire­
less client to manage the quality selection and client scheduling. 

Thang et al. [22] presented a method that combines the use of 
EWMA and the Round Trip Time (RTT) estimation method of 
TCP but presents the problem of setting a fixed weight parameter 
depending on the type of network used. Jeong and Chung [23] 
proposed to use EWMA, RTT and a Media Segment Duration 
(MSD) measurement, but a fixed weight parameter depending 
on the access network is needed, like [18], [19], [22]-[24]. 



Lai et al. [25] proposed the use of EWMA and two correcting 
parameters that are used to calculate the weight used in EWMA, 
and a safety margin of three times the standard deviation in the 
EWMA formula. 

A combination of EWMA and a dynamic fluctuation factor in 
[26] tries to compensate for the error between the last throughput 
measurement and the next. However, this method is based on 
comparing the last throughput measurement to the previous one, 
making the exponential parameter to adapt too slowly when 
there are bandwidth fluctuations. 

The AFF method proposed in this paper to address the prob­
lem of bandwidth fluctuations is explained in the following 
section. 

III. ADAPTIVE FORGETTING FACTOR FOR DASH 

The AFF method was originally designed as a recursive least-
square adaptive filter to recover data from corrupted signals [27]. 
Similar methods can be found in various fields like medicine, 
finance, computer networks monitoring or astronomy. 

In this paper we propose the use of an AFF method originally 
designed by Bodenham [28] as a throughput estimation method 
for network security. This method is based on statistical process 
control to analyze streams of data and detect changes using the 
mean and the variance. 

AFF shares with EWMA the idea of using a weight param­
eter that decreases the impact of older measurements exponen­
tially (functioning as a smoothing parameter) on the estimation 
of the mean. But while EWMA uses a fixed weight factor, 
AFF calculates the value dynamically. This allows AFF to react 
quicker to short-term fluctuations of the bandwidth. The esti­
mated throughput in the AFF method is shown in (1). The AFF 
mechanism is X , where X = (XQ, XI, ..., A.#) and A.¡ e (0,1). 
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Equation (1) is the throughput estimation, (2) represents the 
accumulated instant throughput measurements. (3) shows the 
accumulated of the number of segments. Where m{) -^ = 0 , 
wQ -^ = 0 and X0 = 1 respectively. 

As shown in (2) and (3), the key component of the AFF 
method is how the weight factor is updated, namely A, JV —> X^^i. 
To obtain XN, it is necessary to apply an online optimization to 
minimize a cost function LN -^ .This is possible by applying a 
first order optimization algorithm such as the one-step gradient 
descent (4). 
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In (4) r] is the step size and ?j <C 1 so that the algorithm can 
react faster when solving the optimization. The cost function, 
shown in (5), compares the average throughput values to the 

new measurement to assure that the estimated value is as close 
as possible to the new measurement. 

Utilizing the chain rule method in (5), the result is a derivative 
of (1), that translates in derivatives of (2) and (3). To solve those 
derivatives a differentiation from first principle (delta method) 
is applied. This method aims to find the instant rate of change 
of (2) and (3) with respect of X . 

Equations (7) and (8) present the results of applying the first 
principle or delta method to (2) and (3). For lemma proof or 
explanations regarding the mathematical methods applied in 
this research consult [29]. 
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In (6) and (7) the initial measurements are defined as: A 
0 and Í2, 

1, A 

0. Next we proceed to solve the derivative of (1) 
which is shown in (8). 
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The equations formerly explained were implemented as shown 
in Algorithm 1. The aim of the AFF method is to correctly select 
the representation whose bitrate matches the bandwidth condi­
tions that the network offers to achieve the highest quality in 
the video playback. This is achieved by estimating adaptively 
the throughput of the video streaming, and when encountering 
short-term fluctuations, placing greater weights on more re­
cent observations and thereby "forgetting" older measurements 
faster. 

The algorithm compares if the actual measurement is the 
first, because in that case the calculation is done with different 
initialization variables. Afterwards the algorithm calculates the 
estimated throughput using the next instant throughput mea­
surement in the AFF equations. 

The AFF algorithm is executed every time a new instant 
throughput measurement is obtained, i.e., every time a video 
segment is downloaded. Once the average throughput is esti­
mated, the algorithm selects a new video representation by per­
forming a sequential search on the video bitrates of the different 
representations, from highest to lowest, to select the highest 
bitrate that is below the average throughput. 

Bodenham in [29], performing numerous simulations, 
reached the conclusion that truncating the range of X to 
X e (0.6, 1) can make the method react faster when encoun­

tering short-term fluctuations. 
Bodenham also defined that the step size r¡ variable should 

be between r¡ e (0.001, 0.1) so that the algorithm can return to 
a steady behavior faster when detecting a fluctuation. In this 
proposal a value of r¡ = 0.1 is used. 

The next section presents the scenario in which the AFF 
adaptive algorithm was evaluated. 



Algorithm 1: AFF throughput estimation algorithm 
Input: maxbitrateindex, bitratebw(i), 

Segment Index = n, THR„ 
Output: switchbitrate(i) 

Initialization : mo = w0 = 0; X0 = 0; 
£2i = Ai =0;??=0.1; 
if (SegmentIndex == l)then 

nti = (A.o * mo) + THR\ 
w\ = (A.Q * wo) + 1 
THR 

6: 
7: 
8: 
9: 
10: 
11: 

12: 

X1 = X0 - r] * 2 * (THRi - THR{) 
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end if 
for i = maxbitrateindex to 0 do 

if (THR„ > bitratebw(i)) then 
return switchbitrate(i) 
end for 

end if 
end for 

IV. IMPLEMENTATION SCENARIO 

To test the proposal, a DASH player has been modified to add 
AFF as the throughput estimation algorithm. The dash.js player 
[30] has been selected. This player is a JavaScript implemen­
tation of a DASH player that can run in a web browser. The 
original dash.js reference player implements a throughput algo­
rithm that consists of calculating the average of the throughput 
obtained for the last three video segments. This algorithm will 
be referred to as avg-last-3. The dash.js player also implements 
a buffer control algorithm so that it can adapt differently when 
certain established levels are reached. For instance, when the 
buffer level drops to 8 seconds, lower bitrate segments are re­
quested independently of how much bandwidth the throughput 
algorithm estimates. 

Fig. 1 presents a block diagram of the adaptation logic im­
plemented in dash.js. There are four elements in the adaptation 
algorithm. From those four elements, the complexity of the 
adaptation logic resides mainly on the Buffer Module and the 
Throughput Module, which are the modules implementing the 
algorithms managing the selection of the next segment bitrate. 

The Rules Entity defines all the necessary parameters and 
levels such as the minimum buffer level or if the streaming is 
live or pre-stored. The Throughput Module is where the instant 
throughput is measured and where the avg-last-3 method to es­
timate throughput is implemented. This module has been mod­
ified to implement the AFF method and the EWMA method 

Í Rules 
Switching 

Logic 

Throughput 
Module 

Buffer 
Module 

Fig. 1. Block diagram of the adaptation logic of dash.js. 
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Fig. 2. Experiment scenario. 

so the three different throughput estimation methods can be 
compared. 

The Buffer Module implements a heuristic algorithm that 
consists of monitoring the buffer level to force a bitrate change 
when the buffer is under a minimum level. Finally, the Switching 
Logic controls the request for new video segments choosing a 
video representation bitrate that fits the conditions coming from 
the Buffer Module and the Throughput Module. 

Our experimental platform consists of a client-server model 
which is interconnected by a network emulator, as shown in 
Fig. 2. The scenario has been implemented using an open-source 
virtualized platform [31]. 

This scenario is built over two layers of virtualization; the first 
layer consists of an open-source tool named Virtual Networks 
over linuX (VNX) [32]. This tool is based on Linux Containers 
(LXC) and an XML file to create virtual network scenarios. The 
XML file contains the information on the number of network 
elements, the interconnections among them and commands to 
perform specific tasks. The second layer of virtualization con­
sists of hosting the VNX scenario in a virtual machine running 
Ubuntu inside VirtualBox [33]. This layer provides the porta­
bility for the scenario to run in any OS with the use of an Open 
Virtual Appliance (OVA). 

The server stores the Big Buck Bunny video [34] at a resolu­
tion of 720p. The video is encoded in H.264/Advanced Video 
Coding (AVC) format with variable bitrate (VBR) using the 
x264 tool [35] with four different bitrates (250, 500, 1000 and 
2000 Kbps). MP4Box [36] is used to split each video file in 
segments and generate the MPD file. Each video segment has a 
duration of 2 seconds. 
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TABLE I 
STATISTICS OF THE BANDWIDTH PROFILES IN MBPS 

Test Bandwidth Type Max. Min. Avg. S.D. 

Test 1 High bandwidth, low fluctuation. 2.40 0.80 2.17 0.2765 
Test 2 Low bandwidth, high fluctuation. 4.57 0.01 1.23 0.6374 
Test 3 High bandwidth, high fluctuation. 5.73 0.01 2.31 1.3317 
Test 4 High-low bandwidth, low fluctuation. 2.39 0.60 1.50 0.8063 

The shaper behaves as a network emulator that modifies the 
network conditions in three aspects: available bandwidth, net­
work delay and packet loss. The shaper is based on a shell script 
that reads a Comma-separated Value (CSV) network profile file 
defining the network conditions on different time periods. This 
file is used to change the configuration of network interfaces 
during the video streaming experiments, using the traffic con­
trol and the network emulation (NetEm) tools of Linux. More 
specifically, the shaper uses the Hierarchy Token Bucket (HTB) 
queuing discipline to classify the incoming TCP traffic and en­
force the bandwidth parameter read from the network profile 
file. 

The client has a caching proxy, that can be used to support 
broadcast streaming services. In our scenario, as depicted in 
Fig. 3, the player consists of a Chrome web client running 
dash.js to access the video segments transparently using the 
client proxy. The player is also responsible for collecting the 
data which is used to analyze the behavior of the throughput 
estimation algorithm; i.e., buffer length, video bitrate and instant 
throughput. 

The AFF throughput estimation method has been compared 
to the dash.js avg-last-3 estimation method [30] and to our own 
implementation of the EWMA method described in [18], [24]. 
For EWMA, the fixed weight parameter is set to 0.2, which is the 

value for wireless network proposed by [18], since the profiles 
are based on LTE traffic measurements. 

The experiments are carried out using four different band­
width profiles, as shown in Fig. 4. The three first profiles use 
real LTE network data obtained in a previous research [31]. 
The fourth profile was created to analyze the behavior of the 
throughput estimation methods when the available bandwidth 
changes abruptly. 

The first bandwidth profile was selected to represent the be­
havior of a steady network such as a residential Internet con­
nection. The second profile aims to study the performance of 
the throughput estimation methods for limited bandwidths that 
present short-term fluctuations. The third profile is inspired by 
test pattern one (TP1) in [26], depicting a user walking during 
daytime in an urban environment. The fourth profile was created 
to analyze the behavior of the different throughput estimation 
methods when a sudden loss of bandwidth occurs, especially 
to measure how a high change in the bandwidth affect the 
algorithms that carry past measurements when estimating the 
available throughput. 

Table I shows the main statistics for each of the bandwidth 
profiles used to test the performance of the AFF algorithm: 
maximum, minimum, average, and standard deviation for the 
bandwidth of each profile. 



TABLE II 
STATISTICS OF THE ALGORITHMS 

Test 

Test 1 

Test 2 

Test 3 

Test 4 

Method 

AFF 
avg-last-3 
EWMA 

AFF 
avg-last-3 
EWMA 

AFF 
avg-last-3 
EWMA 

AFF 
avg-last-3 
EWMA 

Bitrate 
Changes 

7 
41 
21 

34 
35 
14 

8 
15 
25 

26 
33 
30 

Stalling 
Events 

0 
0 
2 

0 
1 
0 

0 
0 
0 

0 
2 
0 

Time (s) 

1.28, 0.9 

5.01 

-

0.3, 2.23 

Mean Bitrate 
(Kbps) 

1387.00 
1002.10 
822.12 

492.00 
471.83 
563.00 

1216.80 
1174.00 
775.00 

730.00 
880.00 
814.00 

V. PERFORMANCE EVALUATION 

In this section we present the experimental results of eval­
uating the different throughput estimation methods avg-last-3, 
EWMA and AFF for each of the bandwidth profiles. 

The first subsection presents an analysis of the three different 
throughput estimation methods using the first bandwidth pro­
file, and the behavior of X for the AFF method. The next four 
subsections present the results for each bandwidth profile in 
the form of a Cumulative Distribution Function (CDF) for the 
video bitrate selection and the buffer level obtained for the three 
throughput estimation methods. Finally, the last subsection dis­
cusses the Quality of Experience (QoE) indicators for each of 
the scenarios that are summarized in Table II. 

A. Comparison of Throughput Estimation Methods 

Fig. 4 shows measurements of the instant throughput that 
the DASH player calculates, the estimates that each method ob­
tains from the instant throughput measurements, and the lambda 
value that the AFF method calculates adaptively. Since AFF and 
EWMA share a similar weighting mechanism, they present a 
similar behavior, and different from avg-last-3 that just calcu­
lates the mean value of the three past measurements. 

Fig. 4 also shows how the lambda AFF factor evolves during 
the playback of the video. When the instant throughput behaves 
in a steady manner, X = 1, the highest value. But when there 
is a short-term fluctuation of the throughput, lambda drops to 
the lowest value of X = 0.6, which makes the AFF algorithm to 
forget the latest measurements faster. 

B. High Available Bandwidth With Low Short-Term 
Fluctuations 

This test was conducted to compare the three algorithms in a 
steady environment with enough bandwidth to reach the highest 
representation most of the time. This type of bandwidth profile 
describes the typical bandwidth of a residential Internet connec­
tion and it is similar to test pattern two (TP2) in [26]. 

Fig. 5 presents the CDF of the bitrate selection for each of 
the algorithms, showing that the AFF algorithm is more stable 
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Fig. 5. (a) CDF of bitrate and (b) CDF of buffer level in Test 1. 

than the other algorithms since the best quality is chosen most 
of the time. 

Fig. 5 also presents the CDF of the buffer level. The AFF 
algorithm maintains a buffer level above ten seconds, which 
allows the AFF throughput estimation method to choose the 
bitrates instead of the buffer control algorithm. It also shows 
that the avg-last-3 and EWMA methods present more bitrate 
changes. 

C. Low Available Bandwidth With High Short-Term 
Fluctuations 

In the second test, a low bandwidth and high number of 
short-term bandwidth fluctuations profile is used. This profile 
affects video quality because of the sudden drops of available 
bandwidth. It may also cause stalling during the playback be­
cause of the continuous fluctuation in bandwidth. This profile 
was selected to evaluate the behavior of the different throughput 
estimation methods in an environment where the bandwidth is 
low. 

Fig. 6 shows that in this case the EWMA method presents 
better results than the AFF method and avg-last-3 method. Both 
the AFF and the avg-last-3 methods select the lowest bitrate 
quality most of the playback time. However, the dahs.js method 
present a stalling event of five seconds that affects the quality of 
the playback. The buffer level behaved in a similar manner with 
the three methods, mostly under 10 seconds because of the low 
bandwidth. 

D. High Available Bandwidth With High Short-Term 
Fluctuations 

The high bandwidth and high short-term fluctuations of this 
profile are expected to show whether the buffer can minimize 
the impact of having severe drops from high bandwidth mea­
surements, as well as the behavior of the different throughput 
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Fig. 6. (a) CDF of bitrate and (b) CDF of buffer level in Test 2. 
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estimation methods. This profile represents the bandwidth be­
havior of an LTE user who is walking in an urban environment, 
and it is similar to TP1 in [26]. 

As shown in Fig. 7, since the bandwidth profile has many high 
short-term fluctuations with high bandwidth, the AFF and the 
avg-last-3 methods selects the highest bitrate most of the time. 
However, the AFF method selects the highest bitrate quality ten 
percent more than the avg-last-3 method. The EWMA method 
shows a poor behavior, selecting the third bitrate quality most of 
the time. The buffer level behaves differently for each method; 
however, it is shown that the EWMA method presented the most 
bitrate switches because the buffer level stays below ten seconds 
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most of the time, which triggers the buffer level mechanism. 
The results from the first and third tests show that the AFF 
method is suited to perform proficiently in wired and wireless 
environments. 

E. Low and High Bandwidth Variations 

This profile combines low bandwidth and high bandwidth 
with low number of short-term fluctuations. This profile was 
created to analyze the impact of older bandwidth estimations on 
the accuracy of the throughput estimation methods when there 
is an abrupt bandwidth change. 

Fig. 8 shows that the AFF method selects the second and 
third bitrate quality most of the time, and the smallest number 
of quality changes. The avg-last-3 method reaches the highest 
mean bitrate, but suffers from two stalling events of 0.3 seconds 
and 2 seconds respectively, as Table II shows. The EWMA 
method presents a better mean bitrate than the AFF method 
but selects the lowest quality more often and presents more 
bitrate quality switches. It also shows that the buffer level is 
lower than ten seconds half of the time, which means that the 
buffer control algorithm affects the throughput estimation by 
constantly lowering the bitrate chosen for this bandwidth profile. 

F. QoE Results 

Table II shows, for each of the methods, a set of quality of 
experience indicators: number of bitrate changes, number of 
stalling events (due to buffer under-runs), the duration of each 
stalling event in seconds and the mean bitrate in Kbps. In the 
first test the AFF method presented a better-quality performance 
since there were less bitrate changes and the mean bitrate was 
higher than for the other methods. It also shows that the EWMA 
method presented two stalling events that lasted 1.28 and 0.9 sec­
onds respectively, having a great impact on the QoE of the play-



Fig. 9. Fairness experiment scenario. 

TABLE III 
FAIRNESS ANALYSIS NETWORK PROFILE 

Interval (s) Bandwidth (Mbps) 

0-100 22 
100-200 12 
200-300 6 
300-360 22 

back. In the second bandwidth profile, the EWMA method pre­
sented a steadier behavior than the other two methods; however, 
the mean bitrate of each method is not far from one another. It 
also shows that the avg-last-3 method presented a stalling event 
that lasted 5 seconds. For the third bandwidth profile, the results 
show that the AFF method presents less bitrate changes and a 
better mean bitrate. In the fourth test, the AFF method presents 
less bitrate changes, however, the avg-last-3 method had the best 
mean bitrate. The problem with the avg-last-3 method is that it 
had two stalling events, one lasted three seconds and the other 
one two seconds, making this method not suited to be used in 
environments with significant drops in bandwidth. 

VI. FAIRNESS ANALYSIS 

In adaptive video streaming, fairness metrics are used to de­
termine if the adaptation algorithm is able to deliver a fair share 
of the network bandwidth to different clients. In order to analyze 
the fairness of the AFF algorithm we have created an experi­
mental scenario, as shown in Fig. 9, to measure the bandwidth 
obtained by several simultaneous players sharing a bottleneck 
link. 

This scenario is similar to the scenario explained in Sec­
tion IV, but in this case the equipment is not virtualized. The 
HTTP server, the multimedia content and the multimedia player 
are described in Section IV. The shaper is now implemented 
using a Raspberry Pi 3 with two network interfaces. The shaper 
uses a network profile as specified in Table III. This profile was 
created to measure the fairness of the AFF estimation algorithm 
and the avg-last-3 algorithm, in order to detect how the algo­
rithm responds to changes in the bandwidth when competing 
with other video players using the same algorithm. 

The experiments consist often players initiating the multime­
dia playback randomly within the first 15 s of the experiment. 
The results are obtained measuring the average bandwidth of 
each client in the interval 50-350 s. These values are used to 
calculate the Jain Fair index (JFI) [37] and the total average 
throughput, as shown in Table IV. 

TABLE IV 
FAIRNESS ANALYSIS RESULTS 

Test Algorithm JFI Avg. Thr. (Kbps) 

Test 5 AFF .9969 1281.7 
Testó avg-last-3 .9995 1188.5 

The results show that both algorithms, with a JFI value close 
to 1, present a fair use of the bandwidth. Thus, the AFF estima­
tion algorithm shows fairness results that are similar to already 
existing algorithms, making the AFF algorithm suited to be 
used as the throughput estimation mechanism in combination 
with different adaptation algorithms. The results also show that 
the AFF method manages to achieve a slightly higher average 
throughput for the clients. 

VII. CONCLUSION AND FUTURE WORK 

Adaptive bitrate streaming solutions rely on throughput es­
timation algorithms that might need fine-tuning depending on 
the characteristics of the network. In this paper, we propose 
to use the Adaptive Forgetting Factor method for throughput 
estimation in DASH adaptation algorithms. This method relies 
on instant throughput measurements that are aggregated using 
exponential weights adaptively, so it overcomes the problems 
of short-term fluctuations in network throughput. By using this 
method it is possible to improve the QoE obtained by a DASH 
player over different types of networks, avoiding the fine-tuning 
of parameters of other throughput estimation algorithms. Us­
ing different bandwidth profiles, the AFF proposal has been 
tested and compared to alternative throughput estimation meth­
ods such as EWMA and average-last-3. The results show that 
AFF might obtain slightly lower average bitrates than the alter­
native methods. However, it presents a better behavior in regard 
to video stalling and number of bitrate switches, which are two 
of the key parameters for QoE in adaptive streaming. Finally, the 
results of the fairness experiments show that the AFF algorithm 
is able to deliver a fair share of the network bandwidth to dif­
ferent clients. Therefore, we propose AFF as a valid throughput 
estimation method that can work adequately for DASH players 
over different types of networks. 

A future step in our research is to work on DASH adaptation 
algorithms that can exploit a better communication between 
throughput estimation and buffer control methods, to provide 
the best QoE with different network conditions. 
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